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Abstract
We study the power of posted pricing mechanisms for Bayesian online optimization problems subject to combinatorial

feasibility constraints. When the objective is to maximize social welfare, the problem is widely studied in the literature on
prophet inequalities. While most (though not all) existing algorithms for prophet inequalities are implemented using a pricing
mechanism, whether or not this can be done in general is unknown, and was formally left as an open question by Dütting,
Feldman, Kesselheim, and Lucier (FOCS 2017, SICOMP 2020). Understanding the power and limitations of posted prices is
important from a mechanism design perspective because any posted price mechanism is truthful, and is also interesting in its
own right as it can guide future research on prophet inequalities.

We show that any prophet inequality has an implementation using a posted price mechanism, thereby resolving the
open question of Dütting et al. Given an algorithm for Bayesian online optimization, we show that it can be transformed,
in a black-box manner, to a posted price algorithm that has the same or higher expected social welfare and preserves
the distribution over the assigned outcomes. We further show how to implement our reduction efficiently under standard
assumptions using access to a sampling oracle. As an immediate consequence, we obtain improved pricing-based prophet
inequalities for maximum weight matching, resolving an open problem of Ezra, Feldman, Gravin and Tang (EC 2020, MOR
2022). Correa and Cristi (STOC 2023) proved recently an existence of prophet inequality with constant approximation ratio
for online social welfare maximizing combinatorial auctions with subadditive valuations. They left as an open problem to
provide a posted pricing based implementation of their algorithm. Our technique resolves this question in affirmative as well.

1 Introduction
In the past two decades, there has been a surge of interest in computer science community for studying the prophet inequality
problem. In the simplest problem’s version, an online algorithm tries to choose a large value from a sequence of n values
v1, . . . , vn, where each vi is drawn from a known distribution Di over positive real numbers. The values are revealed
sequentially, and upon observing each vi, the algorithm makes an irrevocable decision of whether to accept it or not. The
objective of the algorithm is to maximize the expected value of the selected value. The standard benchmark for the algorithm
is the expected offline optimum, i.e., E [ maxi vi ]. In this paper, we consider the generalized version of this problem with
combinatorial feasibility constraints, like those of combinatorial auctions. Here, a set of n agents arrive in an online manner,
and each agent possesses a valuation function vi over an outcome space Xi. As before, the valuation functions are sampled
independently from known distributions. The goal of the problem is to assign an outcome to each agent in a way that
maximizes the expected social welfare, subject to some combinatorial constraint over the assigned outcomes.

As a simple model for online selection, the prophet inequality problem is a central problem in optimal stopping theory
and algorithmic game theory with connections to posted-price mechanisms [30, 9, 44, 14], stochastic probing [29, 1], and
delegation [34, 4]. As such, many works have studied prophet inequalities and their variations for different combinatorial
constraints such as matroids, matchings, knapsacks [35, 2, 26, 39, 27, 24], and combinatorial auctions [25, 19, 20, 16].
Recently, several works have also considered the random arrival order model, referred to as prophet secretary [22, 21, 15, 12].

A common approach for designing algorithms for prophet inequalities is via posted-price mechanisms [30, 9]. In this
approach, the algorithm sets a price π(x) for each outcome before observing the realized valuation function vi, and upon
observing vi, assigns the outcome with highest utility to the agent, i.e., arg maxx∈Xi

( vi(x) − π(x) ). For the classical version
of the problem one possible choice is to set the threshold of τ = E [ max vi ]/2 and accept the first element with vi ≥ τ.
The pricing based approach has been used to design algorithms for prophet inequalities with combinatorial constraints
such as matroids, matroid intersection and knapsacks [35, 27], combinatorial auctions with submodular and XOS valuation
functions [25, 19], as well as closely related settings such as the prophet secretary problem [22, 21, 15, 12].
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In addition to their simplicity and intuitive nature, posted price mechanisms offer the advantage of being dominant-
strategy incentive-compatible (DSIC). This means that each agent has a weakly-dominant strategy of revealing their valuation
function truthfully. Given the significance of this property, it is natural to explore whether the pricing approach can be applied
universally to prophet inequalities, meaning if it can be used for all instances of the problem. This question was formally
raised as an open problem by Dütting, Feldman, Kesselheim, and Lucier (FOCS 2017, SICOMP 2020) [18, 19]

. . . A related question is whether there exist prophet inequalities that cannot be implemented using posted prices.
Interestingly, we are not aware of any separation between the two so far. . . .

In this work, we resolve this open problem by showing that all prophet inequalities can be implemented using posted
prices. Specifically, we provide a black-box reduction that, given an input algorithm for the prophet inequalities problem,
transforms it into a pricing based algorithm that preserves the distribution of the original algorithm over the assigned outcomes,
and has greater or equal social welfare. Black-box approaches are popular in algorithmic game theory as they apply to a
wide range of problems, and are generally not algorithm specific [33, 32, 10, 7, 17, 14]. We further show how to implement
our posted price mechanism efficiently under standard assumptions via sampling access to the distributions of the valuation
functions.

As a direct consequence of our findings, we achieve an improved pricing-based algorithm for matching prophets.
Notably, in a recent work Ezra, Feldman, Gravin, and Tang (EC 2020, MOR 2022) [23, 24] obtained enhanced competitive
ratios for matching prophets in both the vertex arrival and edge arrival settings using a non-pricing approach. They then
posed the question of whether similar results could be achieved using a pricing approach (see the end of the abstract and
Section 5 of their paper for discussion of the problem). Our result resolves this open problem affirmatively. In a recent
breakthrough, Correa and Cristi (STOC 2023) [16] proved an existence of prophet inequality for online social welfare
maximizing combinatorial auctions with subadditive valuations, with the first known constant approximation ratio. They left
as an open problem to provide a posted pricing-based implementation of their algorithm. Our technique lets us resolve this
question in affirmative as well.

1.1 Our results.
Black-box reduction. Our main result takes the form of a black-box reduction that transforms any algorithm for prophet

inequalities into a pricing based algorithm with comparable guarantees. We state our result here and refer to Section 4 for a
more formal version and the proof.
Theorem 1. LetAinp be an algorithm for the prophet inequalities problem, and let E

[
v(Ainp)

]
denote its expected social

welfare. There exists a pricing based algorithmAout with expected social welfare E
[
v(Aout)

]
≥ E

[
v(Ainp)

]
. Furthermore,

Aout andAinp have the same distribution over the assigned outcomes. Formally, lettingAi ∈ Xi denote the assignment made
by the algorithmA to agent i,

Pr
[

(Ainp
1 , . . . ,A

inp
n ) = (x1, . . . , xn)

]
= Pr

[
(Aout

1 , . . . ,Aout
n ) = (x1, . . . , xn)

]
(1.1)

for all (x1, . . . , xn) ∈ X1 × · · · × Xn.
We note that Equation (1.1) immediately implies that the reduction preserves any constraint on the distribution of the assigned
outcomes that is satisfied byAinp. This includes combinatorial constraints as a special case; assuming (Ainp

1 , . . . ,A
inp
n ) ∈ F

with probability 1 for some F ⊆ X1 × · · · × Xn, the condition ensures that (Aout
1 , . . . ,Aout

n ) ∈ F with probability 1 as well.
The condition is more general however and it also implies the preservation of probabilistic constraints over the assigned
outcomes. For instance, specializing to combinatorial auctions, we can preserve constraints of the type “the first agent is
allocated an item with probability ≥ 1/2”. We also note that while the optimal policy in combination with VCG payments
(e.g., see Correa and Cristi [16]) also leads to a pricing based algorithm, the approach would change the distribution over
outcomes and is inefficient.

In order to prove the theorem, for each arriving agent i, we start by considering the assignment that the input algorithm
would have made for the agent based on the already assigned outcomes. This takes the form of a (randomized) mapping A

inp
i

from the space of valuations functions Vi to the set of outcomes Xi. We refer to these mappings as assignment rules. Given
A

inp
i , we propose an alternative assignment rule Aout

i that preserves the assignment probability of each outcome, i.e.,

Prvi∼Di

[
Aout

i (vi) = x
]
= Prvi∼Di

[
A

inp
i (vi) = x

]
for all x ∈ Xi .(1.2)

We show that as long as the new assignment rules satisfy the constraint (1.2), the algorithm satisfies the constraint (1.1).
Our proof will crucially rely on the fact that A

inp
i is calculated based only on the assigned outcomes Ainp

1 , . . . , Ainp
i−1, and not



on the observed valuation functions v1, . . . , vi−1. We further show that the “optimal” choice of an assignment rule, i.e., the
one maximizing Evi∼Di

[
Aout

i (vi)
]

subject to (1.2), naturally leads to a pricing based mechanism. The crux of our analysis is
a duality based argument: We formulate the problem of finding the optimal assignment rule as an optimal transport linear
program (with possibly an infinite number of constraints), and show that strong duality for this linear program implies a
pricing-based solution. We use this result, together with constraint (1.1), to show that E

[
v(Aout)

]
≥ E

[
v(Ainp)

]
. We refer

to Section 4 for more details. As we will see, the assignment rule A
inp
i does not need to be calculated explicitly by the

algorithm, and we will only require the probabilities Prvi∼Di

[
A

inp
i (vi) = x

]
. The theorem resolves the open problem of Dütting

et al. [18, 19].
Computational efficiency. While the above results are about the existence of an algorithm, they do not say anything

about efficiency. The reason for this is that the approach is based on a linear program where the number of constraints can
be as large as the support of the agents’ distribution over valuation functions, i.e., Di. As such, while the runtime of the
algorithms is polynomial in the length of the input, this can be impractical for continuous distributions, where the input
size is not finite. To deal with this issue, we show how the above strategy can be implemented efficiently under standard
assumptions using access to a sampling oracle from the distributions Di. We state our result here and refer to Section 6 for a
more formal version and the proof.
Theorem 2. LetAinp be an algorithm for the prophet inequalities problem with expected social welfare E

[
v(Ainp)

]
as in

Theorem 1, let F ⊆ X1 × · · · × Xn be a combinatorial constraint satisfied byAinp, and let ϵ > 0 be an arbitrary parameter.
Given sampling access to the distributions Di, under standard assumptions, there exists a pricing based algorithmAout such
that E

[
v(Aout)

]
≥ (1 − ϵ) · E

[
v(Ainp)

]
. Furthermore, the joint distribution of the assignments forAinp andAout is the same

up to a factor of 1− ϵ, and the algorithm uses poly(n,maxi |Xi|,
1
ε
) samples and runs in poly(n,maxi |Xi|,

1
ε
) time. Additionally,

the algorithm is feasible under the combinatorial constraint F .
We note that algorithms based on sampling have previously been explored for prophet inequalities [3, 13, 40, 8]. The

setting we consider is fairly general however and we make minimal assumptions on the input algorithm, while existing
approaches are in more restricted settings and are generally algorithm specific. As such, our approach requires new techniques
which may be of independent interest. We here provide an overview of our proof and refer to Section 6 for more details.

For each agent i, we effectively estimate the distribution Di using a sufficient (but polynomial) number of samples,
obtaining an empirical distribution D̂i. We then show that solving the optimization problem in Theorem 2 on the estimated
distribution leads to an almost optimal solution to the original problem. The main idea behind the proof is a uniform
convergence argument based on bounding the VC-dimension of all pricing based algorithms. The standard way to do this is
to uniformly bound, for all pricing based algorithms, the difference in the objective of the true optimization problem and
the estimated optimization problem. This is difficult to do however because the objective depends on the input algorithm
in a complicated way. Additionally, it is not clear how the difference in objective affects the probability distribution over
the assigned outcomes, i.e., Equation (1.2), which is a central part of our proof of Theorem 1. Crucially, Equation (1.2) is
necessary for the proof that the social welfare does not decrease, i.e., E

[
v(Aout)

]
≥ E

[
v(Ainp)

]
.

To deal with this issue, we take an indirect approach that effectively works in the dual space. We first uniformly bound, for
all pricing assignment rules A and outcomes x ∈ Xi, the difference between Prv∼D [A(v) = x] for D = Di (i.e., sampling from
the true distribution), and D = D̂i (i.e., sampling from the estimated distribution). We do this by viewing each assignment
probability as the success rate of a classifier formed by an intersection of half-spaces, and bounding the VC-dimension of
these half-spaces. This leads to an additive bound on the error in the approximation. An additive error is not well suited for
our purposes however as it means that low probability events may be ignored (as their probability is rounded down to 0),
even though they may constitute a large fraction of an algorithm’s expected welfare. To deal with this obstacle, we further
“soften” our probability estimates by mixing them with the uniform distribution with low probability, changing the error
bounds into multiplicative bounds. We use the multiplicative bounds to show that the algorithm approximately preserves both
the distribution over outcomes and the expected social welfare. We refer to Section 6 for more details.

Applications. We can apply our main result to special cases of prophet inequalities found in the literature. Specifically,
we obtain improved pricing based algorithms prophet inequalities with a matching constraint (for both edge arrival and
vertex arrival models), resolving the open problem of Ezra et al. [23]. We also apply our reduction to online social welfare
maximizing combinatorial auctions with subadditive valuations. In a recent breakthrough, Correa and Cristi [16] proved
an existence of prophet inequality for this problem with the first known constant approximation ratio. They left as an open
problem to provide a posted pricing based implementation of their algorithm. Our technique lets us resolve this question in
affirmative as well. These applications are presented in Section 5.



Map of the paper. The remainder of the paper is organized as follows. In Section 2, we discuss the related work. In
Section 3, we discuss the preliminaries of our model and establish the notation. In Section 4, we discuss our pricing algorithm,
and prove our main result (Theorem 1). In Section 5, we discuss the applications of our result to prophet inequalities with
matching constraints and combinatorial auctions. Finally, in Section 6, we show how our pricing algorithm can be efficiently
implemented using sampling access to the distributions.
Remark 3. While our focus here is on the prophet inequalities problem, our results immediately extend to the prophet
secretary problem as each instance of the prophet secretary problem is effectively a distribution over instances of the standard
prophet inequalities problem. We refer to Appendix A for more details.

2 Related work
In this paper we primarily focus on prophet inequalities for problems with combinatorial feasibility constraints, where the
economic objective to maximize is the social welfare. However, in the discussion below we also mention the economic
objective of revenue in few contexts.

Dütting et al. [18, 19] raise as an open question whether any prophet inequality algorithm can be turned into pricing-based
algorithm. They specifically ask whether there exist prophet inequalities which cannot be implemented using posted prices.
Our main result answers the former question in positive, and the latter question in negative, whenever there exists an algorithm
for a given prophet inequality. Dütting et al. [19] present a general technique to establish prophet inequalities based on posted
prices. Their technique, however, requires to establish an existence of a so called balanced pricing for the given problem,
which is inspired by the smoothness framework for the price of anarchy. Balanced pricing is problem specific and their
technique does not allow to transform any prophet inequality algorithm into a pricing based one, unlike our technique.

Correa and Cristi [16] prove an existence of the first constant factor prophet inequality for online combinatorial auctions
with subadditive valuations, maximizing the social welfare. Their result is purely existential, and they pose as an important
open problem whether there exist posted prices implementing their algorithm. They also explicitly ask for an existence of
a reduction that given any prophet inequality algorithm, transforms it into a posted pricing based algorithm with the same
(or almost the same) approximation ratio. Our technique provides such general reduction and implies the existence of such
posted prices, answering their open questions. Feldman et al. [25] obtained a prophet inequality of factor log(m) for CAs
with subadditive valuations, where m is the number of items. This result was recently improved to a factor log log(m) by
Dütting et al. [20]. Feldman et al. [25] designed the best possible prophet inequality algorithm for combinatorial auctions
with XOS, and therefore also submodular, valuations, which is also based on item posted pricing. Their algorithm achieves
the approximation ratio of 2, which is best possible even for single item prophet inequality, see [36, 37]. The algorithms in
[25, 36, 37] are based on anonymous item pricing.

When the arrival order of the agents is uniformly random, rather than fixed, Ehsani et al. [21] improve this approximation
factor to the optimal factor of 1 − 1/e for combinatorial auctions with XOS valuations. They also prove the same factor
1 − 1/e when agents, arriving in a uniformly random order, correspond to elements of a matroid and the solution has to be an
independent set of that matroid. Their algorithms are threshold/pricing-based.

Chawla et al. [9] pioneered the study of posted-price mechanisms in Bayesian mechanism design for various problems
with combinatorial feasibility constraints. They design revenue maximizing DSIC mechanisms for problems that involve
matroid (intersection) constraints and multi-unit multi-item unit-demand problems, that guarantee constant approximation
of the optimal revenue. These guarantees also apply to the social welfare maximization for these problems. Many of these
results have been significantly improved by Alaei [2] who has provided a reduction from multi-buyer to single-buyer setting
for combinatorial auctions and related Bayesian mechanism design problems with combinatorial feasibility constraints.

Ezra et al. [23, 24] design algorithms for prophet inequality problems with matching constraints. They do not use a
pricing based approach, but build on the technique of online contention resolution schemes (OCRS), extending it to what they
call batched OCRS technique. Using this new technique for matching with vertex arrivals, they extend the result of [25] for
bipartite graphs to general graphs and for matching with edge arrivals, they improve the 1/3 approximation of [27] to 0.337.
They pose as an open problem whether there exist pricing based algorithms with competitive ratios comparable to theirs. Our
technique answers this open problem in affirmative, implying pricing based prophet inequality algorithms with the same
approximation ratios.

We would also like to mention that Correa et al. [14] prove that designing posted price mechanisms (PPM) is equivalent
to prophet inequalities based on thresholds. In fact they note that the implication from prophet inequality to PPM has been
implicitly shown in [9, 31]. They prove the other implication from PPM to prophet inequality. However, their reduction
works only for single-dimensional agents and they have focused on revenue maximization. While we focus on the social
welfare, our reduction is much more general and stronger. Firstly, we do not assume that we have a threshold based prophet



inequality algorithm, but any prophet inequality algorithm, and we show how to transform it into a PPM with the same
performance guarantee. And secondly, we treat a very general setting with possibly multi-dimensional agents.

3 Preliminaries
Notation. Given an integer n, we use [n] to denote the set {1, . . . , n}. Given a vector (a1, . . . , an), we use a≤i := (a1, . . . , ai)

to denote the first i elements of the vector, and define a<i := a≤i−1. We use Pr [ . ] and E [ . ] to denote probabilities and
expectations respectively. For an event A, we define its indicator 1 {A} as the random variable that equals 1 if A holds and
equals 0 otherwise. Note that Pr [ A ] = E [1 {A} ]. For random variables X,Y , and an event A, we use E [ X | Y ] and E [ X | A ]
to denote the conditional expectation of X with respect to Y and A respectively. For any set X, we use ∆X to denote the set of
all distributions over X.

Model. We consider a setting with n agents N where each agent i ∈ N has an outcome space Xi. The joint outcome space
is denoted by X := X1 × · · · × Xn. and the set of feasible outcomes is denoted by F ⊆ X. Each agent also has a distribution Di

over the set of valuation functions Vi, where a valuation function vi ∈ Vi is a mapping vi : Xi → R
≥0, describing the agent’s

valuation for each outcome.
The agents arrive sequentially, with some order σ : [n] → N that is not known to the algorithm. In order to keep the

notation simple, we will denote the agent arriving at time i with i1. Upon arrival, each agent i reveals its identity and its
valuation function vi ∼ Di, and an algorithm for the problem needs to assign it to some outcome in Xi. Given an algorithm
A, and valuation functions v = (v1, . . . , vn), we useAi(v), to denote the outcome assigned to i when the algorithm observes
agents with the valuations functions vi, and useA≤i(v) := (A1(v), . . . ,Ai(v)) to denote the set of outcomes assigned to the
first i arriving agents. We also defineA<i(v) := A≤i−1(v). We will drop the dependence on v from the notation when it is
clear from the context. We will also abuse notation and useA to denote the final assignmentA≤n. Note that even for fixed
values of v, the outcomesAi(v) can be random because of the algorithm’s randomness. This effectively means that we can
think of A as a randomized mapping from V1 × · · · × Vn to X. An algorithm is correct if its assigned outcome is always
feasible, i.e.,A≤n ∈ F .

We say an algorithmA is pricing based if for each agent i, it chooses a pricing function πi : Xi → R, and assigns i to
some outcome in arg maxx∈Xi

( vi(x) − π(x) ), where ties can be broken arbitrarily and possibly randomly.2 The choice of the
pricing function πi can depend on the valuation distribution Di, the previously observed valuations v1, . . . vi−1, and the set of
already assigned outcomes. Crucially however, the pricing function does not depend on vi and needs to be chosen before
observing vi. In the language of algorithmic mechanism design, a pricing based algorithm corresponds to a dominant strategy
incentive compatible (DSIC) mechanism with bidders given by demand oracles/queries, see, e.g., [6].

While in principle, an algorithm’s decisions for agent i may depend on past valuation functions vi, for most existing
algorithms this is not the case. We say an algorithm is past-valuation independent if for determining the assignment to agent
i it only uses the current valuation vi, and the set of previously assigned outcomesAout

<i .
Given valuation functions v = (v1, . . . , vn), we define the valuation of algorithmA as the social welfare of the agents, i.e.,

v(A) :=
∑

i

vi(Ai) .

In general, the objective of the prophet inequalities problem is to design an algorithm that maximizes E [ v(A) ] while ensuring
the constraintA ∈ F .

4 Black-box reduction
In this section, we present our black-box reduction. We first state our main result, which is a more formal restatement of
Theorem 1 from the introduction.
Theorem 4. LetAinp be an algorithm for the prophet inequalities problem, and let E

[
v(Ainp)

]
denote its expected social

welfare. There exists an algorithmAout with the following properties:
• Identical distribution. The distribution ofAout andAinp over the assigned outcomes are the same. Formally, letting
Ai ∈ Xi denote the assignment made by algorithmA to agent i,

Pr
[

(Ainp
1 , . . . ,A

inp
n ) = (x1, . . . , xn)

]
= Pr

[
(Aout

1 , . . . ,Aout
n ) = (x1, . . . , xn)

]
(4.3)

1This does not contradict the assumption that the arrival order is a priori unknown because for each agent i, our algorithm will not use information about
the arrival order of agents i + 1, . . . , n.

2In principle, the definition allows the tie-breaking distribution to depend on the valuation function vi. The reduction we provide however has the
additional property that the distribution depends only on the set of tied outcomes (see Lemma 10).



for all (x1, . . . , xn) ∈ X. The randomness here comes from the randomness of the valuation functions v1, . . . , vn, as well
as the randomness in the algorithmsAinp andAout.
• Non-decreasing welfare. The expected social welfare under algorithmAout is not less than the expected social welfare

underAinp. Formally, E
[
v(Aout)

]
≥ E

[
v(Ainp)

]
. Moreover, for each agent i, E

[
vi(Aout

i )
]
≥ E

[
vi(A

inp
i )

]
.

• Pricing. The algorithmAout is pricing based.
We note that for any fixed realizations of v1, . . . , vn, the outcomes assigned by Ainp and Aout can be (and in general are)
different. The identical distribution condition (4.3) simply states that the distribution ofAinp andAout is the same. Intuitively,
Aout redistributes the output distribution ofAinp for different valuation functions: For any vector (x1, . . . , xn) ∈ X, changing
A = Ainp toA = Aout increases the probability Pr [A = (x1, . . . , xn) | v1, . . . , vn ] for some values of v1, . . . , vn, and decreases
the probability for other values, without changing the overall probability Pr [A = (x1, . . . , xn) ].

We will present the algorithmAout in Section 4.1. Our algorithm will be based on the notion of assignment rules, which
we will define shortly, and will essentially implement an optimal assignment rule subject to some constraints. in Section 4.2,
we show how this assignment rule can be be calculated, and prove that it leads to a pricing based algorithm. In Section 4.3,
we prove Theorem 4.

4.1 Algorithm
Assignment rules. Before providing the algorithmAout, we define the concept of an assignment rule, which characterizes

the decision making process for each individual agent. For any i ∈ [n], we define an assignment rule Ai : Vi → ∆Xi as any
mapping from the space of valuation functions Vi to the set of distributions over outcomes Xi. We will abuse notation and
simply write Ai(v) ∈ Xi to denote a random sample drawn from the mapped distribution. Given this definition, an algorithm
for the problem is simply a sequence of assignment rules (A1, . . . , An), where each Ai is determined based on the previously
observed agents [i − 1], the identity of the i-th agent, and the valuation functions v1, . . . , vi−1. We say an assignment rule Ai

is pricing based if there exists a pricing function πi : Xi → R, such that Ai(v) ∈ arg maxx∈Xi
( vi(x) − π(x) ) for all i, x with

probability 1. Ties can be broken arbitrarily and possibly randomly. It is clear that an algorithmA is pricing based if and
only if its corresponding assignment rules A1, . . . , An are guaranteed to be pricing based.

The assignment rule view of the algorithm is important conceptually as it separates the decision making process for any
algorithmA to two parts. First,A commits to an assignment rule Ai : Vi → ∆Xi based on everything it has observed before
seeing vi. It then sees vi and samples the outcome Ai(vi).

Analysis of a single agent. We now explain our algorithm by considering a fixed agent i ∈ [n], and describing the
assignment rule for this agent. Before the arrival of agent i, the algorithm has observed the arrival order of the first i − 1
agents, the valuation functions v1, . . . , vi−1, and has assigned them the outcomeAout

<i . These random variables have therefore
been realized at this point and, since we are focusing on a single agent i, we will assume that v1, . . . , vi−1,A

out
<i are fixed,

deterministic values. When considering the online sequence as a whole, i.e., not just a single i, the claims we make in this
section will hold conditioned on v1, . . . , vi−1,A

out
<i (see Remark 5).

As mentioned in the introduction, on a high level, we first consider the assignments of the input algorithm Ainp, and
then improve upon this without changing the assignment distribution. For any set of outcomes x<i = (x1, . . . , xi−1) ∈
X1 × X2 × . . . × Xi−1, we define A

inp
x<i

as the “averaged” version of the assignment rule Ainp
i corresponding to Ainp, when

A
inp
<i = x<i. Formally, the assignment rule A

inp
x<i

: Vi → Xi is defined via the following distribution over Xi for each v ∈ Vi :3

Pr
[

A
inp
x<i

(v) = x
]

:= Prv′1∼D1,...,v′i−1∼Di−1

[
A

inp
i (v′1, . . . , v

′
i−1, v) = x | Ainp

<i (v′1, . . . , v
′
i) = x<i

]
,(4.4)

In the above definition, the randomness is over the randomness of the draws of v′1, . . . , v
′
i , as well as the internal randomness

of algorithm Ainp.4 Intuitively, the definition captures what the input algorithm would do on average if it had assigned
the outcomes x<i before the arrival of agent i. We note that in general, the behaviour of algorithm Ainp may depend on
the valuation functions v1, . . . , vi−1. The above definition averages out this dependence however, and our definition only
conditions on the value ofAinp

<i . This will be important in the design of our algorithm as we will preserve the distribution of
the input algorithm over outcomes (see the identical distribution condition in Theorem 4), but we will not necessarily make
the same assignments as the input algorithm for any individual vi.

3As we will see, Pr
[
A

inp
<i = x<i

]
will always be strictly positive for all x<i in our algorithm, so the conditional expectation is always well-defined.

4For simplicity, throughout the paper we omit the dependence on the internal randomness of our algorithms in the notation; e.g., we write Prv1 ,...,vi []
instead of Pr

v1 ,...,vi ,A
inp
i

[].



Define A
inp
i := A

inp
Aout
<i

. We note that sinceAout
<i was assumed to be fixed, A

inp
i is fixed as well. Our algorithm will find an

assignment rule Aout
i that improves A

inp
i , while preserving its distribution for vi ∼ Di. Specifically, the assignment rule will

satisfy the three properties stated below, which correspond to the properties ofAout as described in Theorem 4.

1. Identical distribution. Prv∼Di

[
Aout

i (v) = xi

]
= Prv∼Di

[
A

inp
i (v) = xi

]
for all xi ∈ Xi,

2. Non-decreasing welfare. Ev∼Di

[
v(Aout

i (v))
]
≥ Ev∼Di

[
v(A

inp
i (v))

]
,

3. Pricing. Aout
i is pricing based, with a corresponding pricing function πi.

Remark 5. Since we focused on a single agent, we stated our results for fixed values of v1, . . . , vi−1,A
out
<i and the randomness

in the above properties is over the draw of v and the randomness of the assignment rules Aout
i and A

inp
i . When considering the

algorithm for all agents however, v1, . . . , vi−1,A
out
<i will be random variables and the stated properties will hold conditioned

on them. Specifically,

Pr
[

Aout
i (vi) = x | v<i,A

out
<i

]
= Pr

[
A

inp
i (vi) = x | v<i,A

out
<i

]
,

and

E
[

vi(Aout
i (vi)) | v<i,A

out
<i

]
≥ E

[
vi(A

inp
i (vi)) | v<i,A

out
<i

]
.

Implementation of assignment rules. In order to implement an assignment rule with the properties specified above,
we find the assignment rule that maximizes social welfare, subject to the identical distribution constraint. We will show
that this naturally leads to a pricing based solution. As before, since we are focusing on a single agent, we will assume that
v1, . . . , vi−1,A

out
<i (and by extension A

inp
i ) are fixed deterministic values.

We first calculate the probability distribution Prv∼Di

[
A

inp
i (v) = xi

]
. For any algorithmA, and any x<i, xi, we define the

A-likelihood of xi given x<i, denoted by pA(xi; x<i), as

pA(xi; x<i) := Prv′1∼D1,...,v′i∼Di

[
Ai(v′) = xi | A<i(v′) = x<i

]
.(4.5)

We further define pi(x) := pAinp (x;Aout
<i ). Note that pi(x) is a fixed value for any x as we assumed thatAout

<i was fixed. While
we do not focus on the computational aspects in this section, we note that the above expression can be calculated using
Monte-Carlo simulation up to arbitrary precision.

It can be shown (see Lemma 12) that pi(x) = Prv∼Di

[
A

inp
i (v) = x

]
. We therefore formulate the problem of finding the

assignment rule with maximum social welfare as the following optimization problem over all assignment rules A : V → ∆X ,
with (X,V,D, p) set to (Xi,Vi,Di, pi):

max
A

Ev∼D [v(A(v))]

s.t. Prv∼D [A(v) = x] = p(x) for all x ∈ X .(P1)

The solution to this optimization problem, which we denote by Aout
i , satisfies the identical distribution condition because

of the optimization problem’s constraints. Additionally, since A
inp
i is feasible for the optimization problem (P1) and Aout

i is

the optimal solution, we conclude that E
[

vi(Aout
i (vi))

]
≥ E

[
vi(A

inp
i (vi))

]
, which means that Aout

i satisfies the non-decreasing
welfare condition as well. We will show that the solution to this optimization problem is a pricing based assignment rule,
which will ensure the pricing based condition. The condition follows from the lemma below, the proof of which is in
Section 4.2.
Lemma 6. There is an optimal solution to the optimization problem (P1) that is pricing based. Moreover, any pricing based
assignment rule satisfying the constraints of the optimization problem is an optimal solution.

A pseudocode of our approach is given in Algorithm 1. We note that we do not need to calculate A
inp
i explicitly in our

algorithm, and only require pi.

4.2 Analysis of the optimal assignment problem In order to prove Lemma 6, we use a duality argument. We first provide
an alternative characterization of assignment rules as a joint distribution over the space of valuation functions and the assigned



Algorithm 1: Black-box reduction

Input: Input parameters n,D1, . . . ,Dn,Ainp

Output: Assignment outcomesAout
1 , . . . ,Aout

n
for i ∈ [n] do

Calculate pi(x) = Prv′1∼D1,...,v′i∼Di

[
A

inp
i (v′) = x | Ainp

<i (v′) = Aout
<i

]
for x ∈ X;

Solve the optimization problem (P1) with (Di, pi), obtaining the solution Aout
i ;

Observe the valuation function of the i-th agent vi;
DrawAout

i from Aout
i (vi) and assign it to agent i;

end

outcomes. This characterization leads to a reformulation of the optimization problem (P1) as a linear program. Analysing the
dual of this linear program then implies that its optimal solution corresponds to a pricing based algorithm. Throughout the
section, we omit the dependence on i in the notation (e.g., write A instead of Ai) as we are considering a fixed i.

We start with the following definition.
Definition 7. (Associated coupling) Given an assignment rule A mapping V to X under D, we define its associated coupling
γA,D as as the distribution of (v, A(v)) where v is sampled from D. Note that γA,D is a joint distribution over V × X. We omit
the dependence on D when it is clear from context.
The above definition allows us to work with joint distributions instead of assignment rules. Formally, we prove the following
lemma in the Appendix.
Lemma 8. For an assignment rule A : V → ∆X , and a distribution D, let A(D) denote the distribution of A(v) over X for
v ∼ D, i.e., A(D)(x) = Prv∼D [A(v) = x]. The marginal of γA,D on V and X equals D and A(D) respectively. Additionally,
Ev∼D [v(A(v))] = E(v,x)∼γA,D [v(x)]

The notion of a pricing based assignment rule can easily be extended to associated coupling as well.
Definition 9. (Pricing-based coupling) The joint distribution γ over V × X is called pricing based if there exist functions
π : X → R ∪ {+∞} and ψ : V → R ∪ {+∞} such that

1. ψ(v) + π(x) ≥ v(x) for all v, x, and
2. The probability of the set {(v, x) : ψ(v) + π(x) > v(x)} is zero under γ.

Pricing based assignment rules correspond to pricing based couplings, as we show in the lemma below, the proof of which is
in the Appendix.
Lemma 10. If A is a pricing based assignment rule with pricing function π, then γA,D is a pricing based coupling with
the pricing function π. Conversely, if γ is a pricing based coupling with the pricing function π, and its marginal on
V equals D, there exists an assignment rule A with pricing function π such A(D) equals the marginal of γ on X, and
E(v,x)∼γ [v(x)] = E(v,x)∼γA,D [v(x)].

Given the above lemmas, the optimization problem (P1) can be rewritten as the following linear program:

max
γ

E(v,x)∼γ [v(x)]

s.t. γ ∈ Γ(D, p) ,(LP1)

where Γ(D, p) denotes the set of all distributions over V × X with marginals D on V and p on X. The optimization problem
(LP1) is an optimal transport problem which has applications in mathematics (see Villani [43] for a detailed overview) and
economics [42, 28, 11]. Similar, in spirit, duality approaches were used, for example, in context of combinatorial auctions
and Walrasian equilibria, see, e.g., [6]. Unlike these works, however, we use the optimization problem only for a single agent
to find the best personalized assignment. Whereas, the mentioned applications study the whole population of agents and find
an assignment of items to each agent, and corresponding prices for the items, that optimizes social welfare / clears the market.
Lemma 11. Assume that the optimization problem (LP1) is feasible. The joint distribution γ ∈ Γ(D, p) is the optimal solution
to (LP1) if and only if it satisfies the constraint and it is a pricing based coupling.
Proof. We provide a proof here for discrete D as it provides a nice intuition. The proof for the general case follows from
Kantorovich duality; specifically, we refer to Villani [43], Theorem 5.10, part (ii), the equivalence of conditions (a) and (c).



The optimization problem (LP1) can be rewritten as:

min
γ

∑
v,x

−v(x)γ(v, x)

∀v :
∑

x

γ(v, x) = D(v)

∀x :
∑

v

γ(v, x) = p(x)

∀v, x : γ(v, x) ≥ 0 .

Since the linear program is feasible, strong duality holds and we can use the KKT conditions to characterize the problem’s
solution. Forming the Lagrangian, we obtain∑

v,x

−v(x)γ(v, x) +
∑
v,x

ψ(v)γ(v, x) −
∑

v

ψ(v)D(v) +
∑
v,x

π(x)γ(v, x) −
∑

x

π(x)p(x) −
∑
v,x

ρ(v, x)γ(v, x) .

The dual optimality conditions can therefore be written as

−v(x) + ψ(v) + π(x) − ρ(v, x) = 0 ,

which, given the dual constraint ρ(v, x) ≥ 0 is equivalent to

ψ(v) + π(x) ≥ v(x).

The dual objective equals max (−
∑
ψ(v)D(v) −

∑
π(x)p(x) ) , which is equivalent to

min
∑

v

ψ(v)D(v) +
∑

x

π(x)p(x) .

Therefore, the dual problem can be written as

min
∑

v

ψ(v)D(v) +
∑

x

π(x)p(x)

∀v, x : ψ(v) + π(x) ≥ v(x) .

The complementary slackness implies that whenever γ(v, x) > 0, we should have ψ(v) + π(x) = v(x), which means that γ is
pricing based. Note that this means that for any x such that γ(v, x) > 0 we have x ∈ arg maxx′ ( v(x′) − π(x′) ) because

v(x) − π(x) = ψ(v) ≥ v(x′) − π(x′)

for all x′ ∈ X. Therefore, if γ is an optimal solution, then it must be pricing based.
Conversely, if γ is a pricing based solution satisfying the primal feasibility, then it satisfies the dual feasibility and

complementary slackness condition because it is pricing based. Therefore, it satisfies the KKT condition which means it is an
optimal solution.

We can now prove Lemma 6.
Proof. [Proof of Lemma 6] By Lemma 12, A

inp
i is feasible for (P1). By Lemma 8, this implies that γ

A
inp
i

is feasible for (LP1).
Let γ be the solution to the optimization problem (LP1), which we assume is pricing based given Lemma 11. Let A be the
corresponding pricing based algorithm, as specified by Lemma 10. The assignment rule A satisfies the constraint of (P1)
given Lemma 10 and

Ev∼D [v(A(v))] = E(v,x)∼γ [v(x)] .

Furthermore, for any assignment rule A′ satisfying the constraints, γA′ satisfies the constraint of (LP1) which implies

Ev∼D
[
v(A′(v))

]
= E(v,x)∼γA′ [v(x)] ≤ E(v,x)∼γ [v(x)] ,

where the equality follows from Lemma 8, and the inequality follows from the optimality of γ. Therefore, Ev∼D [v(A(v))] ≥
Ev∼D [v(A′(v))] , finishing the proof.



4.3 Proof of Theorem 4 We now prove Theorem 4.
Overview of the proof. We here briefly explain the role of each of the three conditions for assignment rule, and

how together they prove Theorem 4. Expressed in terms of Aout, the identical distribution condition simply states that
pAout (xi; x<i) = pAinp (xi; x<i) for all x<i, xi (see Lemma 13). In other words, averaged over the randomness of vi, the conditional
distribution of Aout

i given Aout
<i is the same as the conditional distribution of Ainp

i given Ainp
<i . Since Aout

0 = A
inp
0 = ∅, an

inductive argument shows that Aout and Ainp have the same joint distribution over the outcome space (Lemma 14). This
gives the identical distribution condition required by Theorem 4, i.e., Equation (4.3).

Equation (4.3) has two important consequences. Firstly, whenever the assignment of Ainp is feasible for some
combinatorial constraint, it implies that the assignment of Aout is always feasible as well. More importantly however,
it ensures that we can compare the expected welfare of Aout and Ainp by comparing the expected valuation of Aout

i and

A
inp
i for each i, which is done using the non-decreasing welfare condition. Together with (4.3), the non-decreasing welfare

condition implies that E
[

vi(Aout
i )

]
≥ E

[
vi(A

inp
i )

]
for all i (Lemma 16), which implies E

[
v(Aout)

]
≥ E

[
v(Ainp)

]
. Finally,

the pricing condition for the assignment rules Aout
i implies that the algorithmAout is pricing based as required by the theorem.

Lemma 12. For any i and (x1, . . . , xi) ∈ X1 × . . . Xi,

Prv∼Di

[
A

inp
x<i

(v) = xi

]
= pAinp (xi; x<i) .

Proof. For any fixed value of v, by definition of A
inp
x<i

,

Pr
[

A
inp
x<i

(v) = x
]
= Prv′1∼D1,...,v′i−1∼Di−1

[
Ainp

i (v′1, . . . , v
′
i−1, v) = x | Ainp

<i (v′≤i) = x<i

]
.

Therefore, by iterated expectation,

Prv′i∼Di

[
A

inp
x<i

(v′i) = x
]
= Prv′1,...,v

′
i

[
A

inp
i (v′) = x | Ainp

<i (v′) = x<i

]
,

which equals pAinp (x; x<i).
Lemma 13. Let Aout be an algorithm such that for any agent i, its assignment rule Ai satisfies the identical distribution
condition. For any (x1, . . . , xi), we have pAout (xi; x<i) = pAinp (xi; x<i).
Proof. For any (x1, . . . , xi),

Prv1,...,vi

[
A

inp
i (vi) = xi | A

out
<i = x<i

]
= Prv1,...,vi

[
A

inp
x<i

(vi) = xi | A
out
<i = x<i

]
(Definition of A

inp
i )

= pAinp (xi; x<i) . (Lemma 12)(4.6)

By definition ofAout, we haveAout
i = Aout

i (vi). Therefore,

pAout (xi; x<i) = Prv1∼D1,...,vi∼Di

[
Aout

i = xi | A
out
<i = x<i

]
(Definition of pAout )

= Prv1∼D1,...,vi∼Di

[
Aout

i (vi) = xi | A
out
<i = x<i

]
(Definition ofAout

i )

= Prv1∼D1,...,vi∼Di

[
A

inp
i (vi) = xi | A

out
<i = x<i

]
(Remark 5)

= pAinp (xi; x<i) . (Equation (4.6))

Lemma 14. Let Aout be an algorithm such that for any agent i, its assignment rule Ai satisfies the identical distribution
condition. Then for any i ∈ [n],

∀x≤i : Pr
[
Aout
≤i = x≤i

]
= Pr

[
A

inp
≤i = x≤i

]
.

Proof. We prove the claim using induction on t. For t = 0, the claim holds trivially asAout
0 = A

inp
0 = ∅. Assuming the claim



holds for i − 1,

Pr
[
Aout
≤i = x≤i

]
= Pr

[
Aout

i = xi,A
out
<i = x<i

]
= Pr

[
Aout

i = xi | A
out
<i = x<i

]
Pr

[
Aout

<i = x<i

]
= Pr

[
Aout

i = xi | A
out
<i = x<i

]
Pr

[
A

inp
<i = x<i

]
(Induction hypothesis)

= Pr
[
A

inp
i = xi | A

inp
<i = x<i

]
Pr

[
A

inp
<i = x<i

]
(Lemma 13)

= Pr
[
A

inp
i = xi,A

inp
<i = x<i

]
= Pr

[
A

inp
≤i = x≤i

]
.

Lemma 15. For any t ∈ [n], and any fixed realization of Aout
<t , the expected valuation of agent t under Ainp conditioned on

Aout
<t = Aout

<t is the same as the expected valuation of A
inp
t . Formally, for all x<t,

Evt∼Dt

[
vt(A

inp
x<t

(vt))
]
= Ev1,...,vt

[
vt(A

inp
t ) | Ainp

<t = x<t

]
.

Proof. For any fixed value of v and any x, by definition of A
inp
x<t

(Equation (4.4)),

Pr
[

A
inp
x<t

(v) = x
]
= Prv′1,...,v

′
t−1

[
A

inp
t (v′1, . . . , v

′
t−1, v) = x | Ainp

<t (v′1, . . . , v
′
t−1) = x<t

]
,

where v′i ∼ Di. It follows that, for any fixed v, considering only the randomness in A
inp
x<t

,

E
[

v(A
inp
x<t

(v))
]
= Ev′1,...,v

′
t−1

[
v(Ainp

t (v′1, . . . , v
′
t−1, v)) | Ainp

<t (v′1, . . . , v
′
t−1) = x<t

]
.

Setting v to v′t ∼ Dt and taking expectation we obtain

Ev′t∼Dt

[
vt(A

inp
t (vt)) | Aout

<t = x<t

]
= Ev′1,...,v

′
t

[
vt(A

inp
t (v′)) | Ainp

<t (v′) = x<t

]
,

which proves the claim.
Lemma 16. LetAout be an algorithm such that for any agent t, its assignment rule At satisfies the identical distribution and
non-decreasing welfare condition. Then E

[
v(Aout

t )
]
≥ E

[
v(Ainp

t )
]
.

Proof. Let x<t be a random sample from the distribution ofAout
<t .

E
[

vt(Aout
t )

]
= Ex<t∼A

out
<t

[
Ev1,...,vt

[
vt(Aout

t ) | Aout
<t = x<t

]]
(Iterated expectation)

= Ex<t∼A
out
<t

[
Ev1,...,vt

[
vt(Aout

t (vt)) | Aout
<t = x<t

]]
(Defintion ofAout

t )

≥ Ex<t∼A
out
<t

[
Ev1,...,vt

[
vt(A

inp
t (vt)) | Aout

<t = x<t

]]
, (Non-decreasing welfare)(4.7)

By Lemma 15 however,

Ev1,...,vt

[
vt(A

inp
t (vt)) | Aout

<t = x<t

]
= Ev1,...,vt

[
vt(A

inp
x<t

(vt)) | Aout
<t = x<t

]
(Definition of A

inp
t )

= Evt

[
vt(A

inp
x<t

(vt))
]

= Ev1,...,vt

[
vt(A

inp
t ) | Ainp

t = x<t

]
. (Lemma 15)

Plugging this back in Equation (4.7) implies

E
[

vt(Aout
t )

]
≥ Ex<t∼A

out
<t

[
E

[
vt(A

inp
t ) | Ainp

t = x<t

]]
= Ex<t∼A

inp
<t

[
E

[
vt(A

inp
t ) | Ainp

t = x<t

]]
= E

[
vt(A

inp
t )

]
,

where the second equality follows from the fact that Ainp
<t and Ainp

<t have the same distribution (Lemma 14), and the third
equality follows follows from iterated expectation. Summing over t ∈ [n] finishes the proof.



Proof. [Proof of Theorem 4] We use Algorithm 1. The identical distribution condition follows from Lemma 8, the non-
decreasing welfare condition follows from Lemma 16, and the pricing condition follows from Lemma 6.

5 Applications
Prophet inequalities for combinatorial auctions. In an online Combinatorial Auction (CA) we are given a set M

of m items and a set N = [n] of n agents. Each agent i ∈ N has a valuation function vi : 2M → R≥0, which is randomly
and independently sampled from a given distribution Di, defined over a set Vi of possible valuation functions. We assume
that each possible realization of each vi is monotone, i.e., ∀A, B ⊆ M : A ⊆ B⇒ vi(A) ≤ vi(B). Agents arrive sequentially,
w.l.o.g., in the order 1, 2, . . . , n, and upon arrival their valuation function is realized. At the time agent i arrives, the online
algorithm has to decide which set Ai ⊆ M \

⋃i−1
j=1 A j of available items to allocate to agent i. This decision is irrevocable and

the goal of the online algorithm is to maximize the social welfare of the allocation, i.e., the sum of the agents’ valuations∑
i∈N vi(Ai). A valuation function v : 2M → R≥0 is called subadditive if ∀A, B ⊆ M : v(A ∪ B) ≤ v(A) + v(B).

In a recent breakthrough result, Correa and Cristi [16] prove an existence of a prophet inequality for online combinatorial
auctions with subadditive valuations, which achieves an approximation factor of 6 + ε, for any constant ε > 0, with respect to
social welfare. This is the first known constant factor prophet inequality for this problem. However, their result is purely
existential, where the existence of their algorithm is proved via a fixed point theorem of Kakutani. They also proved an
existence of an incentive compatible implementation of their prophet inequality algorithm by using the same fixed point
argument. This implementation is only a Bayesian Nash Equilibrium and not incentive compatible in dominant strategies
(DSIC). If the arrival order of the agents is fixed and given, they also provided a dynamic programming implementation
of the optimal online algorithm for this problem that implies existence of personalized posted bundle prices, and is thus a
DSIC implementation. This optimal algorithm is highly inefficient but provides the same guarantee on the social welfare as
their prophet inequality algorithm, because its performance is better than any online algorithm. Crucially, they pose as an
important open problem whether there exist posted prices implementing their prophet inequality algorithm. They explicitly
ask for an existence of a reduction that given any prophet inequality algorithm, transforms it into a posted pricing based
algorithm with the same (or almost the same) approximation ratio. Our technique indeed provides such a general reduction
and implies the existence of such posted prices, thus answering their open questions in the affirmative. This leads to the
following result.
Theorem 17. There exists an online posted pricing-based prophet inequality algorithm for social welfare maximizing
combinatorial auctions with subadditive valuations with an expected approximation ratio of 1

6 . This algorithm implies a
DSIC mechanism for this Bayesian mechanism design problem with the same approximation ratio.
Proof. LetA be the the prophet inequality algorithm whose existence is proved in paper [16]. To see that the claim holds
it suffices to show how to cast the problem of social welfare maximizing CAs with subadditive valuations in our general
setting. Given agent i ∈ N, its outcome space is Xi = 2M . The set of feasible outcomes F ⊆ X = X1 × · · · × Xn is defined as
F = {(A1, . . . , An) ∈ (2M)n | ∀ j, k ∈ [n] : j , k ⇒ A j ∩ Ak = ∅}. Note that given a pricing function πi : Xi → R, the pricing
based algorithmA assigns to agent i the set of items in arg maxx∈Xi

( vi(x) − π(x) ), which corresponds to the demand oracle
in CAs.

Prophet inequalities with matching constraint. We will apply our main result to the special case of prophet inequalities
with a matching constraint for the edge-arrival and vertex arrival models. In the edge arrival model, edges in a graph appear
online in a fixed but a priori unknown order, and each edge has a non-negative weight sampled from a known distribution.
Upon the arrival of an edge, the algorithm decides irrevocably whether or not it wants to collect the edge. The collected
edges should form a matching in the graph and the objective is to maximize the total weight of the collected set. In the vertex
arrival model, the vertices of the graph appear online and, upon arrival, each vertex vi reveals the edges (vi, v j) where j < i
(i.e., v j has already arrived), along with their weights. The algorithm must decide whether to match vi to some available v j,
collecting the weight of the edge (vi, v j), or to leave vi unmatched. Note that an unmatched vertex vi may later be matched by
some v j for j > i. As before, the goal is to maximize the total collected weight subject to the matching constraint.

For this problem, Ezra et al. [24] obtained algorithms with competitive ratios of 1
2 and 0.337, for the vertex and edge

arrival models, respectively. For the edge arrival model, this was subsequently improved to 0.344 by MacRury, Ma, and
Grammel [38] using the same algorithm. Applying the above theorems, we obtain the following result which resolves an
open problem of Ezra et al. [24].
Theorem 18. For the prophet inequalities problem with matching constraints, there exists a pricing based algorithm with
approximation 1

2 in the vertex arrival model, and a pricing based algorithm with approximation 0.344 in the edge arrival
model.
Proof. Our result immediately applies to the edge arrival model with each agent corresponding to an edge. The set of



outcomes is binary, i.e., we either accept the edge or do not. The valuation of agent i for the “accept” outcome is the weight of
the corresponding edge and its valuation for the “reject” outcome is zero. The feasibility constraint F is that the set of agents
assigned to the outcome “accept” should form a matching in the corresponding graph. The pricing algorithm corresponds to a
threshold algorithm; for edge i, there is a threshold πi such that denoting the edge’s weight with wi, we accept i if wi > πi and
reject if wi < πi. If wi = πi, we flip a coin with some pre-specified probability. 5

For vertex arrival, the model studied by Ezra et al. [24] is batched prophet inequalities. Here, for each arriving vertex, the
distribution of the edges corresponding to this vertex are sampled from some known distribution. While the distributions is
not necessarily independent across the edges, the weights for each vertex are sampled independently of the previous vertices
(i.e., there is independence across vertices). Our setting captures this problem as well, with each agent corresponding to a
vertex. The set of outcomes for each vertex is the set of edges between this vertex and the previous vertices, as well as an
additional “null” outcome of not accepting any vertex.

6 Computational efficiency
In this section, we discuss how under standard assumptions, the reduction in Section 4 can be implemented efficiently, using
access to a sampling oracle. We make two assumptions for the theorem. Firstly, we will assume that the distributions Di

are continuous. Secondly, we assume that the algorithm Ainp is past-valuation independent, that is, for each agent i, the
assignment for i is based on vi andAinp

<i , but does not (directly) depend on v1, . . . vi−1 (see Section 3 for a formal definition).
Our main result is the following theorem, which is a more formal restatement of Theorem 2 from the introduction.
Theorem 19. LetAinp be a past-valuation independent algorithm for the prophet inequalities problem, and let E

[
v(Ainp)

]
denote its expected social welfare. Let F denote a given combinatorial constraint satisfied by Ainp. Assume further that
the distributions Di are continuous. 6 There exists an algorithm Âout, that uses poly(n,maxi |Xi|,

1
ϵ
) samples, and can be

implemented in poly(n,maxi |Xi|,
1
ϵ
) time with the following properties:

• Approximately identical distribution. The distribution of Âout approximately contains the distribution of Ainp.
Formally, lettingAi ∈ Xi denote the assignment made by algorithmA to agent i,

Pr
[

(Âout
1 , . . . , Âout

n ) = (x1, . . . , xn)
]
≥ (1 − ϵ)Pr

[
(Ainp

1 , . . . ,A
inp
n ) = (x1, . . . , xn)

]
(6.8)

for all (x1, . . . , xn) ∈ X.7

• Feasibility. Âout ∈ F with probability 1. 8

• Approximately non-decreasing welfare. The expected social welfare under algorithm Âout is at least (1 − ϵ) times
the expected social welfare under Ainp. Formally, E

[
v(Âout)

]
≥ (1 − ϵ)E

[
v(Ainp)

]
. Moreover, for each agent i,

E
[

vi(Âout
i )

]
≥ (1 − ϵ)E

[
vi(A

inp
i )

]
.

• Pricing. The algorithm Âout is pricing based.
We note that the assumption on continuous distributions is standard and it can generally be lifted by adding a second

“tie-breaking” coordinate to the valuation of each outcome, which is sampled from [0, 1] (e.g., see [40]). The pricing function
has a similar tie-breaking coordinate for each outcome. This ensures that the probability of a tie is zero as even if the utility
of two outcomes is the same, their tie-breaking utility will be different with probability 1. Intuitively, this the same as adding
a very small noise vector to each coordinate that makes the distributions continuous to avoid ties but does not have an effect if
there are no ties.

As for the past-valuation independent assumption, we need this because as part of our algorithm, we need to estimate
the probability distribution that the input algorithm would have given the currently assigned outcomes, i.e., pAinp (.; Âout

<i )
as defined in Equation 4.5. Without the past-valuation assumption, estimating this would require us to repeatedly run the
algorithmAinp up to agent i using sampled valuations v′1, . . . , v

′
i , and restrict to those runs whereAinp

<i (v′) = Âout
<i . The number

of samples required for this grows with 1
Pr

[
A

inp
<i (v′)=Âout

<i

] however, making the approach impractical if Pr
[
A

inp
<i (v′) = Âout

<i

]
is

small. Note that we cannot simply ignore low-probability events because they can constitute a large fraction of the expected

5As mentioned in Section 3, in principle, our definition of a pricing algorithm allows for the probability of the coin to depend on the valuation function of
vi. For the algorithm obtained by our reduction however (see Lemma 10), the probability only depends on the set of tied outcomes. Since there are only two
outcomes for edge arrival, this means that the tie-breaking probability is fixed.

6Specifically, we require that for any fixed |Xi | − 1 dimensional subspace, the probability that v ∼ Di is in the subspace is zero.
7Note that the bound is asymmetric; Pr

[
A

inp
≤n = x≤n

]
is not necessarily ≥ (1 − ϵ)Pr

[
Âout
≤n = x≤n

]
.

8The constraint was not needed for Theorem 4 as it was guaranteed by the identical distribution condition. Since we can only prove approximately
identical distribution here however, we state feasibility explicitly.



social welfare ofAinp; even though the events happen with low probability, the expected social welfare when they happen may
be very large. The past-valuation independent assumption resolves this issue by allowing us to simulate the algorithmAinp

without repeating the assignment procedure for agents 1 to i − 1. While in principal an algorithm may not be past-valuation
independent, most existing algorithms (including those discussed in Section 5) are past-valuation independent.

6.1 Algorithm Our algorithm proceeds in a similar way as Algorithm 1, with the difference that we solve the optimization
problem (P1) using sampled data. As in Section 4.1, we focus on a single agent i and specify an assignment rule. As before,
this means that the random variables v1, . . . , vi−1 have been realized, and the algorithm has already assigned the outcomes
Aout

<i . As such, throughout the section, we will assume that v<i,A
out
<i are fixed, deterministic values. As in Remark 5, when

considering random variables for v<i,A
out
<i , the properties in this section will hold conditioned on v<i,A

out
<i .

Let m denote the number of samples we will use, which is a parameter to be specified later. For each agent i, we first
estimate the probability vector pi(.) := pAinp (., Âout

<i ) (Definition 4.5), obtaining an estimate p̂i(.). Letting ϵi denote a parameter
to be specified later, we will guarantee that

∣∣∣ p̂i(x) − pi(x)
∣∣∣ ≤ O(ϵi), for all x ∈ Xi. In order to obtain this estimate, we run

algorithmAinp starting from agent i withAinp
<i set to Âout

<i and with fake sample v′i ∼ Di. Note that we do not need to rerun
from the beginning because of the past-valuation independent assumption. Let XFi ⊆ Xi denote the set of feasible outcomes.
Since we assumed thatAinp is feasible, p̂i(x) = 0 for all x < XFi .

Next, we add a small uniform noise to p̂i to obtain the distribution p̃i defined as

p̃i(x) := (1 − ϵi)p̂i(x) +
ϵi

|XFi |
1

{
x ∈ XFi

}
.(6.9)

The reason behind this noise will become clear in the proofs. Intuitively however, the main reason is that in order to prove
that Âout has high welfare, we will need to ensure a multiplicative bounds, as seen in the approximately identical distribution
property of Theorem 19. This is because the expected welfare of the algorithm Ainp may be caused by a low probability
event that a valuation function takes a very large value. Additive bounds are not suited to deal with this case as they may
round down small probabilities to zero. The small uniform noise in (6.9) essentially solves this issue; if pi(x) is very small,
the extra ϵi

|XFi |
probability will ensure that it is not ignored.

After obtaining p̃i, we take m samples from the distribution Di, obtaining the data set D̂i, and solve the optimization
problem (P1) with D̂i and p̃i.9 As discussed in Section 4.2, solving (P1) is equivalent to solving the optimization
problem (LP1). We will solve the optimization problem over XFi only, as pi(x) = 0 for x < XFi . We let πi denote the
prices corresponding to the solution, which can be obtained as they are dual variables, and set πi(x) = +∞ for x < XFi .
After obtaining πi, we observe the valuation function vi, and choose the outcome arg maxx ( vi(x) − πi(x) ). Ties can now be
broken arbitrarily given the assumption that the distribution is continuous. A formal pseudocode of our approach is given in
Algorithm 2.

Algorithm 2: Efficient reduction

Input: Input parameters n,m,D1, . . . ,Dn, ϵ1, . . . , ϵn,Ainp

Output: Assignment outcomes Âout
1 , . . . , Âout

n
for i ∈ [n] do

Set p̂i(x) for all x ∈ X to be the estimate of pAinp (x; Âout
<i ) obtained using m samples ;

Set p̃i(x) as in Equation (6.9) ;
Obtain D̂i by sampling m times from the distribution Di ;
Solve the optimization problem (P1) with (XFi , D̂i, p̃i), obtaining the solution Âout

i with pricing function πi(x) for
x < XFi ;

Set πi(x) = +∞ for x ∈ XFi ;
Observe the valuation function of the i-th agent vi ;
Assign the outcome Âout

i ∈ arg maxx ( vi(x) − πi(x) ), breaking ties arbitrarily ;
end

9We abuse notation and use D̂i to denote both the dataset, and the corresponding empirical distribution.



6.2 Proof of Theorem 19 To prove the theorem, we show that the assignment rules Âout satisfy approximate versions of
the properties of the assignment rule Â discussed in Section 4. Defining A

inp
i as A

inp
Âout
<i

(Defintion (4.4)), we will show the

following hold with high probability over the randomness of p̂i, D̂i.

1. Approximately identical distribution. Prv∼Di

[
Âout

i (v) = xi

]
≥ (1 − ϵ)Prv∼Di

[
A

inp
i (v) = xi

]
for all xi ∈ Xi,

2. Approximately non-decreasing welfare. Ev∼Di

[
v(Âout

i (v))
]
≥ (1 − ϵ)Ev∼Di

[
v(A

inp
i (v))

]
,

3. Pricing. Aout
i is pricing based, with a corresponding pricing function πi.

We first show the approximately identical distribution for Âout in Lemma 24. The main idea behind the proof is a uniform
convergence argument based on bounding the VC-dimension of all pricing based assignment rules. Given a large enough
(but polynomial) number of samples, with high probability, Prv∼D̂i

[A(v) = x] is close to Prv∼Di [A(v) = x] for all pricing
assignment rules A (Lemma 22 and Lemma 23). Since Âout satisfies the constraint of the optimization problem (P1) with
p = p̃i, and p̃i is a good approximation of pi (see Lemma 21), this proves that the approximately identical distribution
condition for Âout

i . The approximately identical distribution property for the assignment rule Âout leads to the corresponding
property for Âout, as required by Theorem 19 (Lemma 25).

We then use the approximately identical distribution property, together with the fact that Âout
i is the solution to

the optimization problem (P1) with D̂i, to prove the approximately non-decreasing welfare property. Specifically, the
approximately identical distribution property ensures that the probability distribution of Âout

i over x is close to pi. We show

that by changing the output of the assignment rule A
inp
i with low probability, we can obtain a new “perturbed” assignment

rule A′ that has the same distribution over Xi as Âout
i (Lemma 28). The perturbation approximately preserves the expected

valuation of A
inp
i since it happens with low probability. Since Âout

i is pricing based however, it is the optimal assignment
rule for its distribution (Lemma 6), which means Âout

i has a higher expected valuation than A′. Therefore, the expected

valuation of Âout
i is approximately larger than the expected valuation of A

inp
i , implying that, with high probability, Âout

i has the
approximately non-decreasing welfare property (Lemma 29). Together with the approximately identical distribution property,
this implies the approximately non-decreasing welfare property for Âout, finishing the proof.

We proceed with a formal proof. We first discuss how to transform an additive ϵ error to a (1 − ϵ) factor in the bounds.
We begin with the following definition.
Definition 20. (ϵ-closeness) Given two random variables A, B taking values in some set X, we say that A is ϵ-close to B if
for all x ∈ X,

Pr [ A = x ] ≥ (1 − ϵ)Pr [ B = x ] .

Lemma 21. Let A, B be random variables over a finite set X such that

|Pr [ A = x ] − Pr [ B = x ] | ≤
ϵ

|X|(1 − ϵ)

for any x ∈ X. Define the random variable Ã as follows. With probability 1 − ϵ, sample Ã from A. Otherwise, sample Ã
uniformly at random from X. The random variable Ã is ϵ-close to B.
Proof. For any x ∈ X,

Pr
[

Ã = x
]
= (1 − ϵ)Pr [ A = x ] +

ϵ

|X|
(Defintion of Ã)

≥ (1 − ϵ)
(

Pr [ B = x ] −
ϵ

|X|(1 − ϵ)

)
+

ϵ

|X|
(Assumption on A, B)

= (1 − ϵ)Pr [ B = x ] .

We now bound the additive error caused by solving (LP1) with D̂i instead of Di. Specifically, we show that with high
probability over the randomness of D̂i, all pricing based assignment rules have similar assignment distributions (over Xi)
under Di and D̂i. We divide the proof into two parts. We first show this for a restricted class of pricing based assignment
rules that break ties in lexicographical order (Lemma 22). We then generalize the argument to all pricing rules by bounding
the effect of tie-breaking (Lemma 23).



Lemma 22. Given a distribution D, Let D̂ be the empirical distribution formed by taking m independent samples from
D. For any pricing function π, define Aπ as the assignment rule that maps v to arg maxx ( v(x) − π(x) ), breaking ties in
lexicographical order. Let ϵ, δ > 0 be arbitrary parameters. There exists M ≤ poly(|X|, 1

ϵ
, log( 1

δ
)) such that if m ≥ M, with

probability 1 − δ (over the randomness of D̂), for any x ∈ X and any Aπ
10∣∣∣ Prv∼D̂ [Aπ(v) = x] − Prv∼D [Aπ(v) = x]

∣∣∣ ≤ ϵ .(6.10)

Proof. For any pricing vector π, and any x, x′ ∈ X, let fx,x′,π(v) := 1 {v(x) − π(x) ≥ v(x′) − π(x′)} denote the classifier that
outputs 1 if and only if x is preferable to x′ when using the price vector π, breaking ties in favor of x. We similarly define
f ′x,x′,π(v) := 1 {v(x) − π(x) > v(x′) − π(x′)}, breaking ties in favor of x′. Define the set F := ∪x,x′,π{ fx,x′,π, f ′x,x′,π}. Let F∩

denote the set of all classifiers obtained by intersecting at most |X| classifiers in F. In other words, F∩ is the set of classifiers
f of the form f (x) = f1(x) ∧ · · · ∧ fk(x) for some k ≤ |X|.

Let d denote the VC-dimension of F∩. Using the fundamental theorem of statistical learning (Theorem 6.8 in [41]), as
long as m ≥ O( d+log(1/δ)

ε2 ), with probability 1 − δ (over the randomness in sampling D̂), for any f ∈ F∩,∣∣∣ED
[
f
]
− ED̂

[
f
] ∣∣∣ ≤ ϵ .

We note however that for any Aπ and any x, the classifier f (v) = 1 {Aπ(v) = x} is in F∩. This is because the event { Aπ(v) = x }
is equivalent to x strictly being preferable to all x′ that beat it lexicographically, and weakly preferable to x′ that it beats
lexicographically. Therefore, with probability 1 − δ, for any x ∈ X and any Aπ,∣∣∣ Prv∼D̂ [Aπ(v) = x] − Prv∼D [Aπ(v) = x]

∣∣∣ ≤ ϵ .
It remains to bound the VC-dimension d. We first bound the VC-dimension of Fx,x′ := ∪π{ fx,π,x′ ∪ f ′x,π,x′ } for some fixed
x, x′. Each f ∈ Fx,x′ is a half space in two dimensional space and therefore its VC-dimension is O(1). It follows that the
VC-dimension of F is at most O(|X|2 log(|X|)) since it is the union of all sets Fx,x′ [5]. Letting d′ denote the VC-dimension
of F, the VC-dimension of F∩ is at most O(|X| log(|X|)d′) because each classifier in F∩ is the intersection of at most |X|
classifiers in F [5].
Lemma 23. Given a distribution D, let D̂ be the empirical distribution formed by taking m independent samples from D. Let
ϵ, δ > 0 be arbitrary parameters. There exists M ≤ poly(|X|, 1

ϵ
, log( 1

δ
)) such that if m ≥ M, with probability 1 − δ (over the

randomness of D̂), for any x ∈ X and any pricing based assignment rule A∣∣∣ Prv∼D̂ [A(v) = x] − Prv∼D [A(v) = x]
∣∣∣ ≤ ϵ .(6.11)

Proof. Let π be the corresponding pricing vector for A and consider the assignment rule Aπ. We know from Lemma 22
that Equation (6.11) holds with Aπ instead of A. The only difference between the two assignment rules is how they break
ties when two outcomes have the same utility. Tie-breaking does not affect Prv∼D [A(v) = x] however as the distribution is
continuous. We will show that tie-breaking does not have a large effect on Prv∼D̂ [A(v) = x] either.

Formally, consider any outcomes x and x′. Let tiex,x′(v) denote the indicator random variable that x and x′ are tied for
the valuation function v and the pricing function π, i.e., tiex,x′(v) = 1 {v(x) − π(x) = v(x′) − π(x′)}. It is clear that Aπ(v) and
A(v) can only be different if there is a tie for two classes. Therefore,

|1 {Aπ(v) = x} − 1 {A(v) = x} | ≤
∑
x′,x

1
{
tiex,x′ (v)

}
.

It follows that ∣∣∣Ev∼D̂ [1 {Aπ(v) = x}] − Ev∼D̂ [1 {A(v) = x}]
∣∣∣ ≤ Ev∼D̂ [|1 {Aπ(v) = x} − 1 {A(v) = x} |]

≤
∑
x′,x

Ev∼D̂
[
1

{
tiex,x′ (v)

}]
.

Note however that if tiex,x′ (v) = 1, then

v(x) − v(x′) = π(x) − π(x′) .

10The dataset D̂ in Equation (6.10) is fixed and the randomness is over the random draw of v, and the internal randomness of Aπ, but not the randomness
in D̂. In other words, defining the set of “good samples” D̂ as those satisfying (6.10), the lemma states that D̂ will be “good” with probability at least 1 − δ.



Therefore, if for any x′, there are two valuation functions v, v′ ∈ D̂ such that tiex,x′ (v) = 1 and tiex,x′ (v′) = 1, then

v(x) − v(x′) = v′(x) − v′(x′) .

The probability that this happens is zero however because D was assumed to be continuous and D̂ was formed by taking
samples from D. More specifically, assuming we sample the valuation functions in D̂ one by one and sample v′ before v, then
after sampling v′ the subspace {v : v(x) − v(x′) = v′(x) − v′(x′)} is fixed and the probability that we sample from it is zero
because it is |X| − 1 dimensional.

It follows that ∑
x′,x

Ev∼D̂
[
1

{
tiex,x′ (v)

}]
≤

∑
x′

1
m
=
|X|
m

.

Therefore, as long as m ≥ 2|X|
ϵ

, for any x, x′ and Aπ.∣∣∣ Prv∼D̂ [Aπ(v) = x] − Prv∼D̂ [A(v) = x]
∣∣∣ = ∣∣∣Ev∼D̂ [1 {Aπ(v) = x}] − Ev∼D̂ [1 {A(v) = x}]

∣∣∣ ≤ ϵ

2
.

Note however that by Lemma 22, as long as m ≥ M for some M ≤ poly(|X|, 1
ϵ
, log( 1

δ
)), with probability 1 − δ,∣∣∣ Prv∼D [Aπ(v) = x] − Prv∼D̂ [Aπ(v) = x]

∣∣∣ ≤ ϵ/2 .
Since Prv∼D [Aπ(v) = x] = Prv∼D [A(v) = x], the claim follows.

Using the above results, we obtain the following important lemma, which shows that with high-probability, the assignment
rule Âout

i has the approximately identical distribution property.
Lemma 24. Let i ∈ [n] and assume that Âout

<i is a fixed, deterministic value. Let ϵ > 0 be an arbitrary parameter and set
ϵi = ϵ/2. There exists M ≤ poly(|Xi|,

1
ϵ
, log( 1

δ
)) such that when m ≥ M, with probability 1 − δ (over the randomness in

calculation of Âout
i ), for all x ∈ Xi, 11

Prvi∼Di

[
Âout

i (vi) = x
]
≥ (1 − ϵ)pi(x) .(6.12)

Proof. We assume without loss of generality that Xi = XFi because for x < XFi , both sides of the inequality are zero. Set M
to be large enough such that with probability 1 − δ/2, for all x we have∣∣∣ p̂i(x) − pi(x)

∣∣∣ ≤ ϵi

|Xi|
.

A standard Chernoff argument implies that this can be done using M ≤ poly(|X|, 1
ϵ
, log( 1

δ
)). Given Lemma 21, with probability

1 − δ/2, for any x,

p̃i(x) ≥ (1 − ϵi)pi(x).(6.13)

Assume further that M is large enough such that with probability 1 − δ/2, for all pricing based assignment rules A, we
have ∣∣∣ Prvi∼D̂i

[A(vi) = x] − Prvi∼Di [A(vi) = x]
∣∣∣ ≤ ϵ2

i /|X|.

By Lemma 23, this can be done using M ≤ poly(|Xi|,
1
ϵ
, log( 1

δ
)). Since Âout

i is feasible for (P1) with (D, p) set to (D̂i, p̃i),

Prvi∼D̂i

[
Âout

i (vi) = x
]
= p̃i(x).

Therefore, with probability 1 − δ,

Prvi∼Di

[
Âout

i (vi) = x
]
≥ p̃i(x) − ϵ2

i /|X| ≥ (1 − ϵi) p̃i(x),

11In Equation (6.12), Âout
i is fixed and the probabilities are over the internal randomness of Âout

i and vi, but not over the randomness of calculating Âout
i

(i.e., the randomness of p̂i, D̂i). Stated differently, defining any fixed assignment rule Âout
i “good” if it satisfies (6.12), the lemma states that the Âout

i obtained
by our algorithm is “good” with high probability.



where the second inequality follows from the fact that p̃i(x) ≥ ϵi/|X| for all x. Therefore, for some M ≤ poly(|Xi|,
1
ϵ
, log( 1

δ
)),

with probability (1 − δ),

Prvi∼Di

[
Âout

i (vi) = x
]
≥ (1 − ϵi) p̃i(x) ≥ (1 − ϵi)2 pi(x) ≥ (1 − 2ϵi)pi(x) = (1 − ϵ)pi(x)

where the second inequality follows from (6.13). Therefore, we have obtained Equation (6.12), finishing the proof.
Using the above lemma, we can prove the approximately identical distribution property for Âout.
Lemma 25. Let ϵ > 0 be an arbitrary parameter. There exists M ≤ poly(n,maxi |Xi|,

1
ϵ
) and ϵ1, . . . , ϵn such that if m ≥ M, for

any i and (x1, . . . , xi) ∈ X1 × · · · × Xi,

Pr
[
Âout
≤i = x≤i

]
≥ (1 − ϵ)Pr

[
A

inp
≤i = x≤i

]
.

Proof. We start with the following claim.
Claim 26. For any i, there exists M ≤ poly(|Xi|,

1
ϵ
) such that when m ≥ M, for any x<i, x,

Pr
[
Âout

i = x | Âout
<i = x<i

]
≥ (1 − ϵ)Pr

[
A

inp
i = x | Ainp

<i = x<i

]
Proof. Set δ = ϵ. By Lemma 24, there exists M ≤ poly(|Xi|,

1
ϵ
) such that for any i, with probability 1−δ (over the randomness

in calculating Âout
i ) we have

Prv1,...,vi

[
Âout

i (vi) = x | Aout
<i = x<i

]
≥ (1 − ϵ)pAinp (x; x<i).(6.14)

It follows that

Pr
[
Âout

i = x | Âout
<i = x<i

]
≥ (1 − δ)(1 − ϵ)pAinp (x; x<i) ≥ (1 − 2ϵ)pAinp (x; x<i).

Since pAinp (x; x<i) = Pr
[
A

inp
i = x | Ainp

<i = x<i

]
, replacing ϵ with ϵ/2 proves the claim.

Given this claim, there exists M ≤ poly(n,maxi |Xi|,
1
ϵ
) such that if m ≥ M, for any i, x<i, xi,

Pr
[
Âout

i = xi | Â
out
<i = x<i

]
≥ (1 − ϵ/n)Pr

[
A

inp
i = xi | A

inp
<i = x<i

]
.(6.15)

We prove by induction on i that

Pr
[
Âout
≤i = x≤i

]
≥ (1 − iϵ/n)Pr

[
A

inp
≤i = x≤i

]
.

The base case of i = 0 holds trivially. Assuming the claim holds for i − 1,

Pr
[
Âout
≤i = x≤i

]
= Pr

[
Âout

<i = x<i

]
Pr

[
Âout

i = xi | Â
out
<i = x<i

]
≥ (1 −

(i − 1)ϵ
n

)Pr
[
A

inp
<i = x<i

]
Pr

[
Âout

i = xi | Â
out
<i = x<i

]
(Induction hypothesis)

≥ (1 −
(i − 1)ϵ

n
)(1 −

ϵ

n
)Pr

[
A

inp
<i = x<i

]
Pr

[
A

inp
i = xi | A

inp
<i = x<i

]
(Equation (6.15))

≥ (1 −
iϵ
n

)Pr
[
A

inp
≤i = x≤i

]
,

finishing the proof.
Finally, we will focus on proving that the approximately non-decreasing welfare property. To do this, we first provide an

alternative view of ϵ-closeness. Given random variables A, B where A is ϵ-close to B, we show that we can obtain the random
variable A by first sampling from B, and then changing the obtained sample with some small probability. Formally, we define
the notion of a low-probability switch as follows.
Definition 27. (Low-probability switch) Given a distribution q over X, a value x ∈ X, and a parameter p ∈ [0, 1], we define
the low probability switch of x with q, p, denoted by LPS(x, q, p) as follows. Sample the random variable Y ∼ Bernoulli(p).
If Y = 0, set LPS(x, q, p) := A. Otherwise, sample LPS(x, q, p) from q.
Lemma 28. Let A, B be two random variables taking values in a set X and assume that B is ϵ-close to A. There exists a
distribution q such that A has the same distribution as LPS(B, q, ϵ).



Proof. Define q(x) as

q(x) =
1
ϵ

( Pr [ A = x ] − (1 − ϵ)Pr [ B = x ] ) .

Note that q(x) ≥ 0 by the assumption on A and B and that

∑
x

q(x) =
1
ϵ

∑
x

Pr [ A = x ] − (1 − ϵ)
∑

x

Pr [ B = x ]

 = 1.

Therefore, q is a probability distribution over X. By definition of q,

Pr
[
LPS(B, q, ϵ) = x

]
= (1 − ϵ)Pr [ B = x ] + ϵq(x) = Pr [ A = x ]. (Definition of q)

Lemma 29. Let i ∈ [n] and condition on the event Âout
<i = x<i for some x<i ∈ X1 × · · · × Xi−1. There exists

M ≤ poly(|Xi|,
1
ϵ
, log( 1

δ
)) such that when m ≥ M, with probability 1 − δ (over the randomness in calculation of Âout

i ),

Ev∼Di

[
v(Âout

i (v))
]
≥ (1 − ϵ)Ev∼Di

[
v(A

inp
x<i

(v))
]
.

Proof. By Lemma 24, conditioned on Âout
<i = x<i, with probability 1 − δ (over the randomness of calculating Âout

i ),

Prv∼Di

[
Âout(v) = x

]
≥ (1 − ϵ)pAinp (x; x<i),

By Lemma 12 however,

Prvi∼Di

[
A

inp
x<i

(vi) = x
]
= pAinp (x; x<i).

Therefore, by Lemma 28, conditioned on Âout
<i = x<i, with probability 1 − δ (over the randomness of calculating Âout

i ), there
exists a distribution qi such that

Prv∼Di

[
Âout(v) = x

]
= Prv∼Di

[
LPS(A

inp
(v), qi, ϵ)

]
.

Define the assignment rule A′ as A′(v) := LPS(A
inp
x<i

(v), qi, ϵ). On one hand, since the valuation functions are always
non-negative,

Ev∼Di

[
v(A′(v))

]
≥ (1 − ϵ)Ev∼Di

[
v(A

inp
x<i

(v))
]
.

On the other hand, A′i is feasible for the optimization problem (P1) with D = Di and p set to p(x) = Prv∼Di

[
Âout(v) = x

]
.

Since Âi is also feasible for this problem, and it is pricing based, Lemma 6 implies that

Ev∼Di

[
v(Â(v))

]
≥ Ev∼Di

[
v(A′(v))

]
.

Therefore, conditioned on Âout
<i = x<i, with probability 1 − δ (over the randomness of calculating Âout

i ),

Ev∼Di

[
v(Âout

i (v))
]
≥ (1 − ϵ)Ev∼Di

[
v(A

inp
x<i

(v))
]
,

as claimed.
We now prove the approximately non-decreasing welfare property.
Lemma 30. For any ϵ > 0, there exists M ≤ poly(n,maxi |Xi|,

1
ϵ
) such that if m ≥ M, such that for any i,

E
[

vi(Âout
i )

]
≥ (1 − ϵ)E

[
vi(A

inp
i )

]
.



Proof. By Lemma 25 there exists M ≤ poly(n,maxi |Xi|,
1
ϵ
) such that if m ≥ M, for any x<i,

Pr
[
Âout

<i = x<i

]
≥ (1 − ϵ)Pr

[
A

inp
<i = x<i

]
.(6.16)

We will show that for any x<i,

E
[

vi(Âout
i ) | Âout

<i = x<i

]
≥ (1 − ϵ)E

[
vi(A

inp
i ) | Ainp

<i = x<i

]
.(6.17)

Assuming this is proved, then it follows that

E
[

vi(Âout
i )

]
=

∑
x<i

Pr
[
Âout

<i = x<i

]
E

[
vi(Âout

i ) | Âout
<i = x<i

]
≥

∑
x<i

(1 − ϵ)2Pr
[
A

inp
<i = x<i

]
E

[
vi(A

inp
i ) | Ainp

<i = x<i

]
(Equations (6.16) and (6.17))

≥ (1 − 2ϵ)E
[

vi(A
inp
i )

]
.

Replacing ϵ with ϵ/2 finishes the proof.
It remains to prove (6.17). By Lemma 15,

E
[

vi(A
inp
i ) | Ainp

<i = x<i

]
= Evi∼Di

[
vi(A

inp
x<i

(vi))
]
,(6.18)

By definition of Âout,

E
[

vi(Âout
i ) | Âout

<i = x<i

]
= Ep̂i,D̂i,vi

[
vi(Âout(vi)) | Âout

<i = x<i

]
,(6.19)

Note that in the right-hand side, the assignment rule Âout
i is itself random as it is the solution to the (P1) with the (random)

parameters p̂i, D̂i. By Lemma 29 however, with probability 1 − δ over the randomness of p̂i, D̂i,

Ev∼Di

[
v(Âout

i (v))
]
≥ (1 − ϵ/2)Ev∼Di

[
v(A

inp
x<i

(v))
]
,

Therefore, setting δ = ϵ/2,

Ep̂i,D̂i,vi

[
vi(Âout(vi)) | Âout

<i = x<i

]
≥ (1 − δ)(1 − ϵ/2)Ev∼Di

[
v(A

inp
x<i

(v))
]
≥ (1 − ϵ)Ev∼Di

[
v(A

inp
x<i

(v))
]

Combined with Equations (6.18) and (6.19), this proves Equation (6.17), finishing the proof.
Proof. [Proof of Theorem 19] We use Algorithm 2. The approximately identical distribution property follows from Lemma 24.
The approximately non-decreasing welfare property follows from Lemma 29. The pricing based property follows from
Lemma 6, and the feasibility follows from the fact that the algorithm sets the threshold +∞ for infeasible outcomes.

7 Conclusions
In this paper, we introduce a black-box reduction that converts any algorithm for prophet inequalities into a pricing-based
algorithm, solving an important open problem in the literature. The reduction maintains the distribution of the assigned
outcomes and ensures that the algorithm achieves at least the same expected social welfare.

Going forward, there are a number of interesting directions for future work. Firstly, for the specific case of combinatorial
auctions, our polynomial-time computation depends on the number of different outcomes which is exponential in the number
of items. For the general case of bundle prices, this is an inherent limitation for any algorithm that explicitly calculates all
prices. It would be interesting to resolve this issue however by either considering per-item prices or using prices implicitly.
Additionally, it would be interesting to extend our results, possibly with extra assumptions or a loss in approximation, to
prices that are more structured and have nice properties such as being anonymous.
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A Extenstion to prophet secretary
In the prophet secretary problem, the arrival order of the agents is not fixed beforehand and instead is chosen uniformly at
random. Letting σ : [n]→ [n] denote this distribution, this is equivalent to assuming that the input is Dσ(1), . . . ,Dσ(n) instead
of D1, . . . ,Dn. Since our results hold for any fixed realization of σ, they hold in expectation over σ as well. For instance, by
Theorem 1, for any x ∈ X12,

Pr
[
Ainp = x | σ

]
= Pr

[
Aout = x | σ

]
,

which by iterated expectation implies

Pr
[
Ainp = x

]
= Pr

[
Aout = x

]
.

Simliarly, E
[
v(Aout) | σ

]
≥ E

[
v(Ainp) | σ

]
, which implies E

[
v(Aout)

]
≥ E

[
v(Ainp)

]
by iterated expectation. The same

argument applies for the results in Theorem 2.

B Omitted proofs
B.1 Proof of Lemma 8
Proof. It is clear that for any assignment rule A, the tuple (v, A(v)) where v ∼ D has a joint distribution over V × X with
marginal D on V and A(D) on X. Letting γA,D denote this distribution, E(v,x)∼γA,D [v(x)] = Ev∼D [v(A(v))] by definition of γA,D.

B.2 Proof of Lemma 10
Proof. Assume that A is a pricing based assignment rule. Define ψ(v) := maxx ( v(x) − π(x) ). By definition, for any x,

ψ(v) + π(x) ≥ v(x) − π(x) + π(x) = v(x).

Additionally, For any v we know that A(v) is going to be in arg maxx′ ( v(x′) − π(x′) ), which implies that v(x) − π(x) = ψ(v)
with probability 1 when (v, x) ∼ γA.

Conversely, assume that γ is a pricing based coupling. Let π be the corresponding pricing function. We will provide an
assignment rule A with the pricing function π. If there are no ties, A will simply map v to arg maxx ( v(x) − π(x) ). In case of
ties, we will replicate the same tie-breaking distribution as γ.

Formally, for any v, define tiesetv ⊆ X as tiesetv := arg maxx′ ( v(x) − π(x) ). Note that since π is fixed, tiesetv is a function
of v. For any X′ ⊆ X, define the probability distribution qγ,X′ (.) over X as the tie-breaking distribution of γ when tiesetv = X′,
i.e.,

qγ,X′ (x̃) = Pr(v,x)∼γ
[
x = x̃ | X′ = tiesetv

]
.

We note that in the above definition, x′ ∈ X is a fixed value. Given any v, we sample A(v) from the distribution qγ,tiesetv . Since
γ is pricing based, Pr(v,x)∼γ [x < tiesetv] = 0. More formally, when sampling v, x from γ, with probability 1

v(x) − π(x) = ψ(v) ≥ v(x′) − π(x′)

for all x′ ∈ X. This further implies that qγ,X′ (x̃) = 0 for all x̃ < X′ and X′ such that Prv∼D [X′ = tiesetv] > 0, as otherwise,

Pr(v,x)∼γ [x < tiesetv] ≥ Pr(v,x)∼γ
[
x < tiesetv, tiesetv = X′

]
≥ Pr(v,x)∼γ

[
x < tiesetv | tiesetv = X′

]
· Pr(v,x)∼γ

[
tiesetv = X′

]
≥ Pr(v,x)∼γ

[
x = x̃ | tiesetv = X′

]
· Pr(v,x)∼γ

[
tiesetv = X′

]
(Since x̃ < X′)

= qγ,X′ (x̃) · Pr(v,x)∼γ
[
tiesetv = X′

]
> 0

Therefore, Prv∼D [A(v) < tiesetv] = 0, which in turn implies

E(v,x)∼γ [v(x)] = E(v,x)∼γ

[
max

x′

(
v(x′) − π(x′)

)]
= Ev∼D

[
max

x′

(
v(x′) − π(x′)

)]
= Ev∼D [A(v)] ,

12We do not use the notation x1, . . . , xn here to avoid confusion as the agents were numbered based on their arrival order. The vector x simply denotes an
assignment of all agents.



where the first equality follows from the fact that γ is pricing based, the second equality follows from the fact that the
marginal of γ on V is D, and the third equality follows from the fact that Prv∼D [A(v) < tiesetv] = 0.

Finally, the marginal of γ on X is A(D) because

Prv∼D
[
A(v) = x′

]
=

∑
X′

Prv∼D
[
tiesetv = X′

]
Prv∼D

[
A(v) = x′ | tiesetv = X′

]
=

∑
X′

Prv∼D
[
tiesetv = X′

]
qγ,X′ (x′) (Definition of A(v))

=
∑
X′

Prv∼D
[
tiesetv = X′

]
Pr(v,x)∼γ

[
x = x′ | tiesetv = X′

]
(Definition of qγ,X′ )

=
∑
X′

Pr(v,x)∼γ
[
x = x′, tiesetv = X′

]
= Pr(v,x)∼γ

[
x = x′

]
.
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