
Energy Conversion and Management 300 (2024) 117879

Available online 9 December 2023
0196-8904/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Machine learning-driven optimization of Ni-based catalysts for catalytic 
steam reforming of biomass tar 

Nantao Wang a,1, Hongyuan He a,1, Yaolin Wang a,1, Bin Xu b, Jonathan Harding a, Xiuli Yin b, 
Xin Tu a,* 

a Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK 
b CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of 
Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China   

A R T I C L E  I N F O   

Keywords: 
Machine learning 
Biomass gasification 
Tar reforming 
Syngas 
Toluene 
Catalytic reforming 

A B S T R A C T   

Biomass gasification is a promising process for producing syngas, which is widely used in various industrial 
processes. However, the presence of tar in syngas poses a significant challenge to biomass gasification due to the 
difficulties in its removal and potential downstream issues, such as clogging, slagging, and corrosion. Extensive 
efforts have been made to address this challenge through catalytic tar removal using various catalysts, generating 
a vast amount of experimental data. Processing this large dataset and gaining new insights into process opti-
mization requires the development of efficient data analysis methods. In this study, a comprehensive database 
was built, encompassing a total of 584 data points and 14 input parameters collected from literature published 
between 2005 and 2020. Machine learning algorithms were then trained using this dataset to predict and 
optimize the catalytic steam reforming of biomass tar. The predicted results were found to agree well with the 
experimental data. The results show that the reaction temperature is the most important process parameter, with 
the highest relative importance of 0.24, followed by the support (0.16), additive (0.12), nickel (Ni) loading 
(0.08), and calcination temperature (0.07), among the 14 input parameters. This work has proposed optimal 
ranges for the reaction temperature (600–700 ◦C), Ni loading (5–15 wt%), and calcination temperature 
(500–650 ◦C). Furthermore, it was found that a larger specific surface area and higher Ni dispersion are two 
critical factors for selecting additives and supports. This study provides insights into key parameters for opti-
mizing the catalytic steam reforming of biomass tar, enabling enhanced efficiency and effectiveness in biomass 
gasification processes.   

1. Introduction 

Nowadays, fossil fuels play a predominant role in meeting most of 
the world’s energy needs, leading to global warming, the greenhouse 
effect, and other environmental issues [1]. Biomass is a renewable and 
nearly carbon–neutral energy source, making it promising for sustain-
able energy production when compared to fossil fuels [2–4]. In recent 
years, significant efforts have been devoted to biomass gasification for 
the production of syngas, which can be further converted into platform 

chemicals and valuable fuels via Fischer-Tropsch synthesis (FTS) [5,6]. 
Unfortunately, the formation of tar has impeded the commercialization 
of biomass gasification, as it can cause clogging, slagging, and corrosion 
issues in downstream equipment and processes [7–9]. Tar typically 
presents as a dense, dark brown to black, highly viscous liquid charac-
terized by its complex composition. It encompasses a diverse array of 
chemical components, ranging from single-ring to multiple-ring aro-
matic compounds, to other oxygen-containing hydrocarbons and intri-
cate polycyclic hydrocarbons [10,11]. Among these constituents, 
toluene and naphthalene emerge as the predominant components, 
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collectively constituting approximately 75% of the tar’s composition. 
Notably, toluene stands out as the most abundant compound within the 
composition of tar [12]. 

Various technologies have been explored to address the issue of tar 
removal, including mechanical separation [11], thermal cracking [13], 
catalytic reforming [14], and plasma-based reforming [15]. Among 
these technologies, catalytic reforming has emerged as a promising 
approach due to its capability to generate syngas with an adjustable 
hydrogen (H2) content, reduce energy waste compared to mechanical 
separation, and operate at lower temperatures than thermal cracking 
[5,16,17]. In particular, toluene has often been selected as the model 
compound in the catalytic reforming of tar as it represents one of the 
primary tar components generated during high-temperature biomass 
gasification processes [18–22]. 

Nickel (Ni)-based catalysts are widely used in the catalytic reforming 
of tar due to their affordability, high catalytic activity, and ability to 
break carbon–carbon bonds effectively [23]. Extensive studies have 
been conducted to investigate the catalytic steam reforming of toluene 
using Ni-supported catalysts. This includes varying the Ni loading (5 to 
20 wt%), using different supports (Al2O3, ZrO2, TiO2, CeO2, MgO, etc.) 
and adding certain elements (Co, Ce, Fe, Mn, Mo, etc.) [24–28]. In 
addition to catalyst modifications, extensive research has also focused 
on exploring various operating parameters, including reaction temper-
ature, reaction time and steam-to-carbon (S/C) ratio [28–34]. However, 
the abundance of experimental data poses challenges in effectively uti-
lizing it due to the presence of numerous parameters and their complex 
interactions. To overcome this issue, data analysis tools such as machine 
learning (ML) algorithms can be employed to comprehensively analyze 
the entire database and uncover important trends and connections that 
may have been overlooked by researchers. 

Machine learning is a powerful tool that mimics human learning and 
can uncover complex patterns, trends, and correlations among multiple 
variables [35,36]. Several studies [37] have used pioneering algorithms 
to investigate biomass conversion, yielding promising results, as shown 
in Table S1. Tang et al. applied random forest (RF) and support vector 
machine (SVM) algorithms to predict the yield and composition of py-
rolytic gas under different pyrolysis conditions and biomass types [38]. 
Leng et al. employed random forest algorithms to study the production 
of nitrogen heterocycles in bio-oil during hydrothermal liquefaction of 
high-moisture biomass, revealing the significance of nitrogen content, 

nitrogen-to-carbon ratio, and protein in the production of nitrogen 
heterocycles [39]. Smith et al. investigated the water–gas shift (WGS) 
reaction using artificial neural networks (ANN) and principal compo-
nent analysis (PCA), highlighting that reaction temperature is the most 
important parameter affecting the WGS reaction [40]. Shafizadeh et al. 
[41] conducted a comprehensive study focusing on the co-pyrolysis of 
biomass and coal, employing a diverse array of machine learning algo-
rithms, including support vector regression, ANN, RF regression, and 
gradient boosting regression. Of these methods, the gradient boosting 
regression exhibited remarkable accuracy, showcasing a coefficient of 
determination (R2) exceeding 0.96. The investigation found that the 
operating temperature and the biomass blending ratio were the most 
significant parameters in the co-pyrolysis of biomass and coal. Addi-
tionally, the study extended its contributions to practical implications by 
formulating optimization recommendations. These recommendations 
encompassed the selection of operating temperature, biomass blending 
ratios, and heating rate to enhance the efficacy of the co-pyrolysis pro-
cess, shedding valuable light on this critical area of research. 

For the catalytic steam reforming of toluene, Shafizadeh et al. [12] 
blazed a trail by employing ensemble machine learning techniques to 
forecast toluene conversion and syngas composition. Their predictions 
hinged upon an amalgamation of catalysts’ characteristics and operating 
parameters, yielding favorable outcomes. Nevertheless, it is noteworthy 
that their investigation predominantly relies on the characterization 
data of catalysts, with a limited exploration into pivotal parameters 
within the catalyst preparation process, such as metal loading, and the 
selection of additives and supports, which merit further research. Yahya 
et al. [42] conducted a study that integrates experimental findings with 
the ANN algorithm to investigate the relationship between hydrogen 
(H2) production and various operational parameters in the context of 
catalytic steam reforming of toluene. Their investigation sought to 
optimize critical parameters, including reaction temperature, feed gas 
flow rate, catalyst mass, S/C ratio, etc. Notably, their research revealed 
that reaction temperature exerted the most pronounced influence on H2 
production within the process. However, the practical application of the 
optimized operational parameters remains constrained, given that their 
analysis exclusively centered on a specific catalyst, specifically Ni-Co 
supported modified-activated carbon. 

Hence, this investigation initiated its exploration with Ni-based 
catalysts and established a comprehensive database encompassing all 
pertinent parameters associated with the catalytic steam reforming of 
toluene. This database comprised 14 key parameters, which were cate-
gorized into three distinct groups: catalyst, preparation, and operation. 
Machine learning algorithms were subsequently employed to analyze 
these parameters for process optimization. Initially, the RF algorithm 
was utilized to obtain the relative significance of each parameter. Sub-
sequently, the ANN algorithm was employed to elucidate the in-
teractions among these influential parameters. Finally, optimization 
strategies for enhancing the catalytic steam reforming of toluene were 
proposed. These strategies encompassed insights into the judicious se-
lection of suitable supports and additives, as well as the identification of 
optimal operational conditions. These proposed strategies were empir-
ically validated through experimental trials employing γ-Al2O3 as 
support. 

2. Method 

The method employed in the study can be subdivided into three 
primary phases, delineated as database construction, machine learning, 
and optimization, as depicted in Fig. 1. Initially, an exhaustive literature 
review was conducted, and 14 parameters pertinent to the process and 
the physicochemical properties of the selected catalysts were extracted 
from peer-reviewed publications. Subsequently, the extracted dataset 
was utilized to train a suite of machine learning algorithms, comprising 
five classification algorithms: logistic regression (LR) classifier, decision 
tree (DT), RF classifier, extreme gradient boosting classifier tree (XGB), 

Nomenclature 

R2 Coefficient of determination 

Symbols 
Al Aluminum 
Co Cobalt 
Ce Cerium 
Cu Copper 
Ca Calcium 
Fe Iron 
K Potassium 
Mn Manganese 
Mo Molybdenum 
Mg Magnesium 
Ni Nickel 
Pd Palladium 
Pt Platinum 
Ru Ruthenium 
Sr Strontium 
Si Silicon 
Zr Zirconium  
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and gradient boosting classifier tree (GBCT), alongside a regression al-
gorithm: the ANN algorithm. Finally, optimization strategies are pro-
posed for enhancing the catalytic steam reforming of toluene based on 
meticulous analysis of the relative importance and interactions among 
these parameters, followed by validation through experiments. 

2.1. Database construction and pre-processing 

A database of 584 data points was manually collected from relevant 
literature published between 2005 and 2020. The details of the database 
are presented in the supplementary material (Table S2). To convert non- 
numerical parameters, such as support, additive, preparation method, 
into valid input formats (vectors), a one-hot encoding method was used. 
For instance, the support was represented by 1 in the category it belongs 
to, and other supports were represented by 0. Within this database, it is 
important to note that not all catalysts employed in the studies under 
consideration incorporated additives. Consequently, in cases where no 
additives were utilized, data is absent in the cells designated for “addi-
tive type” and “additive content.” To address this situation, a pragmatic 
solution has been implemented by unifying the “additive content” var-
iable into the one-hot encoding schema linked to “additive”. Instead of 
employing binary values (0 or 1) within the respective column, this 
study utilizes the exact “additive content” value. In the meantime, nu-
merical parameters, such as Ni loading, reaction temperature, and 
calcination temperature, were labelled with their actual values. Utilizing 
the one-hot encoding method facilitates maintaining data consistency 
without incorporating extraneous details. After one-hot encoding, each 
data set was represented as a 72-dimensional vector, while the toluene 
conversion was represented as a target 1-dimensional vector, as shown 
in Table S3. 

The encoded data was then transformed to have unit variance using a 
standard scaler. This reduced the effect of distributional inconsistencies 
due to the different units of measurement. The standard scaler was 
calculated based on equation (1). 

z =
x − μ

s
(1)  

where z is the transformed vector, x is the original one-hot vector, μ is 
the mean value, and s represents the standard deviation. 

2.2. Classification algorithms 

Five classification algorithms were first trained to identify the most 
important parameters for high toluene conversion, including the LR 
classifier, DT classifier, RF classifier, XGB, and GBCT. LR is a parametric 
model that utilizes a logistic function, while other algorithms are non- 
parametric models that rely on a tree-like structure to make pre-
dictions. DT uses one tree for classification, while RF, XGBoost, and 
GBCT classifiers use multiple trees. To ensure a fair comparison, an 
effort was made to maintain consistency in the parameters, with the 
maximum depth of the four tree algorithms being fine-tuned within a 
reasonable range (as specified in Table S4). Decision trees resemble 
flowcharts and can be used to predict the effectiveness of catalysts based 
on their chemical and physical characteristics. They make decisions 
based on simplistic principles that are determined by the tree’s struc-
ture. In the study, the internal nodes of the decision trees corresponded 
to feature judgements, each branch to the decision or result of the 
judgement, and each leaf node to the classification label or type. Toluene 
conversion was employed as an indicator for the catalytic steam 
reforming of toluene, with a classification standard set for toluene 
conversion above or below 90%. This resulted in 30% of the data being 
classified as high and 70% being classified as low, striking a balance 
between ML and chemical intuition in terms of the categorical distri-
bution of the data. The hyper-parameters were chosen based on their 
impact on prediction performance and were limited to a narrow range to 
minimize the effect on the prediction accuracy due to the non- 
overlapping hyper-parameters of different algorithms, as shown in 
Table S4. To mitigate the risk of overfitting, 5-fold cross-validation was 
employed to evaluate the classification performance of the trained al-
gorithms on a specific randomly selected training set. The entire dataset 
was divided into five randomly selected subsets, also known as “slices”. 
During each validation iteration, four slices were used as the training 
set, and the remaining fifth slice served as the validation set. This pro-
cess was repeated five times, with each slice taking turns as the vali-
dation set. The prediction accuracy was evaluated using equation (2). 

accuracy(y, ŷ) =
1

nsamples
×

∑nsamples − 1

i=0
1  (ŷi = yi) (2)  

Fig. 1. The research method used in this study.  
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where ŷi is the predicted value of the i-th sample and yi represents the 
experimental value. 

In this study, the performance of various algorithms was evaluated 
not only based on accuracy but also using receiver operating charac-
teristic (ROC) curves. ROC curves are widely used to visualize, organize, 
and select classification algorithms based on their performance in radio, 
medicine, and biology, lately machine learning has also become popular 
in other fields [43,44]. To construct a ROC curve, a threshold of deter-
mination was specified, allowing the calculation of coordinate points 
from the experimental values and predicted values of all samples (high 
or low). These points were then connected by a continuous line, forming 
the ROC curve within the interval of 0 to 1. The ROC space is divided 
into upper left and lower right areas by a diagonal line running from (0, 
0) to (1, 1). Points above the diagonal line represent excellent classifi-
cation (better than random classification), while those below the line 
represent poor classification (inferior to random classification). 
Furthermore, the area under each ROC curve (AUC) was calculated to 
quantify the classification performance. A higher AUC indicates a better 
classification algorithm. Unlike overall accuracy, which considers only 
one cutpoint, the ROC curve considers all cutpoints and plots, making it 
more robust, particularly in cases of sample imbalance. Since the 
developed dataset has an uneven distribution of positive and negative 
samples, adopting ROC as a complementary performance metric for 
model evaluation helps address the issue of sample imbalance and 
provides a more comprehensive evaluation of the algorithms’ 
capabilities. 

The relative importance (RI) of each parameter was determined by 
calculating the impurity gain (Gini importance), which measured the 
overall decrease in impurity caused by each parameter, as indicated in 
equation (3). The Gini importance is a statistical metric that quantifies 
the relevance of each parameter in machine learning. It measures the 
extent to which a feature contributes to the model’s ability to discrim-
inate between different classes or outcomes. In the context of this study, 
Gini importance helps to identify which parameters have the most sig-
nificant influence on the classification of toluene conversion, which is 
essential for optimizing the catalytic steam reforming of toluene. 

Gi =
∑

k

(

1 − pi,k

)

pi,k (3)  

where pi,k represents the ratio of all training data classified as class k in 
the i-th node. For the non-tree-based algorithm LR, the relative impor-
tance is determined using the coefficients of the features. All RIs are 
normalized to ensure that their sum equals 1. 

2.3. Artificial neural network algorithm 

The ANN, being a well-established and mature algorithm is widely 
employed for predictive purposes in the domain of biomass utilization 
[40–42]. After the most significant features were identified from the 
classification models, an ANN was employed to train a regression al-
gorithm for predicting the exact values of toluene conversion. Derived 
from the comprehension of relative importance acquired through clas-
sification algorithms, the ANN can be more effectively optimized, 
overfitting can be circumvented, and the accuracy of the algorithm can 
be enhanced. Then, a well-trained ANN algorithm was employed to 
perform a grid search over the relatively more important features, such 
as reaction temperature, additive, support, calcination temperature, and 
Ni loading to investigate their interaction. An ANN algorithm was 
preferred over other algorithms due to its ability to achieve a greater 
goodness of fit while avoiding overfitting by balancing the network’s 
breadth and depth. In this study, a fully linked, feed-forward topology 
with five layers, including input and output layers, was selected for the 
ANN architecture. Each layer consisted of a linear function with m nodes 
and a bias node b, as shown in equation (4). The output of the node was 
subsequently processed by the Sigmoid activation function, as defined in 

equation (5), to achieve non-linear fitting. Considering that the data is 
sampled from various sources and tends to be discrete, the Layer 
Normalization technique (https://arxiv.org/abs/1607.06450) was 
incorporated to mitigate the overfitting of the algorithm. 

y = w1x1 +w2x2 +⋯+wmxm + b (4)  

Sigmoid(y) =
1

1 + e− y (5)  

where y is the output value of a node, wm is the weight of the m-th input 
node value, and b represents the bias value. 

The entire database was divided randomly into five folds, and each 
fold was chosen once as test data, resulting in ten distinct data selec-
tions. For each data selection, 5 individual ANNs were trained, and the 
training process was terminated based on the test accuracy inflection 
point. To avoid over-fitting, the final predicted value of the ANN was 
averaged across the 5 individual ANNs, functioning as a hybrid model. 
Meanwhile, the performance of the ANN algorithm was evaluated using 
the R2 and root mean squared error (RMSE), as defined in equations (6) 
and (7), respectively. A method for Stochastic Optimization (Adam) 
with a learning rate γ of 0.0005 was adopted as the optimizer. 

R2(y, ŷ) = 1 −
∑n

i=1(yi − ŷi )
2

∑n
i=1(yi − y)2 (6)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi )

2

√

(7)  

where n is the number of the test dataset, equivalent to the number of 
ANN; yi, ŷi , and y are the experimental value, the corresponding pre-
dicted value, and the mean value of the n experimental values, 
respectively. 

3. Results and discussion 

3.1. Description of the database 

In this study, a comprehensive database was built, encompassing a 
total of 584 data points and 14 input parameters collected from litera-
ture published between 2005 and 2020, as presented in Table S2. 14 
major parameters are identified as key experimental indicators and 
categorized into three groups: catalyst, preparation, and operation. The 
catalyst group includes Ni loading, additive, additive content, and 
support. The preparation section is responsible for the preparation 
method, calcination temperature, calcination time, reduction tempera-
ture, and reduction time. Meanwhile, the group of operating parameters 
consists of the reaction temperature, reaction time, S/C ratio, feed gas, 
and feed gas flow rate. The toluene conversion was chosen as the 
assessment index. 

The database is briefly summarized in Table S5, and Fig. 2 presents 
the statistical distribution of the numerical parameters. As shown in 
Fig. 2a, the Ni loading ranges from 1 to 40 wt% and is mostly distributed 
between 5 and 12 wt%. The additive content ranges from 0.08 to 29.8 wt 
% (mostly within 0.9–2.9 wt%), which is lower than the Ni loading. 
Fig. 2b displays the range of parameters for catalyst preparation, 
including calcination temperature (350 to 1300 ◦C, mainly within 
600–800 ◦C), reduction temperature (150 to 950 ◦C, mainly within 
650–800 ◦C), calcination time (1 to 6 h, mainly within 2–4 h), and 
reduction time (0.5 to 8 h, mainly within 1–2.5 h). These parameters 
represent typical conditions for catalyst preparation. Fig. 2c shows that 
the reaction temperature, reaction time, feed gas flow rate, and S/C ratio 
are commonly within the ranges of 300–900 ◦C, 0.25–24 h, 30–1500 
mL/min, and 0.4–6.5, respectively. 

Simultaneously, Figure S1 presents the Pearson correlation coeffi-
cient matrix between toluene conversion and the input numerical 
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parameters. Notably, the reaction temperature exhibits a positive cor-
relation with toluene conversion, with a correlation coefficient of 0.18. 
This correlation can be attributed to the highly endothermic nature of 
catalytic steam reforming of toluene [11]. An elevated reaction tem-
perature can facilitate the steam reforming and thermal cracking re-
actions of toluene to a certain extent. Furthermore, Ni loading 
demonstrates a positive correlation with toluene conversion, supported 
by a correlation coefficient of 0.16, since increasing Ni loading could 
provide sufficient active sites for the reaction [13]. On the other hand, 
reaction time is inversely correlated with toluene conversion, poten-
tially caused by catalyst deactivation during prolonged reaction times 
[45]. 

In addition to the numerical parameters, the database also includes 
non-numerical parameters, such as additive, support, preparation 
method, and feed gas. Additive types vary depending on the types of 
metals, such as noble metals (Pd, Pt, Sr, etc.), non-noble metals (Fe, Cu, 
etc.), alkali metal (K), alkali earth metals (Mg, Ca, etc.), and bimetals 
(Ce-Mg, Ru-Mn, etc.). The support contains natural ores (hydrotalcite, 
dolomite, olivine, mayenite, etc.), widely used supports (HZSM-5, 
γ-Al2O3, SBA-15, CaO, TiO2, SiO2, MgO, etc.), and some unconventional 
supports (biochar, coal ash, graphitic mesoporous carbon, etc.). Wet 
impregnation is the most commonly used method for catalyst prepara-
tion, followed by co-impregnation and co-precipitation. Nitrogen (N2) 
and argon (Ar) are the most frequently used feed gases in the catalytic 
steam reforming of toluene. 

3.2. Selection of classification algorithms 

Firstly, an appropriate classification algorithm was chosen from five 
typical tree-based algorithms based on their classification performance 
to determine the relative importance of each parameter. As shown in 
Fig. 3a, the accuracy of different algorithms ranges from 0.83 to 0.99, 

with RF and GBCT achieving the highest accuracy at 0.99. Since RF and 
GBCT had the same accuracy, ROC curves were then employed to further 
evaluate the classification performance of different tree-based algo-
rithms. As depicted in Fig. 3b, the diagonal line from (0, 0) to (1, 1) 
separated the ROC space into upper left and lower right regions, with 
points above the line indicating excellent classification (better than 
random classification) and points below the line representing poor 
classification (inferior to random classification). Meanwhile, the AUC is 
calculated to quantify classification performance, with a higher AUC 
indicating greater accuracy. After comparing the ROC curve and AUC 
value, RF was selected with an accuracy of 0.99 and an AUC value of 
0.92. In the meantime, RF exhibits a reduced propensity to inaccurately 
register true positives in comparison to other algorithms, thus show-
casing a more conservative stance, as shown in the confusion matrix in 
Fig. S2. Such a judgement criterion is also pivotal when discerning 
relative importance, ensuring that influential features genuinely exert a 
pronounced effect on conversion. 

3.3. Relative importance analysis 

The relative importance of different parameters was determined by 
calculating impurity gain (Gini importance) based on the RF shown in 
Fig. 4a. The reaction temperature has the highest relative importance 
(0.24), followed by the support (0.16), additive (0.12), Ni loading 
(0.08), and calcination temperature (0.07), among others. Previous 
research by Yahya and coworkers also found that the reaction temper-
ature was the most significant parameter for the catalytic steam 
reforming of toluene over Ni-Co supported modified-activated carbon, 
owing to the endothermic nature of the steam reforming process [42]. 
The higher relative importance of reaction temperature could be 
attributed to the highly endothermic nature of the process and the 
instability of the catalyst induced by temperature [46]. On the one hand, 

Fig. 2. The statistical distribution of different parameters in the category of (a) catalyst, (b) preparation, and (c) operation.  

Fig. 3. (a) The accuracy and (b) the mean ROC curves of different classification algorithms.  
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the activation energy of the reaction highly relies on temperature. On 
the other hand, catalysts will suffer deactivation due to carbon deposi-
tion and sintering at higher temperatures [47]. The deposited carbon 
encases the active metal particles, making it impossible for reactants to 
reach the active site, while sintering leads to the clumping of metal 
particles, reducing the available active metal surface, and deteriorating 
the catalytic activity [46,48]. 

The support is the second most important parameter in the study due 
to its unique properties, such as specific surface area, thermal stability, 
mechanical strength, oxygen storage and release capacity, and resis-
tance to carbon deposition, etc. [49]. Choosing a proper support could 
not only improve the catalytic activity but also enhance the stability of 
the catalyst. For instance, Ni-loaded carbon-coated mesoporous silica 
(Ni/SiO2@C) exhibited a higher toluene conversion of 99.9% with 
excellent stability for at least 46 h at 550 ◦C, which was attributed to the 
enhanced metal-support interaction with graphitic carbon layers pro-
tecting the highly dispersed Ni nanoparticles that were embedded into 
the silica wall of mesoporous channels [45]. As shown in Fig. 4b, 
hydrotalcite has the highest relative importance in the category of 
support, followed by γ-Al2O3, CeZrO2, SiO2@C, etc. When compared 
with these supports, hydrotalcite shows a relatively higher specific 
surface area (151 m2/g) and the biggest average pore diameter (22.1 
nm), as depicted in Table S7, which improves Ni dispersion and exposes 
more active sites on the support. Zhou et al. [50] found that Fe- 
promoted Ni/hydrotalcite catalysts showed higher catalytic activity 
and stability, reaching almost 100% toluene conversion at 400 ◦C for 3 
h. Furthermore, the model simulation shows that Fe-promoted Ni/ 
hydrotalcite has a good adsorption affinity with toluene, which in-
creases toluene accessibility to the active sites [50]. 

The additive ranks third with a relative importance of 0.12. 

Incorporating additive metals is a common approach to modify Ni-based 
catalysts as Ni is prone to coke formation reactions, leading to catalyst 
deactivation [49]. By interacting with Ni to generate an alloy, the ad-
ditive could modify surface properties and improve catalytic perfor-
mance in terms of activity and stability. Lu et al. [28] investigated the 
effects of different additives (Co, Ce, Fe, Mn, and Mo) on catalytic steam 
reforming of toluene over Ni-based catalysts and discovered that Mo- 
modified Ni-based catalysts exhibited the highest catalytic activity, 
with a toluene conversion of 92.6%, owing to the formation of a Mo-Ni 
alloy. Meanwhile, the formation of the Mo2C structure improved the 
carbon resistance of the catalyst [28]. As shown in Fig. 4c, Mg has a 
greater relative importance in the category of additive, and the research 
confirmed that the addition of Mg contributed to improving the resis-
tance to carbon deposition of the catalysts through oxidization of 
deposited carbon with absorbed oxygen [51,52]. Moreover, various 
bimetal additives, such as Ru-Mn [47] and Ce-Mg [53] also enhanced 
the catalytic performance in terms of reactivity and stability. Besides the 
additive and support, Ni loading was another critical parameter. 
Optimal Ni loading could not only provide sufficient active sites but also 
prevent agglomeration caused by excessive loading [13]. 

In this study, calcination temperature is identified as the fifth most 
important parameter. Jumluck et al. previously discovered that the 
catalytic performance of the Ni/dolomite catalyst was significantly 
influenced by calcination temperature with toluene conversion drop-
ping from 97.2 to 49.5% as the calcination temperature increased from 
750 to 950 ◦C, at a reaction temperature of 730 ◦C. They found that the 
catalyst calcinated at 950 ◦C had a lower specific surface area (16.55 
m2/g) due to the support collapsing and metal sintering [24]. 

Fig. 4. (a) The relative importance of each parameter, and the percentage of different (b) supports and (c) additives in the category of support and additive, 
respectively. 
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3.4. Validation of artificial neural network algorithm 

An ANN algorithm was then used as a prediction algorithm to 
explore the interactions between the parameters. The fully linked, feed- 
forward topology (72–24–24–24-1) of the ANN enables a non-linear 
mapping between input and output data for prediction [54]. Experi-
mental toluene conversion is plotted against predicted toluene conver-
sion in Fig. 5a, which demonstrates the high accuracy of the adopted 
ANN algorithm in predicting toluene conversion, with an R2 of 0.96. 
This R2 is comparable to that of a previous study that used ANN for 
toluene conversion prediction with an R2 of 0.95 [42]. Meanwhile, a 
detailed comparison between the experimental results and the predicted 
outcomes is presented in Fig. S3. For further exploration of the predic-
tive ability of the trained ANN, a selection of recent published findings 
[14,20,48,55–57] (Table S6) not incorporated into the database was 
utilized as test data with the same ANN topology. While the model ex-
hibits a degree of accuracy in predicting conversion rates, a discernible 
disparity between experimental and predicted values persists, as visu-
ally represented in Fig. 5b. The primary factor contributing to these 
prediction errors for novel experimental data might be the potential 
insufficiency of the training dataset. In machine learning, particularly 
for complex models, an ample volume of diverse data is imperative to 
facilitate the acquisition of meaningful patterns and relationships. 
Although the database comprises 584 data points, this quantity may still 
be deemed inadequate when correlated with the multitude of catalysts 
involved, potentially limiting the ability of the model to capture intri-
cate data relationships. 

3.5. Interaction between parameters and toluene conversion 

In this section, the interaction between parameters with higher 
relative importance was examined by employing the well-trained ANN 
algorithm. As Mg and hydrotalcite were identified as the most promi-
nent additive and support, respectively, they were selected initially for 
evaluating the interaction between toluene conversion, reaction tem-
perature, calcination temperature, and Ni loading. Fig. 6 illustrates the 
contour maps of the interactions. Although different additives and 
supports were utilized, the interaction mechanisms of reaction temper-
ature versus Ni loading (Fig. 6a and 6d), reaction temperature versus 
calcination temperature (Fig. 6b and 6e), and calcination temperature 
versus Ni loading (Fig. 6c and 6f) were found to be very similar. 

As depicted in Fig. 6a and 6d, when the Ni loading is kept constant, 
the toluene conversion initially increases and then tends to remain 
constant as reaction temperature increases, which is attributed to the 
highly endothermic characteristics of the catalytic steam reforming of 
toluene [46]. Compared to Mg, the use of hydrotalcite as a support re-
sults in a higher toluene conversion at the same temperature due to 

improved Ni particle dispersion and toluene accessibility to the active 
sites [50]. In Fig. 6b and 6e, the toluene conversion initially increases 
and then decreases as the calcination temperature increases at a con-
stant reaction temperature. This phenomenon is consistent with the 
findings reported by Jumluck et al., where they observed support 
collapse and metal sintered with increasing calcination temperature 
[24]. Moreover, this finding demonstrates that additives and supports 
respond differently to the calcination temperature. Specifically, Mg- 
promoted catalysts required a lower calcination temperature (around 
600 ◦C) to achieve higher toluene conversion compared to hydrotalcite 
at the same reaction temperature and calcination temperature. Choosing 
an appropriate calcination temperature for different types of additives 
and supports is crucial for enhancing catalytic performance. Addition-
ally, Ni loading exhibits a similar changing trend with calcination 
temperature when it comes to the conversion, as shown in Fig. 6c and 6f. 
It illuminates that a suitable amount of Ni loading could not only pro-
vide sufficient active sites but also inhibit agglomeration caused by 
excessive loading. Notably, Mg-promoted catalysts become sensitive as 
the calcination temperature approaches 600 ◦C, and the toluene con-
version decreases significantly (Fig. 6c). In contrast, hydrotalcite- 
supported catalysts exhibit superior reaction temperature resistance, 
which is attributed to the improved thermal stability of the support [50]. 

Overall, the toluene conversion is found to depend on the interaction 
of multiple parameters, and appropriate ranges could be identified, such 
as 600–700 ◦C for reaction temperature, 5–15 wt% for Ni loading, and 
500–650 ◦C for calcination temperature during catalyst preparation. 

Meanwhile, these findings also enable one to offer insights for 
selecting additives and supports for the catalysts. Fig. 7 depicts the 
predicted conversion for the 5 most important additives and supports 
with different reaction temperatures, Ni loadings, and calcination tem-
peratures. Table S7 summarizes the physicochemical properties of the 
corresponding catalysts, aiding in the comprehension of the effects of 
diverse additives and supports on the catalytic performance. 

When using various additives (e.g., Mg, Pd, Ce, Fe, and Zr), the 
toluene conversion exhibits a similar trend with increasing reaction 
temperature, Ni loading, and calcination temperature, respectively 
(Fig. 7 a-c). The toluene conversion increases continuously as the reac-
tion temperature and Ni loading increase. Pd-promoted catalysts show a 
lower catalytic performance among the additives. On the contrary, Mg, 
Ce, Fe, and Zr additives exhibit better toluene steam reforming perfor-
mances, resulting from the promoted Ni dispersion and smaller Ni 
crystal size, as shown in Table S7 [50,52,57]. Proper additives could 
modify surface properties and improve the synergy between the metal 
and support, significantly enhancing catalytic performance in terms of 
activity and stability [58]. 

The results presented in Fig. 7 d-f demonstrate a similar changing 
trend in the toluene conversion using various supports when reaction 

Fig. 5. The prediction performance of the ANN algorithm (purple line represented the best fitting: y = x) for (a) the current database and (b) data collected from 
newly published literature. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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temperature, Ni loading, and calcination temperature increase. As 
depicted in Fig. 7d, the toluene conversion initially increases and tends 
to remain constant as reaction temperature increases, which is attrib-
uted to the highly endothermic characteristics of the catalytic steam 
reforming of toluene [46]. Meanwhile, various supports respond 
differently to Ni loading; the toluene conversion increases first and then 
declines when SiO2@C and γ-Al2O3 supported catalysts are used. How-
ever, hydrotalcite achieves a higher toluene conversion when Ni loading 
reaches 20 wt%, which could be attributed to its higher specific surface 
area (150 m2/g) [50]. SiO2@C, MgO, CeZrO2, and hydrotalcite supports 
exhibit better catalytic performances compared to γ-Al2O3 as the calci-
nation temperature increases, which could be attributed to their 

superior thermal stability. Jumluck et al. reported that supports with 
poor thermal stability would collapse at higher calcination tempera-
tures, resulting in a reduced specific surface area and catalyst deacti-
vation [24]. These findings show that a higher specific surface area of 
the catalyst could not only bring sufficient active sites but also aid in Ni 
dispersion, resulting in a smaller Ni crystal size, which is beneficial for 
catalytic performance. 

3.6. Process optimization 

In this section, commercial γ-Al2O3 was selected as the support to 
optimize the catalytic steam reforming of toluene. In an effort to address 

Fig. 6. The contour maps for the toluene conversion and temperature, calcination temperature, and Ni loading when using (a) (b) (c) Mg and (d) (e) (f) hydrotalcite 
as the additive and support, respectively. 

Fig. 7. The predicted toluene conversion over the top 5 additives and supports with (a) and (c) different temperatures, (b) and (e) Ni loading, and (c) and (f) 
calcination temperatures, respectively. 
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the issue of the relatively lower toluene conversion using Ni-loaded 
γ-Al2O3, a grid search was performed utilizing the ANN algorithm. 
The investigation revealed that the addition of Pt to Ni-loaded γ-Al2O3 
catalysts could significantly enhance their toluene conversion capa-
bility, as depicted in Fig. 8a and 8d. Experiments were also conducted to 
validate the findings, and the detailed experimental sections were 
described in supporting information S7. Despite the existence of dis-
crepancies in numerical values, it is evident that the ANN adeptly cap-
tures the overall trend in toluene conversion with varying temperatures, 
as shown in Fig. 8b. Moreover, it is worth noting that the ANN displays 
an exceptional predictive capacity, particularly in the case of 10Ni-1Pt/ 
γ-Al2O3. The predicted values align closely with the corresponding 
experimental data. With the addition of 1 wt% Pt, the toluene conver-
sion rises from 56.2 to 81.8% at 600 ◦C as compared to Ni loading alone. 
Furthermore, 10Ni-1Pt/ γ-Al2O3 achieves the highest toluene conversion 
of 97.8% at 700 ◦C. N2 adsorption–desorption isotherm and X-ray 
powder diffraction (XRD) characterizations reveal that the specific 
surface area of the Pt-promoted catalyst reaches 139.3 m2/g, while the 
Ni crystal size is reduced from 5.51 to 5.15 nm (Fig. 8c and S4). The 
higher specific surface area and smaller Ni crystal size might be 
responsible for the enhanced catalytic activity and stability of the Pt- 
promoted catalyst for the catalytic steam reforming of toluene. 

4. Conclusions and prospects 

In this study, a comprehensive database comprising 584 data points 
and 14 input parameters was constructed using literature published 
between 2005 and 2020. Well-trained machine learning algorithms 
were developed for the prediction and optimization of the catalytic 
steam reforming of toluene. The predicted results from algorithms are 
consistent with the experimental data, validating their effectiveness. 
The results reveal that the reaction temperature is the most influential 
parameter (0.24), followed by the support (0.16), additive (0.12), Ni 
loading (0.08), and calcination temperature (0.07). Appropriate ranges 

for influential parameters are identified. For instance, the recommended 
ranges were found to be 600–700 ◦C for reaction temperature, 5–15 wt% 
for Ni loading, and 500–650 ◦C for calcination temperature. These 
ranges are crucial for optimizing the catalytic process and achieving 
desirable toluene conversion rates. Moreover, this work also sheds light 
on the significance of selecting suitable supports and additives. The 
incorporation of appropriate supports and additives was found to 
enhance catalytic performance significantly. This was attributed to the 
provision of more active sites and the promotion of Ni dispersion, 
leading to improved activity and stability of the catalyst. 

Although the study highlights the potential and benefits of well- 
trained ML algorithms for effective and accurate predictions and gain-
ing deeper insights into the catalytic steam reforming of toluene as a tar 
model, it is essential to acknowledge the existing limitations that war-
rant attention in future research endeavors. In the study, the trained 
algorithms performed exceptionally well on the training database but 
failed to generalize to new, unseen data, resulting in discernible dis-
parities between experimental and predicted values. The primary factor 
contributing to these prediction errors for novel experimental data 
might be the potential insufficiency of the training dataset. In machine 
learning, particularly for complex models, an ample volume of diverse 
data is imperative to facilitate the acquisition of meaningful patterns 
and relationships. Although the database comprises 584 data points, this 
quantity may still be deemed inadequate when correlated with the 
multitude of catalysts involved, potentially limiting the ability of the 
model to capture intricate data relationships. 

In light of these observations, future research may prioritize 
enhancing the richness and breadth of the database. It is advisable to 
consider including additional input features, such as catalyst quality, 
morphology, thermogravimetric characteristics, pore distribution, 
acidity, elemental distribution, and other catalyst-specific attributes. It 
is essential to acknowledge the challenges associated with the collection 
and coding of such data. Furthermore, future research endeavors should 
explore the adoption of more complex and advanced models. This 

Fig. 8. (a) The predicted toluene conversion with different additives using γ-Al2O3 as support, (b) the experimental and predicted toluene conversion, (c) XRD 
patterns of the catalysts, and (d) the schematic diagram of machine learning-driven optimization and validation of catalytic steam reforming of toluene using γ-Al2O3 
as support. 
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approach can potentially mitigate some of the limitations encountered 
by enhancing the capacity of the model to capture nuanced data re-
lationships and yield more accurate predictions. 
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