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The vortex force map method for multi-body viscous flows is derived in this work.
Extended from and similar to the vortex force map method for a single body in previous
work, this approach considers all three force components: the vortex-pressure force, the
viscous-pressure force, and the skin friction force. Vortex pressure force maps for each
body are designed to identify the force contribution of a given vortex in the flow field and
define the positive and negative force-generating critical regions or directions. This multi-
body vortex force decomposition method is applied to a wing-flap starting flow problem
and validated against computational fluid dynamics. It is found that the dominant force
is the vortex-pressure force. And for both the main airfoil and the flap, the force variation
against time is closely related to the evolution of the vortex structure near the wing-flap
configuration.
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1. Introduction

The relationship between the flow structure (such as the velocity and vorticity field)
and forces acting on the body has attracted interest for a long time (Polhamus 1966;
WANG 2005; Li et al. 2018). Unsteady force approaches explaining this relationship
are useful in understanding the physical mechanisms in natural flows, especially where
vortical flow dominates, such as fish locomotion (Wu 2011), flying seeds (Cummins et al.
2018), insects’ and birds’ wings (Bomphrey et al. 2017; Usherwood et al. 2020), as
well as in engineering problems such as dynamic stall (Li & Feng 2022), design and
optimization of air vehicles (Alejandro et al. 2018), cars (Liu et al. 2021), wind turbines
(Dong et al. 2022) and so forth. Aside from being a theoretical point of interest, exploring
the numerical connection between flow field and fluid forces has practical applications in
experimental techniques such as particle image velocimetry (PIV) (Bird et al. 2022). Here
it may be difficult to obtain accurate flow information near solid surfaces compared to
those in numerical simulations, limiting the use of pressure-based fluid force computations
and hence necessitating the development of unsteady force methods.

A number of such approaches exist to extract aerodynamic and hydrodynamic forces
from flow parameters, using velocity and/or its time or spatial derivative (Moreau
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1952; Lin & Rockwell 1996; Noca 1996; Noca et al. 1997; Zhu et al. 2002, 2007).
These approaches are usually derived based on the algebraic Bernoulli equation (Xia
& Mohseni 2013), the unsteady Blasius equation (Milne-Thomson 1960; Streitlien &
Triantafyllou 1995; Ford & Babinsky 2013) and the moment-equation based integral
formulae (Saffman 1995; Howe 1995). Except for these theoretical force approaches,
there have been many experimental and computational studies verifying and utilizing
the aforementioned methods, examples including experimental works such as Norberg
(2003); Birch & Dickinson (2003); Shew et al. (2006) and computational works from
Ploumhans et al. (2002); Hsieh et al. (2010). However, there has not been much in way
of theoretical updates on these works.

Recently, Li & Wu (2018) proposed and adopted (Li et al. 2021) the vortex force map
method to extract force from the velocity and vorticity fields, making use of the integral
force formula by Howe (1995). In this approach, forces acting on a body are expressed
as a scalar product between the velocity, the vortex force vector, and the local vortex
strength. The vortex force maps, constructed in order to identify the force contribution
effect of each vortex in the flow field, are dependent on the body geometry only and not
on flow features. Moreover, the map provides a visual display of the force-producing and
reducing critical regions and directions. An extension to three-dimensional flows with
application to a delta wing was later demonstrated by Li et al. (2020b) and the extension
to the moment on a airfoil was demonstrated by Li et al. (2020a). This was followed by
the treatment of low Reynolds number flows in Li et al. (2021), extending the vortex force
map method to more general cases for a wider range of Reynolds numbers (from O(10)
to O(1e6)) by adding the viscous-pressure force and skin friction force contributions to
the total force. The formulation for vortex-pressure force maps were also updated so
that vortices far away from the body have a vanishing effect on force, making it possible
to identify the force contribution effect of each given vortex based solely on the near-
field flow. To facilitate its application in extracting forces from PIV-like flow velocity
and vorticity data, the dependence of accuracy on the resolution of the mesh used to
compute the forces, as well as calculation/integration domain, were also investigated in
that work. Note that, here, a mesh is used to demonstrate the PIV-like flow field where
the velocity/vorticity field data are pre-provided for the force calculation, while in other
cases like the vortex panel method, a mesh is no longer needed.

So far, the methods described above all consider flows around a single body, it has
been less clear how flows involving multiple bodies can be treated by these methods.
Bai et al. (2014) proposed the generalized Kutta-Joukowski force formula for two-
dimensional inviscid flow involving multiple bound and free vortices, multiple airfoils,
and vortex generation (vorticity production) by using a specific momentum approach.
Chang et al. (2008) proposed a many-body force decomposition approach by employing
auxiliary potential functions with applications to flow about multi-cylinders. However,
Howe’s original approach aimed at multi-body flows still needs further exploration since
its application in airfoil or wing aerodynamics is not complete. Moreover, the Chang
et al. (2008) theory does not lend itself to a visual representation of the individual force
contributions to each body from the vorticity distribution in the flow field. Therefore
in this work, the vortex force map method is extended to multi-body flows by deriving
the vortex force formula for each individual body in a multi-body setup. Similar to the
previous work, we break down the contribution into three effects: the vortex-pressure
force caused by free vorticity in the flow field, the viscous-pressure force, and the skin
friction force caused by vorticity on the body surface. We aim to develop individual
vortex-pressure force maps for each body in the presence of other bodies. To demonstrate
its application, this method is used to study impulsively started flows around wing-
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flap configurations and validate the results against computational fluid dynamics (CFD)
results. Subsequently, we will also use the method to study the force oscillation behavior
related to the vortex flow pattern.

In section 2, the derivation of the vortex force map approach for multi-body force
decomposition is presented, with guidance on designing vortex-pressure force maps and
applying the force approach in calculating total force. In section 3, vortex-pressure
force map analysis for two-dimensional wing-flap configurations at different stages of
deployment and at different angles of attack is demonstrated. Section 4 is dedicated to
the application of the vortex force map approach to unsteady flows around the wing-flap
configurations with different deflection angles of the flap, at different Reynolds numbers,
and for different angles of attack. Theoretical results of force variation with time are
validated against CFD. Concluding remarks are given in section 5.

2. Vortex force decomposition for multi-body flows

Consider viscous flows of constant density ρ and viscosity µ around a number of M
solid bodies. Each body has a volume ΩmB (m = 1, 2, ...,M), bounded by a closed surface
SmB (m = 1, 2, ...,M). (In the two-dimensional case, the bounding surface SmB reduces
to a closed curve lmB). The control volume Ω is bounded by S∞ at infinity. In this section

we will derive the force
−→
Fi acting on the ith-body as reference, which can be decomposed

into a normal component FiN and an axial component FiA, or a lift component Li and a
drag component Di in the body-fixed frame (x, y, z) of the ith-body. Here, the free-stream
velocity is V∞ (incident at an angle α to the ith-body axis), the velocity of the flow field

is
−→
U , and the vorticity is −→ω . The problem setup and the schematic of the flow and the

force components are shown in Figure 1. The flow is governed by the incompressible
momentum equation in the Lamb-Gromyko form

∇
(
P +

1

2
ρU2

)
+ ρ−→ω ×

−→
U = −ρ∂

−→
U

∂t
− µ∇×−→ω , (2.1)

and the incompressible continuity equation

∇ ·
−→
U = 0. (2.2)

For each body (i), a set of hypothetical potentials φik is introduced here for the
derivation of force acting on the ith-body as a function of vorticity field, similar to that
suggested by Howe (1995) for a single body case. Each φik corresponds to the velocity
potential for hypothetical potential fluid induced by the translational motion of ΩiB
at unit speed in the kth-direction (other bodies remain stationary for this purpose).
According to the definition of the hypothetical potentials, they satisfy the Laplace
equation in the entire field with boundary conditions blow


∇2φi = 0

∇φik · −−→niB = −
−→
k · −−→niB = niB,k, (x, y, z)→ SiB

∇φik · −−→nmB = 0, (x, y, z)→ SmB ∪ S∞ (m 6= i)

. (2.3)

Here −−→niB and −−→nmB are the normal vectors pointing inward from each body surface and−→
k is the unit vector in kth-direction.
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Figure 1: (a) A set of rigid bodies ΩmB (m = 1, 2, ...,M), bounded by SmB , in
translational outer flows with a control volume Ω bounded by S∞ at infinity. The
force acting on the ith-body may be either decomposed into a normal component
(FiN ) and an axial component (FiA), or a lift component (Li) and a drag component
(Di). (b) Schematic display of vortex flow and various force components for a wing-
flap configuration at arbitrary angle of attack (α) (x is along the chord line and y is
perpendicular to the chord line). Here number of bodies M = 2, and m = 1 denotes the
main airfoil, m = 2 denotes the flap.

2.1. General vortex force expression for the ith-body in three dimensions

According to the most commonly used force formula (Chang 1992), the force acting
on the ith-body is comprised of the pressure force and the skin friction force,


−→
Fi =

−→
Fi

(pressure) +
−→
Fi

(friction)

−→
Fi

(pressure) =
∫∫
SiB

P−−→niBdS−→
Fi

(friction) = µ
∫∫
SiB

−−→niB ×−→ω dS
(2.4)

among which the pressure force can be transformed into a function of the vorticity field
by using the Lamb-Gromyko equation (2.1) and the boundary condition (2.3) satisfied
on the body surface.

Integrating the scalar product of ∇φik and equation (2.1) on the control volume, (i.e.∫∫∫
Ω
∇φik • (2.1)dΩ), with the help of the incompressible continuity equation (2.2) and

the identities ψ∇ •
−→
G ≡ ∇ •

(
ψ
−→
G
)
− ∇ψ •

−→
G and ∇ •

(
∇×

−→
G
)
≡ 0 (ψ denotes an

arbitrary scalar and
−→
G an arbitrary tensor), we have
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∫∫∫
Ω

∇ • (P∇φik) dΩ = −ρ
∫∫∫

Ω

∇ •

(
φik

∂
−→
U

∂t

)
dΩ − ρ

∫∫∫
Ω

∇φik •
(−→ω ×−→U ) dΩ

−µ
∫∫∫

Ω

∇ •
(
φik∇×−→ω

)
dΩ

Applying Green’s theorem to transform the volume integral in the above equation into
the surface integral, and with application of identity φik∇×−→ω = ∇×

(
φik
−→ω
)
+−→ω ×∇φik

and
∫∫
S
∇×

−→
G • −→n dS = 0 on any enclosed surfaces, we have

−
∫∫

∑M
m=1 SmB+S∞

P∇φik · −−→nmBdS = −ρ
∫∫

∑M
m=1 SmB+S∞

φik
∂
−→
U

∂t
• −→n dS

−ρ
∫∫∫

Ω

∇φik •
(−→ω ×−→U ) dΩ

−µ
∫∫

∑M
m=1 SmB+S∞

−→ω ×∇φik • −→n dS (2.5)

Substituting equation (2.3) into the LHS of equation (2.5), we have

−
∫∫

∑M
m=1 SmB+S∞

P∇φik · −−→nmBdS =

∫∫
SiB

PniB,kdS. (2.6)

As the flow at infinity is undisturbed and irrotational, we have{
ρ
∫∫
S∞

φik
∂
−→
U
∂t •

−→n dS = 0

µ
∫∫
S∞

−→ω ×∇φik • −→n dS = 0
. (2.7)

Projecting the force equation (2.4) into the kth-direction and substituting equations
(2.5)-(2.7) into it, we arrive at the force formula in the form of a summation of four

components: the added mass force F
(Add)
ik , the vortex pressure force F

(vor−P )
ik , the viscous

pressure force F
(vis−P )
ik and the skin-friction force F

(friction)
ik , and the first three make

up the pressure force F
(pressure)
ik .

Fik = F
(Add)
ik + F

(vor−P )
ik + F

(vis−P )
ik︸ ︷︷ ︸

F
(pressure)
ik

+ F
(friction)
ik

F
(Add)
ik = −ρ

∫∫∑M
m=1 SmB

φik
∂
−→
U
∂t •

−→n dS

F
(vor−P )
ik = −ρ

∫∫∫
Ω
∇φik •

(−→ω ×−→U ) dΩ
F

(vis−P )
ik = −µ

∫∫∑M
m=1 SmB

−→ω ×∇φik • −−→niBdS
F

(friction)
ik = µ

∫∫
SiB

−→nB ×−→ω •
−→
k dS

(2.8)

Some discussions on the force formula:
i) It is capable of any unsteady flows. For the first term (the added mass force) F

(Add)
ik ,

time is included explicitly by ∂
−→
U /∂t. While for the remaining terms, time is included

implicitly by the time-dependent flow field data −→ω and
−→
U .

ii) The added mass force F
(Add)
ik , proportional to ∂

−→
U /∂t on the body surface, is caused

by acceleration, pitching, heaving and deformation of the body. Sometimes it is omitted
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as studies have shown that the forces are dominated by the vortex forces for massively
separated flow problems (Ansari et al. 2006; Xia & Mohseni 2013).

iii) As will be shown in section 4, the vortex-pressure force F
(vor−P )
ik is the dominant

force. According to the definition of hypothetical potential (2.3), ∇φik = 0 at infinity,
which ensures the above formula to be consistent with the fact that only near-body
vortices are more likely to cause pressure variation while vortices far away from the body
have negligible effects on force.

iv) The viscous-pressure force F
(vis−P )
ik and the skin-friction force F

(friction)
ik contain

the integration of vorticity −→ω on the body surface. In practice, we interpolate the vorticity
in the boundary layer to the body surface as an approximation.

v) The vortex torque decomposition method for multi-bodies is outlined in appendix
A and will be further studied in the future.

2.2. General vortex force expression for the ith-body in two dimensions

In two-dimensional flow, we have ∇ =
(
∂
∂x ,

∂
∂y , 0

)
, −→ω = (0, 0, ωz), and

−→
U = (u, v, 0).

The force expression (2.8) can now be simplified into

Fik = F
(Add)
ik + F

(vor−P )
ik + F

(vis−P )
ik︸ ︷︷ ︸

F
(pressure)
ik

+ F
(friction)
ik

F
(Add)
ik = −ρ

∫∫∑M
m=1 lmB

φik
∂
−→
U
∂t •

−→n dl
F

(vor−P )
ik = ρ

∫∫
Ω

−→
Λ ik •

−→
U ωzdΩ

F
(vis−P )
ik = µ

∮∑M
m=1 lmB

ωzdφik

F
(friction)
i = µ

∮
liB

ωz
−→
k •
−→
dl

(2.9)

where
−→
U = (u, v) is the vortex velocity in the ith body-fixed frame. The integral in vortex-

pressure force term is defined within the whole fluid region Ω, and the viscous-pressure
and skin-friction terms along the body surface lmB (m = 1, 2, ...M). The vortex-pressure
force factor is expressed as

−→
Λ ik =

(
∂φik
∂y

,−∂φik
∂x

)
. (2.10)

where φik is defined in (2.3).

2.3. Vortex lift and drag expression for the ith-body in two dimensions

Consider in the ith-body-fixed frame, the free stream velocity is
−→
V∞ with an incident

angle of α. The lift expression for the ith-body can be given by choosing the direction−→
k =

−→
kL = (− sinα, cosα) in expression (2.9)

Li = L
(Add)
i + L

(vor−P )
i + L

(vis−P )
i︸ ︷︷ ︸

L
(pressure)
i

+ L
(friction)
i

L
(Add)
i = −ρ

∫∫∑M
m=1 lmB

φiL
∂
−→
U
∂t •

−→n dl
L
(vor−P )
i = ρ

∫∫
Ω

−→
Λ iL •

−→
U ωzdΩ

L
(vis−P )
i = µ

∮∑M
m=1 lmB

ωzdφiL

L
(friction)
i = µ

∮
liB

ωz
−→
kL •

−→
dl

. (2.11)
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Similarly, the drag expression for the ith-body can be given by choosing the direction−→
k =

−→
kD = (cosα, sinα) in expression (2.9)

Di = D
(Add)
i +D

(vor−P )
i +D

(vis−P )
i︸ ︷︷ ︸

D
(pressure)
i

+D
(friction)
i

D
(Add)
i = −ρ

∫∫∑M
m=1 lmB

φiD
∂
−→
U
∂t •

−→n dl
D

(vor−P )
i = ρ

∫∫
Ω

−→
Λ iD •

−→
U ωzdΩ

D
(vis−P )
i = µ

∮∑M
m=1 lmB

ωzdφiD

D
(friction)
i = µ

∮
liB

ωz
−→
kD •

−→
dl

. (2.12)

Here the vortex-pressure force vector

−−→
ΛiL = (

∂φiL
∂y

,−∂φiL
∂x

) (2.13)

is for lift, and

−→
Λ iD = (

∂φiD
∂y

,−∂φiD
∂x

) (2.14)

is for drag. The hypothetical potentials φiL and φiD are induced by the translational

movement of the ith-body in the
−→
kL = (− sinα, cosα) and

−→
kD = (cosα, sinα) direction

with unit velocity, respectively, i.e.
∂2φiL

∂x2 + ∂2φiL

∂y2 = 0
∂φiL

∂n = −→n · (− sinα, cosα) (x, y)→ liB
∂φiL

∂x = ∂φiL

∂y = 0 (x, y)→ lmB (m 6= i) ∪ S∞
(2.15)


∂2φiD

∂x2 + ∂2φiD

∂y2 = 0
∂φiD

∂n = −→n · (cosα, sinα) (x, y)→ liB
∂φiD

∂x = ∂φiD

∂y = 0 (x, y)→ lmB (m 6= i) ∪ S∞
(2.16)

Thus, to obtain the vortex force factors
−→
Λ iL and

−→
Λ iD, one simply needs to solve the

Laplace models (2.15) and (2.16).

2.4. Method to plot vortex-pressure force maps and calculate total force

Expressions (2.11) and (2.12) give the force as the function of the vorticity field, in
which the free vorticity in the flow field contributes to the pressure force and the vorticity
on the body surface contributes to both pressure force and skin-friction force. As will be
discussed later, the dominant force component is vortex-pressure force, in the form of
the integration of a scalar product between the vortex-pressure force vectors defined in
(2.13) and (2.14) and the local velocity. The vortex-pressure force vectors are function of
position but independent of the flow field (incl. Reynolds number) and only dependent
on the body shape and the angle of attack. Thus the vortex-pressure force vectors can
be precomputed without knowing the flow field by solving equations (2.15) and (2.16)
numerically. More details will be given in the next section.

On the one hand, these vectors can be used to build vortex-pressure force maps which
can help analyze force oscillating behavior with relation to the vortex flow pattern and
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identify the critical regions and directions for positive and negative force production by
a given vortex.

On the other hand, they can be used together with force formulas (2.11) and (2.12)
to obtain total forces if the properties of vortices (velocity and circulation) in the flow
field and on the body surface are obtained through analytical, numerical or experimental
methods.

a) Vortex-pressure force map analysis
Vortex force maps in the two-dimensional plane (x, y) for the ith-body are designed

based on the precomputed vortex-pressure force vectors
−→
Λ iL for lift force and

−→
Λ iD for

drag given by (2.13) and (2.14). Each map contains force lines that are locally parallel to
the vortex force vectors, which can be obtained through a streamline procedure, with the

velocity replaced by the vortex force factors. It also contains contours of
∣∣∣−→Λ iL

∣∣∣ or
∣∣∣−→Λ iD

∣∣∣.
Vortex force map is defined in such a way that the force contribution of any individual
vortex can be easily identified according to its circulation (sign and magnitude), position
and direction (the angle between the vortex force line and streamline at the point of the
vortex). Thus lift-increasing or drag-reducing directions and critical regions of a given
vortex for each body can be defined in a similar way as in Li & Wu (2018).

b) Calculation of total force

With vortex force vectors precomputed for the ith-body, once velocity field
−→
U and

vorticity field ωz can be computed or measured, total forces can then be directly obtained
from the vortex force formulas . This can be done as follows.

Given geometry and position ofM bodies, the lift and drag force vectors of the ith-body
at an angle of attack α can be given by finding the solution of hypothetical potentials
φiL and φiD for the Laplace equations (2.15) and (2.16). The hypothetical potentials φiL
and φiD are then substituted into expressions (2.13) and (2.14) to give the vortex force

vectors
−→
Λ iL and

−→
Λ iD. It is clear that for multibody setups with relative motion, the

hypothetical potential will need to be updated at each point in time. However in reality,
the variation of the hypothetical potential with relative position is smooth as long as
there is no contact between the bodies. It is easy to interpolate between different pre-
computed relative positions to improve computational efficiency. In addition, the maps
can be computed using a potential-type method at a very low computational cost.

i) For the vortex-pressure force, substitute
−→
Λ iL and

−→
Λ iD into the first terms of (2.11)

and (2.12) to calculate vortex-pressure lift L
(vor−P )
i and drag D

(vor−P )
i .

ii) For the viscous-pressure force, substitute φiL and φiD into the second terms of

(2.11) and (2.12) obtain the viscous-pressure lift L
(vis−P )
i and drag D

(vis−P )
i .

iii) For the skin-friction force, we use the third term in (2.11) and (2.12) to compute

skin-friction lift L
(friction)
i and drag D

(friction)
i .

3. Vortex-pressure force map analysis for wing-flap configurations

In this section, three slotted wing-flaps with deflection angles of flap of −20o, 0o and
20o are used to demonstrate the construction of the vortex-pressure force maps for a
specific body among a series of bodies and to identify the force contribution effect of
each given vortex to each body according to its position, strength and local velocity.
Here we only consider lift and drag force maps, which depend on the geometry as well
as angle of attack.

For a wing-flap model, with geometry (the main airfoil -Ω1B , the flap -Ω2B , and the
deflection angle -δ) and angle of attack α given, the Laplace equations (2.15) and (2.16)
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are solved by using the vortex panel method as suggested by Katz & Plotkin (2001) in
solving the steady-state potential flow. The method solves the Laplace equation via a
superposition of singularity elements on the body surface and enforcing non-penetration
boundary condition on the surface and zero total circulation, which has been validated
against that solved by the commercial code CFX in Li & Wu (2018) (using the Laplace
Equation option for heat transfer). In this solver, the solution for the hypothetical
potential is the non-circulatory one among the infinite number of possibilities in 2-

dimensional flow. The vortex-pressure force vectors for lift (
−−→
ΛiL, i = 1, 2) and for drag

(
−−→
ΛiD, i = 1, 2) are then computed by (2.13) and (2.14). With the vortex force factors

precomputed, the vortex-pressure force maps are then generated following the steps in
section 2.4.

Figures 2-5 show the vortex-pressure force maps for wing-flap configurations. In these
maps, the vortex force lines are represented as solid arrows which are parallel to the local

vortex force vectors (
−−→
ΛiL or

−−→
ΛiD, i = 1, 2). The contour lines for the norm of vortex force

vectors (
∣∣∣−−→ΛiL∣∣∣ or

∣∣∣−−→ΛiD∣∣∣, i = 1, 2) are also presented. According to the vortex-pressure

force maps, a counter-clockwise rotating vortex (e.g. a trailing edge vortex (TEV) rolled
up on the trailing edge (TE)) contributes positive force (lift or drag) if it moves so as to
have a component of motion in the direction of the vortex force lines, while a clockwise
rotating vortex (e.g. a leading edge vortex (LEV) formed on the leading edge (LE))
contributes positive force (lift or drag) if it moves so as to have a component of motion
opposed to the vortex force lines, and vice versa.

3.1. Influence of deflection angle of flap on vortex-pressure force maps

Figure 2 shows the vortex-pressure force maps for both lift and drag of the main airfoil
(Ω1B) in the wing-flap configurations with different deflection angles of flap: δ = −20o,

0o and 20o. We can see that the norm of the vortex force vectors
∣∣∣−−→Λ1L

∣∣∣ and
∣∣∣−−→Λ1D

∣∣∣ for the

main airfoil decrease with the distance from the wing-flap configuration, and the peak
values locate in the LE area of the main airfoil, the connecting area of two bodies and
the TE area of the flap. The vortex force lines near the flap rotate slowly with increasing
the deflection angle of flap.

Figure 3 is the vortex-pressure force maps for the flap (Ω2B) in the same wing-flap

configurations. We can see that the norm of the vortex force vectors
∣∣∣−−→Λ2L

∣∣∣ and
∣∣∣−−→Λ2D

∣∣∣
for the flap decrease with the distance from the flap, and the peak values locate in the
connecting area of two bodies and the TE area of the flap. The vortex force lines appear
to rotate with increasing the deflection angle of flap.

3.2. Influence of angle of attack on vortex-pressure force maps

Figures 4 and 5 show the vortex-pressure force maps for both lift and drag of the main
airfoil as well as the flap in a δ = 0o wing-flap configuration at α = 45o and α = 60o,
respectively. Compared with those maps at α = 20o in Figures 2 and 3 (c,d), we can see
that the vortex-pressure force maps for different angles of attack look similar. We can
also see from these maps that the larger the angle of attack is, the smaller the vortex lift
factors are and the larger the vortex drag factors are in corresponding positions. Note
that in the present vortex-pressure force maps, the fact that vorticity far-away from the
body have negligible effect on force is satisfied automatically.
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Figure 2: Vortex-pressure force maps for lift and for drag of the main airfoil at α = 20o

with different flap angles : (a),(c),(e) are for lift with flap angle δ = −20o, 0 and 20o,
respectively; (b),(d),(e) are for drag with the same flap angles. The lines with arrows

are vortex-pressure force lines locally parallel to the vector
−−→
Λ1L and

−−→
Λ1D, and the lines

without arrows are contours of magnitude of
−−→
Λ1L and

−−→
Λ1D.

4. Vortex lift and drag for viscous flows around impulsively started
wing-flap configurations

In this section, the vortex force map method is applied to impulsively started wing-
flap flows. Here, the total force will be given by (2.11) and (2.12), with the velocity and
vorticity field provided by CFD. The theoretical lift and drag results will be compared
with those obtained from integrating the body surface pressure and skin-friction given by
CFD code. Here all the flow field is assumed to be laminar. The contribution of different
force components, contributed either from free vorticity in the flow field or from the
vorticity on body surface, will be discussed. The force oscillation on the main airfoil as
well as on the flap in relation to the evolution of the vortex structure in the flow field
will be studied.

4.1. Force approach and CFD method

As discussed in section 2.4, the vortex force approach (2.11) and (2.12) can be used to
calculate the total force acting on the body, with the vortex force factors precomputed by
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Figure 3: Vortex-pressure force maps for lift and for drag of the flap in the wing-flap
configuration for α = 20o with different flap angles : (a),(c),(e) are for lift with flap angle
δ = −20o, 0 and 20o, respectively; (b),(d),(e) are for drag with the same flap angles. The

lines with arrows are vortex-pressure force lines locally parallel to the vector
−−→
Λ2L and−−→

Λ2D, and the lines without arrows are contours of magnitude of
−−→
Λ2L and

−−→
Λ2D.

analytical or numerical methods, and the velocity and vorticity field given by conventional
methods including a vortex panel method, CFD simulation or experimental measurement.

The results of pressure lift L
(pressure)
i and drag D

(pressure)
i will be compared to the

pressure lift and drag obtained by the integration of the body surface pressure in the CFD

code, while the results of skin friction force L
(friction)
i and D

(friction)
i will be compared

to the skin friction lift and drag obtained from the CFD code. Note that for the starting

flow problem considered here, the added mass force L
(Add)
i and drag D

(Add)
i in equations

(2.11) and (2.12) are infinite at the initial moment, and are 0 at any moment after the
starting procedure.

Here, the force results will be represented in the form of nondimensional coefficients.
The lift coefficient and drag coefficient are defined as

CL =
L

1
2ρV

2
∞cA

, CD =
D

1
2ρV

2
∞cA

(4.1)

where cA is the total chord length of the wing-flap configuration. The Reynolds number
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Figure 4: Vortex-pressure force maps for lift and for drag of the wing-flap configuration
at α = 45o with zero deflection angle of flap: (a) for lift of the main airfoil,(b) for drag
of the main airfoil,(c) for lift of the flap; (d) for drag of the flap. The lines with arrows

are vortex-pressure force lines locally parallel to the vector
−−→
ΛiL and

−−→
ΛiD, and the lines

without arrows are contours of magnitude of
−−→
ΛiL and

−−→
ΛiD, where i = 1, 2, respectively.

Figure 5: Vortex-pressure force maps for lift and for drag of the wing-flap configuration
at α = 60o with zero deflection angle of flap: (a) for lift of the main airfoil,(b) for drag
of the main airfoil,(c) for lift of the flap; (d) for drag of the flap. The lines with arrows

are vortex-pressure force lines locally parallel to the vector
−−→
ΛiL and

−−→
ΛiD, and the lines

without arrows are contours of magnitude of
−−→
ΛiL and

−−→
ΛiD, where i = 1, 2, respectively.
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in this paper is defined based on the total chord length: Re = ρV∞cA/µ. The time-
dependent forces will be displayed as functions of the non-dimensional time τ = tV∞/cA.

In CFD, the Navier–Stokes equations for unsteady laminar flow are solved numerically
using the same method as used by Li & Wu (2019b). We have used the commercial code
Fluent with a second-order upwind SIMPLE (semi-implicit method for pressure-linked
equations) pressure–velocity coupling method. The computational domain is 30× cA in
the horizontal direction and 20× cA in the vertical direction. Different mesh sizes (from
178293 to 264313) with 320 grids on the body surface of Ω1B and 160 grids on the body
surface of Ω2B are chosen, for Reynolds numbers from 1000 to 1 × 105. The grid size
normal to the wall and in the boundary layer is fine enough for convergence. The flow is
impulsively started at a speed of 5m/s from an initially uniform flow.

4.2. Vortex lift and drag evolution validated against CFD results

In this subsection, the present vortex force method is applied to wing-flap configura-
tions. Firstly, the flow at different Reynolds numbers will be studied. Then the effect of
the angle of attack on the body force will be analyzed. Lastly, the results for different
deflection angles of the flap will be demonstrated. All the results will be validated against
CFD.

4.2.1. Vortex lift and drag for different Reynolds numbers

Here we fix the flap deflection angle δ = 0o and the angle of attack α = 20o to study
the influence of different Reynolds numbers 1000, 5000, 1e4 and 1e5 on the body force
decomposition. As shown in Figures 6(a-h), both pressure and friction component in lift
for the main airfoil as well as for the flap calculated from the current approach agree
well with CFD at different Reynolds numbers. Good agreements are also found in drag
(Figures 7(a-h)).

The pressure forces (lift and drag) for both the main airfoil and the flap are singular
at the initial moment, as the added mass force term in the pressure force is infinite as
discussed above, and the vortex-pressure force term is also infinite due to an abrupt
change in the body-surface vorticity. When Reynolds number is low (say Re = 1000),
the force curves show periodic oscillation at large time (τ > 8). When the Reynolds
number is large enough (Re > 1e4), the friction forces are close to 0 and the pressure
forces show some small amplitude oscillation related to the generation and movement of
small vortices.

4.2.2. Vortex lift and drag for different deflection angles of flap

Good comparison are also found between theory and CFD for wing-flap configurations
with δ = ±20o for fixed angle of attack α = 20o and Reynolds number Re = 1e4, as
shown in Figure 8 for lift and Figure 9 for drag. It can be seen that the pressure force,
summation of the forces contributed by free vortex in the flow field (the vortex-pressure
force) and the vorticity on the body surface (the viscous-pressure force), is the dominant
force. Whereas the friction forces are minor. The pressure forces (both lift and drag) for
δ = 20o are significantly larger than those for δ = −20o.

4.2.3. Vortex lift and drag for different angles of attack

To demonstrate the validity of the proposed vortex force method for different angles
of attack, the comparisons between theory and CFD results for a wing-flap configuration
with δ = 0o and for Re = 1000 at α = 45o and 60o are shown in Figure 10 for lift and
in Figure 11 for drag. The comparisons agree well. The force curves show periodicity in
these cases, and the period length for the main airfoil and the flap are equal at the same
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Figure 6: Comparison between theory and CFD for time-dependent lift coefficients
for wing-flap configuration with deflection angle of flap δ = 0o for α = 20o at
Re = 1000, 5000, 1e4 and 1e5. (a),(c),(e) and (g) are for the main airfoil; (b),(d),(f)
and (h) are for the flap.

angle of attack. The force oscillating behavior related to the vortex evolution in the flow
field will be discussed in section 4.3.

4.3. Vortex force analysis

In this subsection, the evolution of three force components (the vortex-pressure force,
the viscous-pressure force, and the skin-friction force) acting on both main airfoil and
flap are studied. The relationship between the variation of dominant force (the vortex-
pressure force) against time and the change of vortex flow structures is analyzed. The
example case of lift forces acting on a impulsively started wing-flap configuration with
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Figure 7: Comparison between theory and CFD for time-dependent drag coefficients
for wing-flap configuration with deflection angle of flap δ = 0o for α = 20o at Re =
1000, 5000, 1e4 and 1e5. (a),(c),(e) and (g) are for the main airfoil; (b),(d),(f) and (h) are
for the flap.

δ = 0o at α = 45o, Re = 1000 are presented here. The lift and drag results for other cases,
at different angles of attack, different Reynolds numbers, and with different deflection
angles, can be analyzed in a similar way.

4.3.1. Analysis of different force components

The evolution of the total lift coefficients and their three components for both the main
airfoil and the flap in a wing-flap configuration is shown in Figure 12, together with the
vorticity field and streamlines at typical instants: τ0 = 0.125, τi = i (i = 1, 2, ..., 8). It can
be seen from the figure that for both the main airfoil and the flap, the oscillating behavior
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Figure 8: Comparison between theory and CFD for time-dependent lift coefficients for
wing-flap configuration with deflection angle of flap δ = ±20o for α = 20o at Re = 1e4.
(a),(c) are for the main airfoil; (b),(d) are for the flap.
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Figure 9: Comparison between theory and CFD for time-dependent drag coefficients for
wing-flap configuration with deflection angles of flap δ = ±20o for α = 20o at Re = 1e4.
(a),(c) are for the main airfoil; (b),(d) are for the flap.

of total lift coefficients is almost the same as those of vortex-pressure lift. Moreover, the
summation of the viscous-pressure lift and the skin-friction lift on the main airfoil is about
0.2, and the summation of those two lift components on the flap is close to zero. In other
words, the dominant forces are the vortex pressure forces. The oscillatory force curves for
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Figure 10: Comparison between theory and CFD for time-dependent lift coefficients for
wing-flap configuration with 0o deflection angles of flap at Re = 1000. (a) is for the main
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is for the flap at α = 60o.
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Figure 11: Comparison between theory and CFD for time-dependent drag coefficients for
wing-flap configuration with 0o deflection angles of flap at Re = 1000. (a) is for the main
airfoil at α = 45o,(b) is for the flap at α = 45o; (c) is for the main airfoil at α = 60o,(d)
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Figure 12: Vortex lift evolution for an impulsively started wing-flap configuration with 0o

deflection angles of flap for α = 45o at Re = 1000. The curves on the top is for the main
airfoil and on the bottom is for the flap. The total force as well as its three components
are shown here. The vorticity distribution and streamlines at typical instants are also
given.

all the components exhibit periodicity in the considering case, and the non-dimensional
period is roughly equal to 4.

4.3.2. Analysis of force oscillation related to vortex structures

It can be seen from Figure 12 that the force variation has a close relationship with the
evolution of vortex structure in the flow field, which is a reflection of the definition of
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Figure 13: Contours of vortex lift distribution displaying lift coefficients acting on the
main airfoil (left column) and on the flap (right column) contributed by local vortices,
for a wing-flap configuration starting flow at instants τ = 1, 2, 3, and 4, with streamlines
showing the vortex structure.

the dominant force (i.e. the vortex-pressure force): the integration of the scalar product
of the local vortex force vector and velocity multiplied by vortex strength.

To demonstrate this relationship, we select one complete period of vortex-shedding.
For the main airfoil, the lift experiences periodic oscillation with four stages: the LEV-
augmentation stage; the high-level force plateau stage; the force drop stage; and the
low-level force plateau stage. These four stages could be observed in Figure 12) (top).
In the LEV-augmentation stage (from τ = 0 to τ = 1 and from τ = 4.5 to τ = 5.5), a
clockwise LEV is expanding and convecting above the upper surface of the main airfoil.
In the high-level force plateau stage (e.g. from τ = 5.5 to τ = 6.5), the earlier TEV moves
downstream far from the body and a newly generated TEV is forming. In the force drop
stage (from τ = 1 to τ = 3 and from τ = 6.5 to τ = 7.5), the main clockwise LEV
and counterclockwise TEV are released and moving far away from the surface, in the
meantime, a new pair of secondary LEV and a new TEV are developing at the leading
edge and trailing edge respectively. In the low-level force plateau stage (from τ = 3 to
τ = 4.5 and from τ = 7.5 to τ = 9), the secondary LEV pair and the newly formed TEV
are expanding. These gradually occupy the whole area of the upper surface and interact
with each other.

The spatial distribution of local vortex pressure lift due to the local vorticity at 8
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Figure 14: Contours of vortex lift distribution displaying lift coefficients acting on the
main airfoil (left column) and on the flap (right column) contributed by local vortices,
for a wing-flap configuration starting flow at instants τ = 5, 6, 7, and 8, with streamlines
showing the vortex structure.

typical instants τi = i (i = 1, 2, ..., 8) for the two bodies involved (the main airfoil and
the flap) are shown in Figures 13 and 14. Figure 13 is for instants τi = i (i = 1, 2, 3, 4)
and figure 14 is instants τi = i (i = 5, 6, 7, 8). The left columns in figures 13 and 14 are
for the lift acting on the main airfoil and the right columns in the figures are for the
lift acting on the flap. The theoretical vortex pressure lift coefficients on either the main
airoil or the flap are obtained by summing the lift coefficients of vortices inside all grid
cells. We can clearly see that the lift-contributing areas for both the main airfoil and
the flap lie in an area close above the body surface. It can also be seen that there is an
obvious relationship between the force variation and vortical flow structure.

Relating the left column of 13 and 14 to figure 12 allows us to analyze how the evolution
of vortical structures in the flow field influence the lift acting on the main airfoil:

(i) The LEV-augmentation stage (e.g. from τ = 0 to τ = 1 and from τ = 4.5 to
τ = 5.5) is caused by the growth of the main LEV above the upper surface of the main
airfoil, resulting in a low-pressure suction ared above the leading edge.

(ii) The large force in the high-level force equilibrium stage (e.g. from τ = 5.5 to
τ = 6.5) is due to a offset between the release of the LEV lift-augmentation effect and
the TEV lift increasing effect.

(iii) The force drop in the next stage (e.g. from τ = 1 to τ = 3 and from τ = 6.5
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to τ = 7.5) is owing to the newly formed LEV vortex pair squeezing away the main
leading edge vortex that originally contributed to the large lift force. Moreover, the
newly generated TEV also causes a large lift drop due to its downwash effect.

(iv) In low-level force equilibrium stage (e.g. from τ = 3 to τ = 4.5 and from τ = 7.5
to τ = 9), the lift keeps at a relative low stable value with slightly increase because of the
growth of the secondary LEV pair and the TEV moving upstream to the upper surface.

The lift on the flap could be analyzed in a similar way. Unlike the lift acting on the main
airfoil, the lift acting on the flap exhibits three stages in one period: the lift-reduction
stage, the stable stage, and the lift-increase stage, which could be observed in Figure 12
(bottom). During the lift-reduction stage (e.g. from τ = 0 to τ = 0.2 and from τ = 3.8
to τ = 5), the TEV is blown away from the upper surface of the flap. In the stable stage
(e.g. from τ = 1 to τ = 3 and from τ = 5 to τ = 7), the lift maintains a stable, low value,
and the flow field consists of a complex interaction of the main and secondary LEVs and
TEVs. After that is the lift-increase stage (e.g. τ = 3 to τ = 3.8 and from τ = 7 to
τ = 7.8) when the TEV generated in the last stage moves upstream to the upper surface
of the flap. The right columns of 13 and 14 show the spatial distribution of local vortex
pressure lift due to vortices inside each grid cell at 8 typical instants τi = i (i = 1, 2, ..., 8)
for the flap. We could see from these figures that the lift on the flap is mainly caused
by the main LEV and TEV as well as the vortex sheet in the boundary layer. While the
secondary vortex structures contribute little lift to the flap.

Combining the vortex lift distribution in the right column of 13 and 14 with figure 12,
we could analyze how the evolution of vortical structures in the flow field influences the
lift acting on the flap.

(i) The flap lift decrease stage is related to the collapse of suction effect with blowing
away of the TEV on the upper surface of the flap:

(ii) The stable stage is due to the newly formed TEV contributing to positive lift which
compensates for the lift loss.

(iii) The flap lift increase stage could be explained by the suction mechanism caused
by the growth of the TEV.

5. Summary

In this paper, the vortex force approach for viscous flows for multi-bodies has been
developed. The lift and drag forces for each individual body in a multi-body configuration
have been derived, with both pressure force (contributed by vorticity in the flow field
and on the body surface) and viscous force included.

The pressure force contributed by vorticity in the flow field (also called vortex-pressure
force) was found to be the dominant force and represented as the scalar product of the
vortex-pressure force factor and the local flow velocity. The vortex-pressure force factors
can be precomputed by solving a Laplace equation. Vortex-pressure force maps for for
every individual body in the multi-body assembly were designed based on the vortex-
pressure force factors for the purpose of identifying the force contribution of a given vortex
in the flow field, and the positive and negative force generating directions were defined
in these maps. Flow control strategies could be designed to maintain or create the lift-
enhancing/drag-reducing vortex and to minimize the lift-reducing/drag-increasing vortex
according to the vortex-pressure force maps, where the force contribution of each given
vortex could be analyzed without pre-knowledge of the flow field. Another advantage
of this vortex force map method for multi-bodies is its capability to extract force from
limited/low-resolution flow data, e.g. PIV fields, in a non-invasive manner.

In order to illustrate the proposed vortex force decomposition method, analyses have
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been made for an unsteady flow around wing-flap configurations. The force predictions
arising from the current vortex force method have been shown to agree satisfactorily
with those from CFD simulations. For both the main airfoil and the flap, we found
that the dominant force was the vortex-pressure force. When the Reynolds number
was large enough (greater than 1000), the pressure force contributed by the newly
created vorticity on the body surface and the skin-friction force are negligible. The force
oscillation behavior, as well as its relationship with the vortex flow pattern and vortex-
pressure force map, have also been studied. The study of the spatial distribution of local
vortex force due to vortices inside each grid cell provided additional evidence for those
correlations. And it has been shown that the force acting on both the main airfoil and
the flap is closely related to the vortex evolution near the wing-flap configuration. The
spatial distribution of the vortex-pressure force analysis on the main airfoil showed that
the four force stages, the LEV-augmentation stage; the high-level force equilibrium stage;
the force drop stage; and the low-level force equilibrium stage, were highly related to the
evolution of the vortical structures. Similarly the analysis of the spatial distribution of
the vortex-pressure force on the flap showed the influence of the vortical structures on the
three-stage force oscillation: the flap force increase stage was due to the collapse of the
LEV suction; the force stable stage owed to a balance between the TEV force-enhancing
effect and the suction loss of the LEV; the force increase stage was a result of the TEV
suction effect.

In summary, we presented a force decomposition method for incompressible unsteady
viscous flows applicable to a wide range of Reynolds numbers. The vortex-pressure
force maps for each body among an assembly of bodies were built. As application, 2-D
results of a wing-flap starting flow agreed well with CFD results. The theoretical appeal
of this method lies in: 1. separating the body forces and providing links to the flow
features (velocity and vorticity), which provides a better understanding of the origin
of aerodynamic and hydrodynamic forces; 2. obtaining force directly from velocity field
near the bodies. The method presented here can also be easily extended to the study of
vortex torque as a future work.
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