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Abstract10

Randomized rumor spreading processes diffuse information on an undirected graph and have11

been widely studied. In this work, we present a generic framework for analyzing a broad class of12

such processes on regular graphs. Our analysis is protocol-agnostic, as it only requires the expected13

proportion of newly informed vertices in each round to be bounded, and a natural negative correlation14

property.15

This framework allows us to analyze various protocols, including PUSH, PULL, and PUSH-PULL,16

thereby extending prior research. Unlike previous work, our framework accommodates message17

failures at any time t ≥ 0 with a probability of 1 − q(t), where the credibility q(t) is any function of18

time. This enables us to model real-world scenarios in which the transmissibility of rumors may19

fluctuate, as seen in the spread of “fake news” and viruses. Additionally, our framework is sufficiently20

broad to cover dynamic graphs.21
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1 Introduction28

The rise of online social networks has facilitated a way for network users to rapidly obtain29

information, express their opinion, and stay in touch with friends and family. However, at30

the same time the large scale information cascades enabled by these new social technologies31

provide fertile ground for the spread of misinformation, rumors and hoaxes. This in turn can32

have severe consequences such as public panic, growing polarization, the manipulation of33

political events, and also economic damage. For instance, in 2013 a rumor that President34

Obama was injured in two explosions at the White House led to $90 billion USD being35

temporarily wiped off the value of United States stock market [30]. In the same year the36

World Economic Forum report [21] listed “massive digital misinformation” as one of the37

main risks for the modern society. More recently we have seen the spread of misinformation38

surrounding the Covid-19 pandemic [4]. Consequently, there has been a growing body of39

work aiming to gain insights into the rumor spreading dynamics [12, 26, 31, 35].40

For a long time, randomized rumor spreading protocols such as the PUSH, PULL and41

PUSH-PULL protocols have been used to model the dissemination of information on graphs,42

e.g., [2, 13, 23]. Both by mathematical analysis on “scale free” graphs in addition to43
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experimental results on real-world social networks, it has been demonstrated that these44

protocols (in particular, PUSH-PULL) spread a rumor to a large fraction of vertices in a very45

short time (e.g., [14]).46

However, one shortcoming of the previous works that analyze these protocols is the47

assumption that the probability with which an individual believes the rumor, when receiving48

it, is constant over time – in fact, in many studies it is assumed that this credibility is49

equal to one in all rounds. In real world settings, one can imagine that the occurrence of50

emergent events (such as an earthquake or a new possibly lethal decease) can intensify the51

formation and propagation of rumors due to their suddenness and urgency, followed by a52

decrease in credibility once more information has become available. A related example is the53

spread of viruses, where counter-measures such as vaccination or social distancing, but also54

seasonal effects may affect the transmissibility over time, potentially even periodically/non-55

monotonically.56

Moreover, it is often assumed that the graph is fixed throughout the execution of57

randomized rumor spreading protocols, which is rather restrictive since many networks, e.g.,58

social networks, P2P networks or communication networks, are subject to frequent changes.59

To address these issues, we introduce a new methodology for analyzing randomized rumor60

spreading protocols that allows us to study PUSH, PULL, and PUSH-PULL processes under the61

presence of a time-changing credibility (or transmissibility) function q(t) and dynamic graphs62

(Gt)t≥0. However, our method is more general and allows us to study a broader class of63

spreading processes on dynamic graphs. To show the effectiveness of our analysis, we recover64

known results for the PUSH, PULL, and PUSH-PULL protocols in the context of a constant65

credibility function q, and provide analysis for specific time-dependent credibility functions66

q(t).67

1.1 Our Contribution68

In this work, we present a general framework for analyzing a large class of randomized rumor69

spreading models. Our main results give concentration for the number of vertices informed70

after a certain stopping time. These results are very general however we show in detail how71

they can be applied to several models.72

Broad Class of Spreading Processes. Instead of using protocol specific characteristics,73

our framework only requires some mild conditions on the spreading process (i.e., bounded74

expected growth and a natural negative correlation property; see Definition 1). This allows75

our setting to cover many models of randomized rumor spreading, beyond the standard76

PULL and PUSH models (see Lemma 8, the final bullet point below, and Section 2.5).77

Credibility Function q(t). Our model allows for a time-dependent credibility function78

q(t) ∈ [0, 1], which specifies how transmissible the rumor is in each step. This can be seen79

as a major generalization of the prevalent notion of “robustness” in the literature, which80

usually refers to the uniform fault model with q fixed over t. Unlike in previous models,81

our credibility functions can be arbitrary, in particular they do not need to be monotone.82

Stopping time Criterion. We introduce a new technical tool based on a stopping time83

criterion. Roughly, for some desired number of vertices B to be informed, the stopping84

time triggers when a sum of expected growth factors of the process exceeds a threshold85

depending on B. The aforementioned growth factors are conditional expectations of the86

proportion of new vertices informed in the next step. We show that if this stopping87

criterion is met, then B vertices are informed with high probability (see Theorem 9).88

This is complemented by Theorem 15 with a dual statement on the shrinking of the89

uninformed vertices. Both results are significantly more general than previous analyses,90
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which usually rely on a growth factor “target” that is independent of t and the set of91

informed vertices.92

Dynamic Graphs. Due to the general nature of our framework and stopping criteria,93

our analysis “abstracts away” the graph and the specific spreading process. Hence, we94

can cover sequences of dynamic regular graphs (Gt)t≥0 instead of a fixed graph G. This95

flexibility comes from the fact that the connectivity of each Gt is captured by the growth96

factor of the process at round t, which in turn determines the stopping criterion. In97

particular, we do not require the graph to be connected at each step (see Remark 10).98

Applications. We prove several new results for general and specific credibility functions.99

First, for general credibility functions, we combine our stopping time criterion with a simple100

lower bound based on sub-martingales. Together, they reveal a threshold phenomenon,101

very roughly saying that for expander graphs the quantity
∑t

k=0 log(1+q(k)) approximates102

log(|It|), where It is the set of vertices informed by time t (see Section 4.1).103

After that, we turn to some specific credibility functions, including additive, multiplicative104

and Power-Law (see Sections 4.2–4.4 for the respective definitions and results). There,105

we prove several dichotomies in terms of the decay of q(t).106

Despite the generality and abstract nature of our main results, we also recover some107

previous results for static graphs (and time-invariant q(t)) as a special case; however, our108

results for PUSH, PULL and PUSH-PULL additionally apply to dynamic graphs (see, e.g.,109

the results in Section 4.5).110

Due to space restrictions most proofs are deferred to the full version of this paper [27].111

1.2 Related Work112

Classical Protocols and Robustness.113

Given a rumor spreading process on an n-vertex graph, define the spreading time by T (n) as114

the first time all vertices are informed. The spreading time of PUSH was first investigated on115

complete graphs by Frieze and Grimmett [18]. Pittel [32] improved on this, showing that for116

PUSH on the complete graph, the spreading time is given by T (n) = log2(n) + log(n)± f(n)117

with probability (w.p.) 1− o(1), for any f(n) = ω(1). Karp, Schindelhauer, Schenker and118

Vöcking [23] investigated the PUSH-PULL model (and variants) with a focus on the total119

number of messages sent. In particular, they exploit the phenomenon that once a constant120

fraction of vertices are informed, PULL manages to inform all vertices in just O(log log n)121

rounds.122

Doerr and Kostrygin [15] derived a bound on the expected spreading time E [ T (n) ] of123

PUSH, replicating the bound from [32] but only with an additive O(1) error instead of f(n).124

Furthermore, [15] also considered PULL and PUSH-PULL on complete graphs, and determined125

these spreading times up to and additive O(1) error. They also presented a more general126

result for the uniform fault model, where the leading factors are delicate functions of the127

(time-invariant) credibility q ∈ (0, 1]. We are able to recover a with high probability version128

of the upper bounds from [15] for PUSH, PULL and PUSH-PULL (see Section 4.5).129

Fountoulakis, Huber and Pangiotou [16] considered the uniform fault setting of PUSH on130

random graphs with n vertices where each edge is present w.p. p = ω(log n/n). They proved131

that, up to lower-order terms, the same bound as for the complete graph holds. For the132

model without faults, Fountoulakis and Panagiotou [17] presented a tight analysis for PUSH133

on random d-regular graph for any constant d ≥ 3. Panagiotou, Perez-Gimenez, Sauerwald134

and Sun [28] analyzed PUSH on almost-regular strong expanders, recovering the runtime135

ITCS 2024
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bound for complete graphs up to low order terms (see Equation (1) for the definition of136

strong expander for regular graphs).137

Finally, Daknama, Panagiotou and Reisser [10] greatly extended and unified these lines138

of works in terms of the graph classes considered, and the uniform fault model. Among139

other results, they proved that the aforementioned results from [15] (for PUSH, PULL and140

PUSH-PULL) also hold for almost-regular strong expanders, without any change in the leading141

factor. Our framework allows us to recover the upper bounds in [10] for regular graphs as142

well as dynamic sequences of regular graphs (see Section 4.5).143

For general graphs (including highly non-regular ones), Chierichetti, Giakkoupis, Lattanzi144

and Panconesi [6] proved an upper bound of O(log n/φ) on the time to inform all vertices145

for PUSH-PULL, where φ is the conductance of the graph. A similar, but more complicated146

bound was shown by Giakkoupis [19] for the PUSH-PULL model, where the conductance is147

replaced by the vertex expansion. The results of both works also extend to PUSH and PULL,148

if the graph is (approximately) regular.149

Dynamic Graphs.150

Extending the aforementioned bounds for conductance and vertex expansion, Giakkoupis,151

Sauerwald and Stauffer [20] proved similar bounds for dynamic graphs in the PUSH-PULL152

model, where each graph Gt≥0 = (V, Et≥0) must be dt-regular. In particular, they proved153

that if the sum of the conductances over rounds 0, 1, . . . , T is Ω(log n), then by round T154

all vertices are informed. Pourmiri and Mans [33] analyzed an asynchronous version of155

PUSH-PULL. While some of their positive results are similar to the ones in [20], they also156

established dichomoties between the synchronous and asynchronous version on dynamic157

graphs. Our approach can be seen as a refinement and generalization of the methods employed158

in these two works, since our stopping time aggregates over the (random) conductances159

of the sets It, for t = 0, 1, . . . , T , and it works for arbitrary, so-called Cgrow-growing and160

Cshrink-shrinking processes.161

Finally, Clementi, Crescenzi, C. Doerr, Fraigniaud, Pasquale and Silvestri [9] analyzed162

PUSH on a random dynamic graph model called Edge Markovian Evolving Graph, and proved163

a runtime bound of O(log n) for certain parameter ranges of their model. Ideas and techniques164

related to rumor spreading have also been employed in the analysis of components in a165

temporal random graph model [1, 5].166

Other Models with Time Dependent Credibility Functions.167

The inclusion of a local time dependent forgetting rate in the SIR model [25] was empirically168

investigated by Zhao, Xie, Gao, Qiu, Wang, and Zhang [37], leading to q(t) := µ− eβ·t, for169

0 ≤ µ− eβ·t ≤ 1, for µ and β parameters indicating the initial credibility and the speed with170

which the credibility decreases. Very recently, Zehmakan, Out and Khelejan [36] studied a171

version of the Independent Cascade model [24] where q(t) is a variant of the multiplicative172

credibility function (with α = 1/2, see Definition 28), but additionally is edge dependent (i.e.173

a function q(t, uv), uv ∈ E(G)) and depends on the Jaccard similarity between two vertices174

u and v.175

2 Models and Notation176

We will cover some basic notation before introducing the models studied in this paper.177
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2.1 Notation178

We let N denote the natural numbers (starting from 0) and let R denote the reals.179

Graph Notation.180

Throughout this paper, all considered graphs G = (V, E) will be simple and undirected. We181

denote n := |V | and m := |E|. For a node v ∈ V , N(v) := {w ∈ V : {w, v} ∈ E} is the182

neighborhood of v, and deg(v) := |N(v)| is called the degree of v. We say a graph is regular183

if every vertex has the same degree. For U ⊆ V we let NU (v) := {w ∈ U : {v, w} ∈ E} =184

N(v) ∩ U , and denote degU (v) := |NU (v)|. We will also consider dynamic graphs, which can185

be thought of as a sequence of graphs (Gt)t≥0 where each graph Gt = (V, Et) is on the same186

vertex set, however the edge sets Et may change over time.187

For any two sets U, W ⊆ V , we let e(U, W ) := |{{u, w} ∈ E : u ∈ U, w ∈ W}| denote188

the number of edges between U and W . The volume of a set U ⊆ V is the sum of the189

degrees of the vertices in U , vol(U) :=
∑

u∈U deg(u). We let A be the adjacency matrix190

of G and denote the degree matrix by D := diag(d), where d(u) = deg(u), which is the191

matrix with the degrees of the vertices on the diagonal and the rest of the entries equal to 0.192

Lastly, we let 1 = λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of the normalized adjacency matrix193

D−1/2AD−1/2 and let λ := max{|λ2|, |λ3|, . . . , |λn|} ≥ 0.194

We say that a regular graph G of degree d is a strong expander if,195

lim
n→∞

λ→ 0. (1)196

Note that a necessary requirement for that is d → ∞. As noted in other works on rumor197

spreading, the class of random d-regular graphs with d = ω(1) forms an example of strong198

expander graphs with w.p. 1− o(1) [3, 34]. We refer to [10, 28] for the exact definition of199

strong expander graphs when G is almost-regular.200

The conductance [22] of any vertex set ∅ ⊊ S ⊊ V in a graph G = (V, E) is201

φG(S) := e(S, V \ S)
min (vol(S), vol(V \ S)) .202

If the graph G or graph sequence (Gt)t≥0 is clear from the context, we drop the subscript.203

The conductance of G is in turn defined as,204

φ(G) := min
∅⊊S⊊V

e(S, V \ S)
min (vol(S), vol(V \ S)) .205

Model Notation.206

As mentioned, we will consider random processes on a sequence of dt-regular graphs, (Gt)t≥0207

where each Gt has a common vertex set V . We always assume that dt > 0 (i.e., we do not208

consider the empty graph). These processes produce a sequence of sets (It)t≥0 where It is209

the set of informed vertices at time t (i.e., after t rounds are completed) and It ⊆ It+1 ⊆ V210

for all t ≥ 0. Similarly, we let Ut := V \ It denote the set of uninformed vertices at time211

t ≥ 0. Lastly, we define ∆t := It \ It−1 to be the set of vertices that get informed in round t.212

Further notation relating to such process is given in Section 2.3.213

Mathematical Notation and Assumptions.214

We use asymptotic notation O(·), o(·), Ω(·), ω(·), Θ(·), . . . throughout, this is always defined215

relative to the number of vertices n. All logarithms are to base e, unless indicated otherwise.216

ITCS 2024



84:6 Rumors with Changing Credibility

We let n tend to infinity and say an event E happens with high probability (w.h.p.) if it217

occurs w.p. 1− o(1). For f : X → R a non-negative real-valued function with domain X, we218

let Supp(f) := {x ∈ X : f(x) ̸= 0}. We define Ft to be the filtration corresponding to the219

first t rounds of the process, in particular Ft reveals I0, I1, . . . , It. For brevity, we set220

Pt [ · ] := P
[
· | Ft

]
, Et [ · ] := E

[
· | Ft

]
, and Vart [ · ] := E

[ (
· −E

[
· | Ft

])2 | Ft
]

.221

2.2 Standard Rumor Spreading Protocols and Credibility Function q(t)222

Given any graph sequence, Gt≥0 = (V, Et≥0) initially one node v∗ in graph G0 is informed223

of the rumor, i.e., I0 = {v∗}. We recall the definition of the PULL, PUSH, and PUSH-PULL224

protocols [18, 23]. In the PULL model, in every round t = 0, 1, . . ., every uninformed vertex v225

chooses a neighbor u uniformly and independently at random. If u is informed, then as a226

response u transmits the rumor to v, so v becomes informed. In the PUSH protocol, in each227

round, every informed node v chooses a neighbor u uniformly at random, and transmits the228

rumor to u. Lastly, PUSH-PULL is the combination of both strategies: In each round, if the229

node knows the rumor, it chooses a random neighbor to send the rumor to. Otherwise, it230

chooses a random neighbor to request the rumor from.231

We can extend the PULL, PUSH and PUSH-PULL models by including a credibility function232

q(t) for q(t) : N → [0, 1] and t ≥ 0. In the PULL, PUSH and PUSH-PULL with credibility q(t)233

models, at the beginning of each round t = 0, 1, . . . , for any uninformed node v ̸∈ It−1 and234

for each transmission of the rumor to v (regardless of whether that was due to a PUSH or PULL235

transmission), it becomes informed with w.p. q(t) independently, and remains uninformed236

otherwise1. This is depicted for the PUSH-PULL model in Algorithm 1. Notice that q(t) may237

be time-dependent, and also that when q(t) = q = 1 we return to the standard PULL, PUSH,238

and PUSH-PULL models, whereas with q(t) = q being a constant in (0, 1) we recover the239

“uniform failure” model studied in [10, 15].240

Algorithm 1 Round t ∈ N of PUSH-PULL with credibility function q(t)

1: Input: Gt, It, q(t)
2: Initialize: ∆t+1 ← ∅
3: for each v ∈ It do ▷ PUSH
4: Sample a neighbor v′ ∈ NGt(v) chosen uniformly at random.
5: if v′ ̸∈ ∆t+1 then
6: With probability q(t), ∆t+1 ← ∆t+1 ∪ {v′}
7: for each v ∈ V \ It do ▷ PULL
8: Sample a neighbor v′ ∈ NGt

(v) chosen uniformly at random.
9: if v′ ∈ It then

10: With probability q(t), ∆t+1 ← ∆t+1 ∪ {v}
11: It+1 ← It ∪∆t+1

1 Hence if in a round, an uninformed vertex receives k transmissions (regardless of whether these are PULL
or PUSH transmissions), then the probability it gets informed is 1 − (1 − q(t))k, i.e. each transmission is
independent.
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2.3 Our Class of Spreading Processes241

We now introduce two general spreading processes, that are crucial to our framework. This is242

an abstraction of the aforementioned examples of PUSH, PULL and PUSH-PULL with credibility243

function q(t), since we are now only considering the expected growth (or shrinking) factors.244

We point out that these may depend on several quantities such as the conductance of the245

informed set It (or uninformed set Ut, respectively), and q(t) of course.246

▶ Definition 1 (Growing and Shrinking Processes). Let (Gt)t≥0 be a sequence of graphs. Let247

P be a stochastic process on (Gt)t≥0 with a sequence of informed vertices (It)t≥0 ⊆ V (Gt)248

and uninformed vertices Ui = V (Gt) \ It for all t ≥ 0. We begin by defining the following249

property of such a process250

P1 (Negative Correlation): For any round t ≥ 0 and any subset S ⊆ Ut,251

Pt

[ ⋂
u∈S

{u ∈ It+1}

]
≤
∏
u∈S

Pt [ u ∈ It+1 ] .252

For some time-independent value Cgrow > 0 we say that P is a Cgrow-growing process if it253

satisfies P1 and254

P2 (Monotonicity): For any round t ≥ 0, it holds deterministically that It ⊆ It+1 (and255

|I0| ≥ 1),256

P3 (Bounded Expected Growth): For any round t ≥ 0 the expected growth factor257

satisfies,258

Et

[
|∆t+1|
|It|

]
≤ Cgrow.259

Similarly, for some time-independent Cshrink < 1, P is a Cshrink-shrinking process if it260

satisfies P1 and261

P̃2 (Monotonicity): For any round t ≥ 0, it holds deterministically that Ut ⊇ Ut+1 (and262

|U0| ≤ n/2),263

P̃3 (Bounded Expected Shrinking): For any round t ≥ 0 the expected shrinking factor264

satisfies,265

Et

[
|∆t+1|
|Ut|

]
≤ Cshrink.266

For convenience, we also define for all rounds t ≥ 0 a “combined” growth/shrinking factor as267

δt := Et

[
|∆t+1|

min (|It|, |Ut|)

]
= max

(
Et

[
|∆t+1|
|It|

]
, Et

[
|∆t+1|
|Ut|

])
.268

We now prove that the negative correlation property immediately implies a strong upper269

bound on the variance of the growth (shrinking) factor. The same result was derived in [10]270

for PUSH, PULL and PUSH-PULL using the concept of self-bounding functions.271

▶ Lemma 2. Consider any stochastic process with sequence of informed vertices (It)t≥0272

satisfying P1 . Then, also the following property also holds:273

P4 (Bounded Variance): For any round t ≥ 0, Vart [ |∆t+1| ] ≤ Et [ |∆t+1| ] .274
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84:8 Rumors with Changing Credibility

δt

Lower Bound Upper Bound

PULL q(t) · φ(It)

PUSH q(t) ·
(

1− q(t)
2

)
· φ(It) q(t) · φ(It)

PUSH-PULL 3
2 · q(t) ·

(
1− 1

2 q(t)
)
· φ(It) 2 · q(t) · φ(It)

Table 1 Basic lower and upper bounds on the expected growth factor δt for PUSH, PULL and
PUSH-PULL in terms of q(t) and the conductance φ(It) on regular graphs.

2.4 Specific Protocols and Growth Factors275

In this subsection, we analyze specific protocols (in particular, PUSH, PULL and PUSH-PULL276

with credibility function q(t)) and verify that they are Cgrow-growing and Cshrink-shrinking277

processes in the sense of Definition 1. Let (Gt)t≥0 be a sequence of regular graphs. Recall278

that in our setting |I0| = 1 and ∆t+1 = It+1 \ It. In order to capture the progress of the279

rumor spreading process between the rounds t1 and t2, we observe the following identities,280

|It2 |
|It1 |

=
t2−1∏
t=t1

|It+1|
|It|

=
t2−1∏
t=t1

|It|+ |∆t+1|
|It|

=
t2−1∏
t=t1

(
1 + |∆t+1|

|It|

)
281

|Ut2 |
|Ut1 |

=
t2−1∏
t=t1

|Ut+1|
|Ut|

=
t2−1∏
t=t1

|Ut|+ |∆t+1|
|Ut|

=
t2−1∏
t=t1

(
1− |∆t+1|

|Ut|

)
.282

283

As such, we prove upper and lower bounds on the expectation of the growth factor, |∆t+1|
min(|It|,|Ut|)284

of the PUSH, PULL and PUSH-PULL protocols.285

▶ Lemma 3. Let t ≥ 0 be any round, Gt a dt-regular graph with n vertices and dt ≥ 1, and286

q(t) an arbitrary credibility. Then,287

(i) for the PUSH protocol,288

q(t) ·
(

1− q(t)
2

)
· φ(It) ≤ Et

[
|∆t+1|

min(|It|, |Ut|)

]
≤ q(t) · φ(It),289

(ii) for the PULL protocol,290

Et

[
|∆t+1|

min (|It|, |Ut|)

]
= q(t) · φ(It),291

(iii) and for the PUSH-PULL protocol,292

3
2 · q(t) ·

(
1− q(t)

2

)
· φ(It) ≤ Et

[
|∆t+1|

min (|It|, |Ut|)

]
≤ 2 · q(t) · φ(It).293

Next we prove tighter bounds for the PUSH and PUSH-PULL protocol if the graph is a294

strong expander.295
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▶ Lemma 4. Consider the PUSH protocol, and let t ≥ 0 be any round where with |It| ≤ n/2 and296

Gt a dt-regular graph with n vertices. Then, for q(t) an arbitrary credibility and β := λ + |It|
n ,297

Et

[
|∆t+1|
|It|

]
≥ q(t) ·

(
1− 7

√
β
)

.298

For the same setting in the PUSH-PULL protocol,299

Et

[
|∆t+1|
|It|

]
≥ q(t) ·

(
2− 12

√
β
)

.300

The next lemma improves over the lower and upper bound in Lemma 3 (i) if |It| ≥ n/2.301

Concerning the lower bound, we have q(t) · (1− q(t)
2 ) ≤ 1− e−q(t) since e−z ≤ 1− z + 1

2 z2 =302

1 − z ·
(
1− z

2
)

for z ∈ [0, 1]. Further, if dt = ω(1) and q(t) · φ(It) is bounded below by a303

constant, then the upper bound below is tighter as 1− exp(−x) ≤ x for any x ∈ R.304

▶ Lemma 5. Consider the PUSH protocol, and let t ≥ 0 be any round, Gt is a dt-regular305

graph with n vertices and q(t) an arbitrary credibility. Then,306

(i) Et

[
|∆t+1|

|Ut|

]
≥
(
1− e−q(t)) · φ(It).307

(ii) If Gt is connected, then,308

Et

[
|∆t+1|
|Ut|

]
≤ 1− e−φ(It)·q(t) ·

(
1− φ(It) · (q(t))2

dt

)
.309

310

The next lemma improves the result for the PUSH-PULL protocol in Lemma 3 (iii).311

▶ Lemma 6. Consider the PUSH-PULL protocol, and let t ≥ 0 be any round, Gt is a dt-regular312

graph with n vertices and q(t) an arbitrary credibility. Then,313

(i) Et

[
|∆t+1|

|Ut|

]
≥
(

1− e−q(t) · (1− q(t))
)
· φ(It).314

(ii) Et

[
|∆t+1|

|Ut|

]
≤ 1− (1− q(t))φ(It) · (1− q(t) · φ(It)) .315

A summary of these tighter bounds for PUSH, PULL and PUSH-PULL is given in Table 2,316

and the more simple bounds are summarized in Table 1. For strong expanders, similar317

bounds have been derived in [10, 29].318

Next, we state a simple but crucial fact:319

▶ Lemma 7. Let (Gt)t≥0 be a sequence of dt-regular graphs with n vertices and let q(t) be320

an arbitrary credibility function . Then, the PUSH, PULL and PUSH-PULL protocol satisfy the321

negative correlation property (see Definition 1).322

Finally, we close this section by verifying that PUSH, PULL and PUSH-PULL satisfy the323

condition in Definition 1 for certain Cgrow and Cshrink. Note that even for static graphs,324

PULL and PUSH-PULL require a restriction on q(t); this is since if q(t) = 1, then on certain325

graphs (like the complete graph), PULL and PUSH-PULL would only need O(log log n) steps in326

the shrinking phase. However, for dynamic graphs, even for PUSH we require a restriction on327

q(t); this is because otherwise Gt could be a 1-regular graph, i.e., a perfect matching so that328

each vertex in Ut is matched to a vertex in It.329

▶ Lemma 8. Let (Gt)t≥0 be any sequence of dt-regular graphs and let q(t) be an arbitrary330

credibility function.331

(i) The PUSH protocol is a 1-growing process. Furthermore, if q(t) ≤ 1− ε, for ε > 0 (not332

necessarily constant), then the PUSH protocol is a (1− ε)-shrinking process. Also, if all333

graphs in the sequence (Gt)t≥0 are connected, then the PUSH protocol is a (1− e−1 · 1
2 )-334

shrinking process.335
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δt, 1 ≤ |It| ≤ n/2 δt, n/2 ≤ |It| ≤ n

Lower Bound Lower Bound Upper Bound

PULL q(t) · φ(It) q(t) · φ(It)

PUSH q(t) ·
(

1 − 7
√

λ + |It|
n

) (
1 − e−q(t)

)
· φ(It) q(t) · φ(It)

P-P q(t) ·
(

2 − 12
√

λ + |It|
n

) (
1 − e−q(t) · (1 − q(t))

)
· φ(It) 1 − (1 − q(t))φ(It) · (1 − q(t) · φ(It))

Table 2 Refined bounds in terms of q(t) and the spectral expansion λ on the expected growth
factors of PUSH and PUSH-PULL on regular graphs. These bounds are tighter than the more basic
ones (see Table 1), whenever λ = o(dt) (which also implies φ(It) = 1 − o(1) if |It| = o(n) as well as
φ(It) = 1 − o(1) if |Ut| = o(n)). The 1 − o(1) terms in the two upper bounds go to 1 if dt → ∞ or
φ → 0 or q(t) → 0 for all t ≥ 0.

(ii) The PULL protocol is a 1-growing process. Furthermore, if q(t) ≤ 1− ε, for ε > 0 (not336

necessarily constant), then the PULL protocol is a (1− ε)-shrinking process.337

(iii) The PUSH-PULL protocol is a 2-growing process. Furthermore, if q(t) ≤ 1− ε, for ε > 0338

(not necessarily constant), then the PUSH-PULL protocol is a (1− ε2)-shrinking process.339

2.5 Other Examples340

We will briefly outline some other examples of (Cgrow, Cshrink)-spreading processes. We will341

not study these processes further in this paper, so for the sake of space we omit the proofs of342

membership.343

Variants of PUSH, PULL and PUSH-PULL where vertices accept all incoming messages w.p.344

q(t), independent of the number of messages received, otherwise reject all. This is an345

alternative interpretation of the credibility function as being “belief-based”, i.e. whenever346

a vertex receives at least one transmission (regardless of whether they are PUSH or PULL),347

it believes in the rumor w.p. q(t). Hence, the “believed” versions of PUSH, PULL and348

PUSH-PULL are slower siblings of the “transmission-based” versions of PUSH, PULL and349

PUSH-PULL as defined in Section 2.2.350

A variant of PUSH where all vertices transmit to a random neighbor in each step (unin-351

formed vertices transmit an “empty” message, informed vertices transmit the rumor).352

Each uninformed vertex chooses at most one received message (chosen uniformly at353

random from all received messages, ignoring all others). If they receive a message with354

the rumor they are informed; otherwise they are not. This process was introduced by355

Daum, Kuhn and Maus [11].356

The multiple call model, where each vertex pushes the opinion to k of random neighbors357

[29], for constant k (one could even consider k to be dependent on the node as in [29], or358

on the round t). This model can also be extended by using credibility functions.359

For any constant α ∈ [0, 1], in each round t ≥ 0, each node performs a pull with w.p. α360

and a push w.p. 1− α. This model can also support a credibility function.361

Variants of Broadcasting or Flooding models [8] where in each round each informed node362

sends the information to all its neighbors, however, edges may independently fail to363

transmit the message with some probability depending only on the edge.364
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3 Lower Bounds on the Number of Informed vertices365

Our analysis will be split into two phases, a “growing” phase where |It| ≤ n/2, and a366

“shrinking” phase where |It| ≥ n/2.367

3.1 Growing phase: It ∈ [A, B]368

In this section, we prove a lower bound on the number of informed vertices after a stopping369

time τ2, which aggregates over the expected growth factors between round 1 and τ2 − 1. In370

the following theorem (and throughout the rest of this paper) we use the convention that371

min {∅} =∞.372

▶ Theorem 9. Let (Gt)t≥0 be any sequence of dt-regular n-vertex graphs and consider a373

Cgrow-growing process P with expected growth factors δt. Let t1 ≥ 0 be any round, and let374

A, B be thresholds satisfying 1 ≤ A < B ≤ n/2 and ξ := 10−30. Define the stopping time375

τ2 ∈ N ∪ {∞} as376

τ2 := min
(

s ≥ t1 :
s−1∑
t=t1

log (1 + δt) ≥
log
(

B
A

)
+
(
log
(

B
A

)
+ log(1 + Cgrow) + 1

)2/3

(1− (1− ξ) · |It|−ξ)2

)
.377

Then there is a constant C2 > 0 such that378

Pt1

[
|Iτ2 | < B

∣∣∣ |It1 | ≥ A
]
≤ exp

(
−C2 ·

(
log
(

B

A

))1/3
)

+ Pt1

[
τ2 =∞

∣∣∣ |It1 | ≥ A
]

.379

Recall that the growth factors δt are conditional expectations given by δt = Et

[
|∆t|
|It|

]
in380

the growing phase, where |It| ≤ n/2. Intuitively, the stopping time τ2 in Corollary 18 can be381

viewed as a partial observer who does not know the sequence It, but only gets to know the382

expected growth factors in each round.383

▶ Remark 10. At first it might look challenging to apply Theorem 9, as one would need to384

control the probability that the stopping time is unbounded. However, in most applications385

we have a deterministic lower bound on the expected growth in each step and then, provided386

this bound is sufficiently large, this probability equals zero. We refer to Corollary 18 for a387

weaker but easier to apply variant of Theorem 9 which leverages this idea. The use of this388

stopping time also allows Theorem 9 to be very general. For instance, notice that Gt is not389

required to always be connected; this gives flexibility when handling dynamic graphs.390

We will now give a brief overview of the proof of Theorem 9, followed by some helper391

lemmas and claims, and then complete the proof. The starting point is to analyze the growth392

rate of the number of informed vertices. To this end, we recall the following formula involving393

growth factors:394

|Iτ2 |
|It1 |

=
τ2−1∏
t=t1

|It+1|
|It|

=
τ2−1∏
t=t1

(
1 + |∆t+1|

|It|

)
. (2)395

396

In order to transform this product into a sum of random variables, we first define for any397

t ≥ 0,398

Xt := log
(

1 + |∆t+1|
|It|

)
.399
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Then, by taking logarithms in Equation (2) we obtain that400

log
(
|Iτ2 |
|It1 |

)
=

τ2−1∑
t=t1

Xt.401

Our approach will be to lower bound the sum of these Xt’s. Therefore, we will consider the402

expected (logarithmic) growth in each step (i.e. Et [ Xt ]) (note that due to the dependence403

on Ft it is also a random variable). We then show that
∑τ2−1

t=t1
Xt is tightly concentrated404

around
∑τ2−1

t=t1
Et [ Xt ], using a variant of Azuma’s concentration inequality (Lemma 12). In405

doing so, we face the following difficulty of relating the expectation of Xt to the expected406

growth factor δt. Specifically, we would like to apply the following approximation:407

Et

[
log
(

1 + |∆t+1|
|It|

)]
≈ log

(
1 + Et

[
|∆t+1|
|It|

])
= log (1 + δt) .408

One direction in this approximation is immediate; since log(·) is concave, Jensen’s inequality409

gives us410

Et

[
log
(

1 + |∆t+1|
|It|

)]
≤ log

(
1 + Et

[
|∆t+1|
|It|

])
.411

It thus remains to bound the other direction, which amounts to proving an “approximate412

reverse version” of Jensen’s inequality. This is fairly involved, but we manage to establish413

the following general lemma:414

▶ Lemma 11. For a fixed round t ≥ 0, let Gt be a regular n-vertex graph and consider a415

Cgrow-growing process P. If |It| ∈ [A, n/2], then, for ξ := 10−30, we have416

Et

[
log
(

1 + |∆t+1|
|It|

)]
≥
(
1− (1− ξ) · |It|−ξ

)2 · log
(

1 + Et

[
|∆t+1|
|It|

])
.417

Note that the first factor on the right-hand side of the inequality above is (1− o(1)) in418

the case |It| = ω(1) (i.e., a super-constant number of vertices are informed).419

As mentioned above we will also need the following variant of Azuma’s inequality.420

▶ Lemma 12 ([7, Theorem 6.5]). Let (Zi)i≥0 be a discrete-time martingale associated with a421

filter F satisfying422

1. Var
[

Zi

∣∣∣ Fi−1

]
≤ σ2

i for all 1 ≤ i ≤ n;423

2. Zi−1 − Zi ≤M for 1 ≤ i ≤ n.424

Then for any h ≥ 0,425

P [ Zn −E [ Zn ] ≤ −h ] ≤ exp
(
− h2

2 · (
∑n

i=1 σ2
i + Mh/3)

)
.426

427

To apply this the following simple lemma will be useful.428

▶ Lemma 13. Let Z be a non-negative random variable. Then, Var [ log(1 + Z) ] ≤ Var [ Z ] .429

Lastly, before beginning the proof of Theorem 9, we first state the following helper claim.430

▷ Claim 14. For τ2 and ξ := 10−30 as in Theorem 9 and 1 ≤ A ≤ B ≤ n/2, we have,431

τ2−1∑
t=t1

δt ≤
4
ξ2 ·

(
log
(

B

A

)
+ log(1 + Cgrow) + 1

)
.432
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We can now prove our lower bound on the informed set during the growing phase.433

Proof of Theorem 9. Recall that,434

Xt := log
(

1 + |∆t+1|
|It|

)
.435

and if |It| ≤ n/2436

Et

[
|∆t+1|
|It|

]
:= δt.437

Moreover, let us define438

Yt :=
t−1∑
s=t1

(Xs −Es [ Xs ]) .439

By construction, (Yt)τ2−1
t=t1

is a zero-mean martingale with respect to It1 , It1+1, . . . , Iτ2−1.440

To apply concentration inequalities, we need to provide a bound (M) on Yt − Yt+1 when441

|It| ≤ n/2. In this case,442

Yt − Yt+1 =
t−1∑
s=t1

(Xs −Es [ Xs ])−
t∑

s=t1

(Xs −Es [ Xs ]) = − (Xt −Et [ Xt ]) .443

444

Now, using in (a) that Xt ≥ 0 deterministically, Jensen’s inequality in (b), and in (c) the
fact that P is a Cgrow-growing process, we obtain445

Yt − Yt+1
(a)
≤ Et

[
log
(

1 + |∆t+1|
|It|

)]
(b)
≤ log

(
1 + Et

[
|∆t+1|
|It|

])
(c)
≤ log (1 + Cgrow) := M.

(3)

446

447

We seek concentration for Yτ2 , however τ2 may be very large (even unbounded). Thus, we448

cannot use a standard version of Azuma’s inequality, and we need to additionally consider449

the conditional variances, Vart [ Xt ]. To this end, we bound the variance for any round t450

with |It| ≤ n/2, by using Lemma 13 in (a),451

Vart [ Xt ] = Vart

[
log
(

1 + |∆t+1|
|It|

)]
(a)
≤ Vart

[
|∆t+1|
|It|

]
= 1
|It|2

·Vart [ |∆t+1| ] .452

Using Lemma 2 and by recalling the definition δt = Et

[
|∆t+1|

|It|

]
, assuming |It| ≤ n/2, we get453

454

Vart [ Xt ] ≤ 1
|It|
·Et

[
|∆t+1|
|It|

]
= 1
|It|
· δt. (4)455

Note that by Claim 14, and using that |It| ≥ A for all t ≥ t1,456

τ2−1∑
t=t1

1
|It|
· δt ≤

1
A
· 4

ξ2

(
log
(

B

A

)
+ log (1 + Cgrow) + 1

)
.457

We are almost in a position to apply Lemma 12 to Yτ2 . The only slight tweak is that we will458

work with a martingale also stopped by τ := min{t ≥ t1 : |It| ≥ n/2}, namely459

Ŷt := Yt∧τ2∧τ ,460
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which is also a zero-mean martingale that satisfies Equations (3) and (4). The reason for461

this is that the bound (4) assumes the inequality |It| ≤ n/2 holds; we loose nothing doing462

this because |B| ≤ n/2.463

Now, applying Lemma 12 to Ŷt yields that for any h > 0 and t ≥ t1464

Pt

[
Ŷt < −h

]
< exp

− h2

2 ·
(

1
A ·

4
ξ2

(
log
(

B
A

)
+ log (1 + Cgrow) + 1

)
+ h

3 log (1 + Cgrow)
)
 .465

Let us set,466

h :=
(

log
(

B

A

)
+ log(1 + Cgrow) + 1

)2/3
≥ 1. (5)467

Thus, for this h and any round t ≥ t1,468

Pt1

[
Ŷt < −h

]
= exp

− h2

2
(

4h3/2

A·ξ2 + log(1+Cgrow)h
3

)
469

≤ exp

− h2

2
(

4h3/2

A·ξ2 + log(1+Cgrow)h3/2

3

)
470

= exp
(
−C2 · h1/2

)
, (6)471

472

where C2 is given by
(

8
A·ξ2 + 2

3 · log (1 + Cgrow)
)−1

> 0. Observe that the right-hand side473

of (6) is independent of t, this will be important later. However, at this point we must make474

the following claim:475

Conditional on |It1 | ≥ A, {Yτ2∧τ ≥ −h}∩{τ2∧τ <∞} ⊆ {|Iτ2∧τ | ≥ B}∩{τ2∧τ <∞}. (7)476

We prove this later, first we show how this, and earlier estimates, will establish the theorem.477

Returning to the proof, by (6), we have that for any integer t ≥ 0,478

Pt1 [ Yτ2∧τ < −h, τ2 ∧ τ ≤ t ] ≤ exp
(
−C2 · h1/2

)
.479

Since the above bound holds for any integer t ≥ 0, it follows that480

Pt1 [ Yτ2∧τ < −h, τ2 ∧ τ <∞ ] ≤ exp
(
−C2 · h1/2

)
. (8)481

Observe that |Iτ2∧τ | ≤ |Iτ2 | by monotonicity (P2). Using this fact, then (7), and finally (8),482

Pt1

[
|Iτ2 | < B

∣∣∣ |It1 | ≥ A
]

(9)483

≤ Pt1

[
|Iτ2∧τ | < B

∣∣∣ |It1 | ≥ A
]

484

= Pt1

[
|Iτ2∧τ | < B, τ2 ∧ τ <∞

∣∣∣ |It1 | ≥ A
]

+ Pt1

[
|Iτ2∧τ | < B, τ2 ∧ τ =∞

∣∣∣ |It1 | ≥ A
]

485

≤ Pt1

[
Yτ2∧τ < −h, τ2 ∧ τ <∞

∣∣∣ |It1 | ≥ A
]

+ Pt1

[
τ2 ∧ τ =∞

∣∣∣ |It1 | ≥ A
]

486

≤ exp
(
−C2 · h1/2

)
+ Pt1

[
τ2 =∞

∣∣∣ |It1 | ≥ A
]

,487488

which, recalling the definition (5) of h, gives the bound in the statement.489

It remains to prove the claimed containment in (7). For that we analyze the behavior of490

|Iτ2∧τ | when the event {Yτ2∧τ ≥ −h} ∩ {τ2 ∧ τ <∞} holds. We will split into two cases.491
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In the first case {Yτ2∧τ ≥ −h} ∩ {τ <∞, τ ≤ τ2}. Hence, |Iτ2∧τ | = |Iτ | ≥ n/2 ≥ B.492

In the second case {Yτ2∧τ ≥ −h} ∩ {τ2 <∞, τ2 < τ}. Thus, Yτ2∧τ = Yτ2 , and determinist-493

ically we have,494

Yτ2 =
τ2−1∑
t=t1

(Xt −Et [ Xt ]) ≥ −h.495

Rearranging this, we get that,496

τ2−1∑
t=t1

Xt ≥
τ2−1∑
t=t1

Et [ Xt ]− h =
τ2−1∑
t=t1

Et

[
log
(

1 + |∆t+1|
|It|

)]
− h497

≥ γ ·
τ2−1∑
t=t1

log
(

1 + Et

[
|∆t+1|
|It|

])
− h,498

499

where the last inequality follows from Lemma 11, and γ :=
(
1− (1− ξ) · |It|−ξ

)2 for ξ :=500

10−30. Since Et

[
|∆t+1|

|It|

]
= δt for rounds t with |It| ≤ n/2, we conclude that501

τ2−1∑
t=t1

Xt ≥ γ ·
τ2−1∑
t=t1

log (1 + δt)− h = γ ·
τ2−1∑
t=t1

log (1 + δt)−
(
log
(

B
A

)
+ log(1 + Cgrow) + 1

) 2
3 .502

Finally, by using that503

τ2−1∑
t=t1

log (1 + δt) ≥
log( B

A ) +
(
log
(

B
A

)
+ log(1 + Cgrow) + 1

)2/3

γ
,504

505

we conclude that
∑τ2−1

t=t1
Xt ≥ log( B

A ), i.e. that |Iτ2 | − |It1 | ≥ B −A, and thus |Iτ2 | ≥ B. ◀506

3.2 Shrinking phase: |Ut| ∈ [C, D]507

In this section we consider the shrinking of the number of informed vertices. We prove an508

upper bound on the number of uninformed vertices after a stopping time τ3 ≥ t2, which now509

aggregates over the expected shrinking factors between round t2 and τ3 − 1.510

▶ Theorem 15. Let (Gt)t≥0 be any sequence of dt-regular n-vertex graphs and consider511

a Cshrink-shrinking process P with expected shrinking factors δt. Let C, D be thresholds512

satisfying n/2 ≥ C ≥ D ≥ 3
4 and t2 ≥ 0 be a round such that |Ut2 | ≤ C. We define a stopping513

time τ3 ∈ N ∪ {∞} as514

τ3 := min
{

s ≥ t2 :
τ3−1∑
t=t2

log (1− δt) ≤ −
1
γ

(
log
(

C

D

)
+
(

log
(

C

D

)
− log (1− Cshrink) + 1

)2
3
)}

,515

where516

γ :=
(

1−min
(

1
2(1− Cshrink) ·D ,

1
2

))
.517

Then there is a constant C2 > 0 such that518

Pt2

[
|Uτ3 | > D

∣∣∣ |Ut2 | ≤ C
]
≤ exp

(
−C2 ·

(
log
(

C

D

))1/3
)

+Pt2

[
τ3 =∞

∣∣∣ |Ut2 | ≤ C
]

.519

The proof of Theorem 15 follows a similar flow to the proof of Theorem 9.520
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4 Applications521

In this section we will apply our general results to more concrete credibility functions,522

protocols and graph classes. We do not give an exhaustive list of all results that could be523

derived from our analysis framework, but instead choose to analyze some natural models with524

decaying credibility, and show that despite the flexible and abstract nature of the framework,525

we can recover some known results. Roughly speaking, in this section we will first present526

results that are very general but not necessarily tight, followed by more specific results that527

are asymptotically tight up to lower order terms.528

We will now outline the general approach followed in this section. To control the growth529

of |It| we break the process into j phases defined by time steps [ti, ti+1) for 1 ≤ i ≤ j. With530

each phase i we associate two values Ai and Bi, where Ai < Bi, such that at the beginning531

of the i-th phase the informed set has size at least Ai and w.h.p. when the phase ends the532

informed set has size at least Bi. We use the size of the informed set at the end of the533

previous phase as a lower bound on the size of the informed set throughout the current phase534

(i.e. Bi−1 = Ai). The w.h.p. guarantees on the length and growth of phases are provided by535

Corollary 18 and Corollary 19 (which are direct consequences of Theorem 9 and Theorem 15536

respectively). These results also give us expressions for the time to finish the phase i.e.537

ti+1 − ti.538

▶ Definition 16. For a round t ≥ 0 and any subset I ⊆ V with 1 ≤ |I| ≤ n− 1, let539

δt(I) := Et [ δt | It = I ] = 1
min(|It|, |Ut|)

·Et [ |∆t+1| | It = I ] ,540

be the expected growth factor, conditional on It = I (this is in fact, a deterministic quantity).541

Further, for a fixed range of [A, B], we define a worst-case lower bound on the expected growth542

factor (which only depends on t) by543

δ
[A,B]
t := min

I⊆V : A≤|I|≤B
δt(I).544

Note that δt(I) depends on the structure of the set I (e.g., the conductance), as well as on545

q(t). However, for the more coarse quantity δ
[A,B]
t , we only need A ≤ |I| ≤ B. In order to546

separate these two factors, we also define the following deterministic quantities,547

Φ(t) := min
I⊆V :

1≤|I|≤n−1

δt(I)
q(t) and Ψ(t) := max

I⊆V :
1≤|I|≤n−1

δt(I)
q(t) . (10)548

Moreover, we define Φ := mint≥0 Φ(t) and Ψ := maxt≥0 Ψ(t).549

▶ Definition 17. For any subset I ⊆ V with 1 ≤ |I| ≤ k ≤ n− 1,550

ϕk := min
1≤|I|≤k

φ(I).551

The following corollary is a direct consequence of Theorem 9.552

▶ Corollary 18. Let (Gt)t≥0 be any sequence of regular n-vertex graphs and consider a553

Cgrow-growing process P. Let A, B be thresholds satisfying 1 ≤ A ≤ B ≤ n/2. Moreover, let554

ν
[A,B]
t be deterministic quantities such that ν

[A,B]
t ≤ δ

[A,B]
t for all t ≥ 0. Let t′ ≥ 0 be any555

round such that |It′ | ≥ A, and define t∗ ∈ N ∪ {∞} as556

t∗ := min
{

s ≥ t′ :
s−1∑
t=t1

log
(

1 + ν
[A,B]
t

)
≥

log
(

B
A

)
+
(
log
(

B
A

)
+ log(1 + Cgrow) + 1

)2/3

(1− (1− ξ) ·A−ξ)2

}
,
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(11)557

where, ξ := 10−30. Assume that t∗ <∞, then there is a constant C2 > 0 such that558

Pt′

[
|It∗ | < B

∣∣∣ |It′ | ≥ A
]
≤ exp

(
−C2 ·

(
log
(

B

A

))1/3
)

.559

The following corollary is a direct consequence of Theorem 15.560

▶ Corollary 19. Let (Gt)t≥0 be any sequence of regular n-vertex graphs and consider a561

Cshrink-shrinking process P. Let C, D be thresholds that satisfy n/2 ≥ C ≥ D ≥ 3
4 . Moreover,562

let ν
[C,D]
t be deterministic quantities such that ν

[C,D]
t ≤ δ

[C,D]
t for all t ≥ 0. Let t′ ≥ 0 be a563

round such that |Ut′ | ≤ C. We define t̂ ∈ N ∪ {∞} as564

t̂ := min
{

s ≥ t′ :
s−1∑
t=t2

log
(

1− ν
[C,D]
t

)
≤ − 1

γ̃

(
log
(

C
D

)
+
(
log
(

C
D

)
− log (1− Cshrink) + 1

)2
3
)}

,565

where566

γ̃ :=
(

1−min
(

1
2(1− Cshrink) ·D ,

1
2

))
.567

Assume that t̂ <∞, then there is a constant C2 > 0 such that568

Pt′

[
|U

t̂
| > D

∣∣∣ |Ut′ | ≤ C
]
≤ exp

(
−C2 ·

(
log
(

C

D

))1/3
)

.569

4.1 Arbitrary Credibility570

The following upper bound is relatively straightforward to prove.571

▶ Theorem 20. Let (Gt)t≥0 be any sequence of regular n-vertex graphs, and q(t) be an572

arbitrary credibility function. Let T ≥ 1 be a deterministic number of rounds such that for573

some small ρ ∈ (0, 1) (not necessarily constant) it holds that,574

T −1∑
t=0

log
(

1 + Ψ(t) · q(t)
)
≤ log n + log ρ.575

Then, E[ |IT | ] ≤ ρ · n, and hence by Markov’s inequality, for any η > 0 (not necessarily576

constant),577

P
[
|IT | ≤ ρ · n1+η

]
≤ n−η.578

Next, we state two central results lower bounding the number of informed vertices, which579

both hold for arbitrary credibility functions. The first one is simple to prove.580

▶ Theorem 21. Let (Gt)t≥0 be any sequence of regular n-vertex graphs and κ > 0 be any581

constant. Consider a process P which is both a Cgrow-growing process and a Cshrink-shrinking582

process, where Cshrink ≤ 1−n−κ, with an arbitrary credibility function q(t). If T is a number583

of rounds satisfying,584

T −1∑
t=0

log
(

1 + δ
[1,n−1]
t

)
≥ (2/ξ + κ) · log n,585

where ξ := 10−30 then, we have586

P [ |IT | = n ] ≥ 1− o(1).587
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The next result applies to PUSH and PULL.588

▶ Theorem 22. Let (Gt)t≥0 be a sequence of regular n-vertex strong expander graphs, with589

largest non-trivial eigenvalues (λt)t≥0 and let λ := supt≥0 λt. Consider the PUSH or PULL590

model and let q(t) be an arbitrary credibility function such that for,591

ε := 1− max
t≥ 1

2 log(2) ·log(n)
q(t),592

we have that ε ≥ 1
log n . Let P ∈ {PUSH, PULL}, and assume that TP and q(t) satisfy,593

TP∑
t=0

log (1 + q(t)) ≥ 1
γP
· log n + 7 (log n)2/3(

1− (1− ξ) · (log n)−ξ
)2 ,594

where ξ := 10−30, γPULL := 1− λ, and γPUSH := 1− 7
√

λ + 1/ log n. Then,595

P
[
|ITP | ≥ n ·

(
1− exp(−

√
log n)

) ]
≥ 1− o(1).596

Matching previous works [10, 15], for PULL and fixed q(t) ∈ (0, 1) our result implies that597

in (1 + o(1)) · log n
log(1+q) rounds the majority of the vertices get informed. The same result also598

holds for PUSH. However, it is important to note that in the results above we do not consider599

the time to inform all n vertices, see Section 4.5 for more results on this model.600

4.2 Power-Law Credibility601

In this part we consider a natural credibility function with a polynomial decay.602

▶ Definition 23 (Power-law credibility). Let α ∈ (0,∞) be any constant . Then, the power-law603

credibility function is defined for any round t ≥ 0 as604

qα(t) := (t + 1)−α.605

In particular, in the first round the credibility function is 1.606

We first observe that if α > 1, we only inform a constant number of vertices in expectation.607

▶ Proposition 24. Let (Gt)t≥0 be any sequence of regular graphs, and consider a Growing608

Process such that Et

[
|∆t+1|

|It|

]
≤ Cgrow · q(t) for all t ≥ 0 . Then, for any constant α > 1,609

there is a constant κ = κ(α) > 0, such that for any T ≥ 0,610

E[ |IT | ] ≤ κ.611

The condition Et

[
|∆t+1|

|It|

]
≤ Cgrow · q(t) is a refinement of P2 in Definition 1, and is612

satisfied by the PULL, PUSH, PUSH-PULL processes as shown in Lemma 3 by choosing Cgrow613

as 1, 1, and 2, respectively.614

The next result considers the regime α ≤ 1, and proves that after a sufficiently long time,615

the rumor reaches all n vertices. In particular, when α = 1, the spreading time becomes616

polynomial in n (even if (Gt)t≥0 was a sequence of expander graphs).617

▶ Theorem 25. Let (Gt)t≥0 be any sequence of regular n-vertex graphs, and consider a process618

P that is both a Cgrow-growing process and a Cshrink-shrinking process, where Cshrink < 1619

is constant, with a power law credibility function. Then, for any constant α < 1, there are620

constants 0 < κ1 := κ1(α) < κ2 := κ2(α) such that for any T1 ≤ κ1 · ( 1
Ψ · log n)1/(1−α),621

T2 ≥ κ2 · ( 1
Φ · log n)1/(1−α) and any η > 0 we have,622
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(i) P
[
|IT1 | < n1/2+η

]
≥ 1− n−η,623

(ii) P [ |IT2 | = n ] ≥ 1− o(1).624

Further, if α = 1, then there are constants 0 < κ1 < κ2, such that for any T1 ≤
( 1

Ψ · n
)κ1

625

and T2 ≥
( 1

Φ · n
)κ2 ,626

(iii) P
[
|IT1 | < n1/2+η

]
≥ 1− n−η,627

(iv) P [ |IT2 | = n ] ≥ 1− o(1).628

4.3 Additive Credibility629

▶ Definition 26 (Additive credibility). Let α ∈ (0, 1) . Then, the additive credibility function630

is defined for any round t ≥ 0 as631

qα(t) = q(t) := (1− t · α)+,632

where z+ = max(z, 0). In particular, in the first round (t = 0) the credibility function is 1.633

In comparison to the power-law credibility function, the additive credibility function has634

a time-independent decrease. As we will see below, the interesting regime (for expanders) is635

when α = Θ(1/ log n). That means, unlike the power-law-credibility, the additive credibility636

function remains close to 1 for a significant number of rounds. However, after O(log2 n) steps,637

the credibility becomes polynomially small; much smaller than any power-law credibility at638

this point.639

Let us consider the additive credibility function in the PUSH and PULL model for regular640

graphs. We also observe that if we let T = 1/α, IT is the maximal set of informed vertices641

in every execution, as q(t) = 0 for t ≥ T . We start by proving an upper bound on IT for642

T = 1/α, followed by a lower bound. We remark that, due to the specific nature of q(t), we643

can use Stirling’s approximation to determine a rather precise threshold for the parameter α.644

▶ Theorem 27. Let (Gt)t≥0 be a sequence of regular n-vertex strong expander graphs,645

and consider the PUSH or PULL protocol with an additive credibility function. Let P ∈646

{PUSH, PULL}.647

(i) Let α ≥ log( 4
e )

log n+log ζ , where 1
n < ζ < 1√

2·2 . Then, for any T := 1/α and for any η > 0 (not648

necessarily constant),649

P
[
|IT | ≤

√
2 · ζ · n1+η

]
≥ 1− n−η.650

(ii) Furthermore, let α ≤ log( 4
e )

log
(

2
√

2·exp
(

1
γP

· log n+7(log n)2/3

(1−(1−ξ)·(log n)−ξ)2

)) , for γP as in Theorem 22. Then,651

for T := 1/α,652

P
[
|IT | ≥ n ·

(
1− exp(−

√
log n)

) ]
≥ 1− o(1).653

4.4 Multiplicative Credibility654

▶ Definition 28 (Multiplicative credibility). Let α ∈ (0, 1) . Then, the multiplicative credibility655

function is defined for any round t ≥ 0 as656

qα(t) := (1− α)t.657

In particular, in the first round the credibility function is 1.658

The next result is the multiplicative analogue of Theorem 27.659
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▶ Theorem 29. Let (Gt)t≥0 be any sequence of regular n-vertex strong expander graphs, and660

consider the PUSH or PULL protocol with a multiplicative credibility function . Then, there661

are constants κ1 ≤ 1
2 and κ2 ≥ 1

8 , such that the following holds.662

(i) If α ≥ κ1
log n , then for any T ≥ 1, Et [ |IT | ] ≤

√
n, and hence for any η > 0 (not necessarily663

constant),664

P
[
|IT | ≤ n1/2+η

]
≥ 1− n−η.665

(ii) Further, if α ≤ κ2
log n , then, for any T ≥ 4 log n,666

P
[
|IT | ≥ n ·

(
1− exp(−(log n)1/2)

) ]
≥ 1− o(1).667

▶ Remark 30. We believe that with a more refined analysis it would be also possible to show668

that κ2 ≥ (1− o(1)) · κ1, but for the sake of space we only show a weaker dichotomy here.669

4.5 Fixed Credibility670

Here, we consider q(t) = q to be constant over time (however, q(t) may depend on n). This671

model was studied in previous works [10, 15] on complete graphs and strong expanders672

(1), respectively (under the guise of “robustness”). Here we provide upper bounds for the673

spreading time of the PUSH, PULL and PUSH-PULL model on regular strong expander graphs,674

using our framework. As the analysis between the protocols are very similar, we will only675

give details in the case of PUSH here.676

▶ Theorem 31 (cf. [10]). Let (Gt)t≥0 be any sequence of regular n-vertex strong expander677

graphs. Let the credibility function q(t) = q be constant in (0, 1− ε] for some constant ε > 0678

and define the following times679

TPUSH := (1 + o(1)) ·
(

1
log(1+q) + 1

q

)
· log n,680

TPULL := (1 + o(1)) ·
(

1
log(1+q) −

1
log(1−q)

)
· log n,681

TPUSH-PULL := (1 + o(1)) ·
(

1
log(1+2q) + 1

q−log(1−q)

)
· log n.682

Then for each P ∈ {PUSH, PULL, PUSH-PULL} we have683

P [ |ITP | = n ] ≥ 1− o(1).684

We note that the corresponding result [10, Theorem 1.2] in the original paper is stated only685

for static graphs, however it is likely that the methods in that paper would also extend to686

dynamic graphs.687

In the proof of Theorem 31 we divide the process into 6 phases, based on the size of688

informed set. In each phase, we apply either Corollary 18 (if |It| ≤ n/2) or Corollary 19 (if689

|It| ≥ n/2), using deterministic lower bounds on the growth/shrinking factors. An overview690

of the running times of these phases, and the size of the informed set when they start/finish,691

is given in Table 3, also for the PULL and PUSH-PULL processes.692

5 Conclusions693

In this work, we presented a general framework for analyzing spreading processes with a694

time-dependent credibility function. The key idea is to link the spreading progress to an695

aggregate sum of growth (or shrinking) factors over consecutive rounds. In that way, our696

approach generalizes various previous works that were based on estimating the worst-case697
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Phase Start/finish sizes PUSH PULL PUSH-PULL

1 A = 1, B = log n log log n
log(1+q)

log log n
log(1+q)

log log n
log(1+2q)

2 A = log n, B = n
log n

log n
log(1+q)

log n
log(1+q)

log n
log(1+2q)

3 A = n
log n , B = n

2
log log n
log(1+q)

log log n
log(1+q)

log log n
log(1+2q)

4 C = n/2, D = n
log n

1
q log log n log log n

− log(1−q)
log log n

q−log(1−q)

5 C = n
log n , D = log n 1

q log n log n
− log(1−q)

log n
q−log(1−q)

6 C = log n, D = 3
4

1
q log log n log log n

− log(1−q)
log log n

q−log(1−q)

Table 3 Runtimes for PUSH, PULL and PUSH-PULL for different phases obtained by Corollary 18
(row 1,2,3) and Corollary 19 (row 4,5,6), all bounds hold w.h.p.. The upper bounds contained within
cells shaded in yellow hold up to a multiplicative (1 + o(1)) factor and it is these bound which
contribute to the to total run time, all other bounds hold up to a multiplicative constant and are
negligible. Our result for PULL holds only when q is bounded away from 1, the remaining cases where
q is equal (or tending to) 1 are covered in [15, 10].

growth across all sets via the conductance of the graph. We also obtained several dichotomy698

results in terms of the number of vertices that get informed, both for general and more699

concrete credibility functions (see Section 4).700

In terms of open problems, a natural direction is to generalize our main technical results701

from regular graphs to arbitrary graphs, which we believe to be doable. Another avenue702

for future research is to allow more complex interactions between the credibility function703

q(t) and the evolving set of informed vertices It, which could more accurately model an704

external influence on the network (e.g., fact-checkers). Lastly, one could consider more705

general spreading processes including other epidemic models (e.g., SIR model or independent706

cascade model), majority dynamics or variants of the voter model, in which informed vertices707

may also become uninformed in future steps.708
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