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Abstract: As complex networks become ubiquitous in modern society, ensuring their reliability is crucial 9 

due to the potential consequences of network failures. However, the analysis and assessment of network 10 

reliability become computationally challenging as networks grow in size and complexity. This research 11 

proposes a novel graph-based neural network framework for accurately and efficiently estimating the 12 

survival signature and network reliability. The method incorporates a novel strategy to aggregate feature 13 

information from neighboring nodes, effectively capturing the response flow characteristics of networks. 14 

Additionally, the framework utilizes the higher-order graph neural networks to further aggregate feature 15 

information from neighboring nodes and the node itself, enhancing the understanding of network 16 

topology structure. An adaptive framework along with several efficient algorithms is further proposed to 17 

improve prediction accuracy. Compared to traditional machine learning-based approaches, the proposed 18 

graph-based neural network framework integrates response flow characteristics and network topology 19 

structure information, resulting in highly accurate network reliability estimates. Moreover, once the 20 

graph-based neural network is properly constructed based on the original network, it can be directly used 21 

to estimate network reliability of different network variants, i.e., sub-networks, which is not feasible with 22 

traditional non-machine learning methods. Several applications demonstrate the effectiveness of the 23 

proposed method in addressing network reliability analysis problems. 24 
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1. Introduction 27 

Complex technological networks, such as power plant networks, transportation networks, 28 
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communication networks, and others, are pervasive in modern society. These networks are deeply 29 

integrated into the infrastructure of modern society, and their failure can have serious consequences on 30 

society's well-being. Consequently, there is a growing demand for modern technological networks to 31 

exhibit high reliability in their operations [1]. It is therefore essential to analyze the reliability of networks, 32 

which measures their ability to provide the required service while considering component or link 33 

uncertainties, during their design and operation [2]. However, as these networks increase in size and 34 

complexity, the analysis and assessment of their reliability require significant computational effort. This 35 

necessitates the efficient estimation of network reliability to be of utmost importance. 36 

Currently, the traditional approaches for calculating network reliability can be broadly classified 37 

into four categories: enumeration methods, direct methods, decomposition methods, and simulation 38 

methods. Enumeration methods typically involve complete state enumeration or more advanced 39 

techniques like minimal path or minimal cut enumeration [3]. Direct methods aim to calculate network 40 

reliability directly from the underlying graph structure, without the need for a preliminary search for 41 

minimal paths or cuts [4]. Decomposition methods involve dividing the network into subnetworks, and 42 

the overall reliability is then computed based on the reliabilities of these subnetworks [5]. Specifically, 43 

Lee and Park [6] introduced a network reliability analysis method that relies on the principles of 44 

additivity and eligibility probabilities. This approach involves the identification of a composite path as a 45 

subnetwork, typically comprising a greater number of simpler paths than those encompassed in the 46 

composition. Yeh [7, 8] developed algorithms based on binary-addition trees to efficiently analyze 47 

network reliability, addressing scenarios where network components can exist in either a fully operational 48 

or completely failed state. Zuo et al. [9] proposed an efficient recursive algorithm known as the sum of 49 

disjoint products algorithm for multi-state network reliability analysis, which assumes that all minimal 50 

paths to specific network state are precomputed using the implicit enumeration algorithm [10]. All of the 51 

aforementioned methods, in one way or another, rely on combinatorial exhaustive search through 52 

networks. However, since the calculation of network reliability is an NP-hard problem [11], it is generally 53 

impossible to estimate the reliability of large-scale networks using these methods. As a result, simulation 54 

methods that focus on approximating the statistical properties of networks have been studied for 55 

calculating the reliability of large-scale networks. For instance, Yeh et al. [12] developed a particle swarm 56 

optimization approach based on Monte Carlo simulation (MCS) to solve complex network reliability and 57 

optimization problems. Zuev et al. [1] proposed a stochastic framework that utilizes Subset simulation 58 
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and a Markov chain Monte Carlo technique to estimate the reliability of large-scale networks. Ramirez-59 

Marquez and Rocco [13] formulated a stochastic network interdiction optimization model with network 60 

reliability as the constraint and utilized MCS to estimate the network reliability for each interdiction 61 

strategy. Chang [14] introduced an algorithm based on MCS with demand confirmation to compute the 62 

two-terminal multi-state network reliability problem and explored the degradation of reliability over time. 63 

Another effective approach for addressing network reliability analysis is based on the survival 64 

signature [15], which extends the concept of the system signature [16] to handle systems/networks with 65 

multiple component types. In the context of binary-state systems/networks, the survival signature can be 66 

defined as the probability of the system/network functionality given a specific number of operational 67 

components for each component type [15]. In the case of multi-state systems/networks, the survival 68 

signature can be defined as the probability of the system/network being in a specific state given a 69 

particular number of functional components for each component type [17]. The survival signature has a 70 

distinct advantage as it completely decouples the system/network structure from the probabilistic model 71 

used to describe component failures. Compared to traditional methods, survival signature-based 72 

approaches only require calculating the survival signature once, allowing them to handle network 73 

reliability analysis problems under various scenarios, such as common causes of failure and imprecise 74 

uncertainty. For binary-state systems/networks, Feng et al. [18] introduced a survival signature-based 75 

method explicitly incorporating imprecise uncertainties to calculate upper and lower bounds of system 76 

reliability. Aslett et al. [19] employed the survival signature from a Bayesian perspective for reliability 77 

analysis of systems and networks. Patelli et al. [20] proposed two simulation algorithms for computing 78 

system reliability with non-repairable components and one simulation algorithm for systems with 79 

repairable components. Huang et al. [21] developed a methodology based on the survival signature for 80 

reliability analysis of phased mission systems with similar component types in each phase. Salomon et 81 

al. [22] provided an efficient method that combines the concepts of survival signature, fuzzy probability 82 

theory, and two versions of non-intrusive stochastic simulation methods to quantify the reliability of 83 

complex systems. In the domain of multi-state systems with multi-state components, both in discrete and 84 

continuous scenarios, Liu et al. [23] derived expressions for stress-strength reliability in both contexts. 85 

However, estimating the survival signature is greatly affected by the curse of dimensionality. To enhance 86 

the computational efficiency of survival signature estimation, Reed [24] proposed a method that 87 

transforms the fault tree representation of systems into a binary decision diagram. This method performs 88 
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exceptionally well when the fault tree or binary decision diagram is already known. Yi et al. [25] 89 

introduced a matrix-based representation of the survival signature for multi-state coherent systems with 90 

multi-state components, and developed a finite Markov chain embedding method for estimating the 91 

survival signature in the context of multi-state consecutive type systems. Additionally, Qin and Coolen 92 

[17] devised several effective methods for calculating the survival signature for various types of multi-93 

state systems. Behrensdorf et al. [26] introduced an efficient approach for calculating the survival 94 

signature of binary-state networks, utilizing percolation theory and MCS. In this approach, percolation 95 

theory is employed to identify areas of the survival signature that can be safely excluded, while MCS is 96 

used to approximate the remaining entries. However, estimating the survival signature and reliability of 97 

large-scale networks remains a significant challenge, particularly in cases where the network's topology 98 

structure is subject to change. 99 

Considering the advantages of machine learning methods in tackling complex engineering problems, 100 

various techniques have been employed in practical applications. These methods encompass artificial 101 

neural networks (ANN) [27, 28], convolutional neural networks (CNN) [29, 30], and recurrent neural 102 

networks (RNN) [31, 32], among others. It is worth noting that existing machine learning-based network 103 

reliability analysis methods usually establish a surrogate model that associates different component states 104 

with network performances, treating distinct component states as separate input vectors. This procedure 105 

disregards the valuable topology structure information inherent in networks. Actually, integrating the 106 

topology structure information becomes crucial for enhancing the prediction accuracy of reliability 107 

analysis. Fortunately, graph-based neural networks, such as graph convolutional neural networks (GCNN) 108 

[33] and higher-order graph neural networks (HGNN) [34], excel in handling problems with graph 109 

features. These techniques effectively capture the topology structure information of networks/graphs, 110 

enabling more accurate prediction solutions than traditional artificial neural networks.  111 

This work presents a graph-based neural network framework for estimating the survival signature 112 

and the reliability of complex networks. The main contributions encompass three key aspects. Firstly, a 113 

novel method is proposed to aggregate feature information from neighboring nodes, effectively 114 

integrating network response flow characteristics, forming the foundational framework of the developed 115 

graph-based neural network. Secondly, an adaptive framework is established to enhance the prediction 116 

accuracy of the graph-based neural network. Thirdly, an efficient learning function along with several 117 

algorithms is developed to facilitate the adaptive update process of the graph-based neural network. In 118 
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comparison to traditional machine learning-based frameworks, the proposed graph-based neural network 119 

framework not only integrates response flow characteristics but also incorporates the topology structure 120 

information of networks, resulting in highly accurate estimates of network reliability. Moreover, once 121 

the graph-based neural network is properly constructed, it can directly estimate network reliability of 122 

several sub-networks, which is an ability not feasible with traditional non-machine learning methods. 123 

The structure of this work is organized as follows: The basic definition of network reliability 124 

analysis using the survival signature is provided in Section 2. The proposed graph-based neural network 125 

framework for network reliability analysis is illustrated in Section 3. The estimation procedure is outlined 126 

in Section 4. Several applications are introduced in Section 5. Conclusions are drawn in Section 6. 127 

2. Network Reliability Analysis using Survival Signature 128 

Consider a network consisting of m  components, and the state vector of components is expressed 129 

as ( )1 2, ,..., mX X X=X  , in which  ( )0,1 1,2,...,iX i m =   with 1iX =   and 0iX =   represent the 130 

i  -th component is in working state and failure state, respectively. The state of the network can be 131 

described by the structure function ( )  0,1 X   with ( ) 1 =X   if the network is operational and 132 

( ) 0 =X  if not. Considering the network contains K  types of components with km  representing the 133 

number of components of k  -th type and 
1

K

k

k

m m
=

=  . Then, the state vector of components can be 134 

written as ( )1 2, ,..., K=X X X X  , in which ( )1 2, ,...,
k

k k k k

mX X X=X   represents the state vector of 135 

components of k -th type. 136 

The survival signature denoted by ( )( )1 2, ,..., 0,1,..., ; 1,2,...,K k kl l l l m k K = =  is defined to be the 137 

probability that the network functions given that kl   of its km   components of type k   for each 138 

 1,2,...,k K  [15]. There are k

k

l

mC  state vectors k
X  with precisely kl  components 

k

iX  equal to 139 

1, thus ( )
1

1,2,...,
km

k

i k

i

X l k K
=

= = . Denote 
1 2, ,..., Kl l lS  as the set of all state vectors for the whole network, 140 

and the magnitude of this set is 
1

k

k

K
l

m

k

C
=

 . It is assumed that the failure times of the same type component 141 

are independently and identically distributed or exchangeable, then the survival signature can be 142 

expressed as follows: 143 
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 ( ) ( )
, ,...,1 2

1

1 2

1

, ,..., k

k

l l lK

K
l

K m

Sk

l l l C 

−

=

 
 =  

 


X

X  (1) 144 

The expression above indicates that the survival signature solely relies on the network topology structure, 145 

irrespective of the time-dependent failure behavior of components. 146 

Let ( )  0,1,...,k kL t m  denote the number of components of type k  in working state at time t  147 

and suppose the cumulative distribution function of failure times of type k  to be known with ( )kF t , 148 

then the probability when there are kl  components in working state at time t  for each  1,2,...,k K  149 

is calculated by: 150 

 ( )  ( )( ) ( ) ( )
1 11

1
k k k

k

k

K K K
m l ll

k k k k m k k

k kk

P L t l P L t l C F t F t
−

= ==

 
= = = = −        

 
   (2) 151 

where ( )P   represents the probability operator. The probability depicted above is computed 152 

considering the time-dependent failure behavior of components, without taking into account the network 153 

topology structure. 154 

The reliability or survival function of the network, which describes the probability of the network 155 

being in an operational state at time t , can be expressed as follows: 156 

 ( )   ( ) ( ) 
1

1

1 2

0 0 1

, ,...,
K

K

m m K

S K k k

l l k

R t P T t l l l P L t l
= = =

 
=  =  = 

 
   (3) 157 

in which ST   represents the network failure time. It is evident from Equation (3) that the survival 158 

signature effectively separates the network's structure from the failure time distribution of components, 159 

which represents its primary advantage. Moreover, calculating the survival signature just once for any 160 

given network is sufficient to determine its reliability. 161 

In this study, we focus on the reliability of a two-terminal network, which quantifies the probability 162 

of establishing a connection between the terminal node and the source node. It is assumed that both the 163 

terminal node, the source node, and all the links in the network are sufficiently robust and will not 164 

experience failures during network operation. For each realization of the state vector of components, i.e., 165 

( )1 2, ,..., mx x x=x , the value of structure function ( ) x  can be calculated by the Dijkstra algorithm 166 

[35]. The Dijkstra algorithm is a highly efficient technique for solving the shortest path problem in 167 

networks. It aims to determine whether there exists a shortest path given the realization of the state vector 168 

of components. If a shortest path exists, it is identified that the value of the structure function to be 169 
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( ) 1 =x ; otherwise, the value of the structure function is ( ) 0 =x . However, computing the survival 170 

signature for all combinations of state vectors of components exactly is computationally demanding, 171 

particularly for large-scale networks. Considering this challenge, the MCS method [26] can be employed 172 

to approximate the survival signature with a high accuracy. When estimating the survival signature 173 

( )1 2, ,..., Kl l l   under the case  1 2, ,..., Kl l l   with the MCS method, MCSN   samples 174 

( )( )( ) 1( ) 2( ) ( )

MCS, ,..., 1,2,...,j j j K j j N= =x x x x   are randomly generated, in which 175 

( )( ) ( ) ( ) ( )

1 2, ,...,
k

k j k j k j k j

mx x x=x   and ( )

1

km
k j

i k

i

x l
=

=   for each  1,2,...,k K  . The survival signature 176 

( )1 2, ,..., Kl l l  can be calculated as follows: 177 

 ( ) ( )
MCS

( )

1 2

1MCS

1
, ,...,

N
j

K

j

l l l
N


=

 =  x  (4) 178 

It should be noted that for the case  1 2, ,..., Kl l l  where the number of possible network states 
1

k

k

K
l

m

k

C
=

  179 

are smaller than MCSN , the survival signature is calculated analytically through Eq. (1). Moreover, if the 180 

number of working components, i.e., 
1

K

k

k

l
=

 , is less than the shortest path (corresponding to components) 181 

of the network when all those components are functioning, the network will certainly fail. Therefore, in 182 

this case, the survival signature ( )1 2, ,..., Kl l l  is directly set to zero without the need for simulation or 183 

analytical calculation. After the survival signature is estimated, the network reliability can be obtained 184 

through Eq. (3). 185 

Although the MCS method mentioned above is effective in solving the survival signature, it remains 186 

computationally demanding for large-scale networks, particularly when the network topology structure 187 

changes, such as the deletion of nodes. In such cases, the MCS method needs to be re-executed to obtain 188 

the new survival signature for the new network with the updated topology structure. In the following 189 

section, a novel graph-based neural network and an adaptive update framework are developed to analyze 190 

network reliability. Once this graph-based neural network is appropriately constructed, it can directly 191 

estimate network reliability, even in the presence of changes to the network topology structure. 192 

 193 

 194 

 195 
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3. Graph-based Neural Network Framework for Network Reliability Analysis 196 

3.1 The Graph-based Neural Network with Novel Aggregation Layers 197 

Graph-based neural networks represent a specialized class of machine learning models engineered 198 

for processing and analyzing graph-structured data. Unlike conventional artificial neural networks, which 199 

excel at tasks like image recognition and natural language processing, graph-based neural networks are 200 

uniquely designed to harness the inherent structure and interconnections within graphs. Graphs consist 201 

of nodes and edges that link these nodes. Graph-based neural networks leverage this topology to 202 

propagate information across the graph, allowing them to make informed predictions, classifications, or 203 

generate useful representations. These models have shown remarkable success in various applications, 204 

ranging from social network analysis and recommendation systems to bioinformatics and drug discovery. 205 

At the core of graph-based neural networks is the ability to iteratively update node representations by 206 

aggregating information from neighboring nodes, effectively capturing the context and relationships 207 

within the graph. This process allows graph-based neural networks to encode valuable information about 208 

each node's surroundings, making them particularly effective for tasks like node classification, link 209 

prediction, and graph classification. Currently, a range of graph-based neural networks have been 210 

developed by employing distinct aggregation layers, including graph convolutional neural networks 211 

(GCNN) [33] and higher-order graph neural networks (HGNN) [34], etc. 212 

In this work, the network is represented by a graph ( ),G N L , where the components are considered 213 

as the node set N , the connections between components are represented as the link set L . A novel 214 

graph-based neural network is proposed to construct a surrogate model between different network 215 

topology structures (i.e., component states) and network responses (i.e., structure functions). The graph-216 

based neural network starts by employing a proposed expression to aggregate feature information from 217 

neighboring nodes, effectively integrating the response flow characteristics of networks. Subsequently, 218 

the HGNN is utilized to further aggregate feature information from both neighboring nodes and the node 219 

itself. This step enables the extraction of network topology structure information, thereby improving the 220 

algorithm's understanding of networks. The basic framework of the developed graph-based neural 221 

network is shown in Fig. 1. When the graph-based neural network has been effectively trained and 222 

constructed, it can be directly utilized to efficiently predict network responses under various network 223 

topology structures. 224 



9 

 

 225 

Fig. 1 Basic framework of the developed graph-based neural network 226 

Fig. 2 provides the basic procedure of the proposed graph-based neural network for predicting 227 

values of structure function at different network topology structures. In this network, there are two types 228 

of components. Type 1 includes components 1, 4, and 5, while type 2 contains components 2 and 3. The 229 

failed components are represented by white dashed boxes among all the network topology structures. 230 

Initially, several different network topology structures are generated, and the corresponding network 231 

responses are calculated using the Dijkstra algorithm. Subsequently, the proposed graph-based neural 232 

network is utilized to construct a surrogate model that relates different network topology structures to 233 

their corresponding network responses. This surrogate model is then employed to predict the network 234 

responses for other network topology structures. By obtaining the network responses for all these 235 

network topology structures, the survival signature and network reliability can be easily determined. 236 

 237 

Fig. 2 Basic procedure of the developed graph-based neural network for predicting values of structure 238 

function at different network topology structures 239 
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To construct the graph-based neural network, the link weight vector is introduced and denoted as 240 

( )1,2 1,3 , 1,, ,..., ,...,i j m mZ Z Z Z −=Z  , where ,i jZ   means the link weight between the i  -th and j  -th 241 

components. Specifically, the link weight ,i jZ  is assigned a value of 1 if there is a connection between 242 

the i -th and j -th components, and it is set to 0 otherwise. The feature vector of nodes utilized is set to 243 

the following expression: 244 

 

1

2

1 0 0

0 1 0

0 0 1
m mm










   
   
   = =
   
   
    

X

X
X

X

 (5) 245 

Then, the following graph aggregation layer 1 is established to aggregate local neighborhood information 246 

for node i  by integrating link weights: 247 

 ( )
( )

(1)T (1)

,i j i j j

j N i

Z I  



 = +
 X X X W b  (6) 248 

in which ( )N i  denotes the nodes in neighborhood of node i . i


X  is the updated feature of node i  249 

after graph aggregation layer 1, and the updated feature vector of nodes can be expressed as 250 

T

1 2, ,..., m

    =  X X X X  . ( )jI 
X   represents the indicator function of node j  , and ( ) 1jI  =X   if 251 

component j   is functional and ( ) 0jI  =X   otherwise. 
(1)

W   and 
(1)

b   represents the weight 252 

parameter vector and bias parameter vector of the linear neural network shown below: 253 

 

(1) (1) (1)

1,1 1,2 1,

(1) (1) (1)

2,1 2,2 2,(1)

(1) (1) (1)

,1 ,2 ,H H H

m

m

n n n m

W W W

W W W

W W W

 
 
 =
 
 
  

W  (7) 254 

 (1) (1) (1) (1)

1 2, ,...,
Hnb b b =  b  (8) 255 

where Hn  means the number of neurons in the hidden layer. In this work, Hn  is identified as follows: 256 

 

128 2 128

256 128 2 256

512 2 256

L

H L

L

m n

n m n

m n

+ 


=  + 
 + 

 (9) 257 

in which Ln  represents the number of links in networks. The proposed graph aggregation layer 1 shown 258 

in Eq. (6) aggregates feature information from neighboring nodes so to effectively integrating the 259 

response flow characteristics of networks. 260 



11 

 

To illustrate the operational process of the proposed aggregation layer 1, we employ a simple 261 

network comprising three components as an illustrative example. The operational process of the 262 

aggregation layer 1 is depicted in Fig. 3. For component 1, its corresponding neighboring node is 263 

component 2. The indicator function for component 2 is represented as ( )2 1I  =X  and the link weight 264 

between component 2 and component 1 is 
2,1=1Z . Consequently, utilizing the proposed aggregation 265 

layer 1 as outlined in Eq. (6), the updated feature for component 1 can be computed as 266 

( ) (1)T (1) (1) (1) (1) (1) (1) (1)

1 2,1 2 2 1,2 1 2,2 2 ,2= + , ,...,
H Hn nZ I W b W b W b     = + + +  

X X X W b  . Additionally, with the similar 267 

operational process, the updated features for component 2 and component 3 can also be determined as 268 

(1) (1) (1) (1) (1) (1)

2 1,1 1 2,1 2 ,1+ , ,...,
H Hn nW b W b W b  = + + X  and  3 1

0,0,...,0
Hn




=X , respectively. 269 

 270 

Fig. 3 The operational process of the developed aggregation layer 1 271 

After the graph aggregation layer 1 is constructed, the HGNN [34] is used to be the graph 272 

aggregation layer 2 as follows: 273 

    
( )

(2)T (3)T (3)

,Relu Relui i j i j

j N i

Z  



 
= + +  

 
X X W X W b  (10) 274 

in which  Relu  represents the Relu activation function. i


X  is the updated feature of node i  after 275 

graph aggregation layer 2, and the updated feature vector of nodes can be expressed as 276 

T

1 2, ,..., m

    =  X X X X  . 
(2)

W  , 
(3)

W   and 
(3)

b   represent the corresponding weight parameter 277 

vector and bias parameter vector of linear neural networks, with the size being H Hn n , H Hn n  and 278 
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1 Hn , respectively. The structures of all these vectors resemble those presented in Eqs. (7) and (8), and 279 

therefore, will not be reiterated here. The established graph aggregation layer 2 is utilized to further 280 

aggregate feature information from both neighboring nodes and the node itself. This facilitates the 281 

extraction of network topology structure information, thereby enhancing the algorithm's comprehension 282 

of networks. 283 

The updated feature vector 


X   after the aggregation layer 1 is further used as the input of 284 

aggregation layer 2 to obtain the update feature vector 


X  , and the operational process of the 285 

aggregation layer 2 is shown in Fig. 4. According to the aggregation layer 2 shown in Eq. (10) and the 286 

topology structure of the simple network in Fig. 4, the updated feature for component 1 can be calculated 287 

as        (2)T (3)T (3) (2)T (3)T (3)

1 1 2,1 2 1 2Relu Relu Relu ReluZ    = + + = + +X X W X W b X W X W b  . 288 

Furthermore, the updated features for component 2 and component 3 can also be determined as 289 

   (2)T (3)T (3)

2 2 1Relu Relu  = + +X X W X W b  and   (2)T (3)

3 3Relu = +X X W b , respectively. 290 

 291 

Fig. 4 The operational process of the aggregation layer 2 292 

In addition, two additional linear neural networks are employed, along with a maximum pooling 293 

layer, to enhance the neural network's ability to address complex network topology problems. 294 

 ( ) ( ) (4)T (4) (5)T (5)ˆ Softmax Maxpool Relu
i

i
 





 
= +  + 

 X X

X X W b W b  (11) 295 

where  Maxpool
i
 X X

  and  Softmax   represent the maximum pooling operation and softmax 296 
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operation, respectively. 
(4)

W  , 
(5)

W  , 
(4)

b   and (5)
b   represent the corresponding vectors of weight 297 

parameters and bias parameters of linear neural networks, with the size being H Hn n , 2 Hn , 1 Hn  298 

and 2 1 , respectively. Moreover, the structures of all these vectors resemble those presented in Eqs. (7) 299 

and (8), and therefore, will not be reiterated here. In this study, we determine all hyperparameters using 300 

the adaptive moment estimation (Adam) algorithm [36], with an initial learning rate of 0.01 and weight 301 

decay of 0.0001. The Adam algorithm dynamically adapts the learning rate for each parameter by 302 

estimating their first-order and second-order moments of gradients. One of its key advantages is that, 303 

following bias correction, the learning rate during each iteration falls within a specific range, which helps 304 

maintain parameter stability. For more comprehensive information about this algorithm, please refer to 305 

Ref. [36]. 306 

It is important to emphasize that the suggested graph-based neural network structure can be 307 

customized to meet specific mission requirements. For example, the graph aggregation layer can be 308 

iterated multiple times, and additional linear neural network layers can be incorporated into the proposed 309 

framework to handle large-scale network issues. To enhance the estimation accuracy of the established 310 

graph-based neural network for estimating network reliability, an efficient adaptive framework is 311 

established in the following subsection. 312 

3.2 Adaptive Network Reliability Analysis 313 

In this adaptive framework for network reliability analysis, the graph-based neural network is 314 

continuously updated and strengthened through iterative processes that involve incorporating the most 315 

influential samples into the training sample set. This process continues until the prediction accuracy of 316 

the graph-based neural network reaches a satisfactory level. Subsequently, the well-constructed graph-317 

based neural network, characterized by high accuracy, enables the estimation of the final network 318 

reliability. 319 

Initially, for each case of  ( )1 2, ,..., 0,1,..., ; 1,2,...,K k kl l l l m k K= =  , MCSN   samples 320 

( )( )
1 2 1 2

( ) 1( ) 2( ) ( )

, ,..., MCS, ,..., 1,2,...,
K K

j j j K j

l l l l l l j N= =x x x x   are randomly generated based on MCS, in which 321 

( )( ) ( ) ( ) ( )

,1 ,2 ,, ,...,
k k k k k

k j k j k j k j

l l l l mx x x=x  and ( )

,

1

k

k

m
k j

l i k

i

x l
=

=  for each  1,2,...,k K . It is worth mentioning that if 322 

the number of potential network states 
1

k

k

K
l

m

k

C
=

  is smaller than MCSN , the samples are obtained from 323 
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all these potential network states ( )( )
1 2 1 2

( ) 1( ) 2( ) ( )

, ,..., STATE, ,..., 1,2,...,
K K

j j j K j

l l l l l l j N= =x x x x  , where STATEN  324 

means the number of samples in this case. Additionally, since the network will certainly fail when the 325 

number of working components is less than the shortest path (corresponding to components) of the 326 

network when all those components are functioning, this is no need to generate the corresponding 327 

samples for this case. When all these samples are generated, they are combined to form the total sample 328 

set, i.e., ( )( )( ) 1( ) 2( ) ( )

TOTAL, ,..., 1,2,...,j j j K j j N= =x x x x  , in which TOTALN   represents the number of 329 

samples in the total sample set. 330 

Then, TRAINN   samples are randomly selected from the total sample set so to form the training 331 

sample set, i.e., ( )( )Train( ) Train1( ) Train2( ) Train ( )

TRAIN, ,..., 1,2,...,j j j K j j N= =x x x x  . The Dijkstra algorithm 332 

[35] is used to compute the values of structure function, i.e., ( )( )Train( )

TRAIN1,2,...,j j N =x , for all these 333 

training samples, and the solutions are considered as the response set. The training sample set and the 334 

corresponding response set can be used to construct a graph-based neural network as the description 335 

shown in subsection 3.1. Additionally, we reshuffle these training samples to get additional SETN  336 

sample sets so to construct additional SETN   graph-based neural networks for facilitating the 337 

convergence criterion and adaptive learning function. The process for reshuffling the training samples is 338 

as follows: Firstly, these training samples are divided into approximately equal SETN  sample subsets. 339 

Secondly, for each  SET1,2,...,i N , the subsets without i -th subset are sequentially combined into 340 

new subsets. Thirdly, the i -th sample subset is then appended at the end of the corresponding new 341 

subsets, resulting in the generation of additional sample sets 342 

( )( )SET( )( ) SET1( )( ) SET2( )( ) SET ( )( )

SET TRAIN, ,..., 1,2,..., ; 1,2,...,i j i j i j K i j i N j N= = =x x x x  . The additional SETN  343 

sample sets are employed to construct additional SETN  graph-based neural networks. In contrast to the 344 

original training sample set, the samples within each additional sample set are divided into training 345 

samples and test samples. In each additional sample set, the initial SET-TRAINN  samples are chosen as the 346 

training samples, i.e., ( )SET( )( )

SET SET-TRAIN1,2,..., ; 1,2,...,i j i N j N= =x , while the remaining samples are 347 

designated as the test samples, i.e., ( )SET( )( )

SET SET-TRAIN SET-TRAIN TRAIN1,2,..., ; 1, 2,...,i j i N j N N N= = + +x . 348 

The following expression is established to identify the value of SET-TRAINN : 349 
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  ( )TRAIN TRAIN ADD

SET-TRAIN TRAIN ADD

TRAIN

TRAIN

Round 1

Round otherwise

N N N

N N N
N

N

  − 


=   −
 
 

 (12) 350 

in which  Round  represents the round operation, and   is a given scale factor such as 0.9 = . 351 

ADDN  is the number of newly added training samples in the current iteration, and specific details 352 

regarding this parameter are provided later in this work. The expression of SET-TRAINN  means that at 353 

most ADDN   samples are set as the test samples in each additional sample set. This processing can 354 

guarantee as many training samples as possible, thereby ensuring that the constructed additional SETN  355 

graph-based neural networks have sufficient accuracy. 356 

Based on the original training sample set ( )Train( )

TRAIN1,2,...,j j N=x   and the additional SETN  357 

sample sets, SET 1N +   graph-based neural networks can be trained and constructed. Denote the 358 

corresponding prediction solutions for the total sample set as ( )( )( )

TOTAL
ˆ 1,2,...,j j N =x   and 359 

( )( )( )

SET TOTAL
ˆ 1,2,..., ; 1,2,...,j

i i N j N = =x  , respectively. The survival signature can be further 360 

estimated based on Eq. (1) as ( )1 2
ˆ , ,..., Kl l l   and ( )( )1 2 SET

ˆ , ,..., 1,2,...,i Kl l l i N =   for each case of 361 

 ( )1 2, ,..., 0,1,..., ; 1,2,...,K k kl l l l m k K= =  , respectively. It is important to highlight that for network 362 

reliability calculation, only the predicted survival signature solution ( )1 2
ˆ , ,..., Kl l l   is utilized. The 363 

remaining predicted survival signature solutions ( )( )1 2 SET
ˆ , ,..., 1,2,...,i Kl l l i N =  are employed solely 364 

for constructing the convergence criterion of the adaptive framework. In this work, the prediction 365 

accuracies of the additional SETN  graph-based neural networks are measured as follows: 366 

 ( ) ( )
TRAIN

SET( )( ) SET( )( )

1TRAIN

1 ˆ 1
N

i j i j

i i

jN
  

=

= + − x x  (13) 367 

in which SET1,2,...,i N= . The above formula measures the proportion of correctly predicted samples 368 

to the total samples in each additional sample set. The larger the value of i , the higher the accuracy 369 

of the i -th additional graph-based neural network. To enhance the robustness of our analysis, we 370 

address the inherent uncertainty that arises during the training of graph-based neural networks by 371 

excluding solutions associated with both the highest accuracy  max SETmax 1,2,...,i i N = =  and 372 
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lowest accuracy  min SETmin 1,2,...,i i N = =  . The remaining prediction solutions for the total 373 

sample set and the survival signature are rewritten as ( )( )( )

SET TOTAL
ˆ 1,2,..., 2; 1,2,...,j

i i N j N = − =x  374 

and ( )( )1 2 SET
ˆ , ,..., 1, 2,..., 2i Kl l l i N = −  , respectively. The convergence criterion for the established 375 

adaptive framework is determined by considering the standard deviation of the predicted survival 376 

signature solutions, using ( )1 2
ˆ , ,..., Kl l l  as the mean. The corresponding standard deviation is shown 377 

below: 378 

 ( ) ( )
SET

1 2

2
2

, ,..., 1 2 1 2

1SET

1 ˆ ˆ, ,..., , ,...,
2K

N

l l l K i K

i

l l l l l l
N


−



=

 =  − −
  (14) 379 

Then, the convergence criterion can be established as follows: 380 

  
1 2max , ,..., 0max 0,1,..., ; 1,2,...,

Kl l l k kl m k K  = = =   (15) 381 

where 0  is the convergence criterion threshold value. The predicted survival signature ( )1 2
ˆ , ,..., Kl l l  382 

is considered accurate and this is no need to update these graph-based neural networks unless the 383 

convergence criterion specified in Eq. (15) is met. 384 

If the convergence criterion specified in Eq. (15) is not satisfied, the following adaptive learning 385 

function is established to select new training samples from the total sample set 386 

( )( )( ) 1( ) 2( ) ( )

TOTAL, ,..., 1,2,...,j j j K j j N= =x x x x  in current iteration. 387 

 ( ) ( ) ( )
SET 2

( ) ( ) ( )

1SET

1 ˆ ˆ1
2

N
j j j

i

i

F
N

 
−



=

= − −
−

x x x  (16) 388 

in which SET1,2,..., 2i N= −  . The learning function quantifies the disparity between the predicted 389 

solutions ( )( )( )

TOTAL
ˆ 1,2,...,j j N =x  and ( )( )( )

SET TOTAL
ˆ 1,2,..., 2; 1,2,...,j

i i N j N = − =x . A smaller 390 

value of the learning function corresponds to a larger difference among these predicted solutions. When 391 

( )( ) 1jF =x , the predicted solutions of the sample ( )j
x  exhibit consistency across all these graph-based 392 

neural networks. Conversely, as ( )( )jF x   approaches zero, it indicates a notable level of epistemic 393 

uncertainty in the prediction of the sample ( )j
x . In such scenarios, it is recommended to incorporate this 394 

sample into the training sample set in order to update these graph-based neural networks. In this work, 395 

ADDN  new training samples that corresponding to top ADDN  minimum values of learning function are 396 

selected to update these graph-based neural networks in each iteration. Furthermore, the following 397 
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expression is established to identify the number of new training samples added to the training sample set. 398 

 

min 0.5 min

ADD max 0.5 max

0.5 otherwise

F

F

F

N N N

N N N N

N










= 



 (17) 399 

where 0.5FN   represents the number of learning function values ( )( )( )

TOTAL1,2,...,jF j N=x  that less 400 

than or equal to 0.5. minN   and maxN   represent minimum and maximum number of new training 401 

samples to be added in each iteration, respectively. The above expression restricts the number of new 402 

training samples to a value between minN  and maxN , which balances the accuracy and efficiency of 403 

constructing graph-based neural networks to a certain extent. After the ADDN  new training samples are 404 

identified, the actual values of structure function corresponding to the ADDN  new training samples are 405 

computed by the Dijkstra algorithm [35]. 406 

The new training samples are incorporated into the training sample set, and the corresponding values 407 

of the structure function are added to the response set. This iterative process continues until the 408 

convergence criterion specified in Eq. (15) is satisfied. By selecting and including the most influential 409 

samples in the training sample set to update these graph-based neural networks, the prediction accuracy 410 

of these networks gradually improves. After the iterations, the graph-based neural network, using the 411 

original training sample set, can provide an accurate estimation of the survival signature ( )1 2
ˆ , ,..., Kl l l . 412 

Finally, substituting the predicted survival signature into Eq. (3) yields the network reliability. 413 

4. Estimation Procedure of Proposed Reliability Analysis Framework 414 

The calculation flow-chart of the proposed reliability analysis framework is shown in Fig. 5. The 415 

specific estimation procedure is summarized as follows: 416 

Step 1: Generate the total sample set, i.e., ( )( )( ) 1( ) 2( ) ( )

TOTAL, ,..., 1,2,...,j j j K j j N= =x x x x , and the 417 

training sample set, i.e., ( )( )Train( ) Train1( ) Train2( ) Train ( )

TRAIN, ,..., 1,2,...,j j j K j j N= =x x x x . Use the Dijkstra 418 

algorithm [35] to compute the corresponding values of structure function, i.e., 419 

( )( )Train( )

TRAIN1,2,...,j j N =x , so to form the response set. Initialize ADDN  to TRAINN . 420 

Step 2: Obtain additional SETN   sample sets ( )SET( )( ) SET1( )( ) SET2( )( ) SET ( )( ), ,...,i j i j i j K i j=x x x x421 

( )SET TRAIN1,2,..., ; 1,2,...,i N j N= =   based on the current training sample set. Calculate the value of 422 

SET-TRAINN  based on Eq. (12) and identify the training and test samples for each additional sample set. 423 
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 424 

Fig. 5 The calculation flow-chart of the proposed reliability analysis framework 425 

Step 3: Construct SET 1N +  graph-based neural networks based on the current training sample set, 426 

the additional SETN  sample sets, and the corresponding response set. Estimate the values of structure 427 

function ( )( )( )

TOTAL
ˆ 1,2,...,j j N =x   and ( )( )( )

SET TOTAL
ˆ 1,2,..., ; 1,2,...,j

i i N j N = =x   based on the 428 

graph-based neural networks. Compute the corresponding values of survival signature ( )1 2
ˆ , ,..., Kl l l  429 

and ( )( )1 2 SET
ˆ , ,..., 1,2,...,i Kl l l i N =   for each case of  ( )1 2, ,..., 0,1,..., ; 1,2,...,K k kl l l l m k K= =  430 

according to the values of structure function and Eq. (1). 431 

Step 4: Calculate the prediction accuracies, i.e., ( )SET1,2,...,i i N =  , of the additional SETN  432 

graph-based neural networks based on Eq. (13), and exclude solutions associated with both the highest 433 

accuracy and lowest accuracy. Rewrite the remaining prediction solutions of the structure function and 434 

survival signature as ( )( )( )

SET TOTAL
ˆ 1,2,..., 2; 1,2,...,j

i i N j N = − =x   and ( )1 2
ˆ , ,...,i Kl l l435 

( )SET1,2,..., 2i N= − , respectively. Compute the convergence criterion based on Eqs. (21) and (22). If 436 

the convergence criterion specified in Eq. (15) is satisfied, go to Step 7; else, go to Step 5. 437 
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Step 5: Estimate the values of the adaptive learning function, i.e., ( )( )( )

TOTAL1,2,...,jF j N=x , for 438 

the total sample set ( )( )( ) 1( ) 2( ) ( )

TOTAL, ,..., 1,2,...,j j j K j j N= =x x x x , according to Eq. (16). Identify the 439 

number of new training samples, i.e., ADDN , based on Eq. (17), and select ADDN  new training samples. 440 

Step 6: Use the Dijkstra algorithm [35] to compute the corresponding values of structure function 441 

for the ADDN  new training samples. Add the ADDN  new training samples and the corresponding values 442 

of structure function into the training sample set and the response set, respectively. Let 443 

TRAIN TRAIN ADDN N N= +  and go to Step 2. 444 

Step 7: Substitute the predicted survival signature ( )1 2
ˆ , ,..., Kl l l  into Eq. (3) to yield the network 445 

reliability solution. 446 

5. Applications 447 

Several network reliability analysis problems are introduced to illustrate the effectiveness of the 448 

proposed graph-based neural network framework. For all these applications, the initial number of training 449 

samples is set to be TRAIN 2 4 LN m n= + , in which m  and Ln  represent the number of nodes and links 450 

in networks, respectively. The other parameters are set as follows: MCS 5000N =  , SET 10N =  , 451 

min 50N =  , max 2 4 LN m n= +  , 0.9 =  , 0 0.01 =  . These parameters are determined through 452 

preliminary testing, as there is no universally optimal choice for the parameters introduced in our 453 

proposed method. The optimal parameter values depend on the particular problem being addressed. The 454 

efficacy of the selected parameters is showcased through the applications presented in this section. The 455 

solutions of the survival signature and network reliability based on the complete enumeration technique 456 

(i.e., calculating the survival signature for all combinations of state vectors of components exactly) and 457 

the MCS method [26] are regarded as the reference actual and simulated solutions, respectively. The 458 

relative errors between the predicted solutions and the actual/simulated solutions are employed to 459 

illustrate the accuracy of the proposed graph-based neural network framework. 460 

 ( )
( ) ( )

( )

1 2 1 2

1 2 20

1 2

ˆ, ,..., , ,...,
, ,...,

, ,..., e

K K

K

K

l l l l l l
RE l l l

l l l
 −

 −
=

 +
 (18) 461 

 ( )
( ) ( )

( ) 20

ˆ

e
R

R t R t
RE t

R t −

−
=

+
 (19) 462 

in which ( )1 2, ,..., Kl l l   and ( )R t   represent the solutions based on the complete enumeration 463 
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technique or the MCS method, while ( )1 2
ˆ , ,..., Kl l l   and ( )R̂ t   are the solutions based on the 464 

established method. The small constant 20e−   is used to prevent numerical singularities when 465 

( )1 2, ,..., Kl l l  or ( )R t  equals to zero. 466 

5.1 A Network with Multiple Variants 467 

A network with 20 nodes and 30 links extracted from Ref. [37] is modified to test the effectiveness 468 

of the proposed graph-based neural network framework. The original topology structure of this network 469 

is shown in Fig. 6(a), and multiple variants of this network are depicted in Fig. 6(b)–(d). In the original 470 

network, there are two types of components. Components with circular icons represent type 1 471 

characterized by the exponential distribution with a parameter of =0.8 . On the other hand, components 472 

with square icons represent type 2 characterized by the exponential distribution with a parameter of 473 

=1.5 . The multiple variants are generated through deleting several components and the related links of 474 

the original network. To be more specific, variant 1 is created by removing components 1 and 2 from the 475 

original network. Variant 2 is formed by eliminating components 6, 9, and 13 from the original network. 476 

Variant 3 is obtained by deleting components 7, 8, 12, and 14 from the original network. It is important 477 

to emphasize that these variants are artificially generated at random to assess the efficacy of the proposed 478 

method for analyzing network reliability in sub-networks with varying numbers of remaining 479 

components. In real-world scenarios, the identification of sub-networks is contingent upon actual 480 

conditions, for instance, in the context of power transmission networks, sub-networks may be identified 481 

based on the operational status of individual substations. Once the proposed graph-based neural network 482 

is trained and constructed based on the original network, it is directly employed to estimate the survival 483 

signature and network reliability of the multiple variants. 484 

       485 

(a) Original network                             (b) Variant 1 486 
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       487 

(c) Variant 2                                 (d) Variant 3 488 

Fig. 6 The network with multiple variants 489 

To establish the adaptive graph-based neural network for reliability analysis of the original network 490 

depicted in Fig. 6(a), 160 initial training samples are generated to construct multiple graph-based neural 491 

networks, as described in Section 3. In each iteration, the most influential samples are selected to update 492 

the graph-based neural networks. After three iterations, the convergence criterion was met, and the final 493 

predicted survival signature was utilized to estimate the network reliability. The convergence criterion 494 

and the number of added samples were plotted against the number of iterations in Fig. 7. From Fig. 7, it 495 

can be observed that in the first, second and third iterations, 160, 160 and 50 new training samples are 496 

identified, respectively, using the established algorithm. Hence, the total computational cost (i.e., 497 

representing the number of network structure function estimation by use the Dijkstra algorithm) of the 498 

proposed graph-based neural network method amounted to 530. Fig. 8 illustrates the survival signature 499 

and relative errors based on the proposed method for the original network. It's important to emphasize 500 

that different cases in Fig. 8 and following figures refer to various combinations of network states with 501 

varying numbers of surviving components. In the case of  1 2, ,..., Kl l l , its corresponding case number 502 

is ( )( ) ( ) ( ) ( ) ( )( ) ( )2 3 1 3 2 1 2 1+1 +1 +1 +1 +1 +1 +1 +1K K K K K K K Km m m l m m l m m l m l l− − −+ + + + +  in this 503 

work. For instance, for the original network shown in Fig. 6 with 1 2 9m m= = , the case numbers are 23 504 

and 56 in Fig. 8 for cases    1 2, 2,3l l =  and    1 2, 5,6l l = , respectively. Furthermore, Fig. 9 displays 505 

the network reliability and relative errors based on the proposed method for the original network. From 506 

Figs. 8 and 9, it is evident that the predicted survival signature and network reliability solutions can well 507 

match the actual solutions. The maximum relative errors between actual and predicted solutions for the 508 

survival signature and the network reliability are 0.03392 and 0.00514, respectively. Furthermore, the 509 

predicted survival signature and network reliability solutions accurately match the simulated solutions, 510 
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yielding relative errors of zero. Given that epistemic uncertainty may be introduced when employing 511 

MCS methods to address the network reliability estimation, we ensure a fair comparison of accuracy by 512 

maintaining an identical total sample set for the proposed method and the MCS method. For the original 513 

network illustrated in Fig. 6(a), the MCS generates a total of 165725 combinations of network states. 514 

However, the proposed adaptive graph-based neural network reliability analysis framework leverages 515 

only 530 network state combinations along with their corresponding network responses to construct the 516 

graph-based neural network model. Remarkably, this model can accurately predict the network responses 517 

for all 165725 network state combinations. With the precise network response predictions, we can 518 

subsequently derive accurate survival signature and network reliability solutions. This remarkable 519 

achievement of zero relative errors in survival signature and network reliability solutions underscores 520 

the exceptional accuracy of the proposed adaptive graph-based neural network method. The solutions 521 

highlight the superior performance of the proposed adaptive graph-based neural network method. 522 

 523 

(a) Convergence criterion solutions               (b) Number of added samples 524 

Fig. 7 Convergence criterion and number of added samples for original network 525 

 526 

(a) Survival signature solutions                     (b) Relative errors 527 

Fig. 8 Survival signature and relative errors based on the proposed method for original network 528 
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 529 

(a) Network reliability solutions                     (b) Relative errors 530 

Fig. 9 Network reliability and relative errors based on the proposed method for original network 531 

Additionally, to demonstrate the effectiveness of the established graph-based neural network and 532 

adaptive framework, we present a comparison of the survival signature and network reliability solutions 533 

using different machine learning techniques, namely ANN and GCNN. The ANN comprises three linear 534 

neural networks connected in series, with the Relu activation function employed between two 535 

consecutive linear neural networks. The GCNN shares the same network structure as the proposed graph-536 

based neural network but differs in the aggregation methods used in the first two layers. In both ANN 537 

and GCNN, the same number (i.e., 530) of training samples as used in the proposed method are utilized. 538 

Figs. 10, 11, 12, and 13 display the survival signature solutions and relative errors, network reliability 539 

solutions and relative errors based on the ANN and the GCNN for the original network, respectively. 540 

From Figs. 10 and 11, it is evident that the ANN yields significant estimation errors for both the survival 541 

signature and network reliability solutions. Although the GCNN improves upon the performance of the 542 

ANN, it still exhibits considerable estimation errors compared to the proposed adaptive graph-based 543 

neural network method. These results underscore the high accuracy of the proposed method. 544 

 545 

(a) Survival signature solutions                     (b) Relative errors 546 

Fig. 10 Survival signature and relative errors based on the ANN for original network 547 
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 548 

(a) Network reliability solutions                     (b) Relative errors 549 

Fig. 11 Network reliability and relative errors based on the ANN for original network 550 

 551 

(a) Survival signature solutions                     (b) Relative errors 552 

Fig. 12 Survival signature and relative errors based on the GCNN for original network 553 

 554 

(a) Network reliability solutions                     (b) Relative errors 555 

Fig. 13 Network reliability and relative errors based on the GCNN for original network 556 

Once the proposed graph-based neural network is trained and constructed for the original network, 557 

it can be directly utilized to estimate the survival signature and network reliability of variant 1, variant 2, 558 

and variant 3. The survival signature and network reliability solutions for variant 1, variant 2, and variant 559 

3 are illustrated in Figs. 14, 15, and 16, respectively. These figures demonstrate an accurate match (i.e., 560 
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except for a few survival signature solutions) between the predicted survival signature and network 561 

reliability solutions with their respective reference solutions. Notably, the relative errors between 562 

simulated and predicted solutions for all cases are zero. For Variant 1, the maximum relative errors 563 

between the actual and predicted solutions for the survival signature and network reliability are 0.07419 564 

and 0.00594, respectively. In the case of Variant 2, these errors increase slightly to 0.08607 for the 565 

survival signature and 0.01582 for network reliability. Variant 3 exhibits the lowest errors among all, 566 

with maximum relative errors of 0.07143 for the survival signature and an impressive 0.00350 for 567 

network reliability. This highlights the superiority of the proposed graph-based neural network, which 568 

enables the handling of different variants of the original network, and this is an ability typically unfeasible 569 

with non-machine learning methods. Moreover, an analysis of the network reliability solutions for these 570 

variants reveals that the overall reliability of variant 1 and variant 3 is lower than that of variant 2. This 571 

discrepancy arises from the relative importance of the components involved. Specifically, components 1 572 

and 2, as well as components 7, 8, 12, and 14, have greater significance in maintaining network reliability 573 

compared to components 6, 9, and 13. The topology structure of the original network supports this 574 

observation. Since components 1 and 2 are directly connected to the source node, they can be assumed 575 

to be more critical than components not directly linked to the source or target nodes. Although 576 

components 7, 8, 12, and 14 are not directly connected to the source or target nodes, their combined 577 

effects generally outweigh those of the three components, i.e., 6, 9, and 13, at the same level. 578 

 579 

(a) Survival signature solutions                 (b) Network reliability solutions 580 

Fig. 14 Survival signature and network reliability based on the proposed method for variant 1 581 
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 582 

(a) Survival signature solutions                 (b) Network reliability solutions 583 
Fig. 15 Survival signature and network reliability based on the proposed method for variant 2 584 

 585 

(a) Survival signature solutions                 (b) Network reliability solutions 586 
Fig. 16 Survival signature and network reliability based on the proposed method for variant 3 587 

5.2 Several Test Networks 588 

Three different networks [38] are modified and shown in Fig. 17 to illustrate the effectiveness of 589 

the proposed graph-based neural network method. In all these networks, components are represented by 590 

circular icons (type 1), square icons (type 2), pentagon icons (type 3), diamond icons (type 4), octagon 591 

icons (type 5), and triangle icons (type 6). The distribution type and distribution parameters for the 592 

components in different networks are presented in Table 1. 593 

   594 

(a) Network A                     (b) Network B               (c) Network C 595 

Fig. 17 Four networks with different topology structures 596 
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Table 1 Distribution type and distribution parameters for the components 597 

Network name Component type Distribution type Distribution parameters 

Network A 

1 Exponential 0.8 

2 Weibull (1.7, 3.6) 

3 Lognormal (1.5, 2.6) 

4 Gamma (3.1, 1.5) 

Network B 

1 Exponential 0.8 

2 Exponential 1.5 

3 Weibull (1.5, 3.2) 

4 Weibull (1.8, 3.5) 

5 Lognormal (1.5, 2.5) 

6 Gamma (3.0, 1.2) 

Network C 

1 Weibull (1.5, 3.0) 

2 Lognormal (1.8, 2.7) 

3 Gamma (3.2, 1.5) 

Note: The Lognormal distribution parameters consist of mean and standard deviation parameters, while 598 

the Weibull and Gamma distributions are characterized by scale and shape parameters. 599 

The proposed graph-based neural network framework, the ANN and the GCNN are utilized to 600 

calculate the survival signature and network reliability of the three different networks. In both ANN and 601 

GCNN, the same number of training samples as used in the proposed method are utilized. The 602 

convergence criterion and number of added samples, the survival signature and relative errors, as well as 603 

the network reliability and relative errors for the three different networks, are presented in Figs. 18-32, 604 

respectively. These figures indicate that the proposed adaptive framework exhibits favorable 605 

convergence characteristics, with the maximum number of iterations shown in Fig. 23 for network B 606 

being less than 30. Despite having a smaller number of nodes and links compared to network C, network 607 

B comprises more component types, which generally necessitates a greater number of iterations to 608 

achieve an accurate estimation of the survival signature. Regarding the estimation of the survival 609 

signature, it is observed that network A and network B, depicted in Figs. 19 and 24, respectively, have 610 

zero-relative errors between simulated and predicted solutions for all cases, and zero-relative errors or 611 

close to zero-relative errors between actual and predicted solutions for those cases. For the survival 612 

signature solutions shown in Fig. 29 for network C, the maximum relative errors between simulated and 613 

predicted solutions as well as actual and predicted solutions are 0.02913 and 1.35199, respectively. While 614 

the maximum relative error between the actual and predicted solutions is substantial, with actual and 615 

predicted survival signature solutions being 0.00051 and 0.00120, respectively, its impact on network 616 

reliability estimation is relatively limited. This can be substantiated by the high accuracy of reliability 617 
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estimation depicted in Fig. 30. The reason for this lies in the fact that in scenarios where the survival 618 

signature is small, its influence on the ultimate network reliability estimation is diminished, as clearly 619 

illustrated by Eq. (3). Furthermore, at the case of maximum relative error, the simulated survival 620 

signature is 0.00120, which is accurately equal to the predicted one. This illustrates that the constructed 621 

graph-based neural network can accurately predict network responses for the network states 622 

corresponding to this survival signature generated based on MCS. The large maximum relative error 623 

between the actual and predicted solutions is due to insufficient sample size of MCS for this case, and it 624 

can be decreased by increasing the corresponding sample size. For network C, the current solutions are 625 

available since the predicted network reliability solutions are accurate enough. Furthermore, the relative 626 

errors of estimated solutions including the survival signature and network reliability based on ANN and 627 

GCNN, as depicted in Figures 21, 22, 26, 27, 31, and 32, indicate that both ANN and GCNN exhibit 628 

significant inaccuracies. 629 

 630 

(a) Convergence criterion solutions               (b) Number of added samples 631 

Fig. 18 Convergence criterion and number of added samples for network A 632 

 633 

(a) Survival signature solutions                     (b) Relative errors 634 

Fig. 19 Survival signature and relative errors based on the proposed method for network A 635 
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 636 

(a) Network reliability solutions                     (b) Relative errors 637 

Fig. 20 Network reliability and relative errors based on the proposed method for network A 638 

 639 

Fig. 21 Relative errors of estimated solutions based on the ANN for network A 640 

 641 

Fig. 22 Relative errors of estimated solutions based on the GCNN for network A 642 

The network reliability solutions presented in Figs. 20, 25, and 30 demonstrate a close match 643 

between the predicted, simulated and actual network reliability solutions. The maximum relative error, 644 

as depicted in Fig. 30, is 0.00340 between the actual and predicted solutions, highlighting the high 645 

accuracy of the proposed method in estimating network reliability. It is worth noting that the 646 
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computational accuracy of the graph-based neural network can be further enhanced by setting a more 647 

stringent convergence threshold value. In our experiments, the total computational costs of the proposed 648 

graph-based neural network for network A, network B, and network C are 2098, 3280, and 3780, 649 

respectively. In contrast, the total computational costs of the MCS are 65519, 261156, and 1436637, 650 

respectively, excluding the scenario where the number of working components is fewer than the shortest 651 

path in the network, resulting in certain network failure. The total computational costs of the complete 652 

enumeration technique are 65536, 262144, and 8388608, respectively. The proportion of the calculation 653 

amount for the proposed method to the total calculation amount of the complete enumeration technique 654 

is approximately 3.2013%, 1.2512%, 0.2499%, and 0.0451%, respectively. These findings underscore 655 

the high computational efficiency of the proposed graph-based neural network framework. 656 

 657 

(a) Convergence criterion solutions               (b) Number of added samples 658 

Fig. 23 Convergence criterion and number of added samples for network B 659 

 660 

(a) Survival signature solutions                     (b) Relative errors 661 

Fig. 24 Survival signature and relative errors based on the proposed method for network B 662 
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 663 

(a) Network reliability solutions                     (b) Relative errors 664 

Fig. 25 Network reliability and relative errors based on the proposed method for network B 665 

 666 

Fig. 26 Relative errors of estimated solutions based on the ANN for network B 667 

 668 

Fig. 27 Relative errors of estimated solutions based on the GCNN for network B 669 

 670 

 671 

 672 

 673 

 674 
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 675 

(a) Convergence criterion solutions               (b) Number of added samples 676 

Fig. 28 Convergence criterion and number of added samples for network C 677 

 678 

(a) Survival signature solutions                     (b) Relative errors 679 

Fig. 29 Survival signature and relative errors based on the proposed method for network C 680 

 681 

(a) Network reliability solutions                     (b) Relative errors 682 

Fig. 30 Network reliability and relative errors based on the proposed method for network C 683 
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 684 

Fig. 31 Relative errors of estimated solutions based on the ANN for network C 685 

 686 

Fig. 32 Relative errors of estimated solutions based on the GCNN for network C 687 

6. Conclusions 688 

In this study, a novel graph-based neural network framework is proposed to effectively estimate 689 

survival signatures and network reliability. The graph-based neural network begins by utilizing a 690 

developed strategy to aggregate feature information from neighboring nodes, thereby effectively 691 

integrating the response flow characteristics of the networks. Following this, the HGNN is employed to 692 

further aggregate feature information from both neighboring nodes and the node itself. This technique 693 

facilitates the extraction of network topology structural information, thereby enhancing the algorithm's 694 

comprehension of networks. Additionally, an adaptive framework is established to improve prediction 695 

accuracy. Compared to traditional machine learning-based frameworks, the proposed graph-based neural 696 

network framework integrates response flow characteristics and incorporates network topology structure 697 

information, resulting in highly accurate estimates of network reliability. 698 

The effectiveness of the proposed method is demonstrated by applying it to various networks. The 699 

obtained solutions have shown that the proposed method not only provides accurate network reliability 700 

estimates but also exhibits favorable convergence characteristics. Moreover, our findings indicate that 701 
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once the proposed graph-based neural network is trained and constructed on the original network, it 702 

performs well in estimating network reliability for different sub-networks, a capability not achievable 703 

with traditional non-machine learning methods. It's important to note that the graph-based neural network 704 

developed in this study is tailored for two-terminal networks. For more complex configurations, such as 705 

k-terminal networks or all-terminal networks, it may experience reduced efficiency. Addressing the 706 

challenges posed by k-terminal networks or all-terminal networks will be a key focus of our future 707 

research. 708 
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