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Myofibre Segmentation in Adult Skeletal

Muscle using Coherence-Enhancing Diffusion

Filtering

Harry Strange, Ian Scott, and Reyer Zwiggelaar

Abstract

The correct segmentation of myofibres in histological muscle biopsy images is a critical step in the

automatic analysis process. Errors occurring as a result of incorrect segmentations have a compounding

effect on latter morphometric analysis and as such it is vital that the fibres are correctly segmented.

This paper presents a new approach to myofibre segmentation based on Coherence-Enhancing Diffusion

filtering. This approach is robust to noise and also to weak fibre boundaries. The proposed method is

compared against existing state of the art methods and experiments show the effectiveness of the proposed

approach. The results show that using the Coherence-Enhancing Diffusion filtering a segmentation accu-

racy of 90% can be achieved which is an improvement over existing myofibre segmentation techniques.

Index Terms

Digital Pathology, Muscle Biopsy, Image Segmentation, Coherence-Enhancing Diffusion Filtering

I. INTRODUCTION

The examination of stained biopsies from skeletal muscle is a vital component in the diagnostic pathway

for the vast majority of neuromuscular disorders and remains essential as a preliminary investigation

despite the availability of electron microscopic, genetic and molecular tests for specific conditions.
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Detection of variation in fibre size is seen as a first step in the diagnosis of the majority of neuromuscular

disorders including myopathic, dystrophic, neurogenic and inflammatory conditions; examples of which

include mitochondrial cytopathies, muscular dystrophies, motor neuron disease, and dermatomyositis [1],

[2]. Muscle biopsies in which there is no fibre size variation are most often normal [3]. Further analysis

of fibre size variation for those which exhibit a continuous distribution or biopsies showing a biphasic

pattern can further assist in obtaining a diagnosis. This data is often difficult to obtain by eye and so

there is a need for accurate, automatic methods of analysis of fibre size variation across the full area of

the biopsy.

One of the key steps for such automatic methods is the accurate segmentation of the myofibres from

the surrounding connective structures (Fig. 1). Inaccuracies in the segmentation of the myofibre boundary

will lead to errors at later stages of analysis. As such, there is a real need for automatic segmentation

methods that provide accurate results and are robust to different imaging conditions. There are numerous

existing approaches to automatic myofibre segmentation ranging from simple thresholding [4] to more

advanced methods that use deformable models [5]. The goal of such methods is to accurately segment

the myofibre regions from the connective and background regions. This is done by either identifying the

pixels in the image associated with the fibres themselves or identifying the boundaries of the fibres — the

perimysium and endomysium (see Fig. 1). However, existing methods may fail in cases where there are

weak fibre boundaries or an increased presence of noise due to inconsistencies in the staining process.

In this work, Coherence-Enhancing Diffusion (CED) filtering [6] is used to address these problems by

enhancing the myofibre boundaries so that the fibres themselves can be accurately segmented. The basic

principle of CED filtering is to improve the quality of the flow like structures in an image through the

use of anisotropic diffusion tensors. Unlike existing line enhancement methods such as that of Frangi

et al. [7], CED filtering uses the structure tensor, along with its principal eigenvectors, to define the

orientations for smoothing. CED is therefore well suited to myofibre segmentation as it is robust to noise

and can enhance weak fibre boundaries.

II. EXISTING APPROACHES

When performing analysis on myofibre images it is useful to identify the myofibre boundary so that

morphometric measures can be obtained. Manual identification and measurement of myofibres can be time

consuming, error prone, and can often suffer from intra and inter operator variability. These drawbacks

have led to the development of various techniques for automatic myofibre segmentation. The simplest

approach is to perform thresholding to segment the image into foreground and background regions, one
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corresponding to myofibres and the other representing background and connective tissue. The central step

of such an approach is the selection of a threshold value to separate the two regions such that they are

well represented. Although methods exist to estimate the threshold automatically [8], or manually [4],

thresholding is an inefficient method for myofibre segmentation as the fibres cannot be split from the

background, or from each other, using a single threshold value. As such, more advanced methods are

needed to segment the myofibre regions.

These more advanced approaches can be broadly split into two categories: those that use edge detection

to identify the perimysium or endomysium (the myofibre boundaries), and those that use deformable

models to identify the myofibres. This dichotomy is by no means exclusive as many approaches will use

methods from both of these categories.

Edge detection methods seek to segment the perimysium and endomysium so that the fibres can be

segmented from these boundaries. Therefore, edge detection methods are often used as a pre-processing

step to fibre segmentation with the justification being that, if the boundaries are correctly identified, the

fibres themselves can be segmented as the interior of the boundary regions. Tzekis et al. [9] presented

an ensemble approach to edge detection, with Sobel, Laplacian, and the Mode Colour algorithms being

employed in a single framework to attempt to robustly identify the myofibre boundaries. Once identified,

the edges could be used as a priori information for further segmentation; it is worth noting however that

the approach to such a segmentation is not mentioned in the original paper. Sertel et al. [10] present a more

established framework that uses edge detection as the first step in myofibre segmentation. Ridge analysis

[7] is applied to ATPase stained cross-sections to segment the connective tissue so that thresholding

the ridge likelihood image produces a rough segmentation of the connective tissue regions. This rough

segmentation is further refined through morphological operations to connect any unconnected components.

Small regions are removed and the watershed transform is used to separate any touching boundaries. The

results show that using this approach myofibres can be effectively segmented with the added benefit of

the algorithm being fast to execute.

The second category of segmentation method seeks to apply deformable models, such as active contour

models [11], to identify the myofibre regions. Active contour models require a seed point or curve to

initialise the segmentation, as such, many of the active contour based methods can be distinguished by

the heuristic used to identify the initial seed locations. The simplest approach is to use manual seed

locations to identify the central points of the myofibres. Such an approach was presented by Klemenčič

et al. [12], where the user manually identifies the central regions of each myofibre. A Voronoi polygon

is then formed from these centroids and a modified active contour model is applied to refine the Voronoi
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polygons so that they ‘fit’ the myofibres. An attempt to automate that initialisation process was made by

Röhrle et al. [5] who used the Hough transform to identify circular regions in the image. This method

is however sensitive to noise and a parameterisation of the acceptable range of circular radii is needed.

The limitations of standard active contour models was addressed by Kim et al. [13] where a level set

approach was applied to improve the active contour segmentations. Level sets were used to extend the

active contour framework by incorporating colour and texture information. As well as this, the initial

contour is estimated using a heuristic thresholding approach to overcome the problem associated with

manually identifying seed positions. A recent approach by Mula et al. [14] uses Gradient Vector Flow

(GVF) to delineate myofibre boundaries. GVF seeks to improve upon active contour modelling by using

the gradient vector flow of an image to pull the active contour towards the object boundary. The GVF

based myofibre segmentation method initially uses ridge detection to enhance the boundaries before seed

locations are automatically chosen by identifying concave areas. The GVF deformable model is then

applied to segment the myofibre regions.

One the main limitations of the above methods is that they can often fail in cases where noise is

introduced as a result of the staining or sectioning process, and also in cases with weak boundaries.

As well as this, there is no previous work that directly compares the different approaches to myofibre

segmentation in adult cases. Motivated by these drawbacks, this paper presents a method for myofibre

segmentation based on Coherence-Enhancing Diffusion filtering that is robust to noise and weak fibre

boundaries, and also provides a side by side comparison with the main approaches to the segmentation

problem.

III. METHODOLOGY

This work uses Coherence-Enhancing Diffusion (CED) filtering to segment the boundary regions whose

interiors contain the myofibres. CED filtering [6] seeks to smooth a degraded original image along

the directions determined by the image’s structures through the use of diffusion tensors [15]. Existing

nonlinear diffusion filters use a scalar diffusivity rather than a diffusion tensor [16], [17], and as such,

they can be regarded as isotropic filters. CED allows for true anisotropic diffusion by building on the

work of Cottet and Germain [18] and examining the eigenvalues and eigenvectors of the diffusion tensor.

This means that the smoothing process locally adapts and allows smoothing in different directions. This

makes CED well suited for myofibre segmentation as it allows for the intrafibre regions (i.e. those regions

contained “within” a myofibre) to remain coherent whilst enhancing the connective structures such as

the perimysium and endomysium.
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Figure 2 shows an example image, with the CED image, the resultant myofibre boundaries, and the

final segmentation.

A. Pre-processing

The first step is to apply a stain decomposition method [19] to the muscle sections so that processing

is performed on only the eosinophilic structures — in this case myofibres — thus excluding any nuclear

regions from the segmentation process. This stain decomposition step ensures that the most prominent

structures in the image are the myofibres themselves rather than any satellite nuclei. Once the stain

decomposition step is performed the image is converted to grayscale and the contrast is enhanced using

an adaptive histogram equalisation method [20].

B. Coherence-Enhancing Diffusion (CED) Filters

The central step of CED is to determine the directions along which the image should be smoothed,

this is achieved by utilising the eigendecomposition of the second moment matrix, or structure tensor.

As explained in [15], the heart of anisotropic diffusion filtering using a diffusion tensor is the evolution

of an image using

δu

δt
= ▽ · (D ▽ u) (1)

where u(x, t) is the image under evolution at diffusion time t. The diffusion tensor, D, is a positive

semidefinite matrix which is adapted to the local image structure. The local image structure can be

measured using the structure tensor [15], [21] which is defined as

Jρ(▽uσ) = Gρ ∗ (▽uσ ▽ uTσ ) (2)

where uσ is defined as u convolved with a Gaussian with standard deviation σ such that uσ = Gσ ∗ u.

As such, uσ is a regularised version of u obtained via convolution with a Gaussian Gσ. The standard

deviation, σ, can be thought to represent the noise scale since it forces the edge detector to ignore

details smaller than O(σ) [6]. The standard deviation, ρ, defines the integration scale which describes

the characteristic size of the texture [15]. The eigenvectors of Jρ describe the local orientations, or

coherence orientations, and the eigenvalues describe the average contrast along the eigendirections. The

eigenvalues of Jρ =





J11 J12

J12 J22



 are
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µ1 =
1

2

(

J11 + J22 +
√

(J11 − J22)2 + 4J2
12

)

µ2 =
1

2

(

J11 + J22 −
√

(J11 − J22)2 + 4J2
12

)

These eigenvalues are used to assemble the eigenvectors of the diffusion tensor D. The diffusion tensor

of coherence-enhacing diffusion uses the same eigenvectors as Jρ and the eigenvalues are assembled such

that

λ1 := c1 (3)

λ2 :=











c1, if µ1 = µ2

c1 + (1− c1exp( −c2
(µ1−µ2)2

), otherwise

(4)

where c1 ∈ (0, 1) serves as a regularisation parameter that ensures that the diffusion tensor remains

uniformly positive definite, and c2 > 0 serves as a threshold parameter.

The solution to Eq. 1 can be obtained numerically by utilising finite differences using a time step of

size, τ , as the difference between two calculated time levels. For full details on the implementation of

coherence-enhancing diffusion filtering the reader is pointed towards Section 5 of [6] and Section 2.2

and 3 of [15].

C. Post-processing

Once the Coherence-Enhacing Diffusion filtering method described above has completed, the final stage

of the segmentation process is to use the boundaries identified using CED to segment the myofibre regions.

The resultant image produced from CED can be thought as a probability map describing the likelihood of

a pixel belonging to a boundary region. As such, to convert the given image into a binary segmentation a

thresholding method is used to identify only the pixels corresponding to boundary regions [8]. Following a

similar methodology to [10], once the boundary segmentation has been produced, connected components

with a total area of less than 750 pixels are removed and morphological closing [22] is used to join together

any disconnected boundary regions. For the closing operation a disk structuring element of radius 4 pixels

is used. The complement of this binary image then gives the segmentation of the myofibres. The final

step is to apply a watershed transformation [23] to split any touching fibres.
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IV. DATA

The muscle tissue, obtained following open or Bergstrom needle biopsy, was frozen onto cork blocks

and sectioned with the fibres orientated in the transverse plane (5 − 7µm) using a frozen cryostat

(Leica CW1900, Leica GmbH, Germany). The sections were then placed on glass slides and stained

with haematoxylin and eosin (H & E) using standard protocols [3]. Entire sections, obtained from 10

anonymised normal adult patients, were scanned at 400× magnification using a NanoZoomer Digital

Pathology System (Hamamatsu Photonics UK) and the resulting images viewed using NDP Software

(NDP.view 2, Hamamatsu Photonics UK). The final image data used for experimentation was taken as

regions of interest measuring 1300×1030 pixels viewed at 10× zoom and stored as uncompressed TIFF

files. A total of 2832 fibres were identified across the region of interest images.

The ground truth data was generated by a single user tracing the boundaries of the fibres across all

images. In order to validate the manual segmentations as ground truth, a repeatability study was performed

whereby the same image was segmented 10 times by the same person. This process resulted in multiple

ground truth regions which were then co-registered using a group-wise registration algorithm [24] to

obtain an aligned ‘mean image’. The absolute difference between each manual segmentation and the

mean image was then computed to obtain an overall measure of the ground truth repeatability error.

The error was measured as the number of pixels in the difference image divided by the total number of

pixels in the original manual segmentation mask. The average error across all 10 cases was measured as

0.056(±0.010). This error is low enough to accept the manual segmentations as a good representative

of ground truth as it shows that the estimated error in the manual segmentations is only 0.056.

V. METHODOLOGY

To test the effectiveness of the proposed method it is tested against various existing myofibre segmen-

tation algorithms using different measures of accuracy. Multiple evaluation criteria need to be employed

as a single measure of accuracy is not appropriate and could lead to an unfair or biased view of an

algorithm’s performance. As such, multiple criteria are used to build a bigger picture of the effectiveness

of a segmentation algorithm. As well as this, the effect of each of the proposed method’s parameters are

investigated and discussed.

A. Evaluation Criteria

For each method, the segmentation accuracy is measured using both image segmentation evaluation

criteria and clinical morphometric measures.
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1) Segmentation Accuracy: The overall segmentation accuracy of a given method is measured as the

number of correctly segmented myofibres (in relation to the given ground truth) divided by the total

number of true positive, false positive and false negative regions. To ensure that a segmented myofibre

is not counted across multiple regions, a one-to-one mapping is enforced between the ground truth and

the automatic segmentations. Each ground truth region is mapped to a single segmented region that is

encompassed within the ground truth boundary. Any remaining regions are then counted as false positives.

2) Fragmentation and Congealment: To evaluate whether or not the different algorithms over or

under segment the myofibre regions two new measures are proposed: fragmentation and congealment.

Fragmentation is used to measure to what extent an algorithm fragments a myofibre in the output

segmentation. Given the ground truth segmentations and the output segmentation, fragmentation is defined

as F = p/n, where p is the total number of fragmented fibres in the output segmentation and n is the

total number of fibres in the ground truth. The fragmented fibres are found by counting the number of

connected components within a masked region of the output segmentation with the mask being set as each

fibre in the ground truth segmentation. Congealment is measured in a similar fashion to fragmentation,

however, the purpose of congealment is to measure the number of segmentations that span across multiple

fibre boundaries. As such, congealment is defined as C = q/n, where q is the total number of congealed

fibres in the output segmentation and n is the total number of fibres in the ground truth. A congealed

fibre is found by counting the number of connected components within a masked region in the ground

truth segmentation with the masks corresponding to the regions in the output segmentation.

For both fragmentation and congealment a value of 0 indicates a low fragmentation or congealment

factor. As the value increases, the quality of the segmentation decreases since the algorithm is seen to

fragment or congeal the segmentation.

3) Morphometric Measures: The two morphometric measures used to evaluate the segmentation

algorithms are mean fibre diameter and the variability coefficient [3]. The mean fibre diameter is measured

as the length of the minor axis of the segmented fibre region. The minor axis is used as this is the

measurement least affected by any kinking of the muscle as a result of processing or by any obliquity of

the plane of section [2]. The variability coefficient is used to measure the amount of variability among

the fibres and is defined as

V C =
1000σ̃

µ̃
(5)

where σ̃ and µ̃ are the standard deviation and mean respectively of the set of all fibre diameters for a
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given segmentation method. A variability coefficient of less than 250 is considered to be normal and any

value above this is then considered abnormal [3]. Since the dataset is drawn from a normal population

the variability coefficient should be less than 250.

B. Parameter Considerations

The initial parameters for the CED algorithm were set according to the values laid out and discussed

in [15] and subsequently tuned to improve the results. The initial parameter estimates were, τ = 1, σ =

1× 10−4, ρ = 4, c1 = 1× 10−10, c2 = 0.001. The relative influence of each parameter was then assessed

by varying the value of each parameter and assessing the change in the accuracy of the segmentation. A

generalised linear regression model [25] was then fitted to the data to assess the relative influence of each

parameter. The results are displayed in Table I. Only the integration scale, ρ, has a medium influence on

the final segmentation quality. This is not surprising as ρ controls the characteristic size of the texture

regions [15]. As such, selecting a sub-optimal value of ρ will lead to either a lack of coherence within

myofibres such that the “noisy” aspects within the fibres are not smoothed, or the coherence-enhancement

occurs over too large a scale so the fibre boundary details are destroyed. As can be seen in Table I, all

other parameters have a relatively low influence on the final segmentation quality.

VI. RESULTS AND DISCUSISON

The proposed method is compared against basic thresholding [8], ensemble of line detectors [9], line

enhancement using Frangi filters [7], level sets [26], and active contours [27]. The segmentations obtained

from all methods are post-processed to remove any segmented fibres on the boundary of the image. As well

as this, any segmented region smaller than 750 pixels in area is removed and a watershed segmentation

is performed to split any touching fibres. This ensures that the segmentations are in keeping with the

ground truth and also enables more accurate morphometric measurements to be taken. It also ensures that

the comparisons are focused on the core algorithms as opposed to any post-processing method used. It is

worth noting that the majority of works published on myofibre segmentation include these post-processing

steps (e.g. [10], [13]).

The results of performing myofibre segmentation on the data described in Section IV are displayed in

Table II and show the efficacy of the proposed Coherence-Enhanced Diffusion (CED) filtering method for

myofibre segmentation. The results in Table II show that the CED method achieves a higher segmentation

accuracy with a lower standard deviation. This suggests that the proposed method is more robust to

the variation in appearance of fibres within the dataset. Many images within the dataset will contain
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fibres with weak boundaries and prominent myofibrils which is equivalent to “noisy” regions. When the

myofibre regions are well defined with a strong endomysium or perimysium then all methods are able to

segment the myofibres adequately. However, the data contains many examples where the myofibres are

heterogeneous in appearance, due to problems with the staining (See Fig. 3). Of the total 2814 fibres,

1222 were identified as ‘low’ noise, 882 were identified as ‘medium’ noise, and 710 were identified as

‘high’ noise. Table III shows the performance of the different algorithms under these three conditions. As

can be seen, under low noise conditions all algorithms, except thresholding, perform well with accuracies

of over 80% with little variation. However, under medium noise the performance of all algorithms drops

and under high noise all algorithms, except the proposed CED method, drop to below 65%. CED is still

able to accurately segment 81% of the fibres under high noise conditions. This is in contrast to the next

best performer, level sets, which achieves an accuracy of 62% under high noise conditions. The reason

for CED’s performance can be attributed to the algorithm’s ability to reduce noise within a myofibre

whilst seeking to enhance the boundary lines. This means that it is less likely to fragment or congeal

the fibres. Although the proposed CED method does not have the lowest fragmentation or congealment

value, it does have the lowest combined fragmentation and congealment score of 0.18 (see Table II). The

next best performer is active contours with a combined fragmentation and congealment value of 0.26.

This shows that the proposed method is able to provide a robust segmentation with regions not being

over or under segmented. This is in contrast to the worst performing method, thresholding, where some

regions are badly fragmented or heavily congealed. A high value of both fragmentation and congealment

indicates that the method is sensitive to heterogeneous areas, and so fragments these areas, and also to

weak fibre boundaries leading to large congealed areas.

When considering the clinical metrics, all methods achieve a mean diameter that is within the standard

deviation range of the ground truth segmentations (See Table II). Moreover, when examining the histogram

of fibre diameters all algorithms produce histograms with the majority of fibres falling in the 50µm to

80µm range. This is in keeping with the expectation of the data set as the data is drawn from adult male

cases [3]. Two-sample Kolmogorov-Smirnov tests were used to check whether the distributions of fibre

diameters from the ground truth and each segmentation algorithm were drawn from the same continuous

distribution. In all cases the null hypothesis was rejected meaning that the distribution of fibre diameters

for each segmentation algorithm closely matched that of the ground truth.

Since all methods achieve a similar average fibre diameter, what is of more interest is the differences

in the variability coefficient. As explained in Section V, the variability coefficient is a measure of the

variation in fibre diameters across all segmented regions. As shown in Eq. 5, the variability coefficient
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assigns more prominence to the standard deviation of the measurements and so a method that has a large

amount of variation will obtain a high variability coefficient score. It is noted that a variability coefficient

score of below 250 is counted as normal [3], and since the data is drawn from a normal population all

algorithms are expected to produce results with a variability coefficient of less than 250. This is validated

by the ground truth which has a variability coefficient of 230.31(±40.07). The proposed method has a

variability coefficient of 251.85(±59.74) which, although not below 250, is close enough to be counted

as within range as it is less than 5% of the standard deviation out from the mark of 250. All other

methods have a variability coefficient of greater than 300 which indicates abnormal cases, even though

the data is normal. The reason for this large variability coefficient can be attributed to high fragmentation

and congealment factors which lead to outliers within the segmentations as shown in Table II.

To further analyse the differences in variability coefficient, a Mann-Whitney U test [28] was employed

to test the null hypothesis that the distribution of variability coefficients for the ground truth and automatic

methods are drawn from continuous distributions with equal medians. The null hypothesis would be

rejected at the 0.05 level when there is no significant difference between the two distributions. All

automatic methods apart from Coherence-Enhancing Diffusion filtering had the null hypothesis rejected,

meaning that the distributions of variability coefficient between the ground truth and CED are statistically

similar.

A. Failure Cases

The segmentation in Fig. 4 shows a case where the proposed CED method fails to adequately segment

the myofibres. Two fibres in particular are badly segmented due to a weak boundary between the fibres.

Although parts of each of the fibre have been identified, they are not useful for subsequent analysis and

so count as a failure case. The reasons for such bad segmentation can be attributed to the fact that a

single set of parameters are defined for the CED equations across all types of images. As mentioned

previously, histological muscle biopsy images can be obstructed by the presence of noise due to incorrect

staining or section handling, as such a single set of parameters may not be able to adequately account

for all the variation in the data. It would be beneficial for future research to be focussed on providing

an adaptive parameter methodology to handle such scenarios.

VII. CONCLUSIONS

A new method for myofibre segmentation in adult skeletal muscle cases has been presented based on

Coherence-Enhacing Diffusion (CED) filtering. This proposed method allows for the myofibre boundaries
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to be enhanced whilst maintaing the coherence of the pixels within a myofibre region. When compared

against existing methods for myofibre segmentation such as level sets, active contours, and line enhance-

ment, CED is able to achieve superior segmentation accuracies of approximately 90%. As well as this,

through the use of morphometric features such as mean fibre diameter and the variability coefficient,

the proposed CED method is able to closely match ground truth segmentations and produce results

that are clinically consistent. Future work will be focused on applying the proposed CED algorithm to

abnormal cases so as to build a complete framework for myofibre segmentation and abnormality detection.

Moreover, morphometric measurements will be used to automatically identify clinically interesting aspects

such as atrophy and hypertrophy factors as well as fibre type proportions and prominence. However, to

achieve this the proposed method will need to be tested and evaluated on ATPase stained sections. As

well as this, future research will investigate employing CED filtering to whole slide images so as to

obtain an estimate of fibre size variation across the full area of the biopsy.
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Nucleus Perimysium

Myofibre

Endomysium

Myofibrils

Fig. 1. General organisation of skeletal muscle. Polygonal myocytes are shown revealing the presence of peripheral nuclei. The

stained sarcoplasm within the myofibrils is light pink. Each fibre is surrounded by mesenchymal matrix known as the endomysium.

Myocytes are grouped into fascicles invested by a connective tissue sheath known as perimysium. The perimysium contains

nerves and blood vessels that supply the muscle.
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(a) (b)

(c) (d)

Fig. 2. The section in (a) shows a haematoxylin and eosin (H & E) stained ROI from an adult normal case. (b) shows the image

produced as a result of coherence-enhancing diffusion filtering. The myofibre boundaries have been enhanced whilst smoothing

the regions within the fibres themselves. The resulting boundary segmentation is shown in (c) and the final segmentation after

post-processing is shown in (d).
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(a) (b) (c)

Fig. 3. Example cases drawn from the set of (a) low, (b) medium, and (c) high noise cases. As shown in Table III, most

methods will perform well on the low noise cases, but the presence of noise within the myobries combined with weak fibre

boundaries (b, c) can lead to poor segmentation results.
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Fig. 4. An example region of interest from a larger section where inadequate segmentations can occur for the proposed CED

method. The blue arrows indicate myofibres that are poorly segmented and could lead to inaccurate morphometric measurements.
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TABLE I

A DESCRIPTION OF THE DIFFERENT PARAMETERS EMPLOYED FOR COHERENCE-ENHANCED DIFFUSION FILTERING ALONG

WITH THEIR RELATIVE INFLUENCE.

Parameter Description Influence

τ Size of diffusion time step Low

σ Noise scale (Eq. 2) Low

ρ Integration scale (Eq. 2) Medium

c1 Regularisation Parameter (Eq. 3) Low

c2 Eigenvalue threshold parameter (Eq. 3) Very Low

tarea Minimum fibre area threshold Low
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TABLE II

QUANTITATIVE RESULTS FOR EACH SEGMENTATION ALGORITHM

Fibre Acc. (%) Fragmentation Congealment Mean Diameter (µm) VC (µm)

Thresholding 67.9 (±21) 0.43 (±0.30) 0.35 (±0.28) 60.53 (±21.75) 337.10 (±92.60)

Line Detectors 68.2 (±20) 0.08 (±0.11) 0.19 (±0.13) 66.01 (±22.32) 336.00 (±139.22)

Vesselness Enhancement 64.0 (±23) 0.28 (±0.19) 0.07 (±0.12) 53.40 (±19.63) 312.84 (±58.2)

Level Sets 77.0 (±18) 0.09 (±0.09) 0.18 (±0.13) 63.41 (±21.48) 327.64 (±105.00)

Active Contours 73.0 (±16) 0.06 (±0.08) 0.20 (±0.13) 66.41 (±22.21) 325.03 (±103.71)

Proposed Method 89.9 (±9) 0.08 (±0.07) 0.10 (±0.11) 62.83 (±18.31) 251.85 (±59.74)

Ground Truth 59.21 (±15.58) 230.31 (±40.07)
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TABLE III

FIBRE SEGMENTATION ACCURACIES OBTAINED AFTER SPLITTING THE DATA INTO THREE GROUPS ACCORDING TO THE

‘NOISE’ LEVEL OF EACH IMAGE.

Low (%) Medium (%) High (%)

Thresholding 79.7(±0.11) 77.2(±0.16) 48.5(±0.17)

Line Detectors 81.4(±0.13) 79.2(±0.15) 48.6(±0.10)

Vesselness 85.8(±0.07) 65.4(±0.20) 46.1(±0.20)

Level Sets 87.3(±0.09) 84.7(±0.08) 62.4(±0.21)

Active Contours 84.0(±0.11) 79.8(±0.12) 57.8(±0.10)

Proposed Method 95.9(±0.02) 91.1(±0.04) 81.1(±0.09)
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