Structural and combinatorial properties of
2-swap word permutation graphs

Abstract. In this paper, we study the graph induced by the 2-swap
permutation on words with a fixed Parikh vector. A 2-swap is defined as
a pair of positions s = (4,j) where the word w induced by the swap s on
visv[1v[2]...v[i — 1v[jlv[i + 1]...v[j — 1]v[i]v[j + 1] ... v[n].

With these permutations, we define the Configuration Graph, G(P) for a
given Parikh vector. Each vertex in G(P) corresponds to a unique word
with the Parikh vector P, with an edge between any pair of words v
and w if there exists a swap s such that v o s = w. We provide several
key combinatorial properties of this graph, including the exact diame-
ter of this graph, the clique number of the graph, and the relationships
between subgraphs within this graph. Additionally, we show that for ev-
ery vertex in the graph, there exists a Hamiltonian path starting at this
vertex. Finally, we provide an algorithm enumerating these paths from
a given input word of length n with a delay of at most O(logn) between
outputting edges, requiring O(nlogn) preprocessing.

1 Introduction

In information theory and computer science, there are several well-known edit
distances between strings which are based on insertions, deletions and substitu-
tions of single characters or various permutations of several characters, including
swaps of adjacent or non-adjacent characters, shuffling, etc. [14, 15, 23].

These operations are well motivated by problems in physical science, for ex-
ample, the biological swaps which occur at a gene level are non-adjacent swap
operations of two symbols (mutation swap operator) representing gene muta-
tions [8]. In recent work on Crystal Structure Prediction the swap operation on
a pair of symbols in a given word representing layers of atomic structures was
used to generate new permutations of those layers, with the aim of exploring
the configuration space of crystal structures [13]. In computer science string-
to-string correction has been studied for adjacent swaps [22] and also in the
context of sorting networks [9], motion on graphs and diameter of permutation
groups [21]. In group theory, the distance between two permutations (the Cayley
distance) measures the minimum number of transpositions of elements needed
to turn one into the other [20].

A configuration graph is a graph where words (also known as strings) are
represented by vertices and operations by edges between the strings. For ex-
ample, one may define the operations as the standard suite of edits (insertions,
deletions, and substitutions), with each edge corresponding to a pair of words at
an edit distance of one. In such a graph, the distance between any pair of words



corresponds to the edit distance between these words. In this paper, we study the
structural properties of such graphs defined by swap operations of two symbols
on a given word (2-swap permutations), a permutation defined by a pair of in-
dices (4, j) and changing a word w by substituting the symbol at position ¢ with
that at position j, and the symbol at position j with that at position i. As the
number of occurrences of each symbol in a given word can not be changed under
this operation, we restrict our work to only those words with a given Parikh
vector!. We focus on studying several fundamental properties of the structure
of these graphs, most notably the diameter, clique number, number of cliques,
and the Hamiltonicity of the graph. Similar problems have been heavily studied
for Cayley graphs [20], and permutation graphs [16]. It has been conjectured
that the diameter of the symmetric group of degree n is polynomially bounded
in n, where only recently the exponential upper bound [10] was replaced by a
quasipolynomial upper bound [17]. The diameter problem has additionally been
studied with respect to a random pair of generators for symmetric groups [18].
In general, finding the diameter of a Cayley graph of a permutation group is
NP-hard and finding the distance between two permutations in directed Cayley
graphs of permutation groups is PSPACE-hard [19].

To develop efficient exploration strategies for these graphs it is essential to

investigate structural and combinatorial properties. As mentioned above the
problem is motivated by problems arising in chemistry regarding Crystal Struc-
ture Prediction (CSP) which is computationally intractable in general [4,5]. In
current tools [13, 12], chemists rely on representing crystal structures as a multi-
set of discrete blocks, with optimisation performed via a series of permutations,
corresponding to swapping blocks. Understanding reachability properties under
the swap operations can help to evaluate and improve various heuristic space
exploration tools and extend related combinatorial toolbox [6, 7].
Our Results We provide several key combinatorial properties of the graph de-
fined by 2-swap permutations over a given word. First, we show that this graph is
locally isomorphic, that is, the subgraph of radius r centred on any pair of vertices
w and u are isomorphic. We strengthen this by providing an exact diameter on
the graph for any given Parikh vector. Finally, we show that, for every vertex v in
the graph, there is a Hamiltonian path starting at v. We build upon this by pro-
viding a novel algorithm for enumerating the Hamiltonian path starting at any
given vertex v in a binary graph with at most O(logn) delay between outputting
the swaps corresponding to the transitions made in the graph. Our enumeration
results correlate well with the existing work on the enumeration of words. This
includes work on explicitly outputting each word with linear delay [3,26], or
outputting an implicit representation of each word with either constant or loga-
rithmic delay relative to the length of the words [1, 2,24, 27, 28]. The surveys [25,
29] provide a comprehensive overview of a wide range of enumeration results.

! The Parikh vector of a word w denotes a vector with the number of occurrences of
the symbols in the word w.
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2 Preliminaries

Let N = {1,2,...} denote the set of natural numbers, and Ny = N U {0}. We
denote by [n] the set {1,2,...,n} and by [¢,n] the set {i,i 4+ 1,...,n}, for all
i,n € Ng,i < n. An alphabet 3 is an ordered, finite set of symbols. Tacitly
assume that the alphabet X' = [0] = {1,2,...,0}, where o = |X|. We treat each
symbol in X both as a symbol and by the numeric value, i.e. i € X represents
both the symbol i and the integer i. A word is a finite sequence of symbols from
a given alphabet. The length of a word w, denoted |w], is the number of symbols
in the sequence. The notation X" denotes the set of n-length words defined over
the alphabet X', and the notation X* denotes the set of all words defined over X.

For i € [Jwl], the notation wli] is used to denote the i*" symbol in w, and
for the pair i, j € [Jwl|], w[i, j] is used to denote the sequence w(ilw[i+1]... w[j],
such a sequence is called a factor of w. We abuse this notation by defining, for
any pair 4, j € [|w|] such that j < i, wl[i, j| = €, where € denotes the empty string.

Definition 1 (2-swap). Given a word w € X™ and pair i,j € [n],i < j such
that wli] # w[j], the 2-swap of w by (i,7), denoted w o (i,7), returns the word

w1, — wljlwli + 1,7 — LJw[ilw[j + 1,n].
Ezample 1. Given the word w = 11221122 and pair (2,7), wo(2,7) = 12221112.

Given a word w € X", the Parikh vector of w, denoted P(w) is the o-length
vector such that the i*" entry of P(w) contains the number of occurrences of
symbol ¢ in w, formally, for ¢ € [o] P(w)[i]] = |{j € [n] | w[j] = i}|, where
n = |w|. For example, the word w = 11221122 has Parikh vector (4,4). The
set of words with a given Parikh vector P over the alphabet X is denoted X7,
formally ©F = {w € ¥* | P(w) = P}. It is notable that | 2| = ﬁ;lg[z],
Definition 2. For a given alphabet X and Parikh vector P, the configuration
graph of X¥ is the undirected graph G(P) = {V(P), E(P)} where:

- V(P) = {v, |we X}
— E(P) = {{vw,vu} € V(P) x V(P) | 3i,j € [n] s.t. wo (4,5) = u}.

Informally, the configuration graph for a given Parikh vector P is the graph
with each vertex corresponding to some word in X, and each edge connecting
every pair of words w, u € X* such that there exists some 2-swap transforming w
into u. Figure 1 provides an example of the configuration graph when P = (3, 2).

A path (also called a walk) in a graph is an ordered set of edges such that
the second vertex in the i*" edge is the first vertex in the (i + 1) edge, i.e.
p = {(v1,v2), (v2,v3), ..., (Vp|,vp| +1)}. Note that a path of length 4 visits i + 1
vertices. A path p wvisits a vertex v if there exists some edge e € p such that
v € e. A cycle (also called a circuit) is a path such that the first vertex visited is
the same as the last. A Hamiltonian path p is a path visiting each vertex exactly
once, i.e. for every v € V, there exists at most two edges e;,e3 € p such that



Fig. 1. The configuration graph G(3,2) with Hamiltonian path shown in red.

v € e1 and v € e. A cycle is Hamiltonian if it is a Hamiltonian path and a cycle.
A path p covers a set of vertices V' if, for every v € V', there exists some ¢ € p
such that v € e. Note that a Hamiltonian path is a path cover of every vertex in
the graph. and a Hamiltonian cycle is a cycle cover of every vertex in the graph.

The distance between a pair of vertices v,u € V, denoted D(v,u) in the graph
G is the smallest value d € Ny for which there exists some path p of length d
covering both v and w, i.e. the minimum number of edges needed to move from v
to u. If v = u, then D(v,u) is defined as 0. The diameter of a graph G is the max-
imum distance between any pair of vertices in the graph, i.e. max, ey D(v, u).

Given two graphs G = (V,E) and G’ = (V',E'), G is isomorphic to G’
if there exists a bijective mapping f : V — V' such that, for every v,u € V,
(v,u) € E if and only if (f(v), f(u)) € E'. The notation G = G’ is used to denote
that G is isomorphic to G', and G 2 G’ to denote that G is not isomorphic to
G’. A subgraph of a graph G = (V, E) is a graph G’ = (V', E’) such that V' CV
and E' C E. A cliqgue G' = (V', E’) is a subgraph, G’ C G which is complete
(i.e. for all u,v € G', (u,v) € E’). And the clique number w of a graph G is the
size of the largest clique in G.

3 Basic Properties of the Configuration Graph

In this section, we provide a set of combinatorial results on the configuration
graph. We first show that every subgraph of the configuration graph G(p) =
(V,E) with the vertex set V/(v) = {u € V | D(v,u) < ¢}, and edge set
E' = (V' x V)N E are isomorphic. We build on this by providing a tight bound
on the diameter of these graphs. We start by considering some local structures
within the graph.
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Lemma 1. Given a Parikh vector P, each vertex v € V(P) belongs to
> jes [ies\ gy Plil mazimal cliques, with cardinality in the set {P[i] +1[i €

Proof. Consider first the words with Parikh vector P = (k,1). Note that every
word in XF consists of k copies of the symbol 1, and one copy of the symbol
2. Therefore, given any pair of words w,u € XF such that w[i] = u[j] = 2, the
2-swap (i,7) transforms w into u and hence there exists some edge between w
and u. Hence G(P) must be a complete graph, a clique, of size k + 1.

In the general case, consider the word w € X¥ where P = (kq, ko, ..., ko),
and n = ), _pki. Let Pos(w,i) = {j € [n] | w[j] = i}. Given i,j € [o],i # j,
let 41,49 € Pos(w,4) and j; € Pos(w, j) be a set of indexes. Let v1 = w o (i1, j1)
and Vo = W O (iQ,jl). Then, Ul[il] = Ug[ig],vg[iz] = Ul[il], and ’Ul[jl] = Ug[jl].
Further, for every ¢ € [n]| such that ¢ ¢ {i1,i2,71}, v1[f] = v2[f] as these posi-
tions are unchanged by the swaps. Therefore, v1 = vq o (i1, 72), and hence these
words are connected in G(p). Further, as this holds for any j; € Pos(v,j), the
set of words induced by the swaps (4, £), for some fixed ¢ € Pos(w, %) correspond
to a clique of size P[j] + 1. Therefore, there exists J[,c s\ ;3 Pli] cliques of size
P[j] + 1 including w, for any j € X.

We now show that the cliques induced by the set of swaps S(i,7) = {(¢',7) |
i’ € Pos(w,w[i])} are maximal. Let C(i,5,w) = {w}U{wo (¢,5) | (i',7) €
S(i,7)}, i.e. the clique induced by the set of swaps in S(7,j). Consider a set of
swaps, (i1, 1), (i2,j1), (i1,J2) and (ig, j2), where i1,is € Pos(w,i) and ji,j2 €
POS(’LU,j). Let v1,1 = WO (2'1,]'1),11271 = W ©° (Z.Q,jl),’ULQ = W o (il,jg) and
V2,2 = WO (ig,jg). Note that {w,le,vg,l} Q C(i,jl), {w,vl,l,vlg} Q C(j,il),
{w,v2,1,v22} € C(i, j2) and {w, v21,v22} € C(j,42).

We now claim that there exists no swap transforming v ; in to vg 2. Observe
first that, for every ¢ € [|w|] such that £ ¢ {i1,d2, 1,2}, vi1[¢] = v22[f]. As
v1,1[01] = v2,2[j1], and v1 1[j1] = v2,2]iz], exactly two swaps are needed to trans-
form vy 1 into vy 5. Therefore, for any pair of swaps (i1, j1), (i2, j2) € Pos(i, w) x
Pos(j,w), such that i1 # i and j1 # ja, the words wo (i1, j1) and wo (iq, j2) are
not adjacent in G(v). Similarly, given a set of indices i’ € Pos(i, w), j' € Pos(j, w)
and ¢ € Pos(¢,w) and swaps (¢',5'), (¢, j'), observe that as w[j’] # w[¢'], the
distance between w o (i, j') and w o (i, ¢') is 2. Therefore, every clique induced
by the set of swaps S(i,5) = {(¢/,7) | i € Pos(w,w[i])} is maximal.

Corollary 1. Let v € V(P) be the vertex in G(P) corresponding to the word
w € XF. Then, v belongs only to the maximal cliques corresponding to the set
of words {wo (i,7) | © € Pos(w,x)} for some fixed symbol x € X and position
J € [lwl], wlj] # =, where Pos(w, z) = {i € [Jw]] |, wli] = «}.

Now since the edges in each maximal clique only swap two types of symbols
we have the following corollary for the number of cliques.

(Zkes\qigy PR

Corollary 2. There are 3 ; »exys e PTRT

mazimal cliques in G(p).

Corollary 3. The clique number w(G(P)) is equal to max;e[s) P[i] + 1.



Lemma 2. Let G,.(v) be the subgraph of G(P) induced by all vertices of distance
at most r away from a given vertex v. Then, for any pair of vertices u,v € V
and gwen any r € ", Gy(u) = G, (v).

Proof. Let m € S,, be the permutation such that v o7 = v. We use the permu-
tation 7 to define an isomorphism f : G,(u) — G,(v) such that f(w) = wo .
In order to show that f is an isomorphism we need to show that it preserves
adjacency. We start by showing that for every word, w € G1(u), f(w) € G1(v).

Let 7 = (71, 72) be the 2-swap such that w = u o 7. We now have 3 cases for
how 7 and 7 interact, either none of the indices in 7 are changed by 7, just one
of 71 or 15 are changed by 7, or both 7 and 75 are changed by 7. In the first case,
f(w) is adjacent to v as voT = f(w). In the second case, let (71, 72) be a swap that
that 7[r] = 71, i.e. 71 is not changed by the permutation . We define a new swap
7/ such that vo7’ = f(w). Let x,y € [n] be the positions in v such that 7[z] = 7
and 7[m2] = y. Now, let 7/ = (71, y). Observe that v[y] = w[rz], and v[r] = w[r].
Therefore, the word v o 7/ = u o 7 o . Note that as the ordering of the indexes
in the swap does not change the swap, the same argument holds for the case
when 7[m3] = 72. In the final case, let 7/ = (7[r1], 7[72]). Note that by arguments
above, u[r[m]] = v[r1] and u[n[r2]] = v[re], and hence vor’ = uoTom. Repeating
this argument for each word at distance ¢ € [1,7] proves this statement.

We now provide the exact value of the diameter of any configuration graph
G(P). Theorem 1 states the explicit diameter of the graph, with the remainder
of the section dedicated to proving this result.

Theorem 1. The diameter of the Configuration Graph, G(P) for a given Parikh
vector P is n — max;e(,] Pli].

Theorem 1 is proven by first showing that the upper bound matches n —
max;e(y) Pli] (Lemma 3). We then show that the lower bound on the diameter
matches the upper bound (Lemma 5), concluding our proof of Theorem 1.

Lemma 3 (Upper Bound of Diameter). The diameter of the Configuration
Graph, G(P) for a given Parikh vector Pis at most n — max;e(y] P[i].

Proof (Proof of Upper Bound). This claim is proven by providing a procedure
to determine a sequence of n — max;c[,] P[i] swaps to transform any word
w € X into some word v € XF. We assume, without loss of generality, that
P[1] > P[2] > --+ > PJo].

This procedure operates by iterating over the set of symbols in X', and the
set of occurrences of each symbol in the word. At each step, we have a symbol
x € [2,0] and index k € [1, P[z]]. The procedure finds the position i of the k"
appearance of symbol z in w, and the position j of the k** appearance of z in v.
Formally, i is the value such that w[i] = « and |[{i’ € [1,i — 1] | w[i'] =z} =k
and j the value such that v[j] = z and |{j’ € [1,j — 1] | v[j'] = z}| = k. Finally,
the algorithm adds the swap (7, ) to the set of swaps, and then moves to the
next symbol.
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Algorithm 1 Procedure to select 2-swaps to generate a path from w to v.
1: S« 0 > Set of 2-swaps
2: for x € X'\ {1} do
3: for 1 <k <P, do
i « index of k' occurrence of z in w
j « index of k' occurrence of x in v
S+ SU(i,7)
end for
Apply all 2-swaps in S to w and set S < ()
end for

This procedure requires one swap for each symbol in w other than 1, giving
a total of n — max;c[,] P[i] swaps. Note that after each swap, the symbol at
position j of the word is the symbol v[j]. Therefore, after all swaps have been
applied, the symbol at position j € {i € [1, |w]] | v[i] € X'\ {1}} must equal v[j].
By extension, for any index ¢ such that v[i] = 1, the symbol at position ¢ must
be 1, and thus equal v[i]. Therefore this procedure transforms w into v.

In order to prove the lower bound on the diameter (i.e. that diam(G) >
n — max;e[,] P[i]) we introduce a new auxiliary structure, the 2-swap graph.
Informally, the 2-swap graph, defined for a pair of words w,v € XF and de-
noted G(w,v) = {V(w,v), E(w,v)} is a directed graph such that the edge
(us,u;) € V(w,v) x V(w,v) if and only if w[i] = v[j]. Note that this defini-
tion allows for self-loops.

Definition 3 (2-swap Graph). Let w,v € XT be a pair of words. The 2-
swap graph G(w,v) = {V(w,v), E(w,v)} contains the vertex set V(w,v) =
(u1,uz,...,up|) and edge set E(v,w) = {(vi,v;) € V(w,v) x V(w,v) | wli] =
v[j] orv[i] = w[j]}. The edge set, E, is defined as follows, for all i,j € [n] there
exists an edge (i,7) € E if and only if wi] = v[j].

An example of the 2-swap graph is given in Figure 2.

Lemma 4. Let G(w,v) be a graph constructed as above for transforming w into
v using 2-swaps. Then, any cycle cover C of G(w,v) can be transformed into a
set of 2-swaps to transform w into v.

Proof. Let C € C be a cycle where C = (e!,¢?,...,el¢l and e} = eiﬂ med |C]
The set of 2-swaps is constructed as follows. Starting with ¢ = 1 in increasing
value of i € [|C] — 1], the 2-swap (el, e}) is added to the set of 2-swaps S.
Assume, for the sake of contradiction, that S does not correspond to a proper
set of 2-swaps converting w into v. Then, there must exist some symbol at
position ¢ such that the symbol wli] is placed at some position j such that
wli] # v[j]. As w; must be placed at some position that is connected to node ¢ by
an edge, there must be an edge between i and j, hence w; = v;, contradicting the
construction of G(w,v). Therefore, S must correspond to a proper set of 2-swaps.



Fig. 2. The graph G(aaabbe, bcbaaa) with the edge (4, 7) labelled by w[i] = v[j].

Corollary 4. Let C be a cycle cover of G(w,v). Then there exists a set of
Y ecc lcl =1 2-swaps transforming w in to v.

Corollary 5. Let S be the smallest set of 2-swaps transforming w in to v, then
S must correspond to a vertex disjoint cycle cover of G(w,v).

Proof. For the sake of contradiction, let S be the smallest set of 2-swaps trans-
forming w into v, corresponding to the cycle cover C where C is not vertex
disjoint. Let c1,co € C be a pair of cycles sharing some vertex u. Then, following
the construction above, the symbol w,, must be used in two separate positions in
v, contradicting the assumption that v can be constructed from w using 2-swaps.
Hence S must correspond to a vertex disjoint cycle cover.

Corollary 6. Given a pair of words w,v € XT, the minimum set of 2-swaps
transforming w into v S corresponds to the vertex disjoint cycle cover of G(w,v)
mazximising the number of cycles.

Lemma 5 (Lower Bound). The diameter of G(p) is at least n—max;c[,] Pl[i].

Proof. We assume w.l.o.g. that P[1] > P[2] > --- > Plo]. Let w,v € X¥ satisfy:

w=(123...0)7(123.. .0 — 1)Plet=Plol 1 PRI-PE]

and
v=(23...00)PN23.. (¢ —1)1)Plet=Plol 1 POI=PE]

i.e. w is made up of P[1] subwords, each of which are of the form 12...k, and v is
made up of the same subwords as w but each of them has been cyclically shifted
by one (for example when P = (3,2,1) we have w = 123121 and v = 231211).
Following Corollary 6, the minimum number of 2-swaps needed to convert w
into v can be derived from a disjoint vertex cover of G(w,v) with the maximum
number of cycles.

Observe that any occurrence of symbol ¢ must have an outgoing edge in
G(w,v) to symbol 1, and an incoming edge from symbol o — 1. Repeating this
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logic, each instance of ¢ must be contained within a cycle of length ¢. Removing
each such cycles and repeating this argument gives a set of P[1] cycles, with
P[o] cycles of length o, Plo — 1] — P[o] cycles of length ¢ — 1, and generally
P[i] — P[i + 1] cycles of length i. This gives the number of 2-swaps needed to
transform w to v being a minimum of n — P[1] = n — max;¢[4] P[i].

Theorem 1 follows from Lemmas 3 and 5.

4 Hamiltonicity

In this section, we prove that the configuration graph contains Hamiltonian paths
and, for binary alphabets, we provide an efficient algorithm for enumerating a
Hamiltonian path. We first show that every configuration graph over a binary
Parikh vector is Hamiltonian. This is then generalised to alphabets of size o,
using the binary case to build Hamiltonian paths with alphabets of size o.
Binary Alphabets For notational conciseness, given a symbol a the notation @
is used to denote @ € X, a # @, i.e. if a = 1, then @ = 2. We prove Hamiltonicity
via a recursive approach that forms the basis for our enumeration algorithm.
Our proof works by taking an arbitrary word in the graph w, and constructing
a path starting with w. At each step of the path, the idea is to find the shortest
suffix of w such that both symbols in X appear in the suffix. Letting w = ps, the
path is constructed by first forming a path containing every word ps’, for every
s € XP() ie. apath from w transitioning through every word formed by main-
taining the prefix p and permuting the suffix s. Once every such word has been
added to the path, the algorithm repeats this process by performing some swap
of the form (|p|,7) where i € [|p|+1,|w]|], i.e. a swap taking the last symbol in the
prefix p, and replacing it with the symbol w||p|] from some position in the suffix.

This process is repeated, considering increasingly long suffixes, until every
word has been covered by the path. Using this approach, we ensure that every
word with the same prefix is added to the path first, before shortening the prefix.
Algorithm 2 outlines this logic within the context of the enumeration problem,
where each transition is output while constructing the path.

Theorem 2. For every Parikh vector P € N3 and word w € X, there exists a
Hamiltonian path starting at w in the configuration graph G(P) = (V(P), E(P)).

As stated in [11] the binary reflected grey code gives an ordering for the
words over a Binary alphabet of a certain Parikh Vector (k,n — k) with a single
2-swap between each subsequent word. This does indeed prove Theorem 2 by
providing a Hamiltonian Circuit for a given binary Parikh vector (it is worth
noting that following a Hamiltonian Circuit starting at w gives a Hamiltonian
path from W.) However, we also present our own inductive proof for this case
to provide an explanation of our enumeration algorithm.

Proof. We prove this statement in a recursive manner. As a base case, consider
the three vectors of length 2, (2,0), (0,2) and (1,1). Note that there exists only
a single word with the Parikh vectors (2,0) or (0,2), and thus the graph must,
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trivially, be Hamiltonian. For the Parikh vector (1, 1), there exists only the words
12 and 21, connected by the 2-swap (1, 2) and therefore is also Hamiltonian path
and it can be found stating at either word.

In the general case, assume that for every Parikh vector P’ = (P{, P3) with
P{ + Pj < {, the graph G(P') contains a Hamiltonian path, and further there
exists such a path starting at every word in P Now, let P = (Py, Py) be an
arbitrary Parikh vector such that P, + P, = ¢. Given some word w € P observe
that there must exist some Hamiltonian path starting at the word w2, ¢] in the
subgraph G'(P) = (V/(P),E'(P)) where V'(P) = {u € V(P) | u[l] = w[1]}
and E'(P) = (V/(P) x V/(P)) N E(P). Let w' be the last word visited by the
Hamiltonian path in G’(P), and let i be some position in w’ such that w'[i] =
w(1]. Note that there must exist Hamiltonian path starting at (w o (1,4))[2, /]
in the subgraph G”(P) = (V" (P), E"(P)) where V"(P) = {u € V(P) | u[l] =
w[1]} and E”(P) = (V"(P) x V"(P)) N E(P). As every vertex in G(P) is either
in the subgraph G'(P) or G (P), the Hamiltonian paths starting at w in G’(P)
and at w’ o (1,7) in G”(P) cover the complete graph. Further, as these paths
are connected, there exists a Hamiltonian path starting at the arbitrary word
w € X and therefore the Theorem holds.

Enumeration. We now provide our enumeration algorithm. Rather than output
each word completely, we instead maintain the current state of the word in mem-
ory and output the swaps taken at each step, corresponding to the transitions.
This way, at any given step the algorithm may be paused and the current word
fully output, while the full path can be reconstructed from only the output.
There are two key challenges behind this algorithm. First is the problem of de-
ciding the next swap to be taken to move from the current word in the graph to
the next word. Second, is the problem of minimising the worst-case delay in the
output of these swaps, keeping in mind that the output is of constant size.
High-Level Idea. From a given word w with Parikh vector, P, the algorithm works
by first finding the shortest suffix s of w such that there exists some pair of in-
dexes i, j for which s[i] # s[j]. Using this suffix and letting w = us, we find a
path through every vertex in G(P) with the prefix u. Note that following the
same arguments as Theorem 2, such a path must exist. Once every word in G(P)
with the prefix u has been visited by the path, the algorithm then enumerates
every word with the prefix u[1, |u| — 1], extending the current path. When adding
every word with the prefix u[l, |u| — 1] to the path, note that every word with the
prefix u has already been added, thus all that is left is to add those words with
the prefix u[l, |u| — 1u[|u|], which is achieved via the same process as before.
The swaps are determined as follows. From the initial word w, let R; be
the last occurrence of the symbol 1 in w, and let Re be the last occurrence
of 2 in w. The first swap is made between min(R;, Ry) and min(R;, Rs) + 1,
with the algorithm then iterating through every word with the Parikh vector

P [wmin(Ry, Rs),|w|]] — P |w[min(Ry, Rg)]].
In the general case, a call is made to the algorithm with a Parikh vector

P = (P, Py), with the current word w fixed, and the assumption that no word
with the prefix w[1, |w| — (P1 + P2)] has been added to the path other than w.
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The algorithm, therefore, is tasked with iterating through every word with the
current prefix. Let R; be the last occurrence of the symbol 1, and Rs be the last
occurrence of the symbol 2 in the current word. The algorithm first enumerates
every word with the prefix w[l, min(R;, R2) — 1]. Noting that there exists only a
single word with the prefix w[l, min(Ry, R2)], it is sufficient to only enumerate
through those words with the prefix w[l, min(R;, Re) — 1] w[min(R;, Rz)]. The
first swap made by this algorithm is between (min(R;, Rg), min(Ry, Rs) + 1),
allowing a single recursive call to be made to Hamiltonian Enumeration(P(w o
(min(Ry, Re), min(Ry, R2) + 1))[min(R1, Ra) + 1, |w|]). Note that this call asks
the algorithm to enumerate every word with the prefix w[l, min(R, Rg) — 1]
wlmin(Ry, R2)]. As every word with the prefix w[l, min(R;, R2)] has already
been output and added to the path, once this recursive call has been made, ev-
ery word with the prefix w[l, min(Ry, Ry) — 1] will have been added to the path.
Note that the word w is updated at each step, ending at the word w’.

After every word with the prefix w’[1, min(R;, R2) — 1] has been added to the
path, the next step is to add every word with the prefix w'[1, min(Ry, R2) — 2]]
to the path. As every word with the prefix w[l, min(R;, Ry) — 1] is already in the
path, it is sufficient to add just those words with the prefix w’[1, min(R;, Rg) —
2]w[min(R;, R2)] to the path. This is achieved by making the swap between
min(Ry, Re) — 2, and the smallest value ¢ > min(R;, Ra) — 2 such that w[i] #
w'[min(Ry, Re) — 1], then recursively enumerating every word with the prefix
w'[1, min(Ry, Ro) — 2]. This process is repeated in decreasing prefix length until
every word has been enumerated.

To efficiently determine the last position in the current word w containing
the symbols 1 and 2, a pair of balanced binary search trees are maintained. The
tree T corresponds to the positions of the symbol 1 in w, with each node in
Ty being labelled with an index and the tree sorted by the value of the labels.
Analogously, tree Ty corresponds to the positions of the symbol 2 in w. Using
these trees, note that the last position in w at which either symbol appears can
be determined in O(logn) time, and further each tree can be updated in O(logn)
time after each swap.

Lemma 6. Let P be a Parikh vector of length n, and let w € Xt be a word.
Algorithm 2 outputs a path visiting every word in X¥ starting at w.

Proof. This lemma is proven via the same tools as Theorem 2. Explicitly, we
show first that the algorithm explores every suffix in increasing length, relying
on the exploration of suffixes of length 2 as a base case, then provide an induc-
tive proof of the remaining cases. We assume that the starting word has been
fully output as part of the precomputation. With this in mind, note that there
are two cases for length 2 prefixes, either the suffix contains two copies of the
same symbol or one copy of each symbol. In the first case, as w has been output,
so has every permutation of the length 2 prefix of w. Otherwise, the algorithm
outputs the swap (n — 1,n) and returns to the previous call.

In the general case, we assume that for some £ € [n], every permutation
of wln — £ + 1,n] has been visited by the path. Further, we assume the algo-
rithm can, given any word v, visit every word of the form v[1,n — {Ju, for every
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u e YP@ih—t+1nl) 4 o the algorithm is capable of taking any word v as an input,
and visiting every word with the same Parikh vector P(v) and prefix v[1, n—¢+1].
Note that in the case that w[n — £, n] = wn — £]%, the algorithm has already vis-
ited every word in 7 (") with the prefix w[l,n —£]. Otherwise, as the algorithm
has, by this point, visited every word of the form w[l,n — ell + 1]u, for every
u e YP@h—t=1nl) is sufficient to show that the algorithm visits every word
of the form w[l,¢ — 1w[f]u, for every u € L', P’ = P(w[n — £,n]) — P(wld]).

Let w’ be the last word visited by the algorithm with the prefix w[l,n—£¢41].
Note that the first step taken by the algorithm is to determine the first posi-
tion j in w'[n — £ + 1,n] containing the symbol w[¢]. Therefore, by making the
swap (n — £, 7), the algorithm moves to some word with a suffix in 2P where
P’ = P(w[n — ¥¢,n]) — P(w[n — ¢]). As the algorithm can, by inductive assump-
tion, visit every word with a suffix of length ¢ — 1, the algorithm must also be
able to visit every word with a suffix of length ¢, completing the proof.

Lemma 7. Let P be a Parikh vector, and let w € X¥ be a word. The path
output by Algorithm 2 does not visit any word in w € X¥ more than once.

Proof. Note that this property holds for length 2 words. By extension, the length
at most 2 path visiting every word with the prefix w[l,n — 2] does not visit the
same word twice before returning to a previous call on the stack.

Assume now that, given any input word v € X¥, the algorithm visits every
word in X with the prefix v[1,n — [ + 1] without repetition, and has only vis-
ited words with this prefix. Further, assume that P(v[n — ¢,n]) # (0, — 1) or
(¢ — 1,0). Then, after every such word has been visited by the path, the algo-
rithm returns to the previous state, with the goal of enumerating every word
with the prefix v[1,n — £]. As every word in XF with the prefix v[1,n — ¢+ 1]
has been visited, it is sufficient to show that only those words with the prefix
v[1,n —fJv[nl 4 1] are enumerated. The first swap made at this state is between
¢ and the smallest index j € [n — £ + 1,n] such that v[nf] # v[j], which, as the
algorithm has only visited words with the prefix v[1,n — [ + 1], has not previ-
ously been visited. After this swap, the algorithm enumerates every word with
the prefix v[l,n — £ + 1]Jv[n — ¢], which, by the inductive assumption, is done
without visiting the same word. Therefore, by induction. every word with the
prefix v[1,n — {] is visited by the path output by Algorithm 2 exactly once.

Theorem 3. Given a Parikh vector P = (Py, Py) such that P, + P» = n, and
word w € X, Algorithm 2 outputs a Hamiltonian path with at most O(logn)
delay between the output of each edge after O(nlogn) preprocessing.

Proof. Following Lemmas 6 and 7, the path output by Algorithm 2 is Hamilto-
nian. In the preprocessing step, the algorithm constructs two balanced binary
search trees 77 and T5. Every node in 77 is labelled by some index i1 € [n] for
which w[i1] = 1, and sorted by the values of the labels. Similarly, every node
in T is labelled by some index iz € [n] for which w[is] = 2, and sorted by the
values of the labels. As each of these constructions requires at most O(nlogn)
time, the total complexity of the preprocessing is O(nlogn).
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During each call, we have one of three cases. If either value of the Parikh
vector is 0, then the algorithm immediately returns to the last state without
any output. If the Parikh vector is (1,1), then the algorithm outputs a swap be-
tween the two symbols, updates the trees T and T», requiring at most O(logn)
time, then returns to the last state. In the third case, the Parikh vector (Py, P»)
satisfies P, > 0, P, > 0. First, the algorithm determines the last position in
the current state of the word w containing the symbol 1 and the last posi-
tion containing the symbol 2, i.e. the values Ry = max;ec; ) w[i1] = 1 and
Ry = maxjcpy ) wliz] = 2. These values can be determined in O(logn) time us-
ing the trees T7 and T5. Using these values, the algorithm iterates through every
length from min(7y,7%) to n — (P; 4+ Py — 1), enumerating every word in X ()
with the prefix w[l,n—(P;+ P, —1)]. For each ¢ € [min(71,73),n—(P1+P>—1)],
the algorithm outputs the swap (¢, j), where j € [n —£,n] is the largest value for
which w[j] = w[f]. After this output, the algorithm updates the trees 77 and T5.
Note that both finding the value of j and updating the trees require O(logn)
time. After this swap, the algorithm makes the next call to HAMILTONIANENU-
MERATION. Note that after this call, HAMILTONIANENUMERATION must either
return immediately to the last state or output some swap before either return-
ing or making the next recursive call. Therefore, ignoring the time complexity of
returning to a previous state in the stack, the worst case delay between outputs
is O(logn), corresponding to searching and updating the trees 77 and 5.

To avoid having to check each state in the stack after returning from a re-
cursive call, the algorithm uses tail recursion. Explicitly, rather than returning
to the state in the stack from which the algorithm was called, the algorithm is
passed a pointer to the last state in the stack corresponding to a length ¢ such
that some word with the prefix w[1,n — ¢] has not been output. To do so, after
the swap between n — (P, + P, — 1) and j is made, for the value j as defined
above, the algorithm passes the pointer it was initially given, denoted in the
algorithm as last_state to the call to HAMILTONIANENUMERATION, allowing the
algorithm to skip over the current state during the recursion process.

General Alphabets. We now show that the graph is Hamiltonian for any al-
phabet of size o > 2. The main idea here is to build a cycle based on recursively
grouping together sets of symbols. Given a Parikh vector P = (Py, Pa, ..., P,),
our proof operates in a set of o recursive phases, with the i*" step corresponding
to finding a Hamiltonian path in the graph G(P;, P;11, ..., Py), then mapping
this path to one in G(P). The paths in G(P;, P11, ..., Py) are generated in turn
by a recursive process. Starting with the word w, first, we consider the path
visiting every vertex corresponding to a permutation of the symbols i +1,...,0
in w. Explicitly, every word v in this path is of the form:

{w[i] wli] € {1,2,...,i}
v € {i+1,...,0} wli]¢{1,2,...,i}’

vli]

where x; is some arbitrary symbol {4,7 4+ 1,...,c}. Further, every such word is
visited exactly once.
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After this path is output, a single swap corresponding to the first swap
in G(P;, (Piy1 + Pita,...,P,) is made, ensuring that this swap must involve
some position in w containing the symbol i. After this swap, another path
visiting exactly once every word corresponding to a permutation of the sym-
bols i + 1,...,0 in w can be output. By repeating this for every swap in
G(P;, (Piy1 + Pit2,..., P,), inserting a path visiting exactly once every word
corresponding to a permutation of the symbols ¢ + 1,...,0 in w between each
such swap, note that every permutation of the symbols 7,7 + 1,...,0 in w is
output exactly once. In other words, every word v € X¥ of the form

oli] = {w[i] wli] € {1,2,...,i—1}

z€{iyi+1,...,0} wlile{i,i+1,...,0}’

where z; is some symbol in {i,7+ 1,...,0}. Further, each such word is visited
exactly once. Using the binary alphabet as a base case, this process provides an
outline of the proof of the Hamiltonicity of G(P). A full proof of Theorem 4 can
be found in Appendix B.

Theorem 4. Given an arbitrary Parikh vector P € N7 there exists a Hamilto-
nian path starting at every vertex v in the configuration graph G(P).

Conclusion: Following the work on 2-swap, the most natural step is to con-
sider these problems for k-swap based on two variants with exactly k and less
or equal to k. Note that a configuration graph for exactly k-swap permuta-
tion might not have a single component. We also would like to point to other
attractive directions of permutations on multidimensional words [5] and impor-
tant combinatorial objects such as necklaces and bracelets [6, 7]. For the 2-swap
graph specifically, we leave open the problem of determining the shortest path
between two given words w and v. We conjecture that the simple greedy al-
gorithm used to derive the upper bound in Lemma 3 can be used to find the
shortest path between any pair of vertices.

References

1. M. Ackerman and E. Mékinen. Three new algorithms for regular language enu-
meration. In COCOON 2009, pages 178-191. Springer, 2009.

2. M. Ackerman and J. Shallit. Efficient enumeration of words in regular languages.
Theoretical Computer Science, 410(37):3461-3470, 2009.

3. D. Adamson. Ranking and unranking k-subsequence universal words. In WORDS,
pages 47-59. Springer Nature Switzerland, 2023.

4. D. Adamson, A. Deligkas, V. Gusev, and I. Potapov. On the hardness of en-
ergy minimisation for crystal structure prediction. Fundamenta Informaticae,
184(3):181-203, 2021.

5. D. Adamson, A. Deligkas, V. V. Gusev, and I. Potapov. The Complexity of Periodic
Energy Minimisation. In MFCS 2022, volume 241 of LIPIcs, pages 8:1-8:15, 2022.

6. D. Adamson, A. Deligkas, V. V. Gusev, and I. Potapov. The k-centre problem for
classes of cyclic words. In SOFSEM 2023, volume 13878 of LNCS, pages 385—400.
Springer, 2023.



Structural and combinatorial properties of 2-swap word permutation graphs 15

7.

8.

9.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

D. Adamson, V. V. Gusev, I. Potapov, and A. Deligkas. Ranking Bracelets in
Polynomial Time. In CPM 2023, volume 191 of LIPIcs, pages 4:1-4:17, 2021.

A. Amir, H. Paryenty, and L. Roditty. On the hardness of the consensus string
problem. Information Processing Letters, 113(10):371-374, 2013.

O. Angel, A. Holroyd, D. Romik, and B. Virdg. Random sorting networks. Ad-
vances in Mathematics, 215(2):839-868, 2007.

L. Babai and A Seress. On the diameter of permutation groups. European journal
of combinatorics, 13(4):231-243, 1992.

M. Buck and D. Wiedemann. Gray codes with restricted density. Discrete Math-
ematics, 48(2-3):163-171, 1984.

C Collins, G R Darling, and M J Rosseinsky. The Flexible Unit Structure Engine
(FUSE) for probe structure-based composition prediction. Faraday discussions,
211:117-131, 2018.

C Collins, M S Dyer, M J Pitcher, G F S Whitehead, M Zanella, P Mandal, J B
Claridge, G R Darling, and M J Rosseinsky. Accelerated discovery of two crystal
structure types in a complex inorganic phase field. Nature, 546(7657):280-284,
2017.

M. Crochemore and W. Rytter. Jewels of stringology. World Scientific, 2003.

M. Ganczorz, P. Gawrychowski, A. Jez, and T. Kociumaka. Edit distance with
block operations. In ESA. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.
W. Goddard, M. E. Raines, and P. J. Slater. Distance and connectivity measures
in permutation graphs. Discrete Mathematics, 271(1):61-70, 2003.

H. A. Helfgott and A. Seress. On the diameter of permutation groups. Annals of
mathematics, pages 611-658, 2014.

H. A. Helfgott, A. Seress, and A. Zuk. Random generators of the symmetric group:
Diameter, mixing time and spectral gap. Journal of Algebra, 421:349-368, 2015.
M. R. Jerrum. The complexity of finding minimum-length generator sequences.
Theoretical Computer Science, 36:265—289, 1985.

E. Konstantinova. Some problems on cayley graphs. Linear Algebra and its Ap-
plications, 429(11):2754-2769, 2008. Special Issue devoted to selected papers pre-
sented at the first IPM Conference on Algebraic Graph Theory.

D. Kornhauser, G. L. Miller, and P. G. Spirakis. Coordinating pebble motion on
graphs, the diameter of permutation groups, and applications. In FOCS 1984,
pages 241-250. IEEE Computer Society, 1984.

A. Levy. Exploiting Pseudo-locality of Interchange Distance. In SPIRE 2021,
pages 227-240. Springer, 2021.

H. Maji and T. Izumi. Listing center strings under the edit distance metric. LNCS
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 9486(15):771-782, 2015.

E. Mékinen. On lexicographic enumeration of regular and context-free languages.
Acta Cybernetica, 13(1):55-61, 1997.

T. Miitze. Combinatorial Gray codes - an updated survey. arXiv preprint
arXiw:2202.01280, 2022.

F. Ruskey, C. Savage, and T. Min Yih Wang. Generating necklaces. Journal of
Algorithms, 13(3):414-430, 1992.

M. L. Schmid and N. Schweikardt. Spanner evaluation over slp-compressed docu-
ments. In PODS’21, pages 153-165. ACM, 2021.

M. L. Schmid and N. Schweikardt. Query evaluation over slp-represented document
databases with complex document editing. In PODS ’22, pages 79-89. ACM, 2022.
K. Wasa. Enumeration of enumeration algorithms. arXiv e-prints, pages arXiv—
1605, 2016.



16

A Pseudocode

In this section, we provide full pseudocode for our enumeration algorithm.

Algorithm 2 Algorithm for enumerating a Hamiltonian path in the configu-
ration graph defined by a Parikh vector P. Note that the pointed last_state is
used to return at the state in the stack at position last_state to avoid needless
recursion. The function CurrentState() is used to get the current state in the
stack. The trees T7 and T5 are balanced binary search trees such that every node
in T7 corresponds to a position of symbol 1 in the current state of w, and every
node in Ty corresponds to a position of the symbol 2 in w.

1: Global Variables:

2: Word w € X"
3: Balanced Binary Search Tree T}
4: Balanced Binary Search Tree T3
5: function HAMILTONIANENUMERATION((P1, P2) € Ng x Ny, pointer last_state)
6: if P, =0 or P, =0 then Return To last_state
T else if (P, P;) = (1,1) then
8: Output: (n —1,n)
9: Remove(Ty[n—1],n — 1), Insert(Ty—1),7)
10: Remove(Ty ), 1), Insert(Ty,,n — 1)
11: w<+ wo(n—1,n)
12: ReturnTo last_state
13: else % Note that P, + P> > 3
14: Rl < maX(T1)
15: Ry + max(T3)
16: for i € min(R1, R2), min(R1,R2) — 1,...,n— (P1 + P> — 1) do
17: ] — minjle[ile’n] Tw[i]
18: Output: (i, 5)
19: Remove(T,;, 1), Insert(T [, 5)
20: Remove(Ty;),j), Insert(T,;,1)
21: w <+ wo (i,7)
22: P« (P, P,) — P(wli])
23: HamiltonianEnumeration(P’, CurrentState())
24: end for
25: % As the Parikh vector must have at least one value for each symbol, there
is a valid swap from n — (P1 + P> — 1) to ¢, for some ¢ >n — (P + P, — 1)
26: ] — minie[n,<p1+p2,1)yn] Tm
27: Output (n — (P, + P> — 1),4)
28: Remove(Tyn—(p+p,—1), 7 — (P1 + P2 — 1)), Insert (T (n—(p 4P, —1)]5 )
29: Remove(Ty;), j), Insert(Ty(;),n — (P + P2 — 1))
30: w+wo(n—(Pr+ P.—1),7)
31: Pl(—(Pl,Pg)fw[nf(P1+P271)}
32: HamiltonianEnumeration(P’, last_state) % Note that this skips over the
current state when returning
33: end if

34: end function
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B Full proof of Theorem 4

Here, we provide a full proof of Theorem 4.
Theorem 4. Given an arbitrary Parikh vector P € N7, there exists a Hamilto-
nian path starting at every vertex v in the configuration graph G(P).

Proof. This is formally proven from the outline above via an inductive argument.
As a base case, following Theorem 2 for any binary Parikh vector P and word
w € XP, there exists a Hamiltonian path in G(P) starting at w.

We assume now that there exists, for any Parikh vector p € Ng_l and word
w € XP there exists some Hamiltonian path in G(P) starting at w. Let ¢ =
(¢1,92,-..,q¢) be a Parikh vector, and let v € X9 be an arbitrary word with
the Parikh vector ¢q. To construct the Hamiltonian path starting at v in G(q),
we first form a Hamiltonian path P; in G(q2,4¢s, - .., q¢ starting at the word v’
formed by deleting every symbol 1 from v. We assume that we have a table
T such that T'[i] returns the index in [1,|v|] for which v'[;] = v[T[i]]. To avoid
any repetition, we require T[1] < T[2] < --- < T[|v'[]. With this table, each
swap (81, $2) in the path P; can be converted to the swap (T'[s1], T[s2]) in the
graph G(q) swapping the same symbols in v as in the reduced word v'. With this
conversion, P; constructs a path in G(q) visiting exactly once each word where
the symbol 1 appears only at the position {i € [1,|v|] | v[i] = 1}.

Next, we construct a Hamiltonian path P» in the graph G(¢1,g2+g3+- - +qe)
1 woli]=1
x o[i] #1
graph can be seen as an abstraction of G(q), considering only swaps between
some position labelled 1 and any position with a different symbol.

The first swap in P, is applied to the current word, however, rather than
proceeding along this path, a new set of swaps is inserted corresponding to some
Hamiltonian path in G(g2,qs,...,qe) generated in the way manner as before.
Again, this new path corresponds to a permutation of every symbol in the set
{2,3,...,0}, while fixing the positions of the symbol 1 in the word. This is
repeated by taking a single swap from the path Ps, followed by a complete path
corresponding to a Hamiltonian path in G(g2,4qs,...,q¢). By combining these
paths, the new path must visit exactly once every word in X'72:98>-9¢ where the
positions of symbol 1 are fixed, each time a word w with a new permutation of
the symbol 1 is visited. Similarly, every word in Y9924+ %4 g visited exactly
once, corresponding to a path through every permutation of the positions of the
symbols 1 in the word. Therefore, the output path is Hamiltonian.

starting at the word v’ where v'[i] = { , for some new symbol z. This



