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Abstract— This paper proposes a new mode of cyber-physical attack based on injecting false commands, which poses an increasing 
risk to modern power systems as a typical example of Cyber-Physical Systems (CPS). Such attacks can trigger physical attacks by driving 
the system into vulnerable states. To address the critical issues arising from this new mode, we define an inverse-community (IC) in 
power flow distribution and evaluate it using inverse-modularity. To identify the most vulnerable state of the IC that represents the 
inherent vulnerability of the system, we employ a full malicious power dispatch problem. We also analyze an example of the proposed 
mode, where a partial malicious power dispatch that maximizes inverse-modularity is combined with physical attacks aimed at 
disconnecting vulnerable IC boundary lines, making cascading failures highly likely. To demonstrate the potential impact of this 
coordinated cyber-physical attack, we use the IEEE-118 and IEEE-300 bus systems for simulation. The results show the effectiveness of 
this attack strategy and provide a new perspective to analyze cyber-physical security issues in modern power systems. 

Index Terms— Coordinated cyber-physical attacks, cascading failure, complex network, false command injection. 

I. INTRODUCTION 
he security of power grids in contemporary society is an unequivocal necessity. Advancements in communication and 
information technology mean that power systems have evolved from mere physical systems to complex Cyber-Physical Power 

Systems (CPPS) coupling with communication networks [1], [2]. The backbone of power system operations comprises diverse 
intelligent cyber infrastructures, like the energy management system and the supervisory control and data acquisition [3]. 
Nevertheless, these very infrastructures are vulnerable to malicious cyber-attacks [4]. To make matters worse, coordinated cyber-
physical attacks aimed at the cyber and physical layers of CPPS can intervene with its operations more effectively than mere cyber 
attacks [5]. 

Malicious attacks on power systems can lead to initially undetectable faults that, if not addressed promptly, can eventually lead 
to failures [6]. The destructive effects of such attacks were evidenced by the 2010 cyber worm named 'Stuxnet', which targeted the 
Iranian nuclear fuel enrichment plant and tampered with the frequency of electrical current powering the centrifuges through 
manipulation of the SCADA system [7]. The severe repercussions of these attacks can bring about significant economic losses and 
result in catastrophic consequences. 

Against this backdrop, in recent years, researchers have conducted extensive studies on cyber-physical attacks in power grids. 
In [8], a framework for a cyber switching attack is explored which has the potential to destabilize a target power system component 
by manipulating the switching of circuit breakers. Ref [9] has researched on an unobservable state-and-topology cyber-physical 
attacks strategy that can mask a physical attack by altering both state and topology data of a sub-network within the grid. Their 
attack model employs a two-step process aimed at increasing power flow on a target line while adhering to constraints on the sub-
graph size and the limit on load shifts. Additionally, Ref [10] proposes a local cyber-physical attacks method that disconnects a 
transmission line and leads to a cascade failure within the system. This method conceals the actual outage event by modifying 
power flow measurements to misguide the control center into verifying an alternate fake outage line. 

False data injection (FDI) attacks have become a highly significant research area in power grid cyber attacks. Ref [11] is among 
the first to introduce a category of FDI attacks that allowed the attacker to manipulate the data measured by meters after obtaining 
the network and topology data. FDI attacks are designed to deceive state estimation and evade bad data detection techniques. Ref 
[12] proposes a specific variant of FDI attack called load redistribution (LR) attacks, which target the security-constrained 
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economic dispatch (SCED) to impact power grid operations. These attacks manipulate state estimation to falsify the SCED 
outcome, thus leading to the possibility of physical attacks. Fu et al. [13] describe a strategy involving an initial physical attack 
causing cascading failure, which is then followed by LR attacks that mislead the re-dispatching through maximum line overloading. 
Furthermore, some researchers have concentrated on economic attacks through FDI to disrupt the functioning of deregulated 
electricity markets [14]. In Ref [15], the authors explore how attackers can manipulate electric load data through a reformulated 
OPF to cause system congestions and negatively impact the security and economy of the system. Naderi et al [16]. propose a deep 
learning framework to identify remedial action schemes against false data injection cyberattacks targeting smart power systems. 
This innovative approach utilizes long short-term memory cells integrated into a deep recurrent neural network to effectively 
process data and identify proper reaction mechanisms.  

TABLE I SUMMARY OF A RECENT REVIEW ON CYBER-PHYSICAL ATTACKS APPROACHES [7], [17],[18]. 
Attack type Objective  Consequence 
FDI attack Incorrect estimated state Functional failure 
LR attack Incorrect estimated state Functional failure 
Topology attack Incorrect Topology estimation Manipulating Incorrect topology state 
Aurora attack Cause damage to generators, motors, and transformers Electromagnetic torque and current fluctuations 
Pricing attack Mismatch between the generated and the consumed power System emergencies 

Table I summarizes some existing works on the cyber-physical attacks approaches. The aforementioned cyber-physical attacks 
methodologies utilized different mechanisms during the cyber-physical attacks. However, the strategy of those different methods 
of cyber-physical attacks has as its primary objective to mask failures of the power networks by using false data. 
Furthermore, the proposed approach in this paper differs from existing data-specific FDI methods in that it is tailored specifically 
for control commands. This paper investigates a new coordinated cyber-physical attacking mode resulting in malicious power 
dispatch. A novel metric based on the inverse-community structure is put forward to assess the vulnerability of power networks 
under cascading failures. Then, by studying the inverse-community structure of a power flow distribution grid as the target of the 
malicious power dispatch attack, this paper examines a cyber-physical attack strategy that combines a false command injection 
attack and a physical line disconnection attack, with the possibility of triggering a large-scale cascading failure.  

The contributions of this study are summarized as follows: 
1. Analysis of a coordinated cyber-physical attacking mode where a false command injection is used to drive the system into 

a vulnerable state, enabling physical attacks and triggering cascading failures. 
2. Introduction of a novel metric, based on inverse-community structure, that assesses the inherent vulnerability of power 

systems to cascading failures caused by a full malicious power dispatch. 
3. Demonstration of a coordinated cyber-physical attack strategy that maximizes the inverse-community modularity in a power 

flow distribution grid, by partially dispatching malicious power and disconnecting boundary lines to trigger cascading 
failures. 

The paper is structured as follows: Section II reviews previous studies on coordinated cyber-physical attacks, while also 
presenting a novel coordinated cyber-physical attack mode. Section III introduces the inverse-community (IC) structure, along 
with a vulnerability assessment index for power systems. Section IV details a vulnerability assessment based on a full-scale 
malicious power dispatch attack, followed by Section V which provides an examination of a coordinated attack strategy involving 
partial malicious power dispatch and line disconnection. In Section VI, case studies and simulation results are presented. Finally, 
Section VII concludes the paper and provides closing remarks. 

II. A NEW COORDINATED CYBER-PHYSICAL ATTACKING MODE 
Previous studies about Coordinated Cyber-Physical Attacks (CCPA) could be summarized as: 
 Cyber attacks with the purpose of masking physical attacks so that the impacts of consequence could be amplified – this is 

the approach of most previous studies [19-23],  
 Cyber attacks are implemented as FDI, mostly after physical attacks [19-23]. 
 Cyber attacks aim to create obstacles to defense mechanisms by tampering with relevant parameters or blocking 

measurements [24] [25]. The effects could be quite uncertain due to lack of accurate defense decision models. 
 Cyber attacks aiming at load redistribution, misguiding the system defense when facing following physical attacks [26]. The 

coordination relation between cyber and physical attacks is not clearly described.  
As discussed above, compared with FDI attacks, False Command Injection (FCI) attacks have seldom been considered in 

coordination with cyber-physical attacks. However, the possibility of FCI and the corresponding impacts have been acknowledged 
[27]. Most previous studies about FCI mainly focused on device-level attacks, such as those affecting switching breakers [28-31], 
transformer taps [32] and phase shifters [33]. But none of them considered system-level FCI attacks. 
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As shown in Fig.1, FDI implements the attacks before the measurement data are transmitted to the decision-making segment in 

the control center. Its aim is to mislead the operation decision-making by manipulating the input information. However, there are 
great uncertainties regarding the operation decision-making process, especially concerning human intervention. Therefore, the 
consequence of that data manipulation is difficult to be accurately predicted. On the contrary, FCI directly manipulates the control 
commands. Nevertheless, if the injected commands are too extreme, one can foresee that they will be suspected as abnormal. The 
absence of coordinated masks in the feedback measurement renders the attacks undetectable using conventional detection methods, 
reducing the optimum time frame for FCI to a limited duration. Therefore, FCI may not be quite appropriate to be used 
independently. Furthermore, as shown in Fig. 1, another possible attacking mode which has never been considered (to the best of 
our knowledge) is algorithm attack. Following an intrusion into the control center (by itself very difficult), if the algorithm used 
by the control decision making (such as optimal power flow, unit commitment, automatic generation control) is manipulated, the 
consequence would be catastrophic. 

A new coordinated cyber-physical attacking mode is shown in Fig. 2. In normal operation states, although all operation 
constraints in terms of equality or inequality could be met, a concrete operation state S could be robust or vulnerable with respect 
to a specific physical attack strategy 𝐴𝑃. This could be evaluated by a vulnerability metric V(S). By comparing with a threshold 
𝑉𝑇, the operation states could be classified into robust or vulnerable. Previous studies about physical attacks have shown that it is 
difficult to quantitatively evaluate the vulnerability of state 𝑆 with respect to a physical attack strategy, less so concerning the 
transition from robust to vulnerable states. 

In the new coordinated cyber-physical attacking mode studied here, the FCI attack 𝐴𝐶 is performed first. Its purpose is to deceive 
the system guiding its state from the robust area to the vulnerable area. These robust and vulnerable areas are defined according to 
the quantitative evaluation 𝑉(𝑠). Once the FCI part succeeds, a physical attack strategy 𝐴𝑃 is implemented triggering a large-scale 
cascading failure. As mentioned above, it is not straightforward for a FCI attack acting in isolation to provoke important damages 
within a short time window.  A more suitable role for FCI is to provide leading assistance for physical attacks. On the other hand, 
the immediate system defense after physical attacks will make more difficult the implementation of a cyber intrusion.  

Previous studies concerning physical attacks seldom considered how critical it might be the moment an attack is launched for 
its effectiveness. This opportune moment for an attack mostly depends on the operational states of the system as determined by the 
commands from the control center. In the attacking mode studied here, the purpose of the leading cyber FCI attacks is to create 
better opportune moments for following physical attacks. 

For analyzing this FCI-based attacking mode, the following critical issues should be solved: 
1. A metric 𝑉(𝑠) should be defined to quantitatively assess the vulnerability of the system state regarding potential cascading 

failures caused by a physical attack strategy 𝐴𝑃.  
2. A FCI attack strategy 𝐴𝐶 should be identified, and able to transfer the system state from a robust area to a vulnerable area. 

This attack strategy should typically come from solutions to an optimization problem aiming at the maximization of 𝑉(𝑠). 
3. The targets of the physical attack 𝐴𝑃 should be identified according to the effects of the cyber attack 𝐴𝐶. Consequences of 

𝐴𝐶 may clearly indicate the most vulnerable components which could be exploited by 𝐴𝑃.  

III. INVERSE-COMMUNITY STRUCTURE IN POWER FLOW DISTRIBUTION 

A. Inverse community structure  
The stability and reliability of power grids can be severely compromised by cascading failures, resulting in catastrophic 

consequences for public life and significant economic costs for society. A prime example of this is the 2012 Indian blackouts, 
which caused extensive social impacts and economic losses [34]. The three key characteristics of the cascading failure process are 
as follows. 

 
Fig. 1. False Data Injection and False Command Injection. 
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Fig. 2. A new coordinated cyber-physical attacking mode. 
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 The initial trend is the occurrence of considerable power imbalances between local subnetworks, leading to extensive power 
transfers between these subnetworks. This can result in voltage instability and potential blackouts. 

 The power flowing through transmission lines that connect subnetworks is higher compared to the power flowing through 
internal transmission lines of each subnetwork. 

 The occurrence of initial contingencies in boundary lines can result in a shift of power flow towards other boundary lines 
with already high loading levels, thereby increasing the probability of cascading failures. 

Community structure, within the complex network theory, refers to a group of nodes that are strongly interconnected. 
Occasionally, clusters of nodes can be strongly linked but only loosely connected to the rest of the network [35], [36]. Our earlier 
research presented the notion of an inverse-community structure built on the experiences obtained from the cascading failure in 
India [37]. This approach takes into account the link weights that signify the strength of the interactions within a network. The 
significant aspects of an IC structure are as follows: (1) The topological correlations are consistent with standard communities; (2) 
The weight of intra-community links is less than that of inter-community links; (3) With the gradual strengthening of IC features, 
the network becomes progressively more prone to cascading failures, leading to an increase in its vulnerability level. 

(a)

(b)  
Fig. 3. The illustration of (a) normal community and (b) inverse community. 

Fig. 3 illustrates two different network structures: one with a normal community structure and the other with an inverse-
community structure. Both structures consist of two separate communities, with the thickness of the branches indicating the relative 
strength of the connections between nodes. The primary distinguishing feature between the two structures lies in the distribution 
of weights. In particular, the interactions, such as for power transmission, between communities are considerably more robust 
compared to those within the communities, which is in stark contrast to the typical community structures characterized by their 
internal connections being stronger. 

B. Inverse modularity 
In previous studies about community structures, modularity 𝑄 [38] was considered a standard metric to evaluate community 

features in complex networks [39-41]. 
In this paper, in order to evaluate the IC structure properties of the network and thus assess its vulnerability, we will apply 𝑄 to 

inverse-modularity, i.e. we will define 𝑄𝐼𝐶. First, considering the electrical characteristic of power grids and the features of IC, we 
propose to quantify the power flow distribution in a specific time section by a temporal weight. The temporal weight 𝜏𝑣𝑤 at time 
𝑡 is defined as 

 1( )
( )vw

vw

t
p t

, (1) 

where |𝑝𝑣𝑤(𝑡)| is the absolute value of power flow in line 𝑙𝑣𝑤 between bus 𝑣 and bus 𝑤 at time 𝑡, thus describing the operating 
state of the power grid at a particular moment 𝑡. 

The temporal weight matrix 𝐓𝒗𝒘(𝑡) is presented as Equation (2), which taking into account the structural characteristics of 
power networks. 

 , if there is an branch among bus and ,
( )

0, otherwise
(

.
)vw t v w

tΤvw   (2) 

The use of temporal weights allows for the consideration of both the structural properties and operating conditions of power 
grids, providing insights into the IC structure of networks. Specifically, smaller values of 𝜏𝑣𝑤 indicate branches that support greater 
power transfers. Additionally, the magnitude of 𝜏𝑣𝑤 varies across different operating states of power grids. 

Based on (1) and (2), the detection of IC in power flow distribution has been converted into the detection of conventional 
communities in temporal weight distribution. Then, the conventional 𝑄 is redefined as inverse-modularity 𝑄𝐼𝐶 by temporal 
weight. The 𝑄𝐼𝐶 is defined as  
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where 𝜏𝑣𝑤  is the element from bus 𝑣 to bus 𝑤 in the temporal weight matrix. The total temporal weight of the whole power gris 
is expressed as M. 

 1M
2 vw vwT . (4) 

𝜏𝑣 (𝜏𝑤) is computed as Equation (5), which is the temporal weight degree of bus 𝑣(𝑤). 
 v vww

. (5) 

In (3), the -function is 1 if buses 𝑣 and 𝑤 are in the same community, otherwise it is 0. 

C. Inverse-community detection  
To detect and assess the partitioning outcomes of a network with IC characteristics at a specific time point 𝑡, the customary 

Newman fast algorithm [42] is employed to recognize the inverse community structure by substituting the conventional 𝑄 with the 
inverse modularity. The IC detection algorithm is outlined in Algorithm 1. 

Algorithm 1: Inverse-community detection for power network  
 Input: network data, temporal weight matrix 
 Output: partitioning results 
1：      Initialize power network with N communities; 
2：      Calculate the inverse modularity 𝑄𝐼𝐶; 
3：  while the number of communities is not 1 do 
4：      Calculate the increments of inverse modularity ∆𝑄𝐼𝐶;  
5：      Select the partitioning with maximum ∆𝑄𝐼𝐶 
6：      Recalculate 𝑄𝐼𝐶 according to the result of partitioning; 
7：      Conserve the number of communities (The maximum 

number of mergers is N-1); 
8：  end while 

The objective of this algorithm is to utilize an inverse-community detection approach to partition power networks into smaller 
sub-communities. The procedure commences by establishing N communities in the power network and computing the 𝑄𝐼𝐶 . 
Subsequently, the algorithm enters a loop where it identifies the maximum ∆𝑄𝐼𝐶 and implements the partitioning with the most 
significant gain in inverse modularity increments. The number of communities is preserved throughout the process (with the 
maximum mergers limited to N-1), and 𝑄𝐼𝐶 is recalculated based on the partitioning outcome until only one community remains. 
The algorithm's output is the partitioning outcome. 

IV. VULNERABILITY ASSESSMENT BASED ON FULL MALICIOUS POWER DISPATCH 
The concept of inverse modularity is a dynamic measure that is influenced by the changing power flow distribution throughout 

the network over time. For a power grid with specific structural characteristics, such as the network topology, line parameters, and 
the location and capacity of generators and load buses, there exists a theoretical upper limit for the inverse-modularity value. This 
𝑄𝐼𝐶𝑀𝐴𝑋 can serve as a metric to assess the grid's vulnerability based solely on its structural attributes. 

This section studies a full malicious power dispatch (FMPD) attack, considering 𝑄𝐼𝐶𝑀𝐴𝑋 . A full malicious power dispatch 
situation is an optimization problem that considers the output power of all generators and the power demand of all load buses as 
decision variables and the maximum inverse modularity as the objective function. Based on that, the conventional genetic algorithm 
(GA) is redesigned to find solutions for this optimization problem. 

The power network’s condition is influenced by the output power of generators 𝑃𝑔
𝑓 and the power consumed by loads 𝑃𝑑

𝑓, 
resulting in distinct IC structures of the power grids under various power flow situations. The decision variables in this scenario 
are represented by 𝑃𝑔

𝑓 and 𝑃𝑑
𝑓. 

 
1 2

[ , , , ]
m

f T
g g g gP P P P , (6) 

 
1 2

[ , , , ]
n

f T
d d d dP P P P , (7) 

where the 𝑚 represents the total number of generator buses, and the 𝑛 represents the total number of load buses. 
The aim is to maximize the value of 𝑄𝐼𝐶, which can be mathematically represented as: 

 ( , ) Max ( , )f f f f
FMPD g d IC g dR P P Q P P . (8) 

In order to make it difficult for the control center to realize that an attacker is using malicious commands to replace the power 
dispatch's regulation plan, the constraints of the FMPD are consistent with the normal operation of the grid. The constraints are 
presented as: 
 min max , 1, 2, ,

i i

f
gg gPP P i m , (9) 
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dd dPP P j n , (10) 

 
1 1

0
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m nf f
g d

i j
P P , (11) 

 max , 1, 2, ,l lS S L , (12) 
The generator and load capacity constraints are expressed in Equation (9) and Equation (10), which respectively limit the active 

power of each generator within lower and upper bounds ( 𝑃𝑔𝑖
𝑚𝑖𝑛 and 𝑃𝑔𝑖

𝑚𝑎𝑥) and the loads within lower and upper bounds of 𝑃𝑑𝑗
𝑚𝑖𝑛 

and 𝑃𝑑𝑗
𝑚𝑎𝑥. The power balance constraint is described in Equation (11), which mandates that the total generator power output 

matches the load demand in a DC power flow model. Transmission line loadings are constrained by Equation (12), which restricts 
the maximum power flow on transmission line 𝛼 to 𝑆𝑙𝛼

𝑚𝑎𝑥.  

V. COORDINATED ATTACK BASED ON PARTIAL MALICIOUS POWER DISPATCH AND LINE DISCONNECTION 
Different from FMPD which utilizes the power of all generators and all load buses as decision variables, in practice, the power 

of most loads cannot be controlled or dispatched by system operators. Therefore, a partial malicious power dispatch (PMPD) is 
defined here, which only utilizes the output power of all controllable generators as decision variables to search maximum inverse-
modularity; while the power of load buses is considered as a given condition. 

The objective function of PMPD is expressed as  
 ( ) Max ( )p p

PMPD g IC gR P Q P . (13) 

The decision variables are the actual output power of generators 𝑃𝑔
𝑝.  

 
1 2

[ , , , ]
m

g T
g g g gP P P P   (14) 

The constraints are the same of FMPD, except for the load capacity constraint.  
As discussed when describing the coordinated cyber-physical attacking mode in Section II, the inverse-modularity is selected 

as the metric 𝑉(𝑠) to assess the vulnerability of state 𝑆 to cascading failures. The partial malicious power dispatch is designed as 
the FCI attack 𝐴𝐶 that deceives the system operation to evolve into a vulnerable state. The summarized coordinated cyber-physical 
attack strategy that he proposed is as follows: 
Step 1. The attackers infiltrate the system and gather information about the structure and parameters of the power networks. 
Step 2. With structural factors and parameters from the reconnaissance, as well as load distribution for a specific moment 𝑡, a 

partial malicious power dispatch problem is formulated.  
Step 3. The partial malicious power dispatch problem corresponding to time 𝑡 is solved by a genetic algorithm with solutions for 

generators' output power and corresponding inverse-modularity, as well as the partition solution of ICs. 
Step 4. With a given prediction of load for a different moment 𝑡, a series of solutions could be obtained from step 3. Based on a 

comparison of the value of inverse-modularity value, an attacking moment 𝑡𝐴 is selected. 
Step 5. At 𝑡𝐴, the corresponding solutions of generators' output power from partial malicious power dispatch are injected into EMS 

as false commands, the output power of generators is changed to the manipulated values, the system operation then reaches 
a vulnerable state. 

Step 6. From the partition solution in step 3 for 𝑡𝐴, all boundary lines of IC structures are collected as potential targets of physical 
disconnection attacks. 

Step 7. According to the resource constraints of physical attacks, the attacker performs disconnection attacks on vulnerable lines 
selected from the targets set in step 6. 

A relative metric 𝑅𝑟 for a PMPD attack 𝐴𝐶 could be defined as the ratio between its corresponding inverse-modularity 𝑄𝑃𝑀𝑃𝐷 
and the system inherent vulnerability 𝑄𝐹𝑀𝑃𝐷, which can be expressed as 
 ( ) /r

C PMPD FMPDR A Q Q , (15) 
where 𝑅𝑟 represents to what extent the PMPD attack has utilized the system's inherent vulnerability characteristic. 

VI. CASE STUDY 

A. Simulation results 
In this section, we aim to explore the correlation between 𝑄𝐼𝐶 and the likelihood of cascading failures. To this end, we employ 

a GA to search for power dispatch solutions that vary in their𝑄𝐼𝐶 values, using the IEEE-300 system as our testbed. The solver we 
used is the MATLAB global optimization toolbox. We rely on MATCASC [43] to simulate the cascading failure processes. 
Previous studies [44] have shown this tool to be highly effective for simulating such failures in power grids, as it offers three 
removal strategies: random removal, edge betweenness centrality, and electrical node significance. However, given the specific IC 
structure features we wish to examine, we propose an additional removal strategy that leverages the power flow rank of IC 
boundaries to trigger cascading failures. 
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To demonstrate a broader range of operating scenarios with notably distinct 𝑄𝐼𝐶 values, we have augmented the power capacities 
of all generators in the IEEE-300 system, thus generating more extreme scenarios. Using the MATCASC tool, we have plotted the 
𝑄𝐼𝐶 values of various power dispatch scenarios and the corresponding remaining loads after cascading failures in Fig. 4. Our 
findings indicate that the remaining load diminishes as 𝑄𝐼𝐶 increases, clearly illustrating a positive link between inverse-modularity 
and the likelihood of cascading failures. 

 
To evaluate the efficacy of the proposed attack approach and metrics, we conduct a second experiment using the IEEE-118 

system with standard parameters. Firstly, we employ the Monte Carlo simulation (MCS) to emulate diverse operational scenarios 
across a 24-hour period for the IEEE-118 bus system. Subsequently, we execute an optimal power flow calculation every hour, 
considering sampled loads, and obtain the outcomes of the probabilistic load flows via MATPOWER. The stochastic model 
implemented to represent the loads within the system follows a Gaussian distribution, as stated in [45], [46]. 

In order to assess the efficacy of our attack approach and measurements, we carried out an additional trial utilizing the customary 
settings of the IEEE-118 framework. We used Monte Carlo simulation (MCS) to simulate various operating conditions of the 
system over a 24-hour period. Each hour’s optimal power flow was then calculated using sampled loads, and the resulting 
probabilistic load flow was determined using MATPOWER. The load distribution in the system was modeled using a Gaussian 
distribution [45], [46]. 
 2( ) ~ ( , )loadf x N . (16) 

The probability density function that describes load leveling during the specified target periods, denoted as 𝑓𝑙𝑜𝑎𝑑, was determined 
based on the hourly and seasonal peak loads provided by the IEEE-RTS [47]. The parameters 𝜇 and 𝜎 were calculated using this 
data. For IEEE 118 system, the values of μ and σ were set at 0.641 and 0.019 on weekdays and 0.551 and 0.014 on weekend days, 
respectively. The execution times for IEEE 118 is 40 minutes. 

Subsequently, the proposed PMPD is carried out for different load conditions in 24 hours. A critical value of inverse-modularity 
𝑄𝐼𝐶
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙is set to filter candidate attacking scenarios. The attackers will only consider time points with 𝑄𝐼𝐶 larger than 𝑄𝐼𝐶

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 as 
candidate attacking times. In this case, we set the 𝑄𝐼𝐶

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  to 0.85. Fig. 5 is the results of 𝑄𝐼𝐶  greater than the critical value 
corresponding to each hour.  

 

 
Fig. 4. The different power dispatching schemes in the IEEE-300 system and 

their corresponding 𝑄𝐼𝐶 and remaining loads. 

 
Fig. 5. The inverse-modularity per hour for different loads condition. 
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The operation states in Fig. 5 have strong IC structural characteristics at the candidate time points. In other words, these moments 
have higher risks of triggering cascading failures. In this scenario, the residual load is employed as an indicator of the impact of 
cascading failures on the network. 

Table II shows the simulation results of cascading failures at the selected moments in Fig. 5. In Table II, 𝑡1 and 𝑡2 are considered 
as the moments for continuous PMPD attack. 𝑡1 and 𝑡2 are continuous moments that may provide more length of effective time 
window to implement subsequent physical attacks. Furthermore, the magnitude of 𝑄𝐼𝐶 is close at 𝑡1 and 𝑡2, indicating that the 
power dispatch commands and system state are not significantly different in this period, which may reduce the risk of being 
suspected of data manipulation. 
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Fig. 6. Inverse community structure of Case 1. 

 
Particularly, the PMPD conforms to the constraints of the system's regular operation. For this reason, the attackers might use 

the malicious command to replace the regulation plan of power dispatch, as it may not be perceived as a dangerous operation by 
the system.  

B. The effect of PMPD combined with physical attacks 
The attackers would intend to inject partial malicious power dispatch commands to make the network reach a greater IC 

condition. This condition would comply with the standard operational limitations of the power grid, but it would increase the 
susceptibility of the network to certain targeted physical attack tactics. 

Case 1 refers to the simulation results at 𝑡1, which have the most significant impact on the power grid, as shown in Table II. 
This case is analyzed in detail to investigate the effects of PMPD and physical attacks. At this particular moment, the 𝑄𝐼𝐶 of Case 
1 has reached its peak value of 0.868, which represents the maximum difference between the weight of the network's external and 
internal connections. Essentially, this dispatch command has elevated the IC condition of the system. To further illustrate the 
structure of ICs in Case 1, refer to Fig. 6, while Table III provides information on the power flow rankings of the boundaries 
between each IC, highlighted by bold lines. 

 

TABLE II 
THE REMAINING LOAD AT DIFFERENT MOMENT IN FIG. 4. 

Time 𝑄𝐼𝐶 Remaining load 
𝑡1 0.868 62.1% 
𝑡2 0.862 64.2% 
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We assume that the attackers can at this moment tamper the original plan of generators into malicious power dispatch by cyber-

attack. Subsequently, the attackers choose the boundaries with larger power flow as the target of physical attacks to trigger 
cascading failures. Fig. 7 shows for Case 1 the severity of cascading failures when the boundary (68-69) is attacked. The remaining 
load is 62.1% at the last cascade stage, that is, 38% of loads are damaged.  

To confirm the efficiency of the examined cyber-physical attack model, the conventional optimal power flow (OPF) based on 
MATPOWER is utilized for simulating the usual power dispatch from the power control center. We set a Case 2 with the same 
load condition with Case 1, but where the power dispatch of generators is obtained by OPF. Three boundary lines (8-30, 12-16 and 
15-17) are disconnected to simulate a physical attack. For Case 2, the 𝑄𝐼𝐶 is 0.697, smaller than in Case 1 (𝑄𝐼𝐶=0.868). Therefore, 
the IC structure of Case 2 is obviously weaker than in Case1. In other words, Case 2 is more insensitive to cascading failure than 
Case 1. The remaining load per cascade stage of Case 1 and Case 2 is illustrated in Fig. 7. It can be seen from the dashed line that 
Case 2 did not have a cascading failure, but only some areas lost loads due to line disconnection. The remaining load of Case 2 is 
89.7%, much higher than in Case 1 (62.1%). This result supports the previous conclusions and verifies that the studied malicious 
power dispatch attack model causes more severe damage to power grids than normal operation of the grids. 

To understand how various attack strategies can potentially impact networks, we compared our proposed removal strategy, 
which is based on power flow at boundaries, to other removal strategies in [43]. Table IV displays the remaining loads for different 
attack strategies in Case 1 and Case 2. The results show that the effects of all three attack strategies are similar and that Case 1 is 
more severe than Case 2. This finding supports the notion that the state based on PMPD is highly vulnerable to cascading failures 
when subjected to targeted physical attacks. Additionally, we found that the physical attack strategy that relies on power flow at 
IC boundaries with malicious power dispatch inflicts more damage on power grids than the other two strategies. 

TABLE III 
THE POWER FLOW OF IC BOUNDARIES IN CASE 1. 

From To  Power 
flow 
(MW) 

From To  Power 
flow 
(MW) 

From To  Power 
flow 
(MW) 

68 69 935.19 26 30 117.85 91 92 32.63 
65 68 744.82 42 49 104.27 14 15 28.46 
38 65 380.24 83 85 97.1 89 92 28.35 
30 38 359.77 96 97 83.42 49 66 20.52 
81 80 217.01 80 96 79.7 16 17 20.37 
77 82 206.61 15 33 77.76 13 15 19.52 
100 103 191.07 19 34 73.39 17 31 19.44 
8 30 186.85 83 84 71.64 56 58 16.63 
71 72 157.25 100 104 63.64 53 54 15.54 
47 69 146.98 43 44 62.85 49 54 13.11 
49 69 145.69 17 113 58.78 31 32 12.38 
23 25 142.28 23 32 51.96 56 57 12.15 
80 99 139.98 100 106 51.95 27 28 9.2 
24 70 136.01 18 19 43.77    
98 100 135.51 15 17 37.93    

 

 
Fig. 7. The load that is left after each cascade stage in Case 1 and Case 2. 
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C. Vulnerability assessed by full malicious power dispatch 

In this section, the IEEE-118 and IEEE-300 bus systems are used to study the potential effectiveness of a full FMPD, in order 
to evaluate the most vulnerable state of the system. We assume that a cyber-attack can alter the power dispatch plan for both loads 
and generators. This may not be quite achievable in practice because the injected false commands cannot control most loads. 
However, in theory, this most vulnerable state only depends on inherent system structure and parameters. Nevertheless, we can 
suppose that physical attacks with the same attack strategy discussed in the previous section could be implemented following this 
FMPD. 

In Fig. 8, we observe the remaining loads post-physical attacks that follow FMPD. For the state of IEEE-118, the 𝑄𝐼𝐶value is 
0.887, and the remaining load in the final cascade stage is approximately 47.2%, which is substantially lower compared to the 
results obtained for Case 1 and Case 2. Notably, the cascading failure process precipitated by FMPD unfolds more rapidly. This 
finding implies that the power system exhibits lower tolerance to FMPD compared to Case 1 and Case 2. 

Although FMPD is an extreme case not achievable in practice, this analysis indicates that with more demand side resources 
involved in power dispatch in the future for smart grids, the risks under coordinated cyber-physical attacks may increase 
significantly. The ratio 𝑅𝑐𝑎𝑠𝑒1𝑟  in Case 1 is 0.9788, which is higher than for Case 2 (𝑅𝑐𝑎𝑠𝑒2𝑟 =0.7860). The result means that Case 1 
exploits the inherent vulnerability of the system more than Case 2, that is, PMPD can make the best of system’s inherent 
vulnerability characteristic.  

The study also employs the IEEE-300 system to validate the inherent vulnerability of various power systems. Simulation of 
FMPD in the IEEE-300 system yields 𝑄𝐼𝐶 value of 0.8938. The higher 𝑄𝐼𝐶 value compared to the IEEE-118 system indicates that 
the inherent structure and parameters of the IEEE-300 system make it more susceptible. In Fig.8, the simulated outcome for the 
IEEE-300 bus system is presented by the dashed line. The remaining load for this system is around 14.4%, which is significantly 
lower than the remaining load of the IEEE-118 system (47.2%). This result indicates that the cascade failure process in the IEEE-
300 bus system progresses at a faster pace, underscoring its lower tolerance capacity. 

 

VII. CONCLUSION 
The present study investigates a novel cyber-physical attack methodology that leverages FCI, distinguishing it from preceding 

examinations into CCPA. In this approach, FCI serves as a means to maneuver the system functionality towards a vulnerable state. 
Although this FCI attack alone may not trigger significant-scale disruptions, it can be combined with physical attacks to amplify 
its impact. 

The paper also shows how IC in power flow distribution can be utilized by this attack strategy to state the vulnerability of system 
states. We examine both FMPD and PMPD as means for reaching the objective of maximum inverse modularity. The purpose of 
FMPD is to evaluate the inherent system vulnerability. PMPD advances the FCI attack strategy by facilitating the triggering of 
cascading failures following the disconnection of a line. 

TABLE IV 
THE LOAD LEFT IN CASE 1 AND CASE 2 UNDER DIFFERENT ATTACK 

STRATEGIES. 
 IC Boundaries 

power flow 
Edge betweenness 

centrality 
Electrical node 

significance 
Case 1 62.1% 66.3% 68.2% 
Case 2 89.7% 89.7% 89.7% 

 

 
Fig.8. The residual load at each stage is determined by the intentional power 

dispatch on loads and generators. 
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Our analysis and simulation have indicated that FCI attacks may not be suitable to work in isolation. On the contrary, their 
potential increases by coordinating them with specific physical attacks. In this way, the studied CCPA strategy may cause 
significant damage to the targeted system.  

The PMPD conforms to the constraints on the normal operation of power grids, which means that the control center would 
hardly be aware that the attackers use malicious commands to replace the regulation plan for power dispatch. The simulation results 
indicate that the studied malicious power dispatch attack model has the potential to cause more severe damage to the power grids 
than other approaches.  

As far as our understanding goes, malicious power dispatch has not been contemplated as a system-wide FCI attack strategy 
until now. The inclusion of line disconnection attacks in the PMPD is just one instance of this proposed method. This mode presents 
vast opportunities for expansion via alternative vulnerability metrics, diverse FCI attack strategies, and physical attack strategies. 
The integration of FMPD and PMPD findings, together with greater involvement of demand side resources in power dispatch, 
could substantially heighten the system's vulnerability to CCPA. 
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