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Abstract

Inflammatory bowel diseases (IBDs), including ulcerative colitis and Crohn’s disease, affect

several million individuals worldwide. These diseases are heterogeneous at the clinical,

immunological and genetic levels and result from complex host and environmental interac-

tions. Investigating drug efficacy for IBD can improve our understanding of why treatment

response can vary between patients. We propose an explainable machine learning (ML)

approach that combines bioinformatics and domain insight, to integrate multi-modal data

and predict inter-patient variation in drug response. Using explanation of our models, we

interpret the ML models’ predictions to infer unique combinations of important features asso-

ciated with pharmacological responses obtained during preclinical testing of drug candi-

dates in ex vivo patient-derived fresh tissues. Our inferred multi-modal features that are

predictive of drug efficacy include multi-omic data (genomic and transcriptomic), demo-

graphic, medicinal and pharmacological data. Our aim is to understand variation in patient

responses before a drug candidate moves forward to clinical trials. As a pharmacological

measure of drug efficacy, we measured the reduction in the release of the inflammatory

cytokine TNFα from the fresh IBD tissues in the presence/absence of test drugs. We initially

explored the effects of a mitogen-activated protein kinase (MAPK) inhibitor; however, we

later showed our approach can be applied to other targets, test drugs or mechanisms of

interest. Our best model predicted TNFα levels from demographic, medicinal and genomic

features with an error of only 4.98% on unseen patients. We incorporated transcriptomic

data to validate insights from genomic features. Our results showed variations in drug effec-

tiveness (measured by ex vivo assays) between patients that differed in gender, age or con-

dition and linked new genetic polymorphisms to patient response variation to the anti-

inflammatory treatment BIRB796 (Doramapimod). Our approach models IBD drug response

while also identifying its most predictive features as part of a transparent ML precision medi-

cine strategy.
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Introduction

Precision medicine has become a widely recognised and desirable medical model for its ability

to stratify patients into different groups based on their susceptibility to a particular disease or

their response to a specific drug [1]. The personalisation of medical decisions and the recom-

mendation of interventions or treatments that are tailored to the individual allows patients to

receive appropriate treatment more rapidly, which improves their quality of life and can

reduce rising demands for health care support. Precision medicine has the potential to trans-

form the prediction of disease progression, and therefore aid its possible prevention, and to

inform precise and targeted therapies [2].

If we consider drug development specifically, a major challenge is how to effectively imple-

ment precision medicine strategies earlier in the drug development process. Stratifying

patients into subpopulations at a late stage i.e., during or after demographic trials, comes with

an associated high-cost burden, with approximately 70% of the cost of drug development

attributed to the clinical stage [3]. If patient stratification is found to be necessary to achieve

the required efficacy, this high cost/late-stage approach could have a major impact on the com-

mercial viability of a drug due to the smaller than expected target patient population [4]. An

earlier understanding of the target patient population during the preclinical stage of drug

development would help address this problem by allowing the creation of earlier/more accu-

rate economic models and would also allow a more targeted and streamlined approach to be

taken during the demographic phase of development. Moreover, a failure to stratify patients

prior to clinical trials likely contributes to the high failure rate during Phase II/III trials, where

a key problem is a failure to reach endpoints for efficacy using an "all-comers" clinical trial. A

key challenge lies in finding suitable preclinical test systems and models that can help inform

patient selection for clinical trials.

When selecting preclinical models for use in precision medicine strategies, the most impor-

tant feature of the selected model(s) is that the efficacy readout is translatable to the demo-

graphic outcome. While no preclinical model can fully recreate the in vivo situation, exploring

the pharmacological activity of a drug ex vivo, using diseased fresh tissue has been shown to be

an excellent predictor of successful demographic trials [5–7]. Human fresh tissues that reflect

the native biology of disease are therefore increasingly being used for ex vivo experimentation

during preclinical drug development to meet this aim of improving the prediction of efficacy

in clinical trials.

Typically, information on the clinical history of the tissue donor is available and ’omic’ data

can be readily generated alongside the pharmacology data. As such, here, we developed an

explainable ML workflow that combines multi-omic data, demographic data, medicinal data

and pharmacology data, all derived from a preclinical human fresh tissue assay, to predict

patient-specific drug responses and to inform clinical trial precision medicine strategies (Fig 1).

We focussed on drug development for inflammatory bowel diseases (IBDs) for the two pri-

mary conditions: ulcerative colitis (UC) and Crohn’s disease. UC and Crohn’s disease are long-

term conditions that involve inflammation of the gut. UC only affects the colon (large intestine),

while Crohn’s disease can affect any part of the digestive system, from the mouth to the anus. In

2017, there were 6�8 million cases of IBD globally [8]. The most widely held hypothesis on the

pathogenesis of IBD is that overly aggressive acquired (T cell) immune responses to a subset of

commensal enteric bacteria develop in genetically susceptible hosts, and environmental factors

precipitate the onset or reactivation of disease [9]. Currently there is no cure for either disease

and people with IBD will typically need treatment throughout their lives. As such, we need to

understand why certain medications are more or less effective for different patients and relate

this to their demographic information and genetic makeup [10]. For drugs in early
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development, a better understanding of the factors likely to determine a patient’s response

could help inform clinical trial design and reduce the risk of clinical trial failure.

To investigate whether patient stratification could be achieved from a preclinical study, the

commonly used ‘all comers’ clinical trial patient recruitment policy was mimicked with no

donor inclusion criteria other than a clinical diagnosis of UC or Crohn’s, as confirmed by a

clinical pathologist [11]. The data sets and donor numbers used for this proof-of-concept

study were also representative of the scope of a typical preclinical drug development project

using ex vivo human tissues. The data set consisted of 25 patient organoculture (ex vivo) assay

data sets, the associated genomics/transcriptomics and the patient demographic/clinical

information.

Included in this study were 3 different test drugs. Two of these (5-ASA and prednisolone)

are standard of care treatments for IBD which are routinely prescribed as first line treatments

when patients first present with IBD [12, 13]. The third drug (doramapimod, also known as

BIRB796) is a drug that is not used clinically for IBD; however, it was developed to treat IBD

and underwent clinical trials for use in Crohn’s disease. The rationale for including BIRB796

in the study was two-fold: firstly, as 5-ASA and prednisolone are widely used in IBD patients,

it is likely that the majority of the patient samples used in our organoculture assay would

already have been exposed to these test articles. Since this may have impacted their responsive-

ness in vitro, we decided to also include a drug with a novel mechanism that patients would

not have been exposed to. Secondly, although BIRB796 was developed for the treatment of

inflammatory diseases including IBD, it failed to progress beyond Phase 2 clinical trials due a

lack of efficacy. It is therefore an example of a drug which may have benefitted from a preclini-

cal patient stratification strategy, such as we are describing.

Fig 1. Schematic representation of the study. Detailing (to the left) the steps undertaken to generate datasets, process these datasets, build and train ML models to

make predictions and the interpretation of those predictions. Detailing (to the right) the different approaches, in order of usage where possible, which we used for

dimensionality reduction of the medicinal, demographic, genomic and transcriptomic feature sets that were used to train our models and provide explanations for

the predictions. Ultimately models were trained to predict the TNFα level or inflammatory response after compound treatment of fresh tissues.

https://doi.org/10.1371/journal.pone.0263248.g001
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As previously mentioned, the selection of the preclinical model efficacy readout is vital to

the clinical translation of the model. Our key criteria for choosing the measure of drug efficacy

within the organoculture assay was as follows: firstly, the chosen readout must be easily and

accurately measured within the system across all donor samples. Secondly, the major pathway

(s) that drives the readout should be drug mechanism relevant i.e the pathway(s) should be

downstream of the test article target. Lastly, the chosen readout should be disease relevant i.e

the readout should have been demonstrated to play a key role in driving disease pathogenesis.

The mechanisms of action of 5-ASA, prednisolone and BIRB796 have all been shown to

interact with TNFα signalling via peroxisome proliferator-activated receptor gamma (PPAR-

γ) [14], nuclear factor kappa light chain enhancer of activated B cells (NF-κB) [15] and mito-

gen activated protein kinase (MAPK) [16], respectively. TNFα is powerful proinflammatory

cytokine that is a key mediator in inflammatory diseases [17]. The main source of TNFα is

from activated cells from the monocyte lineage e.g macrophages, however release has been

shown in other cell types. In IBD in particular, TNFα has been shown to be a key signalling

molecule and disease driver [18–20]. This has led to TNFα becoming a key target for IBD drug

treatments, most notably with the development and introduction of therapeutic anti-TNF anti-

body treatments in the last 10–15 years. As all the test drug targets share interactions with

TNFα signalling, TNFα release was therefore deemed to be both a disease and drug mecha-

nism-relevant in vitro biomarker of efficacy to utilise in this study. As all human tissue organo-

culture data was normalised against a patient-matched non-treated control group, the degree

by which TNFα levels were reduced was interpreted as a better response to the test drug.

The individual patient organoculture assay responses were then matched with multi-omic,

demographic and medicinal data of the same patients/tissues to predict patient-specific drug

response, and to identify the integrated feature profiles of the patients most likely to respond

to the treatment. In light of the recent advances in omic technologies and the falling cost of

sequencing, it has become a more realistic aim to enable precision medicine using the routine

analysis of a patient’s genetic information or genome and to combine this with other demo-

graphic information to personalise medical interventions. Furthermore, it is hypothesised that

the integration of multiple sources of omic data (multi-omic) will create a more holistic picture

of a disease under investigation, particularly when used alongside demographic data or other

data types e.g., medical images [21]. Such heterogenous or multi-modal data integration

remains one of the major challenges facing precision medicine today, where there is no widely

adopted best practice methodology [22], and where biological knowledge is needed (but typi-

cally lacking) to guide integrative methods. We propose that Artificial Intelligence (AI), guided

by domain knowledge, has the potential to facilitate heterogenous data integration and to offer

actionable insights into medical aspects from disease progression to drug development [23].

To this end, we combine machine learning (ML), bioinformatics and domain insight, to

allow the processing and informative integration of features derived from diverse multi-modal

data types. These data include multi-omic data (genomic and transcriptomic), demographic

data, medicinal data (prescribed medicines) and pharmacology data (functional experimental

assays), all derived from a preclinical human fresh tissue assay. Features derived from these

data that are inputted into predictive models include, for example, SNPs from genomic data or

patient age from demographic data. Our workflow comprised bioinformatics, feature selec-

tion, machine learning (ML) models and an explainable AI algorithm. Explainable AI helps us

to understand the predictions made by ML models and offer insights into the predicted pheno-

type. Only recently has explainable AI been applied to diverse single omic datasets [24, 25], but

the potential of this to enable precision medicine has yet to be fully exploited. Here our aim,

for IBD patients, is to predict patient-specific drug response and derive insights into the poten-

tial biological (genetic or otherwise) basis of this variation in response to enable improvements
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in the translation of preclinical models to the clinic, potentially informing clinical trial design

for novel therapies. Importantly, we use explainable AI to identify unique combinations (or

profiles) of important features that are associated with drug response in human fresh tissue

assays. Important features consist of those optimal combinations that led to the most accurate

results when predicting drug response. These profiles could be used to analyse inter-individual

drug response and inform targeted clinical trials. Longer term, following extensive validation

and use of such a model to inform clinical trial design, such pharmacogenomic approaches

could offer the potential to stratify patients for personalised drug treatment.

Results and discussion

Prediction of TNFα level (ex vivo tissue drug response) from demographic

information

For the processed demographic information for the 25 patients, we initially excluded features

using domain insight; alcohol history (since this was missing for a large proportion of donors

or labelled too ambiguously for confident interpretation), and supplier region (since this is

largely uninformative with regard to the phenotype we are predicting) (see Methods and Fig

1). We next removed the redundant feature ethnicity since all the donors were Caucasian or

else unknown. The remainder of the demographic features were investigated using Spearman’s

correlation (Fig 2). All features were found to be correlated with response (measured TNFα
level) to one or more of the compounds at a correlation |rs| > 0.3 except for smoking history.

This could be a result of the inconsistent and incomplete information provided for smoking

history, as such, for the purposes of the present study, this feature was removed, although it is

noted that smoking history can be a factor in IBD and further exploration could be merited in

future studies. Finally, we noted that resection area was highly correlated with condition, mak-

ing resection area a largely redundant feature, so it was also removed from the analysis.

To quantify the impact of feature selection, in particular the impact of our usage of correla-

tion to remove additional features, we selected one of our five drug/dose combinations as an

example (BIRB796 at 10nM) and compared the predictive capability of a range of ML models

trained with and without the demographic features smoking history and/or resection area (see

Methods). The removal of smoking history and/or resection area either reduced the predictive

error or did not have a significant impact on the predictive error overall, which further justi-

fied their removal (S1 Fig). Here we measured predictive error on our test dataset that repre-

sents patients that were not seen by the model during training and used solely to gauge its

accuracy on new datapoints. Predictive error was quantified using the mean absolute error

(MAE) that represents the average of the absolute differences between the predictions and the

actual observations.

Incorporating medicinal information for the prediction of drug response

To process the medicinal information that was available for the donors (representing their

prior prescription history) we firstly used domain insight to collapse multiple representations

of the same drug due to different naming conventions, this collapsed 61 medicine names

down to the 53 medicines that were actually represented. We labelled patients individually as

not receiving medicine (0) or receiving medicine (1) for each of the 53 medicines and per-

formed Spearman’s correlation, enabling the selection of 12 medicines overall that correlated

with response to one or more of the tested compounds/doses at a level |rs| > 0.3 (Table 1).

To quantify the benefit of adding the entire set of medicines as features to our existing

demographic feature set–scenario a, we compared this to the impact of selecting only
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correlated medicines–scenario b. We used BIRB796 at 10nM to highlight our comparison of

the predictive capability of the derivative models. Fig 3 shows that the addition of medicinal

information, in both scenarios (Fig 3A or 3B), decreased the predictive error of the models

compared to those obtained using only the demographic information (see S1 Fig). Moreover,

Fig 3 shows that including only the correlated medicines to BIRB796 provided a predictive

advantage compared to including all the 53 medicines in our feature set. As such, our best

“demographic+medicinal” feature set incorporated the demographic features age, gender and

condition and the correlated medicinal features for BIRB796 shown in Table 1. The best per-

forming ML model with our best feature set was KNN with a median MAE of ~4.49% over

10-fold cross validation (Fig 3B).

Feature selection and incorporation of genomic information for prediction

of ex vivo drug response

Once we had selected our best “demographic+medicinal” feature set to predict drug inflamma-

tory response, we next investigated if the integration of genomic information into our feature

Fig 2. Spearman correlation of demographic information with TNFα response per drug. To compute the

Spearman correlation for binary features we used the following encoding; condition Crohn’s/ulcerative colitis = 0/1,

gender female/male = 0/1, resection area colon/ileum = 0/1. See section demographic feature preparation for ML in

Methods for more details.

https://doi.org/10.1371/journal.pone.0263248.g002

Table 1. Medicinal features (prescribed medicines across the patients) correlated with drug response at |rs|> = 0.3 (Spearman’s).

5-ASA Pred1uM Pred100nM BIRB796_100nM BIRB796_10nM

No meds Adalimumab Azathioprine Rivaroxaban Ranitidine

Mezarant Ranitidine Rivaroxaban

Lyrica Lyrica

Amitriptyline Levothyroxine

Azathioprine Amitriptyline

Tapentadol Prednisolone

Asacol

Tapentadol

https://doi.org/10.1371/journal.pone.0263248.t001
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set could provide a predictive advantage, as well as providing further insights into anti-inflam-

matory drug responses and IBD. After bioinformatic processing and filtering of the patient

specific exome capture data based on inter-patient variation, we identified 33,577 SNPs across

the 25 patients that were labelled as either homozygous, heterozygous or homozygous ref (see

Methods). Adding the SNPs to the demographic and correlated medical features directly

resulted in an extremely high dimensional dataset (25 patients x 33,590 features). To counter-

act the detrimental effect of adding tens of thousands of genomic features describing a rela-

tively small set of patients, we used two approaches for feature selection prior to model

training. Firstly, we selected known related gene-centric SNPs using domain insight. More

precisely, to select known related SNPs, we used those within genes identified (from target vali-

dation.org) as the top ten most associated with Crohn’s and ulcerative colitis. This resulted in

16 genes (as there was overlap in the top ten between the conditions) and 39 underlying SNPs

(see S1 Table). Secondly, to incorporate de novo insights alongside known SNPs, we used the

chi-squared method for feature selection; removing the most independent features compared

to the target to predict. In order to define a non-arbitrary cut-off for feature selection with

chi2, we sequentially reduced the feature number as input to a model for training and testing,

by removing the most independent features in each iteration. We recorded the predictive error

and the reduced feature sets for each iteration. Prioritizing reduction of overfitting between

the test and training data, the "best" feature set was composed of 40 features (marked with a

circular marker on S2 Fig). It is also clear from S2 Fig that the sequential removal of SNPs/fea-

tures improved the predictivity of the initial model by decreasing the predictive error. The 40

Fig 3. Comparison of ML model error rates for the prediction of BIRB796 (10nM) drug response for different

combinations of demographic and medicinal features. Here we show box plots (left) of mean absolute error (MAE)

values (as percentages) computed during 10-fold cross validation. The horizontal line in each boxplot is the median of

the MAE over 10 folds, where each of the test folds has 3 randomly chosen patients. Note all target drug responses have

been normalized on a scale of 0–1 and here we show percentages of MAE values. On the right we report median,

average and standard deviation MAE as percentages for each ML method. We computed the predictive error for

demographic features age, gender, condition plus (a) all 53 medicinal features or (b) only those medicinal features

correlated to BIRB796 at |rs|> 0.3.

https://doi.org/10.1371/journal.pone.0263248.g003
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reduced features included 32 SNPs (plus 8 medical features). These features were taken for-

ward, combined with the previously defined “known” 39 SNPs and used to train a range of

regressors (including hyper tuning) to check if superior accuracy could be achieved with the

reduced feature set (see Methods). Note that for the chi2-square feature selection analysis, we

used the best model with best hyper-parameters resulting from our previous analysis that

incorporated the demographic and correlated medical data. Interestingly, there was no overlap

between the 32 SNPs defined by chi2 and the 39 previously “known” SNPs, demonstrating the

complementarity of our approaches.

To quantify the benefit of adding genomic features to our existing demographic and medic-

inal feature set, alongside the impact of feature selection for the SNPs, we again used BIRB796

at 10nM as an example to highlight our comparison of the predictive capability of the deriva-

tive models. Fig 4 shows that the addition of curated plus known genomic information gave a

lower predictive error generally compared to using the full SNP set. From this analysis, we

derived our final best “demographic+medicinal+SNP” feature set that incorporated the demo-

graphic features age, gender and condition, correlated medicinal features for BIRB796 and our

curated, filtered SNPs. The best model, that gave the lowest predictive error over 10-fold cross

validation, was KNN (Fig 4B) with a median MAE of 4.98%. The median and average MAE’s

are close to those obtained with KNN (Fig 3B) and our previous best “demographic+-

medicinal” feature set that did not incorporate genomic information. The incorporation of

genomic features produced a slight increase in the average predictive error (0.28%). This was

however balanced with an increase in model stability on cross validation, demonstrated by a

0.39% decrease in standard deviation of MAE over 10-fold cross validation. In effect, there is

Fig 4. Comparison of ML model error rates for the prediction of BIRB796 (10nM) drug response for different

combinations of demographic, medicinal and genomic features. Here we show box plots (left) of mean absolute

error values (as percentages) computed during 10-fold cross validation. The horizontal line in each boxplot is the

median of the MAE over 10 folds, where each of the test folds has 3 randomly chosen patients. Note that all target drug

responses have been normalized on a scale of 0–1 and here we show percentages of MAE values. On the right, we

report median, average and standard deviation MAE as percentages for each ML method. We computed the predictive

error using demographic features age, gender and condition and correlated medicinal features plus (a) all SNPs

(33,577) or (b) the 71 curated known and associated SNPs.

https://doi.org/10.1371/journal.pone.0263248.g004
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little real difference between the predictive accuracy of the models. However, incorporating

genomic information clearly had the potential to provide additional insights into the predicted

phenotype when we incorporated model explanation in our analysis, as we show in the section

below.

Comparing model explanations after the integration of multiple datasets

for BIRB796

We generated a series of models as we iteratively added more datasets into our analysis, defin-

ing the best model at each stage by considering input features and predictive error on the test

dataset, while performing cross validation. We propose however that the predictive error or

accuracy is not the only aspect to consider when evaluating a ML model. We highlight the

usage of model explanation to validate and interpret the predictions generated by our best

model (KNN) trained on our best features sets (“demographic+medicinal” and “demographic

+medicinal+SNP”). The explanations of the predictions allowed us to assess the biological

insight that can be gained from integrating multiple data sources into the predictions and to

instil trust in the results produced by our best models.

To generate model explanations, we applied a state-of-art explainable AI algorithm called

SHapley Additive exPlanations (SHAP) [26] to generate the plots shown in Fig 5 (see Meth-

ods). Fig 5A and 5B show the ranked lists of “demographic+medical” and “demographic+-

medical+SNP” features respectively, based on their average absolute SHAP impact value in the

predictions generated by KNN for the entire set of 25 donors. For both sets of features, the

most impactful feature for the derived model, is condition, defined as ulcerative colitis (UC) or

Crohn’s. It is apparent in Fig 5A, for the “demographic+medicinal” feature set, the model is

mainly using the feature condition as the most impactful feature to make its predictions and to

a significant but lesser extent it is considering gender and then age etc. However, in Fig 5B

using the “demographic+medicinal+SNP” feature set, although condition is the most impact-

ful or predictive feature, the SNP chr16_50733374 (NOD2 gene) is almost equally as predictive,

and many of the other SNP features (in fact the majority of the top 20) are only marginally less

predictive and therefore are also important for the model. This highlights an advantage of the

inclusion of genetic SNP information into the model in that we might no longer need to rely

on the diagnosis of condition to make drug response predictions. To demonstrate this, we split

our patients into those with UC or Crohn’s and repeated the ML analysis using the “demo-

graphic+medicinal+SNP” features for BIRB796, this reduced our analysis set to 12 and 13

patients respectively and therefore our results provide an approximate indication of perfor-

mance only. For Crohn’s patients our best median MAE on CV was 6.81 (using a SVM) and

for UC our best median MAE on CV was 4.58 (using a Random Forest). This analysis will be

need to repeated on a bigger study to confirm and further support our findings but these initial

results support our observation that we do not need to rely on the diagnosis of condition to

make predictions relating to drug response for patients.

Fig 5C and 5D show, for the “demographic+medical” and “demographic+medical+SNP”

features respectively, how each individual feature (each row in the SHAP dot plot) is driving

the prediction of a higher or lower TNFα level for each donor (each dot). For the donors

(dots) on the right side of the x-axis a positive impact value of a feature drives the prediction of

a higher TNFα level (i.e. a poorer response to the drug when tested in the ex vivo tissue), while

for the donors on the left side of the x-axis, a negative impact value of a feature drives the pre-

diction of a lower TNFα level (and hence a better response to the drug). The top 20 features

shown here significantly impacted the model’s predictions and the values of some of these fea-

tures (e.g. condition, gender and a number of SNPs) informatively formed separated clusters
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(red or blue) that discriminated the positive and negative impact of a feature on the model pre-

diction i.e. respectively high or low TNFα levels.

Focusing firstly on the explanation of our most impactful features from the “demographic

+medicinal” model (Fig 5A and 5C), our most impactful feature was "condition (being UC or

Crohn’s disease), where we observed a clear separation between patients with Crohn’s and UC.

Here, UC patients typically had a higher predicted TNFα level, suggesting that they would be

expected to have a lower response to BIRB796 treatment at this concentration. Gender also

showed a clear separation of males and females, where females tended towards a higher pre-

dicted TNFα level (meaning a lower anti-inflammatory effect of the test drug). We observed a

positive correlation between age and SHAP value (impact on model output), indicating that a

higher age likely contributes to a prediction of a higher TNFα level or lower response to

BIRB796 treatment. We also noticed that some prescribed medicines (azathioprine, Asacol

(5-ASA) and amitriptyline) routinely contributed to predictions of lower TNFα levels (greater

test drug effect), while others (prednisolone) contributed to the prediction of higher TNFα lev-

els (lower test drug effect). Interestingly, the mechanisms of action of azathioprine, Asacol,

amitriptyline and prednisolone have all been linked to MAPK activity as described below.

Azathioprine is a purine prodrug which requires complex conversion to its active metabo-

lites to elicit its intended biological activity as an immunosuppressant via inhibition of purine

Fig 5. Comparison of ML model explanations for the prediction of BIRB796 (10nM) drug response for demographic, medicinal and

genomic features. Here we show SHAP plots that contain explanations for the predictions generated by our best model, KNN, using (a, c) our

best “demographic+medicinal” feature set and (b, d) our best “demographic+medicinal+SNP” feature set. The SHAP bar plots (a, b) show the

top 20 features ranked by their impact on the model prediction. The SHAP dot plot (c, d) shows the same top 20 ranked features together with

the weight of each feature (row) for the prediction of TNFα level for each donor (a donor is a blue or red dot). The figure legend (top right)

details the colour and corresponding value that each feature has for each donor (coloured dot). For example, donors that are older are red dots

in the plot, while younger donors are blue dots. Similarly, donors that have a SNP allele are shown as red dots, while donors with the reference

allele are represented as blue dots.

https://doi.org/10.1371/journal.pone.0263248.g005
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synthesis. The enzyme GST-M1 is involved in the metabolism of azathioprine [27]. Its expres-

sion has been linked to greater azathioprine efficacy [28] but has also been implicated in the

adverse effects and toxicity frequently observed in patients who are either on a high dose or on

long term treatment with azathioprine [29]. Another role of GST-M1 is as a negative regulator

of p38 MAPK by physically sequestering ASK-1, a MAPK kinase kinase, which activates p38

MAPK [30]. Stress triggers, such as pro-inflammatory cytokines, have been shown to promote

the dissociation of GST-M1 from ASK-1, thus activating p38 MAPK [30]. Under these inflam-

matory stresses (which would be analogous to the conditions in our ex vivo stimulated explant

model) it could be expected that BIRB796 (a potent p38 MAPK inhibitor) would show good

efficacy in patients who had previously shown a sufficient response to be administered azathio-

prine chronically.

The mechanism of action of Asacol (5-ASA) is not fully understood; however, some of its

biological activity in IBD has been attributed to it being a PPARγ ligand [18]. PPARγ, when

activated, acts as a negative regulator of JNK/p38 MAPK signalling [31], both of which

BIRB796 is a direct inhibitor of [20]. As 5-ASA (via PPARγ) acts on the same signalling path-

way(s) as BIRB796, this could therefore explain why patients who have previously shown effi-

cacy to 5-ASA would also respond favourably to BIRB796.

Amitryptyline is a tri-cyclic antidepressant medication with a mechanism of action which

has been linked to inhibition of PKC phosphorylation. Although less characterised in IBD,

PKCε has been shown to be an upstream regulator of p38 MAPK in rat models of stress and

anxiety [32]. In these model’s amitriptyline has been shown to inhibit phosphorylation of both

PKCε and also p38 MAPK. PKCε has also been shown to be a key signalling molecule in the

development of bacterial pathogen-induced colitis in human intestinal lineage Caco-2 cell

monolayers [33]. As amitryptyline may share a similar inhibitory action on the p38 MAPK

pathway, this may explain why patients who have shown efficacy to amitryptyline may also

show efficacy to BIRB796.

Prednisolone is a glucocorticoid steroid medication commonly prescribed in IBD patients.

Glucocorticoid signalling has been closely linked to MAPK signalling pathways, with p38

MAPK shown to play a key role in the expression and sensitivity of glucocorticoid receptors to

ligands [34]. Phosphorylation of p38 MAPK has been shown to phosphorylate the glucocorti-

coid receptor and therefore downregulate its activity [35]. It may therefore be possible that

patients who respond well to glucocorticoid therapy such as prednisolone do not have a high

level of activated p38 MAPK driving their disease. Such patients would therefore be likely to

have a poor response to BIRB796.

Focusing next on the explanation of our most impactful features from the “demographic+-

medicinal+SNPs” model (Fig 5B and 5D), here, condition was also in the top 20 most impact-

ful features driving the model predictions and it had a directional impact on prediction that

was consistent with the “demographic+medicinal” model. Features such as age, gender and

medicinal information, on the other hand, featured in the top 20 impactful features for the

“demographic+medicinal” model but disappeared here, replaced by more impactful genomic

SNP information. In total, 19 of the top 20 most impactful features were genomic SNP features,

with many showing a clear separation between patients with different SNP alleles; we typically

encountered only 2 of 3 possible alleles (e.g., homozygous reference, heterozygous and homo-

zygous alternate) across the 25 patients that formed red and blue clusters accordingly. All

SNPs in Fig 5D showed heterozygous SNPs (red) and homozygous reference alleles (blue).

There is a strong bias towards cases where homozygous reference alleles drive a lower pre-

dicted patient inflammatory response (better response to BIRB796) compared to heterozygous

SNPs that contributed to the prediction of a higher response (89.5% of cases). Only two SNPs

(ranked ninth and twelfth) showed heterozygous SNPs that are driving the prediction of a
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lower patient inflammatory response compared to the homozygous reference alleles driving a

higher patient inflammatory response.

Using transcriptomic information as a confidence metric for informative

SNPs

Previously we highlighted that 19 of the top 20 most impactful features for our “demographic

+medicinal+SNPs” model were genomic SNP features (Fig 5D). Next, we generated RNA-seq

information for a subset of the 25 patients to validate the SNPs (see Methods). Firstly, we

assessed SNP presence in the RNA-seq data, validating 8 of the 10 exon derived SNPs—with

100% of the 8 SNPs that had sufficient coverage in the RNA-seq data (>5X) being validated

(Table 2). The 19 most impactful SNPs were found to affect 9 different genes. As such, we ana-

lysed the RNA-seq data for these 9 genes to assess SNP effect on transcript structure and SNP

association with gene expression level. From this analysis, all but one (TRAPPC5) of the 9

genes showed an association between the RNA-seq data and at least one of their SNPs, or else

a non-synonymous SNP. We observed that 3 of the 9 genes showed correlation |rs|>0.3

between a SNP allele and their gene expression level; ITGA4 with an intron variant, NOD2

with two exon variants and PRDM1 with a 5’UTR variant (Table 2 and S3 Fig). An additional

2 genes (plus PRDM1 correlated previously) showed correlation |rs|> 0.3 between a SNP allele

and the length (in bp) of their longest transcript; ADAM22 with an intron variant, JAK2 with

a 5’UTR variant and PRDM1 with one 5’UTR and one missense exon-based variant (Table 2

and S3 Fig). Many of these SNPs were synonymous SNPs that do not change amino acids but

can disrupt transcription [36], splicing [37], co-translational folding [38], mRNA stability [39],

and cause a plethora of other functionally relevant changes e.g., altering transcription and

splicing regulatory factors within protein coding regions [40], thus potentially modulating

gene expression. In addition to missense variants in PRDM1 and NOD2, a further 3 genes of

the 9 (TLX1, GRM6 and TYK2) showed non-synonymous or missense changes, which result

in changes in the coding for an amino acid and could affect drug metabolism/excretion effi-

ciency or have effects at the level of the target.

Interestingly, 5 of the 9 genes represented in Table 2 were from our previously “known” list

of those highly associated with Crohn’s or UC (S1 Table), however the remaining 4 (TLX1,

ADAM22, TRAPPC5 and GRM6) were not selected on this basis but their associated SNPs

were derived from our chi2 feature selection revealing potential new insights into IBD drug

response. Investigation of these genes rationalised their prioritization by the ML model for

prediction or discrimination of inflammatory response between patients; TLX1 is linked to

colorectal adenocarcinoma that chronic or poorer prognosis IBD patients are known to have a

higher risk of developing, ADAM22 has been implicated in lipopolysaccharide-induced

inflammation which can stimulate TNFα [41], TRAPPC5 has had family members i.e.

TRAPPC9 demonstrating an ability (with NIBP) to potentiate TNFα-induced activation [42]

and GRM6 encodes a glutamate receptor which has significance since it has been reported that

peripheral glutamate and peripheral glutamate receptors contribute to inflammatory pain [43].

The majority (58%) of the individual 19 SNPs in the top 20 most impactful features for our

“demographic+medicinal+SNPs” model, were either non-synonymous variants or synony-

mous variants that directly correlated with our RNA-seq analysis. However, since multiple

SNPs were present for the known Crohn’s and UC genes, we wanted to test if a single repre-

sentative SNP per gene was sufficient to equal our median model MAE of 4.98% e.g., using the

most highly correlated SNP with the RNA-seq or else a non-synonymous SNP. Therefore, we

reduced the 71 SNPs down to 43 accordingly (S1 Table) and compared the resultant model

“demographic+medicinal+filterSNPs”. This refinement did not improve our best median
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MAE, in fact, it increased to 6.14%, showing that multiple different SNPs, even for a single

gene, can be individually informative, if that gene is of significance to the phenotype being pre-

dicted, as is the case here.

Extension of predictive analysis to additional doses and compounds

Initially, as proof of concept we focused on a single compound (BIRB796 and dose 10nM);

however, pharmacological data (TNFα response) was available for the three drugs previously

mentioned and for prednisolone and BIRB796 across two doses. The doses were chosen based

on an approximation of the mean local concentrations expected in patients, to allow transla-

tion of ex vivo concentration-response relationships to the relevant likely exposures in patients.

As such, we trained additional ML models for each of the remaining compounds and doses

(see Table in Fig 6). We curated features for model training as per our investigation of

BIRB796 combining the same demographic features used previously, with the medical features

that correlated with drug response, per drug (Table 1) and also the 39 known related SNPs

from the top ten genes most associated with Crohn’s and UC (S1 Table).

Table 2. Validation of 19 most impactful SNPs for drug response prediction using RNA-seq data.

R SNP Gene IBD (R) (I) DS Location (rs) R/I ESNP O(rs)

2 chr16_50733374 NOD2 Known G(Ref) GT rs2076753 5’UTR Variant 0.06 5/9 - (100%) -0.02

3 chr16_50731096 NOD2 Known G (Ref) GA rs2076752 5’UTR Variant 0.06 5/9 - (100%) -0.02

4 chr6_106534419 PRDM1 Known C (Ref) CG rs17486714 5’UTR Variant 0.43 10/4 -(100%) -0.31

5 chr16_50745199 NOD2 Known C (Ref) CT rs2066843 Synonymous Variant 0.06 5/9 Y(64%) NA(36%) -0.02

6 chr16_50745583 NOD2 Known T (Ref) TG rs1861759 Synonymous Variant 0.36 8/6 Y (86%) NA(14%) 0.29

7 chr16_50733859 NOD2 Known C (Ref) CG rs2067085 Synonymous Variant 0.36 8/6 Y(64%) NA(36%) 0.29

8 chr16_50744624 NOD2 Known C (Ref) CT rs2066842 Missense Variant P > S 0.06 5/9 Y(71%) NA(29%) -0.02

9 chr10_102891680 TLX1 Unknown GA G (Ref) rs113474709 Missense Variant A > T 0.15 3/11 NA(100%) 0.20

10 chr19_10475652 TYK2 Known C (Ref) CA rs2304256 Missense Variant V > F 0.07 8/6 Y(93%) NA(7%) 0.29

11 chr2_182347072 ITGA4 Known T (ref) TC rs2305588 Intron Variant 0.50 8/6 -(100%) -0.18

12 chr7_87810955 ADAM22 Unknown TC T(Ref) rs2240467 Intron Variant 0.28 3/11 -(100%) -0.54 (p0.05)

13 chr2_182392143 ITGA4 Known G (Ref) GC rs56095368 Intron Variant 0.15 3/11 -(100%) -0.15

14 chr19_10477067 TYK2 Known A (Ref) AG rs34725611 Intron Variant 0.07 8/6 -(100%) 0.29

15 chr2_182399685 ITGA4 Known C (Ref) CT rs41265949 Intron Variant 0.15 3/11 -(100%) -0.15

16 chr16_50745655 NOD2 Known C (Ref) CT rs61736932 Synonymous Variant 0.11 11/3 Y(57%) NA(43%) 0.19

17 chr19_7747445 TRAPPC5 Unknown G (Ref) GA rs1053363 Synonymous Variant 0.11 11/3 Y(100%) 0.20

18 chr9_5050706 JAK2 Known C (Ref) CT rs2230722 5’UTR Variant 0.16 7/7 -(100%) -0.30

19 chr5_178409927 GRM6 Unknown G (Ref) GA rs17078874 Missense Variant A > V -0.11 11/3 NA(100%) -0.15

20 chr6_106547372 PRDM1 Known C (Ref) CG rs811925 Missense Variant D > E -0.19 11/3 Y(100%) -0.58 (p0.03)

SNP rank (R) is derived from the model explanation of the best “demographic+medicinal+SNPs” model. Location and demographic association of SNPs is derived from

(https://www.ensembl.org/vep) Ensemble Variant effect Predictor. RNA-seq data is available for 14 /25 patients. Evidence for SNP in RNA-seq data (ESNP) is denoted

yes (Y) if SNP allele is observed in the appropriate matched samples, no (N) if sufficient coverage is available but no SNP allele is seen, not available (NA) if insufficient

sequencing coverage is available (gene not expressed) and “-”is used if the SNP is not in an exon. Observed effect on transcript length (O(rs)) denotes Spearman’s Rho

correlation between SNP alleles and transcript lengths of the respective patients from the RNA-seq data. Where correlation are statistically significant the p-value is also

shown. For correlations SNP alleles are converted to 1, while donors with the reference allele are represented 0.

R = SNP ranking, IBD = IBD relevance, (R) = (R) Allele reducing TNFα level prediction (I) = (I) Allele increasing TNFα level prediction, DS = Db SNP, (rs) = SNP

correlation with gene expression (TMM values for corresponding genes) is defined using Spearman’s Rho (rs). (R/I) = Number of patients with allele R/I;

ESNP = Evidence for SNP in RNA-seq data, O(rs) = Observed effect on transcript length between SNP alleles and transcript lengths.

https://doi.org/10.1371/journal.pone.0263248.t002
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Investigating the explanation of our most impactful features from the best “demographic+-

medicinal+SNPs” models per drug/dose (Fig 6A–6D), we noted that two SNPs were common

to all 5 treatments: chr2_182399685 (an intron variant in ITGA4) and chr9_5050706 (a mis-

sense variant in JAK2). Additionally, we defined features that were unique to the top 20 most

impactful model features for each single compound and dosage (S2 Table). BIRB796 at 10nM

had the most unique features (6 SNPs highlighted in bold in Table 2) and BIRB at 100nM had

the least unique features (1 intron variant rs11256369, in the gene IL2RA). Otherwise, the

model for Pred at 1uM had two unique features in its top 20 most impactful, the intron variant

(rs3212733) in the gene JAK3 and the prescribed medicine adalimumab. The model for Pred

at 100nM had three unique features in its top 20 most impactful, the synonymous variant

(rs3729904) and intron variant (rs1013316) in the gene PRKCB and the missense variant

(rs2454206) in TET2. The model for 5-ASA had five unique features in its top 20 most impact-

ful, firstly, the designation that the patient was taking no other medicines, plus four SNPs

including two intron variants (rs12720270 and rs12720299) in the gene TYK2, an intron vari-

ant (rs279827) in the gene GABRA2 and the intron variant (rs3729883) in the gene PRKCB.

Fig 6. Comparison of ML model explanations for the prediction of response to three drugs (x2 doses) for demographic, medicinal and genomic

features. Here we show SHAP plots that contain explanations for the predictions as generated by our best ML models (as defined in the table to the right)

using “demographic+medicinal+SNP” features as appropriate per drug for (a) BIRB796 100nM (b) Pred 1uM (c) Pred 100 nM (d) 5-ASA. Plots (a-d)

show the top 20 ranked features together with the weight of each feature (row) for the prediction of TNFα level for each donor (a donor is a blue or red

dot). Figure legend details the colour and corresponding value that each feature has for each donor (coloured dot). The table to the right shows, for each

drug, the best ML model and the median, average and standard deviation mean absolute error values (MAEs) computed during 10-fold cross validation.

Note all target drug responses have been normalized on a scale of 0–1 and here we show percentages of MAE values.

https://doi.org/10.1371/journal.pone.0263248.g006
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Conclusions

In this study, we propose a ML workflow to predict inter-patient variation in ex vivo drug

response and we use explainable AI to identify and rank important multi-modal features that

guide these predictions. We integrate diverse data sources, including multi-omic, demo-

graphic, medicinal (prescribed medicines) and pharmacological data to facilitate precision

medicine. We demonstrate the potential of combining preclinical functional characterisation

of drug efficacy and inter-patient variation in drug response, with state-of the-art omics, bioin-

formatics and ML/AI approaches as a new way to model precision medicine strategies at the

early stages of drug development.

As an exemplar project, and given the sophistication of our experimental approach, the

number of patients used in this study was relatively high for an ex vivo study of human fresh

tissues but relatively low for a genomics study and findings are therefore tentative; further

work will allow us to further explore how well these models generalize to larger groups of

unseen patients. However, this study was also designed to explore the potential for such proj-

ects during preclinical drug development, where budgets are limited and projects exploring

hundreds of patients may be too costly or time-prohibitive, but where more predictive preclin-

ical models of efficacy are needed. Nonetheless, our best model was able to predict inflamma-

tory drug response (as measured in ex vivo tissue assays) from a combination of integrated

demographic, medicinal and genomic features from only 25 patients with an error as low as

4.98% on unseen patients. More importantly, clear variations in drug effectiveness were

observed between patients e.g. considering demographic features such as gender, age or condi-

tion or previous medication history.

Our preliminary experimental findings (incorporating RNA-seq data) suggest that genetic

polymorphisms in our cohort of IBD patients are linked to variation in response to the anti-

inflammatory treatment BIRB796 (doramapimod). In particular, firstly, we associated the

presence of the alternate allele of the variant rs2240467 in the gene ADAM22 with a signifi-

cantly shorter transcript length (rs = -0.54, p = 0.05), which has the potential to affect down-

stream functionality. ADAM22 has been implicated in the release of inflammatory cytokines

such as TNFα [41] so this transcript truncation supports our observed tendency for the variant

allele of rs2240467 to reduce the predicted TNFα level by our ML model. We interpret this as

inducing a better response to the test drug. Secondly, the presence of the alternate allele of the

variant rs811925 in the gene PRDM1 was also associated with decreased expression of the gene

and a significantly shorter transcript length (rs = -0.58, p = 0.03). This was coupled with the

ML model predicting a higher TNFα level when the alternate allele was present. BLIMP-1 (the

protein encoded by PRDM1) is thought to be critical to the maintenance of immune homeo-

stasis [44] and p38 MAPK has been shown to be a positive upstream regulator of BLIMP-1

expression [45]. Since BLIMP-1 lies downstream of p38 MAPK signalling, this may explain

why a p38 MAPK inhibitor such as BIRB796 would demonstrate lower efficacy in patients

with mutations that already inhibit BLIMP-1 expression or affect its functionality. These two

variants (in ADAM22 and PRDM1) were selected for being amongst the top 20 most predic-

tive for our ML model, but also for being strongly associated with the transcriptomic observa-

tions (p<0.05), allowing validation. Interestingly, the variant in ADAM22 was derived from

our chi2 feature selection while the variant from PRDM1 was from our previously “known”

list associated with Crohn’s or UC (S1 Table). Similarly, all SNPs that we found most predictive

of drug response included a balance between those from our previously “known” list and those

derived de novo from chi2 feature selection. This highlights the benefit and complementarity

of combining domain knowledge with more standard feature selection approaches.
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Finally, we were able to apply our workflow to other drugs or dosages. Model explanations

revealed some overlap between the most impactful features that each different model was

using to make predictions. On the other hand, we found features (mainly composed of genetic

SNP marks) that differentiated the models, targeting them to each specific compound of

interest.

While a high volume of functional and genomics data was generated, the total number of

patients was low for an association study. For this reason, the scientific conclusions made from

the study remain tentative. However, we feel that this project serves to demonstrate well the

potential to explore patient stratification strategies, at a much earlier stage, by combining

human fresh tissue pharmacology, demographic metadata, multi-omics and AI. Future work

will involve the extension of this analysis to a larger dataset to investigate the wider adoption

of our approach and further showcase its impact for precision medicine.

Materials and methods

Ethics approval and consent to participate

The West of Scotland Research Ethics Committee (12/ws/0069) granted approval for this

study. All procedures performed in this study involving human participants were in accor-

dance with the ethical standards of the institutional and/or national research committee and

with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent and written consent was obtained from all individual participants involved

in the study.

Demographic feature preparation for ML

Demographic features were codified as follows:

1. Age, originally expressed in intervals, was translated into integers in the interval [0,7] as

follows

a. [18–24] -> 0,

b. [31–36] -> 1,

c. [37–42] -> 2,

d. [43–48] -> 3,

e. [49–54] -> 4,

f. [55–60] -> 5,

g. [61–66] -> 6,

h. [67–72] -> 7

2. Gender, female or male, was translated into 0 and 1 respectively

3. Condition, 12 patients with Ulcerative Colitis and 13 patients with Crohn’s, these condi-

tions were translated into 0 and 1 respectively

4. Resection area, colon or ileum, was translated into 0 and 1 respectively

5. Smoking history had inconsistent metadata e.g. non-smoker, unknown, 5 cig per day, pre-

vious, less than 20 a day that was manually transformed to either 0 (non-smoker) or 1 (cur-

rent/previous smoker) so it was removed from the analysis
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6. Alcohol history had inconsistent and largely unknown assignments including none,

unknown, occasional, <21 units per week, 15 units per week and 8 units per week.

Ex vivo organoculture

Colon or ileum tissue was ethically obtained from 25 patients, clinically diagnosed with IBD in

the form of Crohn’s or ulcerative colitis who were undergoing therapeutic resection surgery.

Full thickness mucosal biopsies prepared from each tissue were cultured for approximately 18

hours in a humidified incubator (37 ˚C, 5% CO2), in culture media fortified with either test

article or test article vehicle. Each test condition was tested in duplicate culture wells for each

donor. The test articles included the compounds BIRB796 (dose 10nM and 100nM), predniso-

lone (1uM and 100nM) and a single dose of Asacol (5-ASA at 50μg/ml). The doses were cho-

sen based on an approximation of the mean local concentrations expected in patients. Levels

of TNFα were used as the response measurement, and were measured in culture supernatants

using a magnetic bead-based assay for the Luminex MAGPIX platform. Each culture superna-

tant sample was analysed in duplicate and the mean value used in downstream analyses.

RNA, DNA extraction from untreated tissue

DNA was extracted from approximately 10 mg tissue using the PureLink™ Genomic DNA

Mini Kit. DNA quality control was performed using the Agilent 2200 TapeStation and the

Genomic DNA ScreenTape kit to determine the DNA integrity number (DIN). RNA was

extracted from approximately 10 mg of tissue. Tissue was homogenised and total RNA was

then extracted using the miRCURY RNA Isolation Kit–Cell & Plant. Absorbance ratios at 260/

280 nM and 260/230 nM were determined as indicators of sample yield and purity. Further

RNA quality control was performed using the Agilent 2200 TapeStation and the ScreenTape

R6K kit to determine the RNA integrity number (RIN).

Exome and RNA sequencing

WES. Targeted next generation sequencing libraries were prepared using the Ion Ampli-

seq™ Exome RDY Kit and DNA isolated from baseline lung biopsies. Multiplexed PCR was

performed to produce barcoded libraries, using 100 ng of input DNA per sample and 10

amplification cycles. The Ion AmpliSeq™ Library Kit Plus and IonXpress™ Barcode Adapters

were used in library preparation, according to the manufacturer’s instructions. Final library

concentrations were determined by quantitative real time PCR using the Ion Library TaqMan™
Quantitation Kit. Libraries were diluted to 100 pM, and 2 libraries were subsequently pooled

in equal amounts for templating on the Ion OneTouch™ 2 System, using the Ion PI™ Hi-Q™
OT2 200 kit. The Ion Proton™ NGS platform was used for sequencing of multiplexed tem-

plated libraries, using the Ion PI™ Hi-Q™ Sequencing 200 Kit and the Ion PI™ Chip Kit v3,

according to the manufacturer’s instructions.

RNAseq. Following QC, mRNA was enriched using oligo(dT) beads. The mRNA was

then fragmented randomly in fragmentation buffer, followed by cDNA synthesis using ran-

dom hexamers and reverse transcriptase. After first-strand synthesis, a custom second-strand

synthesis buffer (Illumina) was added with dNTPs, RNase H and Escherichia coli polymerase I

to generate the second strand by nick-translation. The final cDNA library was ready after a

round of purification, terminal repair, A-tailing, ligation of sequencing adapters, size selection

and PCR enrichment. Library concentration was first quantified using a Qubit 2.0 fluorometer

(Life Technologies). Insert size was checked on an Agilent 2100 and quantified using
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quantitative PCR (Q-PCR). Libraries were fed into Illumina machines according to results

from library QC and expected data volume.

Organoculture bioinformatic analysis

TNFα levels (pg/mL) determined for each patient sample in the organoculture assay, were nor-

malised against the patient sample matched vehicle control group. The individual drug treated

biopsy results were calculated as a percentage of the mean vehicle control group results before

both drug treated duplicate biopsy results were then meaned to provide a single result for each

drug treatment per donor sample.

Post-processing of the TNFα level

Post-processing of the TNFα data, the TNFα ranges were as follows for 50 μg/mL 5-ASA 50.5–

345.0, for 1 μM Prednisolone 36.8–293.8, for 100 nM Prednisolone 11.1–136.1, for 100 nM

BIRB796 9.9–94.6 and for 10 nM BIRB796 50.6–369.1. The overall range across the compound

set was 9.9–369.1. As such, for each compound the TNFα ranges were normalized to a scale of

0–1 to enable easier comparison between the compounds.

Exome sequence bioinformatic analysis

Torrent Mapping Alignment Program was used to provide IonTorrent AmpliSeq exome

sequencing data for each patient. Data was provided as a BAM file aligned to genome reference

GRCh37. Genotypes called with Torrent Variant Caller were provided as per sample VCF files.

Single nucleotide polymorphisms (SNPs) from the VCF files were merged into a multi-sample

VCF and VCF files were then filtered to remove low quality SNPs including those with a depth

less than 30.

Post-processing of the SNP data, we extracted 102,601 unique SNPs across the 25 patients.

For these unique SNPs we extracted the patient-wise information labelling as either; homozy-

gous (using the allele that the patient has if alternate allele freq>0.8), heterozygous (denoted

using the reference then the alternate allele if alternate allele freq< = 0.8) and finally, homozy-

gous Ref (if no SNP was recorded for that patient at that position). SNPs were filtered for those

showing little variation across the 25 patients i.e. those were 20+ of the 25 patients showed the

same SNP allele. We also filtered if the reference or alternate allele were not a single A/T/G/C

i.e. no indels. This left 33,577 SNPs. For input into ML homozygous, heterozygous and homo-

zygous reference were transformed into a numerical format.

RNA-seq bioinformatic analysis

Raw paired-end reads were obtained in FASTQ format (un-stranded) for 14 of the 25 patients.

These reads were filtered with Trimmomatic v0.39 [46] for adaptor sequence and also for qual-

ity using a 4-base wide sliding window where reads were cut when the average quality per base

drops below 15. Reads were dropped if trimmed below 40 bp long. Surviving reads were

aligned to the human reference genome (GRCh38) using HISAT2 v2.1.0 [47] with default

parameters. Uniquely aligned reads were selected (if mapped in a proper pair) using SAMtools

v1.10 [48] and duplicate removal was performed using MarkDuplicates v2.22.0 [49]. Mapping

statistics are shown in S3 Table. Gene expression levels were quantified using StringTie [50]

and the raw expression counts per gene, were subsequently normalised across the 14 patients

using EdgeR to generate TMM values [51]. There were 53,779 genes in the dataset, filtering to

focus on those represented at a minimum of 1cpm (counts per million) in at least two samples

was performed initially to obtain a final analysis set of 19,731 genes.
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Tuning, training and evaluating machine learning models

We evaluated the application of five state-of-art machine learning models; random forest (RF)

[52], XGBoost [53], Support Vector Machines (SVM) [54], K-Nearest Neighbors (KNN) [55]

and Adaboost [56]. The first step before tuning and training our models is to standardise our

data using scikit-learn sk-learn.preprocessing.StandardScaler() function. We then split our

patient set in training set (80% of the entire data) and test set (the remaining 20% of the data).

Finally, we normalised the target to predict (TNFα level), as described in section “Post-pro-

cessing of the TNFα level” of Methods.

The hyperparameters of each ML model are tuned on the training dataset. Hyper-parame-

ter optimization (HPO) consisted of 200 iterations of a random search with 5-fold cross-vali-

dation, using the scikit-learn implementation sklearn.model_selection.RandomisedSearchCV

(). Each iteration of the random search used a different combination of randomly selected

hyper-parameters. Scikit-learn implementation of RF, Adaboost, SVM, KNN (sklearn.ensem-

ble.RandomForestRegressor, sklern.ensemble.AdaBoostRegressor, sklearn.neighbors.

KNeightborsRegressor, sklearn.svm.SVR respectively) and the XGBoost implementation from

the conda-forge channel ((1)) were used for this analysis. S4 Table reports the best hyper-

parameters selected by HPO for each model and dataset.

Once tuned on the training dataset, the optimised models were trained to make predictions

on unseen test data and their predictive performances were compared using the Mean Abso-

lute Error (MAE). We used the scikit-learn implementation of MAE sk-learn.metrics.mean_-

absolute_error. The MAE is a measure of errors between paired observations of the same

phenomena. In this context is a measure of errors between paired true values and predicted

values of TNFα level. More precisely, given X and Y being respectively true and predicted val-

ues and n the number of patients, MAE is calculated as:

MAE ¼

Xn

i¼1
jyi � xij
n

To examine the stability and the generalisability of our models on different randomly selected

unseen datasets (i.e., different test sets) we run 10-fold cross validation (10-CV) for each

model and each dataset using the scikit-learn implementation sk-learn.model_selection.KFold

with parameters n_splits = 10 and shuffle = True.

We then computed median, average and standard deviation of MAE across the 10 folds (see

Figs 3 and 4 and S1 and the table in Fig 6). This allowed us to compare the predictive perfor-

mances of our models and select the best ML model as the one that provided the lowest MAE

on 10-fold cross validation.

Explaining the predictions of the best models

Providing explanations for the machine learning model predictions is an important active field

of research, as it helps build trust in the models and can provide actionable insights about the

target of interest. For this purpose, we used SHapley Additive exPlanations (SHAP) explain-

ability algorithm [26] for its ability to work with any machine learning model. We used the

python implementation of SHAP, version 0.35.0, available via the conda-forge channel

(https://anaconda.org/conda-forge/shap). SHAP combines game theory with local explanation

enabling accurate interpretations on how the model predicted a particular value for a given

sample. The explanations are called local explanations and reveal subtle changes and interrela-

tions that are otherwise missed when these differences are averaged out. Local explanations

allow the inspection of samples that have extreme phenotypes values, e.g. high or low inflam-

matory response to the drug. By comparing the predictive performances of our ML models,
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we selected the best model at predicting TNFα level for each feature set and drug. To obtain

the appropriate SHAP explainer we combined shap.KernelExplainer with the best hyper-

tuned KNN detailed in S4 Table. Finally, we used the obtained SHAP explainer to compute

SHAP values for the entire set of donors. We then produced the SHAP bar plots in Fig 5A and

5B and the SHAP summary dot plots in Fig 5C and 5D.

Supporting information

S1 File. Feature set “demographic+medicinal+SNP” that was used to train our best ML

model.

(CSV)

S1 Fig. Comparison of ML model error rates for the prediction of BIRB796 (at 10nM)

drug response for different combinations of demographic features. Here we show box plots

(left) of mean absolute error values (as percentages) computed during 10-fold cross validation.

The horizontal line in each boxplot is the median of the MAE over 10 folds, where each of the

test folds has ~3 randomly chosen patients. Note all target drug responses have been normal-

ized on a scale of 0–1 and here we show percentages of MAE values. On the right we report

median, average and standard deviation MAE as percentages for each ML method. We com-

puted the predictive error using different combination of demographic features; (a) age, gen-

der, condition, resection area and smoking, or (b) age, gender, condition, resection area or (c)

age, gender, condition only.

(DOCX)

S2 Fig. Results of Chi2 test to sequentially remove SNP (genomic) features and observe

effect on model MAE rate.

(DOCX)

S3 Fig. Validation of 19 most impactful genomic SNP features to drug response prediction

using RNA-seq data. RNA-seq data available for 14 of the 25 patients. Shown here are the top

ranked SNPs from model explanation of best “demographic+medicinal+SNPs” model, if those

SNP alleles showed correlation with gene expression (TMM values for corresponding genes)

or if they showed correlation with transcript lengths of respective patients using Spearman’s

Rho (rs) (> 0.3). Box plots compare the SNP alleles versus their distributions of either TMM

values or transcript lengths (bp) for the gene of origin of the SNP. Each box plot is labelled

(title) with the “gene of origin of SNP”-“rank of SNP in Table 2” (“if correlated with TMM or

Length”). The x-axis denoted the SNP alleles featured in the patient population that are being

compared; “Ref” denotes reference allele and “Het” denotes a heterozygous SNP.

(DOCX)

S1 Table. Top 10 known genes associated with ulcerative colitis and Crohn’s disease. As

identified from target validation.org. Those SNPs selected (one per gene) as non-synonymous

or else the most correlated with RNA-seq data are highlighted in bold.

(DOCX)

S2 Table. Features specific to the model explanation (among the top 20 most impactful fea-

tures) of a single tested drug or dosage from the 5 compared in this study.

(DOCX)

S3 Table. Mapping statistics for the 14 RNA-seq samples. Pre and post alignment.

(DOCX)
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S4 Table. Hyper-parameters of the best ML models selected by hyper-parameter optimiza-

tion.

(DOCX)
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