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Computational fluid dynamics plays a vital role in aircraft design by providing invaluable
insight into aerodynamic characteristics and allowing designers to improve aircraft performance
and efficiency. High-fidelity simulations based on the (Reynolds-averaged) Navier–Stokes
equations are still too expensive for tasks requiring many evaluations such as design optimisation
or uncertainty quantification. Instead, deploying machine learning to build surrogate models
offers approaches to approximate the quantities of interest in the design space. However, as these
models are not exact, it is advantageous to have a measure of the model epistemic uncertainty.
The Bayesian paradigm offers a rigorous framework to train and analyse uncertainty-aware
models. This work focuses on evaluating the effectiveness of Bayesian surrogate models,
specifically Bayesian neural networks and Gaussian processes, in predicting aerodynamic
pressure distributions. Computational challenges arising from large data sets, necessitating
either approximations such as stochastic variational inference or powerful parallelisation
(or both), are addressed. A detailed comparison is made, considering both model accuracy
and predicted uncertainty, for an aerofoil case. Our primary ambition is to assess the
contribution and added value of Bayesian surrogate models as a tool in predicting surface
pressure distributions.

Nomenclature

𝐶𝑝 = pressure coefficient
D = input space
𝑑 = dimension of the input space
𝑓 = scalar quantity of interest
f = vector of observation values
f∗ = prediction vector
𝐹𝑛 = cumulative distribution function
I = Boolean function
𝑘 (x, x) = covariance function
𝑙𝑘 = lengthscale
𝜆 = weight decay
𝑚(x) = mean function
𝑀 = Mach number
MSE = mean squared error
𝑁ind = number of inducing points
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𝑁basis = POD lower-dimensional basis
𝑁points = number of points per snapshot
𝑁snap = number of snapshots
𝑁 = number of training points
𝑁𝑡 = number of testing points
𝑝 = probability distribution
𝑞 = variational probability distribution
𝑅2 = coefficient of determination
S = snapshot matrix
SE95 = 95th percentile of the squared error
SE99 = 99th percentile of the squared error
𝑇 = number of Bayesian neural networks (BNN) forward passes
u = vector of observation at inducing point locations
V = matrix of POD coefficients
x = input vector
𝑋, 𝑍 = Cartesian coordinates
X = matrix of training points
𝑦 = noisy observation scalar function
y = noisy observation vector
�̂� = neural network output
Z = matrix of inducing points
𝛼 = angle of attack
𝜀 = Gaussian noise random variable
𝜇GP = Gaussian process mean
𝜇MCD = BNN with Monte Carlo dropout mean
Ψ = matrix of POD modes
𝜎 = output standard deviation
𝜎GP = Gaussian process standard deviation
𝜎MCD = BNN with Monte Carlo dropout standard deviation
𝜏 = Gaussian noise variance
𝜽 = hyperparameters vector

I. Introduction
Numerous experimental and numerical approaches are available for the analysis of aerodynamic problems. Their

extensive use is driven by the need to account for multiple flight conditions and potential design variations. This
need frequently occurs in applications such as shape optimisation or uncertainty quantification. Challenges arise as
applying these approaches can be costly and time-consuming to execute in such context. As the desired accuracy
level of the outcome increases, these difficulties become more pronounced. There is a demand for aerodynamic data
models that are both fast and accurate, ensuring the capability to predict viable design alternatives with confidence.
Many engineering design problems face similar challenges and aim to overcome these with approximate mathematical
models called surrogate models. A surrogate model can be defined as an intermediate agent that mimics the relationship
between a system input and its output and has the ability to make cost effective predictions about what the true response
might look like in regions of the parameter space where no a priori knowledge exists. The emergence of machine
learning techniques has paved the way for developing advanced surrogates that can accurately capture the fundamental
characteristics of the response of complex engineering systems.

Various surrogate models have been discussed for aerodynamics. Historically, surrogate-based modelling has
extensively used a method known as Gaussian process regression, also commonly referred to as kriging. Its effectiveness
was demonstrated in flow predictions [1, 2] as well as aerofoil shape optimisation [3, 4]. Also, a significant number of
applications within aerodynamics use a combination of the proper orthogonal decomposition with an interpolation
method. Examples in compressible aerodynamics, transonic flows or aerodynamic loads evaluation are available in
[5–8]. Equally, the growing popularity of deep learning in the machine learning community explains the relatively recent
but successful application of neural networks for aerodynamics. Depending on the problem at hand, different types
and architectures can be applied to aerodynamic problems. For instance, a multilayer perceptron and a convolutional
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neural network were used in [9] and [10], respectively, to compute the aerodynamic forces of an aerofoil. Unsteady
(multidisciplinary) phenomena, such as flutter speed or buffet pressure loads predictions, were considered in [11–13].
A comparative study on pressure distribution predictions for various geometries and input space dimensions using
Gaussian processes, interpolation with proper orthogonal bases and deep neural networks is provided in [14].

As surrogate models are approximation methods, it entails a focus on the quality of their predictions. The accuracy
of a surrogate model is defined by the error between the surrogate model estimate and the raw experimental or numerical
data [15–17]. Different metrics will be introduced in the following to quantify the model accuracy. However, this does
not in any way reflect the accuracy of the data with respect to the real-world phenomena. Indeed, typically experiments
and simulations are subject to epistemic and aleatoric uncertainties themselves. In other words, there is a first mismatch
between the physics on the one hand and the experimental or numerical data on the other hand, and then a second
discrepancy between these (experimental or numerical) data and the surrogate model. This discussion is out of scope for
this work, and the only interest here is the epistemic uncertainty associated with the surrogate model with respect to its
input data. It is essential to understand to what extent the surrogate model is likely to be wrong with respect to the data.
This uncertainty is mostly associated with the fact that the training data set only covers a part of the design space and thus
ignores possible variations of the modelled function (experiment or simulation output). The aleatory uncertainty (noise
in the data) is considered to be null here. Bayesian methods allow the estimation of the epistemic uncertainty from a
surrogate model. Thus, Bayesian surrogate models provide an estimate of both the output and its associated uncertainty.
Two Bayesian models are considered in this paper; Gaussian processes, already mentioned earlier, and Bayesian neural
networks (BNN). Previously, these were compared in the context of building energy modelling in [18]. BNN is a type of
neural network that incorporates Bayesian inference to make probabilistic predictions. Traditional neural networks make
deterministic predictions based on fixed weights and biases. In contrast, BNNs allow for uncertainty in the weights and
biases by treating them as random variables with a prior probability distribution. BNNs were used to assist the design of
pressure tap locations in [19], and they have also shown improvements with respect to their non-Bayesian equivalent not
only on benchmark data sets [20] but also in healthcare [21] or for photovoltaic interval prediction [22].

A similar study is carried out here to assess the ability of Bayesian techniques to make fast and uncertainty-aware
predictions of pressure distributions on an aerofoil. Noting the large volumes of data generated to study the pressure field,
big data incarnations of the algorithms must be considered. Variational inference techniques enable the application of
BNNs and Gaussian processes. The objective is to evaluate the modelling accuracy of the two methods and their ability
to predict the epistemic uncertainty. Our study presents a comparison by integrating Bayesian surrogate models into
the field of aerodynamics, offering options that combine accurate predictive capability with uncertainty quantification
for pressure distributions. Section II introduces the two Bayesian surrogate models used in this study, along with an
alternative model based on proper orthogonal decomposition (POD) with interpolation. The test case and the data used
here are introduced in Section III, specifically the OAT15A aerofoil and Reynolds-averaged Navier–Stokes (RANS)
simulations are considered to obtain a suitable data set. Section IV analyses the resulting models with respect to the
different accuracy metrics and to the pressure distribution plots.

II. Bayesian Surrogate Models

A. Bayesian Paradigm
Bayesian modelling involves the application of Bayes’ theorem to analyse data, which entails updating available

knowledge regarding parameters in a model with information obtained from observed data as these become available.
Let 𝑓 be the surrogate model mapping the input vector x ∈ D to the scalar observed output 𝑦, where D ⊆ R𝑑 is
the design space of dimension 𝑑. It can be written 𝑦 = 𝑓 (x, 𝜽) where 𝜽 is the vector of the model parameters. For
instance, in the case of a linear regression, the model parameters are the intercept and the slope, while for deep learning
applications these become the weights and biases of the neural network. Instead of having a single value, the parameters
are described by probability distributions in Bayesian modelling that contain information explaining the association
between x and 𝑦. Based on the prior knowledge of the parameters’ distribution 𝑝(𝜽) and on the likelihood function
𝑝(𝑦 |x, 𝜽) indicating which parameter values are more likely to explain the observed data, Bayes’ theorem is applied to
compute the posterior distribution,

𝑝(𝜽 |𝑦, x) = 𝑝(𝑦 |x, 𝜽) 𝑝(𝜽)
𝑝(𝑦 |x) (1)

where 𝑝(𝑦 |x) is the marginal likelihood. It is the likelihood function that has been integrated over the parameter space 𝜽 .
The posterior distribution can then be used to do predictions at unseen inputs x∗ by substituting it into the expression of
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the predictive distribution,

𝑝(𝑦∗ |x∗, x, 𝑦) =
∫

𝑝(𝑦∗ |x∗, 𝜽) 𝑝(𝜽 |𝑦, x)d𝜽 (2)

Nevertheless, in most cases, the exact posterior distribution is intractable due to the complexity of the models and
the amount of data considered. In big data regimes, variational inference is an approach that is frequently considered to
approximate the true posterior distribution. The concept involves approximating the true posterior distribution 𝑝 with a
known-form variational distribution 𝑞. The objective is then to find the parameters of 𝑞 that minimises the divergence
with 𝑝, thus converting the inference issue into an optimisation problem. The divergence between the two probability
distributions is quantified by the Kullback–Leibler (KL) divergence. Its reformulation leads to a lower bound of which
the optimisation provides the model parameters and the variational parameters. The variational distribution is then used
to make predictions replacing the true posterior distribution in the predictive distribution given by Eq. 2. More detailed
explanations as well as application examples can be found in [23, 24]. In the two families of techniques considered
in this paper, namely Gaussian processes and BNN, different formulations of variational inference are used to enable
scalable applications and to obtain posterior distributions.

B. Bayesian Neural Network with Monte Carlo Dropout
Deep learning is a subset of machine learning, inspired by the structure and function of the human brain’s neural

networks. It provides solutions to complex tasks by automatically learning hierarchical representations of data. Deep
neural networks consist of multiple layers (deep layers) of interconnected artificial neurons, which process and transform
input data. These networks are trained on large data sets, adjusting their internal parameters through a process known as
backpropagation to minimise prediction errors. Despite their popularity, standard neural networks are often prone to
overfitting, making their generalisation difficult, and provide no measure of model uncertainty. Bayesian deep learning
overcomes these limitations. The Bayesian neural network concept extends the standard network architectures to align
with the Bayesian modelling approach that just has been introduced. Traditional neural networks make deterministic
predictions based on fixed weights and biases. In contrast, Bayesian neural networks account for uncertainty in the
weights and biases by treating them as random variables with a prior probability distribution. During training, the prior
distribution is updated to a posterior distribution using Bayes’ rule. This updated posterior distribution reflects the
uncertainty of the model’s parameters given the observed data. This updated posterior can be used to make predictions
that incorporate this uncertainty, resulting in a distribution of possible outcomes rather than a single value. As stated
before, the posterior distribution over the weights can be obtained using Bayesian inference techniques such as Markov
Chain Monte Carlo or variational inference. A detailed mathematical introduction is available in [25] and extensive
reviews of the training methods are provided in [26, 27].

One popular variational inference approach introduced in [20] for training BNN is Monte Carlo Dropout, which is a
simple and efficient method for approximating the posterior distribution over the network weights. While Monte Carlo
Dropout offers computational efficiency and ease of implementation, it may exhibit limitations in capturing complex
forms of uncertainty and could pose challenges in achieving well-calibrated uncertainty estimates. A method called
dropout regularisation is used during training, where a random subset of neurons is temporarily turned off during each
forward pass of an epoch, i.e. a complete pass through the entire training data set. This has the effect of creating an
ensemble of models, each with a different subset of active neurons. During the training phase, the parameters of the
network, namely the weights and biases 𝜽, are updated through the minimisation of the cost function (or objective
function),

Ldropout =
1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 + 𝜆∥𝜽 ∥2 (3)

The first term is the mean square error evaluated on the training data set 𝑦 of size 𝑁 and the neural network output �̂�.
The second (penalty) term is an 𝐿2 regularisation weight with a decay 𝜆. During testing, instead of using a single
forward pass through the network, multiple forward passes are made with different subsets of neurons dropped out. The
outputs of these multiple forward passes are averaged to obtain a model prediction for a test input. They are also used to
compute the predictive uncertainty of the model. Assuming a standard neural network with weights and biases 𝜽 , the
output of the network for a given input x can be written as �̂�(x; 𝜽). For the BNN model here, the 𝑇 forward passes made
with different dropout masks result in a set of outputs {�̂�(x; 𝜽 𝑡 )}𝑇𝑡=1. The predictive distribution over the network’s
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outputs is approximated by averaging over this set of outputs,

𝑝(𝑦∗ |x∗, x, 𝑦) ≈ 1
𝑇

𝑇∑︁
𝑡=1

𝑝(𝑦∗ |x∗, 𝜽 𝑡 ) (4)

The mean and variance of the predictive distribution can be approximated by,

𝜇MCD (x) ≈
1
𝑇

𝑇∑︁
𝑡=1

�̂�(x; 𝜽 𝑡 ) (5)

𝜎2
MCD (x) ≈

1
𝑇 − 1

𝑇∑︁
𝑡=1

(
�̂�(x; 𝜽 𝑡 ) − 𝜇MCD

)2 (6)

This approach is a computationally efficient technique, as it can be implemented using standard dropout layers in popular
deep learning frameworks. The BNN implementation is adapted from the work of [20] ∗ and built on TensorFlow using
the Keras API [28]. Its architecture is discussed and justified in Section III.

C. Scalable Gaussian Processes
Gaussian processes are a powerful probabilistic model that can be used for regression [29]. A Gaussian process is

characterised by GP(𝑚(x), 𝑘 (x, x′)) where 𝑚 is the mean function and 𝑘 is the covariance function. The regression
outcome strongly depends on the formulation used for 𝑚(x) and 𝑘 (x, x′). Whereas the mean function is commonly
assumed to be zero on the design space, 𝑚(x) = 0, the covariance function incorporates the function’s structure available
under the Gaussian process prior. The covariance function expression will be defined in Section III. A Gaussian process
defines a probability distribution over functions written as 𝑓 : x ∈ D ↦−→ 𝑓 (x) ∈ R, where any finite set of function
values has a joint Gaussian distribution. Noisy observations can be considered and the observation variable is then
written as 𝑦(x) = 𝑓 (x) + 𝜀 with the noise 𝜀 being an independent identically distributed Gaussian variable with zero
mean and variance 𝜏2. Given a set of 𝑁 input points represented by the matrix X = [x1 x2 ... x𝑁 ], a set of corresponding
output values 𝑓 (X) = [ 𝑓1, 𝑓2, ..., 𝑓𝑁 ]⊤ and a matrix of evaluation points X∗, the joint normal distribution over the
random variable vectors y and f∗ = 𝑓 (X∗) is given by,

𝑝(y, f∗) = N
([

𝑚(X)
𝑚(X∗)

]
,

[
𝑘 (X,X) + 𝜏2I 𝑘 (X,X∗)
𝑘 (X,X∗)⊤ 𝑘 (X∗,X∗)

])
(7)

The predictive distribution for X∗ is derived from the multivariate Gaussian conditional rule which gives 𝑝(f∗ |X∗,X, y) =
N(f∗ |𝜇GP (X∗), 𝜎GP (X∗)) where:

𝜇GP (X∗) = 𝑚(X∗) + 𝑘 (X,X∗)⊤
[
𝑘 (X,X) + 𝜏2I

]−1 (
y − 𝑚(X)

)
(8)

𝜎GP (X∗) = 𝑘 (X∗,X∗) − 𝑘 (X,X∗)⊤
[
𝑘 (X,X) + 𝜏2I

]−1
𝑘 (X,X∗) (9)

Training the model corresponds to finding an appropriate set of covariance function parameters, also called the
model hyperparameters, similarly denoted by the vector 𝜽. A commonly employed technique for hyperparameter
learning involves maximising the likelihood function 𝑝(y|𝜽) with gradient-based algorithms. By using the standard
form of a multivariate Gaussian distribution, the log-likelihood is expressed as:

log 𝑝(y|X, 𝜽) = −1
2

y⊤ [𝑘 (X,X) + 𝜏2I]−1y − 1
2

log |𝑘 (X,X) + 𝜏2I| − 𝑁

2
log (2𝜋) (10)

Observing the functional form in Eqs. (8) through (10), it can be seen that the regression model involves the matrix
inversion of

[
𝑘 (X,X) + 𝜏2I

]
. The number of operations for direct matrix inversion scales with 𝑁3 operations. For

large data sets, it will lead to scalability limits of the Gaussian process regression and requires additional consideration.
Stochastic Variational inference for Gaussian Processes (SVGP) is used herein to enable the application to large data
sets. SVGP is an approximate inference method that uses a small set of inducing points to approximate the true posterior

∗http://www.github.com/yaringal/DropoutUncertaintyExps
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(a) (b)

Fig. 1 (a) Pressure coefficient results at 𝑴 = 0.73 compared with experiments from [38] and steady-state
two-dimensional aerofoil results from [39] and (b) and design of experiment for present OAT15A test case.

distribution over functions. This reduced set of latent variables with a size 𝑁ind ≪ 𝑁 represents the actual data set X.
These 𝑁ind inducing points are evaluations u = 𝑓 (Z) at the inducing point locations Z. The inducing points are chosen
to maximise a lower bound on the log marginal likelihood of the data, and the posterior distribution is approximated by a
Gaussian distribution with a mean and covariance matrix that depend on the inducing points. More specifically, during
the training of the SVGP, the inducing point locations Z and the covariance parameters 𝜽 are optimised to minimise the
KL divergence. The predictive distribution for a new point X∗ can then be computed efficiently using the inducing
points and their associated covariance matrix. This method was introduced in [30, 31] and applied to multifidelity data
fusion of pressure distributions in [32]. A more general review of scalable Gaussian processes is presented in [33].

D. Proper Orthogonal Decomposition with Interpolation
To assess the BNN and SVGP approaches, we introduce a technique known in the literature as POD with interpolation,

which amalgamates the computation of POD modes and their coefficients with the interpolation of these coefficients to
generate new predictions [7, 14, 34–36]. Define 𝑁snap as the number of snapshots (in this context, representing the
number of flow conditions) and 𝑁points as the number of points per snapshot (here, indicating the number of surface
mesh points). The data can be organised into an 𝑁points × 𝑁snap matrix denoted as S. Given this snapshot matrix, the
POD method aims to identify a lower-dimensional basis (𝑁basis < 𝑁snap), capable of effectively approximating those
same snapshots. In most scenarios, the snapshot matrix has a tall and narrow structure (𝑁snap ≪ 𝑁points), signifying the
presence of numerous degrees of freedom compared to the number of snapshots. Rather than directly applying singular
value decomposition (SVD), which is computationally expensive, the method of snapshots [37] can be employed
(working on S𝑇S instead).

Thus, the matrix S can be expressed as a linear combination of the POD modes𝛹 ,

S =𝛹V (11)

where V represents the resulting POD coefficients organised in an 𝑁snap × 𝑁snap matrix. More specifically, each
individual snapshot can be reconstructed as a linear combination of the POD modes, denoted as S𝑖 =𝛹V𝑖 , where S𝑖 and
V𝑖 correspond to the 𝑖-th column of S and V, respectively. To make predictions in the design space (flow conditions)
that are not part of the snapshot matrix, it is essential to determine the coefficients associated with each mode. The
concept behind POD with interpolation is to select a limited number of POD modes, which capture the majority of the
information, and then perform interpolation using the information contained in V to calculate their corresponding POD
coefficients. Herein, a Gaussian process is trained for ten modes by employing the rows of V as training data, meaning
that ten Gaussian processes are trained, with each one using the 𝑖-th row of V to train the Gaussian process associated
with the 𝑖-th POD mode.
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Table 1 Bayesian neural network hyperparameters.

Parameter Range Optimal value

Number of hidden layers {1,2,...,12} 3
Number of neurons {32𝑘 | 𝑘 ∈ {1,...,32}} 384 (for 𝑘 = 12)
Shrinkage rate [0.25, 1.0] 0.661
Dropout rate [1%, 5%] 1%

III. Problem Setup

A. OAT15A Aerofoil Numerical Simulations
ONERA’s OAT15A profile has been studied widely since its first experimental investigation in [38], such as for

numerical shock-buffet stability analyses in [40, 41]. To solve the non-linear governing equations, the TAU code of
the German Aerospace Center (DLR), commonly used in the Eruopean aerospace industry, was chosen. It employs a
cell-vertex second-order finite-volume spatial discretisation. The inviscid fluxes of the governing RANS equation are
discretised via a central scheme that employs matrix artificial dissipation, whereas a first-order Roe upwind scheme is
used for those of the turbulence model. For the computation of gradients of flow variables, required for viscous fluxes
and the turbulence model’s source term, the Green–Gauss theorem is employed. The no-slip adiabatic condition is
strongly enforced on the solid walls of the aerofoil, and the far field is considered to be a free-stream flow through
a characteristic boundary condition. The code’s standard backward Euler scheme with the lower-upper symmetric
Gauss–Seidel method, together with local time-stepping and multigrid for convergence acceleration, is chosen for
obtaining steady-state solutions converged by 7 orders of magnitudes in the density residual norm.

For the two-dimensional aerofoil simulations herein, a baseline mesh was generated that has a quasi-structured
region in the near-field with an O-type topology around the blunt trailing edge, while unstructured triangular cells are
employed towards the circular far-field boundary with a radius of 100 chord lengths. The domain is discretised with
approximately 80, 000 control volumes altogether, and the aerofoil surface is divided into 626 elements. Figure 1a
illustrates the pressure coefficient in comparison to corresponding experimental data from [38] at two specific angles
of attack, specifically around the onset of shock buffet. Additionally, it includes numerical results for the same
two-dimensional aerofoil obtained from [39], using a very similar version of the turbulence model. The simulations at
𝛼 = 3.5° demonstrate good agreement with the wind-tunnel data at 𝛼 = 3.0°. This discrepancy is often reported and
attributed to the particular choice of turbulence model.

Along with the aerofoil surface coordinates (𝑋, 𝑍), the Mach number 𝑀 and angle of attack 𝛼 are considered as
input space parameters. Following a Halton sequence [42], as outlined in [14], 98 steady-state simulations have been
carried out within the parameter ranges 𝑀 = [0.3, 0.75] and 𝛼 = [−3°, 5°], leading to a total of 61,348 data points.
Figure 1b shows the sample locations of the numerical experiments which are divided into three subsets; specifically
70% for training, 20% for validation and 10% for testing.

B. Model Design
The selection of the appropriate structure and parameters for the two models (BNN and SVGP) is outlined next. The

idea is to justify the design choices of the surrogate models that can learn a meaningful representation of the input data
by making accurate predictions on validation data points. The architecture of a neural network, on the one hand, is
mainly characterised by the number of hidden layers and the number of neurons in the input, hidden and output layers.
The BNN considered here, and represented as an example in Fig. 2, requires in addition the definition of a dropout rate
(ratio of neurons turned off during training), a shrinkage factor (ratio of neurons between two successive layers) and a
batch size (number of training points presented to the model in one forward/backward pass). Selecting an appropriate
set of hyperparameters is critical in achieving satisfactory predictive performance of the model. Table 1 summarises the
parameter ranges considered (except the batch size which is fixed at 1024 throughout after initial testing). It can be
noticed that the number of neurons is a multiple of 32. Indeed, when working with CUDA (NVIDIA’s platform for
GPU-accelerated parallel computing) and GPUs for deep learning tasks, it is a common best practice to choose hidden
layer and batch sizes that are multiples of 32. This practice helps in fully leveraging the parallel processing capability
and optimising the performance of neural network training and inference.
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Fig. 2 Bayesian neural network with Monte Carlo dropout architecture example.

Bayesian optimisation is used to search the best model hyperparameters [43]. Instead of exhaustively trying all
possible hyperparameter combinations, Bayesian optimisation uses probabilistic models to predict which configurations
are most likely to yield better performance based on the network’s previous evaluations. It iteratively refines its
predictions, directing the search towards promising regions of the hyperparameter space, ultimately leading to improved
neural network performance while requiring fewer trials compared to grid or random search. The optimisation is
made on the neural network’s cost function (here the mean-squared error defined below) evaluated on the validation
set. A Gaussian process regression of the (negative) cost function is built describing its variation on the space of the
hyperparameters. An acquisition function, herein the upper confidence bound defined as the sum of the posterior
mean and standard deviation weighted by a coefficient, is then computed to find a next evaluation point on this space,
specifically where the acquisition function is maximal. The coefficient weighting the standard deviation in the acquisition
function is used to tune the exploitation vs exploration trade-off. When the coefficient is small, Bayesian optimisation
prioritises solutions expected to perform well, characterised by a high posterior mean (i.e. low value of the cost function).
Conversely, with a large coefficient, Bayesian optimisation encourages exploration of previously unexplored regions
within the search space (i.e. high standard deviation of the cost function). Here, the Bayesian optimisation application
used a default value of 2.6. A total of 250 combinations are computed and tested with respect to the validation set. The
best combination is also shown in Table 1. It is essential to highlight that Bayesian optimisation is primarily concerned
with identifying the model with the highest accuracy (i.e. lowest mean-squared error) on the validation data within
predefined parameter ranges. However, it does not account for the assessment of output uncertainty, which can be
viewed as a limitation when working with Bayesian surrogate models.

The final BNN architecture, acquired through Bayesian optimisation, undergoes training for 1000 epochs using the
Adam optimiser [44] applied with the default learning rate of 1×10−3 on the mean-squared error. It is performed on a
laptop with an Intel Core i7-11800H processor and an Nvidia RTX A2000 4GB Graphics Processing Unit (GPU). Then,
the predictive distribution is approximated by computing 𝑇 forward passes through the trained network with various
dropout masks. Convergence of 𝜇MCD and 𝜎MCD predicted by this BNN is demonstrated in Fig. 3 with an increasing
number of Monte Carlo samples. Both are computed on the validation set. It can be observed that they both converge to
within a 3% range of 𝜇MCD after approximately 1000 samples.

For SVGP, on the other hand, the library GPflow was adopted, which is a Python module based on TensorFlow [28, 45].
Enhanced with GPU enabled capability, SVGP training makes use of a dedicated compute node having 48 AMD CPU
cores with 256 GB of memory and equipped with two Nvidia Ampere A100 80 GB GPUs. The model is trained using
10,000 inducing points, 10,000 iterations of the Adam optimiser, and mini-batches of 100 samples. As the observations
are deterministic, noise-free predictions are considered. Nevertheless, the noise term 𝜏 is fixed to a small value of 10−4

to ensure numerical stability. Two popular choices of covariance functions have been considered initially, specifically
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(a) BNN mean (b) BNN standard deviation

Fig. 3 Analysis of the convergence of BNN estimations as the number of Monte Carlo dropout samples increases.

squared-exponential (SE) and Matern3/2 (M32), defined as,

𝑘𝑆𝐸 (x, x′) = 𝜎2 exp

(
−

𝑑∑︁
𝑘=1

(𝑥𝑘 − 𝑥′
𝑘
)2

2𝑙2
𝑘

)
(12)

𝑘𝑀32 (x, x′) = 𝜎2

(
1 +

𝑑∑︁
𝑘=1

√
3|𝑥𝑘 − 𝑥′

𝑘
|

𝑙𝑘

)
exp

(
−

𝑑∑︁
𝑘=1

√
3|𝑥𝑘 − 𝑥′

𝑘
|

𝑙𝑘

)
(13)

where the model hyperparameters are the output standard deviation 𝜎 and a length scale 𝑙𝑘 per dimension, denoted by
the vector 𝜽 = [𝜎, 𝑙𝑘], previously defined. The length scale for each dimension of the design space was found through
automatic relevance determination [46]. The highest accuracy on the validation set has been found with the Matern3/2
covariance function 𝑘𝑀32, which will therefore be discussed hereafter.

C. Evaluation criteria
In the context of Bayesian surrogate models, these models yield two essential quantities; a prediction made by the

model and the corresponding measure of uncertainty. We introduce metrics for assessing both the accuracy of the
model’s predictions and the accuracy of its uncertainty estimates. To comprehensively evaluate the performance of
these models, we consider the mean-squared error (MSE) and the coefficient of determination (𝑅2),

MSE =
1
𝑁𝑡

𝑁𝑡∑︁
𝑛=1

(𝑦𝑛 − �̂�𝑛)2 (14)

𝑅2 = 1 −
∑𝑁𝑡

𝑛=1 (𝑦𝑛 − �̂�𝑛)2∑𝑁𝑡

𝑛=1 (𝑦𝑛 − �̄�)2
(15)

where �̄� represents the mean of 𝑦 and 𝑁𝑡 is the number of testing points. For MSE, lower values are desirable, indicating
a better fit while for 𝑅2, a value closer to 1 suggests a higher proportion of explained variance. Additionally, we assess
the 95th and 99th percentiles of the squared errors, denoted as SE95 and SE99, respectively. Percentiles of squared error
provide insights into the distribution of errors in a model. For example, the 95th percentile indicates the value below
which 95% of squared errors fall, offering a glimpse into the robustness of the model. While accurate predictions are a
crucial aspect of surrogate models, Bayesian models introduce the additional necessity of evaluating the reliability of
uncertainty estimates. In a properly calibrated Bayesian model, these uncertainty estimates should accurately encapsulate
the genuine data distribution, meaning that, for instance, a 90% posterior confidence interval should encompass the
true simulation outcome in approximately 90% of cases. In the context of regression [47, 48], the surrogate model’s
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Table 2 Evaluation metrics of Bayesian models on test set.

Model MSE 𝑅2 SE95 SE99

BNN 0.0029 0.9900 0.0064 0.0563
SVGP 0.0164 0.9441 0.0724 0.1906

POD+GP 0.0156 0.9467 0.0733 0.3086

uncertainty estimates are deemed well-calibrated when

1
𝑁𝑡

𝑁𝑡∑︁
𝑛=1
I{𝑦𝑛 ≤ 𝐹−1

𝑛 (𝑝)} → 𝑝 for all 𝑝 ∈ [0, 1] (16)

where I is the Boolean function, 𝐹𝑛 is the cumulative distribution function targeting 𝑦𝑛. Here, 𝐹−1
𝑛 denotes the quantile

function 𝐹−1
𝑛 (𝑝) = inf{𝑦 : 𝑝 ≤ 𝐹𝑛 (𝑦)}. In simpler terms, as the data set size approaches infinity, the empirical and

predicted cumulative distribution functions should align. To evaluate the quality of calibration, we determine the
proportion of test data observations that lie within the prediction confidence intervals obtained from the quantile function.
We visualise the degree of calibration in Bayesian models using a calibration plot, where perfectly calibrated uncertainty
estimates would align precisely with the diagonal line.

IV. Results
All three Bayesian models were implemented and applied for the purpose of studying their ability on a transonic flow

problem. The POD with interpolation model is used as a reference model from the existing literature. We scrutinise the
models with respect to their prediction accuracy and uncertainty approximation. Table 2 summarises the results for the
metrics, defined in Section III.C, for the OAT15A test set. Predictions on the test set have been carried out to evaluate
the models’ accuracy on unseen data. The results reveal differences in performance among the methods. The BNN
demonstrates an approximately ten-fold reduction in MSE, showing its better capability to closely approximate the
correct values. Moreover, with a higher 𝑅2 score, the BNN exhibits a stronger fit compared to the other methods. With
respect to these two metrics, the POD coupled with Gaussian process regression (POD+GP) presents slightly better
results than SVGP. However, in terms of robustness, SVGP has lower values of SE99 and the BNN model exhibits the
highest performance, showcasing one-order-of-magnitude lower values in both SE95 and SE99.

Figure 4 present a comparison of the predictions at fixed flow conditions from the Bayesian surrogate models. The
predictions (compared with reference data) show the posterior mean and the confidence intervals associated with the
posterior standard deviations (±1.96𝜎) superimposed. It can be observed in Figs. 4a and 4b that both models under
scrutiny provide reliable predictions for relatively low values of Mach number and angle of attack. They visually provide
a closer match to the simulation data compared to the POD+GP model for these two flow conditions. At higher Mach
numbers, as plotted in Figs. 4c and 4d, the prediction outputs are less accurate due to the existence of non-linearities
inherent to transonic flows, specifically shock waves, and all models behave differently. The BNN surrogate captures the
chordwise location of the shock as well as the pressure values of the supersonic part of the flow reasonably well, but
the sharpness of the shock is underestimated resulting in a small difference with the simulation data. For the SVGP
and POD+GP models, the prediction at these locations is clearly degraded. Indeed, the appearance of the pressure
coefficient is smooth (linear), therefore not following the abrupt change due to the flow discontinuity. At the same
time, all models tend to yield relatively accurate predictions for the lower surface of the wing. It can be asserted with
confidence that the varying performance, reported in Table 2, can be attributed to differences in their capabilities to
predict transonic flow characteristics.

The advantage of using Bayesian models is also to obtain an estimate of the epistemic uncertainty plotted as
transparent regions in Fig. 4, which gives us confidence in the predicted value away from the training points. As
discussed in Section II, the methods from Section II.B and Section II.C are based on variational inference techniques.
They are only approximations to the true posterior distributions and may not always capture the full uncertainty of the
model. It is therefore necessary to analyse the uncertainties obtained through the standard deviation of the methods. In
the figures, it can be seen that similar and satisfactory levels of confidence intervals are predicted with the exception of
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(a) 𝜶 = −2.21°, 𝑴 = 0.33 (b) 𝜶 = 1.74°, 𝑴 = 0.31

(c) 𝜶 = 4.21°, 𝑴 = 0.64 (d) 𝜶 = 3.81°, 𝑴 = 0.71

Fig. 4 A comparison between the predictions made by the models on a few points of the test set.

the supersonic region. For the SVGP model, the confidence interval is nearly constant along the chordwise direction on
both lower and upper surfaces, whereas the BNN provides wider confidence intervals, particulary in the supersonic
part of the flow, indicating a lack of confidence in the given prediction. For each experimental conditions in the
training set, the critical pressure coefficient is computed and compared to the associated pressure coefficient distribution.
The existence of a supersonic pocket is signalled if a negative pressure coefficient is less than the critical pressure
coefficient. If a negative pressure coefficient is lower than the critical pressure coefficient, it indicates the presence of a
supersonic pocket. In the training set, it is observed for five experimental conditions (located at the top right of Fig. 1b).
Hence, among the sixty-eight conditions considered in the training set, only five demonstrate supersonic features. This
observation underscores the difficulties in accurately predicting these features, contributing to the wider confidence
intervals evident in the results depicted in Figs. 4c and 4d.

For a more rigorous uncertainty analysis, a calibration plot is shown in Fig. 5 in accordance with the definition
from [47] as presented in Section III.C. Uncertainty is assessed by plotting the expected probabilities of observing an
outcome against the empirically observed rates within a set of twenty intervals. A similar behaviour is noticeable in
both SVGP and BNN, with their respective curves exhibiting an overestimation of confidence levels. Among these
models, SVGP comes closest to achieving perfect calibration. The reference model (POD+GP) tends to underestimate
confidence levels, as illustrated in Fig. 4, where the confidence intervals appear relatively narrow. While SVGP gives
the best overall calibration, Fig. 4 reveals that its confidence intervals remain relatively uniform around the supersonic
region, where the model’s accuracy is compromised. In contrast, BNN displays an opposing behaviour, which is
advantageous given that the primary aim of employing these models is to pinpoint areas where the model lacks certainty
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Fig. 5 Calibration plot assessing the different model calibrations.

in its predictions. Approaches for handling uncertainty play a pivotal role in the construction of precise and dependable
machine learning models. Bayesian techniques offer a foundation for quantifying uncertainty. Nonetheless, due to the
adoption of approximate inference, Bayesian uncertainty estimates can frequently lack accuracy.

V. Conclusions
While surrogate modelling approaches have been widely employed in aerospace engineering, this work proposes

an innovative viewpoint by adopting Bayesian surrogates. Through the quantification of surrogate model (epistemic)
uncertainty, the Bayesian approach recognises that surrogate models are imperfect approximations of the original
physical models (simulations or experiments). This framework provides a valuable means to make informed decisions
while accounting for the associated uncertainty. It allows us to leverage the significantly faster execution of surrogate
models to generate engineering quantity of interest estimates, all while acknowledging the inherent approximations.

Through a comprehensive discussion of Bayesian models for pressure distribution modelling, three approaches are
compared; BNN, SVGP and POD+GP. The analysis of accuracy is based on the evaluation of different performance
metrics on a test set. Given that uncertainty is also a fundamental element of Bayesian models, their calibration is a
subject of investigation as well. BNN using Monte-Carlo dropout demonstrates the most promising outcomes in terms
of accuracy, showcasing the desired ability to predict the presence of shock waves in previously unseen data points. The
other two models have demonstrated lower effectiveness on flow conditions that exhibit such compressibility effects.
Concerning uncertainty calibration, both BNN and SVGP tend to overestimate the confidence intervals, while POD+GP
underestimates them. In other words, the BNN and SVGP predict a higher level of uncertainty than is actually evident in
the data. In future work, a calibration procedure for enhancing the calibration of any regression algorithm, based on the
work in [47], could be implemented in this scenario to attain improved model calibration. In addition, the presented
Bayesian surrogate models will be applied to higher dimensional, practical aerospace problems with more complex
geometry. Specifically, previously we compiled a suitable (experimental and numerical) data set for a half wing-fuselage
configuration representative of a commercial aircraft design [32, 49] that can be readily assessed.
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