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We use the Logarithmic Linear Relaxation (LLR) density of states algorithm to
study the bulk phase transitions of pure-gauge SU(N) lattice Yang–Mills theories
with 4 ≤ N ≤ 8. This approach avoids super-critical slowing down at such transi-
tions, which poses a problem for traditional importance sampling Monte-Carlo meth-
ods. We analyse the effect of different updating strategies within the LLR algorithm,
different reconstruction techniques of the density of states and different lattice vol-
umes. By comparing our results for the weakly first-order SU(5) bulk phase transition
against those for the stronger transitions with N ≥ 6, we demonstrate the advantages
of the LLR method for analyses of strong transitions with large latent heat.

I. INTRODUCTION

Many strongly interacting systems exhibit first-order phase transitions characterized by
a non-zero latent heat — a discontinuity in the energy density. Such first-order transitions
in the early universe would produce a stochastic background of gravitational waves, like
the one recently observed in the nanohertz frequency range by several pulsar timing array
collaborations [1–4]. Future space-based facilities including the LISA observatory [5, 6],
DECIGO [7] and AEDGE [8] will also search for such backgrounds at higher frequencies.
This has motivated renewed interest in non-perturbative analyses of first-order transitions
in strongly coupled gauge theories, for which first-principles lattice field theory calculations
are a crucial tool — see Ref. [9] for a recent review.

QCD-like composite dark sectors are an obvious target for such investigations, thanks
to guidance from both QCD phenomenology as well as lattice QCD calculations with un-
physical quark masses, approaching pure-gauge SU(3) Yang–Mills theory as the fermion
mass becomes infinite. See Refs. [10–26] for representative studies over many years, and
Refs. [27, 28] for brief reviews. While it is well known that the QCD transition is a crossover
for physical quark masses, it becomes first order if the physical quarks are replaced by suffi-
ciently light or sufficiently heavy fermions. In particular, the confinement transition in the
SU(3) pure-gauge theory corresponding to infinitely massive fermions is known to be weakly
first order, becoming strongly first order for SU(N) with N ≥ 4. Larger values of N appear
in many composite dark matter models, including the ‘dark baryon’ of Stealth Dark Matter
with even N ≥ 4 [14, 15, 22], and a variety of ‘dark glueball’ models [16, 18, 19, 23, 24, 26].
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Most lattice field theory analyses of these systems [27, 28] employ standard Markov-chain
Monte Carlo importance sampling techniques. However, this approach typically struggles at
first-order phase transitions, where it is challenging for Markov-chain updating algorithms
to tunnel between the two coexisting phases with different energy densities. The exponential
suppression of the tunnelling rate as the lattice volume increases towards the thermodynamic
limit generically implies super-critical slowing down — exponentially worsening autocorre-
lations and increasing computational costs required to obtain a representative sample of
field configurations. This phenomenon is also more severe for stronger phase transitions
with larger latent heat. In recent years a few potential alternative approaches have been
explored to avoid this challenge, including parallel tempering [29, 30] and density of states
methods like the Functional Fit Approach [31–33] and the Logarithmic Linear Relaxation
(LLR) algorithm [34–38].

In this work we employ the LLR approach, in which the density of states is determined
by calculating a piecewise-linear approximation to the slope of its logarithm. This enables
exponential error suppression [34–36], which is crucial since we need to resolve the density
of states across many orders of magnitude in order to study phase transitions. The LLR
algorithm has recently been applied to investigate a variety of lattice systems, including the
Ising model, the hexagonal Hubbard model, and gauge theories with gauge groups U(1),
SU(2), SU(3) and Sp(4) [34–42].

We apply the LLR algorithm to analyze the bulk phase transition of pure-gauge lattice
Yang–Mills theories, considering SU(N) gauge groups with 4 ≤ N ≤ 8. Preliminary results
from this work were presented in Refs. [43–45]. We begin in the next section by briefly
reviewing the phase structure of lattice Yang–Mills theories, contrasting the bulk transition
we focus on here against the physical deconfinement transition that we will study in future
work. Section III provides a similar review of the LLR approach, which we build on in
Section IV by discussing specific algorithmic considerations for large N ≥ 4. In Section V
we present our results from LLR analyses of the bulk transition of SU(N) Yang–Mills.
Finally we conclude in Section VI with a discussion of our planned next steps, including
ongoing studies of the SU(N) deconfinement phase transition.

II. TRANSITIONS OF SU(N) LATTICE YANG–MILLS

For all SU(N) gauge groups we use the lattice action

S = − β

N

∑
x,µ<ν

ReTr [Uµν(x)] , (1)

based on the plaquette Uµν(x) = Uµ(x)Uν(x+ µ̂)U †
µ(x+ ν̂)U †

ν(x). Here the sum runs over all
lattice sites x, and Uµ(x) is the SU(N)-valued link variable attached to site x in direction µ̂.
Smaller values of the lattice parameter β correspond to stronger bare Yang–Mills couplings
g20 at the cut-off scale set by the lattice spacing. For any finite system, this action differs
from the standard Wilson action by an irrelevant constant. We employ it to simplify the
relation between S and the average plaquette

uP =
1

6NV

∑
x,µ<ν

ReTr [Uµν(x)] ∈ [0, 1], (2)
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namely S = −6V βuP , with V the volume of the space-time lattice. Further we define the
energy of a given lattice configuration as E = S

β
= −6V uP , which we will see again in the

next section.
For SU(N) Yang–Mills theories on an N3

s ×Nt lattice, there are two distinct transitions
we could consider. The physically relevant deconfinement transition corresponds to the
spontaneous breaking of the ZN center symmetry, with the Polyakov loop the corresponding
order parameter. This transition is first order for N ≥ 3, but only weakly so for N = 3,
in the sense that the latent heat Lh for the SU(3) deconfinement transition is significantly
smaller than would be expected from the Lh ∝ N2 scaling observed for larger N ≥ 4 [46].
For any given Nt, the critical temperature Tc = 1/(alatNt) corresponds to a critical βc(Nt)
that determines the lattice spacing alat. Since we can identify this Tc with the physical
deconfinement temperature, we can see that βc → ∞ as Nt → ∞ in the alat → 0 continuum
limit. Determining the latent heat Lh from the jump in the average plaquette at the lat-
tice transition requires also evaluating how the lattice parameter β depends on the lattice
spacing [47]:

Lh

Tc

= N4
t alat

∂β

∂alat
6∆uP . (3)

In addition, there can be a much stronger ‘bulk’ phase transition that occurs at an Nt-
independent coupling βbulk. That is, this bulk transition is not a feature of the alat → 0
continuum limit. It can be described in terms of the condensation of ZN monopoles [48],
but is easiest to see directly in the average plaquette uP . With our action Eq. 1, N ≥ 5 is
needed to obtain a first-order transition (weakly first-order for N = 5), with a continuous
crossover for smaller 2 ≤ N ≤ 4 [47]. However, it has long been known [49] that first-
order bulk transitions appear for all N ≥ 2 in the extended {β, βA} parameter space of the
fundamental–adjoint action

SA = − β

N

∑
x,µ<ν

ReTr [Uµν(x)]−
βA

N

∑
x,µ<ν

ReTrA [Uµν(x)]

= − β

N

(∑
x,µ<ν

ReTr [Uµν(x)] + r
∑
x,µ<ν

ReTrA [Uµν(x)]

)
,

(4)

where TrA is the trace in the adjoint representation and we define the ratio r = βA

β
. Our Eq. 1

corresponds to the βA = 0 line in this extended parameter space. For N = 2, the transition
is only first-order for relatively large values of βA ≳ 1.25 [50], which decrease as N increases,
becoming negative for N ≥ 5. Even when the ‘transition’ is really a continuous crossover,
it leads to large lattice artifacts [51, 52], motivating the development of bulk-preventing
actions, for example Ref. [53].

When both transitions are first order, for example with N ≥ 5 using the βA = 0 action
Eq. 1 that we consider in this work, the bulk transition features a much larger latent heat
compared to the deconfinement transition [47]. This makes the bulk transition a useful target
for algorithmic testing and development of the sort we present here, which will provide a
foundation for subsequent application to the deconfinement transition that persists in the
physical continuum limit. In particular, these strong bulk transitions with large latent
heat are precisely the domain in which traditional Markov-chain methods encounter the
difficulties described in Section I, making them an excellent proving ground for density of
states approaches and the LLR algorithm in particular, to which we now turn.
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III. BRIEF REVIEW OF LOGARITHMIC LINEAR RELAXATION

Generic observables in lattice field theory are defined through the euclidean path integral,

⟨O⟩ = 1

Z

∫
DϕO(ϕ) eS[ϕ] Z =

∫
Dϕ eS[ϕ], (5)

where S[ϕ] is the lattice action — Eq. 1 in our case. Explicitly solving path integrals is
only possible in very special cases. Standard Monte Carlo techniques instead sample only
a small number of representative field configurations, with probability ∝ eS[ϕ], to obtain
systematically improvable approximate results.

If we had access to the density of states

ρ(E) =

∫
Dϕ δ(S[ϕ]− βE), (6)

then for observables that depend only on the action Eq. 5 would simplify to a one-dimensional
integral over the energy:

⟨O(β)⟩ = 1

Z(β)

∫
dEO(E) ρ(E) eβE Z(β) =

∫
dE ρ(E) eβE. (7)

See Ref. [35] for discussions of more general observables. In practice, the density of states
ρ(E) varies over hundreds or thousands of orders of magnitude and is difficult to determine
with sufficient precision in a straightforward manner. The LLR algorithm provides a solution
to this problem [34, 35].

The first step in the LLR approach is to divide the energy range of interest into a number
of small energy intervals of size δ. These energy intervals need to be small enough for the
logarithm of the density of states to be piecewise linear in the energy: log ρ(E) ≈ aE,
or equivalently ρ(E) ≈ eaE, where the new parameter ‘a’ is not to be confused with the
lattice spacing alat. We next introduce a restricted expectation value that samples only field
configurations with energies in a given interval centered at the fixed energy value Ei:

⟨⟨O⟩⟩Ei,δ
(a) =

1

N

∫
DϕO(E) θEi,δ e

− a
β
S[ϕ] =

1

N

∫ Emax

Emin

dEO(E) ρ(E) e−aE, (8)

N =

∫
Dϕ θEi,δ e

− a
β
S[ϕ] =

∫ Emax

Emin

dE ρ(E) e−aE. (9)

Here the modified Heaviside function θEi,δ vanishes for all energies outside of the interval
from Emin = Ei − δ/2 to Emax = Ei + δ/2. In this restricted expectation value, we have
moved the LLR parameter a into the Boltzmann weight (with an irrelevant negative sign).

Our goal is to determine a(Ei, δ) =
d log ρ(E)

dE

∣∣∣
Ei,δ

using a particular restricted expectation

value in Eq. 8, which will allow us to numerically reconstruct ρ(E) itself with exponential
error suppression [34–36]. We can do this by considering O(E) = (E −Ei) and noting that
⟨⟨E − Ei⟩⟩δ ≈ 0 when we find the value of a that makes ρ(E)e−aE an approximately uniform
distribution within the small energy interval. As a consistency check, we can expand the
restricted expectation value in powers of the small interval size δ to confirm that we recover
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our initial ‘logarithmic linear’ assumption log ρ(E) ≈ aE:

⟨⟨E − Ei⟩⟩δ (a) =
1

N

∫ Emax

Emin

dE (E − Ei) ρ(E) e−aE (10)

=
1

N
δ

2

[(
δ

2

)
e−a(Ei+

δ
2)ρ

(
Ei +

δ

2

)
+

(
−δ

2

)
e−a(Ei− δ

2)ρ

(
Ei −

δ

2

)]
+O(δ3) = 0.

Further expanding e±a δ
2 and ρ(Ei ± δ

2
), then taking δ → 0, gives us the desired result:

0 =

(
ρ(Ei) +

δ

2

dρ(E)

dE

∣∣∣
E=Ei

)(
1− a

δ

2

)
−
(
ρ(Ei)−

δ

2

dρ(E)

dE

∣∣∣
E=Ei

)(
1 + a

δ

2

)
=

(
−ρ(Ei)a+

dρ(E)

dE

∣∣∣
E=Ei

− ρ(Ei)a+
dρ(E)

dE

∣∣∣
E=Ei

)
δ

2
(11)

=⇒ a =
1

ρ(Ei)

dρ(E)

dE

∣∣∣
E=Ei

=
d log ρ(E)

dE

∣∣∣
E=Ei

. (12)

To reiterate: The LLR parameter a(Ei) is a linear approximation of the energy derivative
of the logarithm of the density of states ρ(E), evaluated at Ei. By numerically integrating
over a(E) for all relevant energy intervals Ei we can determine the normalizable probability
density Pβ(E) = ρ(E)eβE with exponential error suppression [34–36]. We will say more
about this step in Section V. The two-peak structure in Pβ(E) that characterizes a first-
order transition corresponds to non-monotonic energy dependence in a(E), which is nicely
illustrated by Fig. 9 in Ref. [38].

Solving ⟨⟨E − Ei⟩⟩δ (a) = 0 for a is a tractable problem [35] that can be tackled with
standard stochastic root-finding algorithms such as the iterative Newton–Raphson (NR)
method:

aj+1 = aj +
⟨⟨E − Ei⟩⟩δ (aj)

σ2
δ (aj)

. (13)

Starting from some initial a0, each iteration that updates aj to aj+1 requires evaluating both
the restricted expectation value ⟨⟨E − Ei⟩⟩δ (aj) and the restricted variance σ2

δ (aj). This is
done using restricted importance sampling, which we discuss in more detail in the next
section.

Two aspects of this restricted importance sampling are worth mentioning here, before
the more detailed discussion to come. First, although ⟨⟨E − Ei⟩⟩δ (aj) = 0 corresponds to a
fixed point of Eq. 13, stochastic fluctuations in the Monte Carlo evaluation of the restricted
expectation value means that the iterative process will fluctuate around this fixed point
rather than exactly converging to it. These fluctuations can be mitigated by introducing
under-relaxation [35],

aj+1 = aj +
1

j + 1

⟨⟨E − Ei⟩⟩δ (aj)
σ2
δ (aj)

, (14)

corresponding to the Robbins–Monro (RM) algorithm. Depending on how much aj needs to
evolve from its initial value, this under-relaxation may be too aggressive, which we address
by first carrying out 30 iterations using Eq. 13 and only then turning on under-relaxation.
In addition, we terminate each stochastic root-finding procedure after only 30+20 NR+RM
iterations, running Nj = 5 independent calculations for each energy interval and performing
jackknife uncertainty analyses using the final values of a50.
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Second, if aj is sufficiently close to the correct value, we can expect approximately uni-
formly distributed sampling of (E−Ei) within the small energy interval. This motivated us to
experiment with jackknife analyses using the Nj values of aj that produce the most-uniform
distribution of (E−Ei) measurements, as quantified by either the Kolmogorov–Smirnov test
or the Hellinger fidelity. However, this gave us no improvement over simply using the final
a50, most likely due to fluctuations in the statistical sampling. Another step we can take is
to approximate the variance as σ2

δ (aj) ≈ δ2

12
for the uniform distribution, which is done in

most prior work [34, 35, 37–39, 42]. However, depending on the value of aj and the approach
used to restrict the importance sampling to the small energy interval, this approximation
may be a poor one, which we have observed to cause difficulties in the stochastic root find-
ing (potentially relevant to Ref. [37]). At the same time, we have also observed that σ2

δ (aj)
can be underestimated on occasion when evaluated with only a limited number of Monte
Carlo samples, leading to unreasonably large fluctuations in aj+1. Our preferred approach
to resolve these difficulties is to use max

{
σ2
δ (aj),

δ2

12

}
in the denominator of Eqs. 13 and 14.

IV. ALGORITHMIC CONSIDERATIONS FOR LARGE N

The previous two paragraphs have already commented on some generic aspects of the
stochastic root finding employed within the LLR algorithm. In this section we discuss in
more detail our experiments with algorithms to carry out the restricted importance sampling
used to compute ⟨⟨E − Ei⟩⟩δ (aj) and σ2

δ (aj) in Eqs. 13 and 14, in the specific context of large-
N lattice calculations. The task is to carry out importance sampling based on the probability
weight e−ajS while constraining the energy to remain within — or at least near — the interval
Ei±δ/2. (Without loss of generality, we set β = 1 in Eqs. 8–9.) Most previous work [34, 35,
38, 42] employs traditional over-relaxed Cabibbo–Marinari ‘quasi-heatbath’ (QHB) updates
on SU(2) sub-groups [54], imposing hard cut-offs on the energy either as part of the update
or part of the accept/reject test. Since SU(2) over-relaxation updates are micro-canonical,
some parallelization can be introduced via domain decomposition, despite the constraint on
the global energy [38]. In addition, calculations for different energy intervals are completely
independent and can be run in parallel.

For large N ≥ 4, Ref. [55] argues that performing over-relaxation updates on the full
SU(N) gauge links is significantly more efficient than the QHB approach, in terms of the
computational cost required to decorrelate Polyakov loop measurements. Such full-SU(N)
over-relaxation updates are no longer micro-canonical, so they don’t have to be combined
with heatbath updates. Although originally introduced long ago by Creutz [56], this method
historically suffered from low acceptance rates until being improved by Refs. [55, 57].

We have implemented full-SU(N) over-relaxation updates as an alternative to the QHB
approach. Unfortunately, imposing hard cut-offs on the global energy prevents paralleliza-
tion within each energy interval and re-introduces difficulties with low acceptance rates,
especially as the energy interval size δ decreases. To address both of these issues, we have
also implemented hybrid Monte Carlo (HMC) updates, in which new field configurations are
generated by carrying out approximate molecular dynamics (MD) updates along a trajec-
tory of length ∆τ = 1 in a fictitious ‘MD time’ τ . HMC updates are easily parallelizable,
and offer control over acceptance rates by adjusting the number of steps Nstep = ∆τ/δτ
into which the MD trajectory is divided. Although unconstrained local updating algorithms
exhibit much more computationally efficient decorrelation compared to HMC [58], the need

6



E0 − δ/2 E0 E0 + δ/2

Gaussian window

C = 2

C = 1

C = 1/2

E0 − δ/2 E0 E0 + δ/2

tanh window

A = 20, B = 10

A = 10, B = 10

A = 10, B = 20

FIG. 1. Illustrations of differentiable window functions that can be used in the HMC algorithm
to keep the energy near the interval E0 ± δ/2, involving a simple Gaussian (left) or a difference of
tanh functions (right). While the tanh windows better approximate the hard cut-off used in most
previous work, they produce large forces that lead us to use the Gaussian window with C = 1.

to impose global constraints on the energy in the LLR algorithm makes the HMC algorithm
more competitive.

The complication is that in order to control HMC acceptance rates, the energy constraint
needs to be incorporated into the MD evolution, and this requires replacing hard cut-offs by
a differentiable ‘window function’. The standard choice [36, 37] is to introduce a Gaussian
window function,

⟨⟨E − Ei⟩⟩δ (a) =
1

N

∫
dE (E − Ei) e

−W (E,Ei,δ) ρ(E) e−aE, (15)

W (E,Ei, δ) = C
(E − Ei)

2

2δ2
,

and similarly for N , where C is a tunable parameter that allows the width of the Gaussian
to differ from the interval size δ. Another possibility that we have explored is to use a tanh
window function with two tunable parameters A and B,

W (E,Ei, δ) = A

(
1 +

1

2
[tanh(B(E − Emax))− tanh(B(E − Emin))]

)
. (16)

In this approach, instead of explicitly restricting the integration to Emin ≤ E ≤ Emax as
in Eqs. 8–9, excursions away from this interval are allowed but suppressed by the effective
probability weight e−(aE+W ).

In Fig. 1 we illustrate these two window functions. While the tanh windows better
approximate the hard cut-off used in most previous work, they produce large forces around
the edges of the interval, Ei± δ

2
, which hurts the performance of the algorithm. Larger values

of C similarly increase the forces, leading us to use the Gaussian window function with C = 1
in our calculations. The challenge we encounter with smaller C is that larger excursions away
from the small energy interval are possible. As mentioned at the end of Section III, this
can lead to sampling of (E−Ei) that is not approximately uniform within the small energy
interval, even for the correct value of a that successfully produces ⟨⟨E − Ei⟩⟩δ (a) = 0. This
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0.4 0.45 0.5 0.55 0.6

u
P

-11.5

-11

-10.5

-10

-9.5

-9
a

N=4; =0.01*V; Nj=5; Metropolis updates

Hard cutoff with 20 Newton Raphson steps

Hard cutoff with 0 Newton Raphson steps

Gaussian window with 0 Newton Raphson steps

0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56

u
P

-10.8

-10.7

-10.6

-10.5

-10.4

-10.3

-10.2

-10.1

-10

-9.9

a

N=4; V=4
4
; =0.01*V; Nj=5

HMC

Overrelax

Metropolis

FIG. 2. SU(4) results for the LLR parameter a from V = 44 lattices with an energy interval size of
δ = 0.01V , vs. the average plaquette. Statistical uncertainties are obtained by performing Nj = 5

independent calculations per interval. Left: Comparing hard energy cut-offs (with and without
NR iterations before turning on under-relaxation) and the Gaussian window function, in all cases
using naive MRRTT updates. Right: Comparing HMC, full-SU(N) over-relaxation, and MRRTT
updates, in all cases using the Gaussian window function without any initial NR iterations. The
orange points are the same in both plots, with different axis ranges.

was our motivation for introducing max
{
σ2
δ (aj),

δ2

12

}
in the NR and RM iterations (Eqs. 13

and 14), which can significantly improve the performance of these root-finding methods
when we employ HMC importance sampling to compute ⟨⟨E − Ei⟩⟩δ (aj) and σ2

δ (aj).
So far we have described three restricted importance sampling algorithms that can be used

to find the LLR parameter a = d log ρ(E)
dE

through a combination of NR and RM iterations,
Eqs. 13 and 14. These are over-relaxed QHB updates on SU(2) subgroups, full-SU(N)
over-relaxation updates, and the HMC algorithm, with hard energy cut-offs in the first two
cases and a differentiable window function in the third. We have implemented the LLR
algorithm using all three options and confirmed that they produce consistent results for
a(E). As a further check, we have also implemented and tested a fourth option of naive
Metropolis–Rosenbluth–Rosenbluth–Teller–Teller (MRRTT) updates generalized from the
SU(3) case considered by Ref. [59]. The HMC-based algorithm that we use for our main
study presented in Section V is available in public code based on the MILC software [60],
while we implemented other algorithms in our fork of S. Piemonte’s LeonardYM package [61].

Figure 2 demonstrates the consistent results for a(uP ) that we obtain for these different
algorithms, at least when we take care not to under-relax too aggressively. Recall that
the average plaquette is uP = −E/6V ∈ [0, 1]. For these small tests we consider SU(4)
Yang–Mills theory on 44 lattices with an energy interval size of δ = 0.01V . In the left
panel we consider only naive MRRTT updates, using either hard energy cut-offs or the
Gaussian window function. The results are mostly in agreement within their statistical
uncertainties from jackknifing Nj = 5 independent calculations in each small energy interval.
Discrepancies for relatively large uP ≳ 0.55 are resolved by beginning the stochastic root
finding with 20 NR iterations in the hard cut-off case, instead of under-relaxing from the
start. In the right panel of Fig. 2 we compare results obtained using HMC, full-SU(N) over-
relaxation, and MRRTT updates, in all three cases using the Gaussian window function
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10
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10
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-1

t/
(N

3
.5

 h
)

N=4

N=5

N=6

N=7

N=8

0.007/3600*V
5/4

FIG. 3. Computational costs in core-hours for a single energy interval of size δ = 0.01V , involving
30+20 NR+RM iterations, each with 60 HMC trajectories. We compare all 4 ≤ N ≤ 8 with the
y-axis normalized by the expected N7/2 dependence, and consider the three volumes V = 44 = 256,
64 = 1296 and 84 = 4096, with the dot-dashed line displaying the expected volume dependence
∝ V 5/4 on log–log axes. Although the costs are dominated by the 3000 HMC trajectories, they also
include initialization of a gauge configuration in the energy interval as discussed in the text.

44 64 84

SU(4) 0.32201(36) 96% 2.1569(37) 96% 9.887(39) 95%

SU(5) 0.6095(13) 95% 4.297(11) 95% 16.670(38) 92%

SU(6) 1.128(50) 94% 7.144(0.018) 93% 26.176(60) 88%

SU(7) 1.7007(23) 93% 11.341(35) 92% 38.05(10) 87%

SU(8) 2.6133(25) 90% 15.631(21) 90% 50.00(13) 88%

TABLE I. The computational costs in core-hours shown in Fig. 3, along with the corresponding
HMC acceptance rates, for a single energy interval with different volumes and SU(N) gauge groups.

without any initial NR iterations, and finding full agreement. In addition to these SU(4) 44
tests, we have also carried out a smaller number of checks on larger volumes up to 84 and
with larger N = 6, in all cases finding consistency among the various algorithmic options.

The HMC updates produce the most precise results in Fig. 2. This, along with their
straightforward data-parallelism and control over acceptance rates, led us to use the HMC
algorithm for all results shown in the remainder of this paper. Before turning to those results,
in Fig. 3 we confirm that computational costs for our overall LLR calculations scale as we
would expect for the HMC algorithm. These expectations are that costs need to scale ∝ V 5/4

and ∝ N7/2 in order to keep acceptance rates fixed. In Fig. 3 we normalize the 4 ≤ N ≤ 8
data by N7/2 and compare them with the dot-dashed line ∝ V 5/4 on log–log axes, observing
consistency with both expected scalings. Small deviations are to be expected due to both
variations in the acceptance rates (shown in Table I) and our procedure to initialize a gauge
configuration in the energy interval of interest. Starting from some initial configuration and
β = 1, we run (unconstrained) over-relaxed QHB updates and after every fifth sweep we
increase or decrease β depending on whether the energy is too high or too low, respectively.
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FIG. 4. The SU(6) 84 probability density Pβ(uP ) (omitting uncertainties) reconstructed using both
trapezium-rule integration with β = 24.3921952 and a polynomial fit with β = 24.3914534, and
plotted on either a linear (left) or logarithmic (right) scale.

This procedure terminates once the energy is within the target interval, or β has been
adjusted 2000 times, which unpredictably affects the computational costs shown in Fig. 3
and Table I. We also use the final value of β as an initial guess for the LLR parameter
−a0, resetting β = 1. We have confirmed that our procedure produces consistent results
independent of the initial configuration, in particular comparing the options of setting all
links to unit matrices or to random unitary matrices.

V. BULK TRANSITION RESULTS

In this section we present our results for the bulk phase transition, confirming a first-
order transition for N ≥ 5 and determining the corresponding βbulk and plaquette jump
∆uP . Since many algorithmic possibilities were reviewed above, we begin by summarizing
the LLR setup we used to obtain the following results. The most important choice we have
made, for reasons discussed above, is to use the HMC algorithm with the C = 1 Gaussian
window function (Eq. 15) to compute the restricted expectation value ⟨⟨E − Ei⟩⟩δ (aj). We
carried out these calculations using just δ2 in the NR and RM iterations (Eqs. 13 and
14), and only identified the benefits of using max

{
σ2
δ (aj),

δ2

12

}
in the course of this work.

Instead, to control occasional instabilities we impose a maximum on the amount the LLR
parameter can change in each iteration, |aj+1 − aj| ≤ 200

δ2
. We fix δ = 0.01V and carry

out 30 NR iterations followed by 20 RM iterations. The entire procedure for each energy
interval is repeated Nj = 5 times, with statistical uncertainties obtained by jackknifing
these Nj independent calculations. For all of them we carry out the initialization procedure
described above, starting with all links set to unit matrices; the Nj different sequences of
pseudo-random numbers lead to different initial guesses a0 at the start of the NR iterations.

We have compared two ways to reconstruct the normalizable probability density Pβ(uP ) =
ρ(uP )e

−6V βuP from our LLR results for a(uP ): Simple trapezium-rule numerical integration
and a polynomial fit technique first used in [62, 63]. For the representative case SU(6)
84, Fig. 4 compares the results from these two methods, which predict (within statistical
uncertainty) the same ∆uP = 0.097(2) and βbulk values that differ by only 0.003% (roughly
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FIG. 5. Illustration of our jackknife procedure to estimate statistical uncertainties, considering the
SU(6) 84 case. Left: The probability density Pβ(uP ) calculated for each jackknife sample at the
corresponding βNji tuned to obtain two equal-height peaks. The result for the full data set at its
βbulk = 24.3921952 is also included. Right: Pβ(uP ) for each jackknife sample, along with that for
the full data set, now all evaluated at βbulk.

twice the statistical uncertainty). The main difference is a slight shift in the uP values of the
two peaks. Our results below come from using trapezium-rule integration. The systematic
uncertainty introduced by this choice of reconstruction technique appears to be comparable
to the statistical uncertainty.

The two plots in Fig. 4 show the same results plotted on either a linear or logarithmic scale.
The latter highlights the extremely small probabilities characterizing the valley between
the two peaks, which decrease ∝ e−σV where σ is the surface tension [36] (an important
non-perturbative input for gravitational-wave analyses). This suppresses the tunneling rate
between the two coexisting phases as V and N increase, leading to the difficulties faced
by importance sampling Monte Carlo analyses, reviewed in Section I. We also encounter
the practical complication of results that ‘underflow’ the 10−308 limit of double-precision
numbers. We use MATLAB’s variable-precision arithmetic (vpa) package to reliably compute
Pβ(uP ) ≪ 10−1000, but limit the range of the y-axis in the figures below to the double-
precision domain.

In Fig. 5 we illustrate the jackknife procedure we use to obtain the statistical uncertainties
mentioned above, again using SU(6) 84 as a representative example. For each jackknife
sample of a(uP ) obtained by eliminating one of the Nj independent calculations in each small
energy interval, we adjust β so as to obtain two peaks of equal height in the probability
density Pβ(uP ). Because the peaks are both so narrow, they also have equal area to a
very good approximation. The left panel of Fig. 5 shows these five sets of results and the
corresponding jackknife estimates for βNji, which together produce βbulk = 24.39220(26).
The right panel illustrates what would happen if we tried to assign uncertainties to Pβ(uP )
by averaging over the jackknife samples with fixed β. These five sets of results differ by up
to an order of magnitude, resulting in very large uncertainties. Since we are interested only
in βbulk and ∆uP , we omit uncertainties on Pβ(uP ) itself in the plots below.

Returning to the left panel of Fig. 5, we can read off jackknife samples for the plaquette
jump ∆uP as the distance between the two peaks after adjusting βNji to make their heights
the same. However, it is clear that every jackknife sample predicts exactly the same ∆uP ,
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FIG. 6. SU(4) results for V = 44, 64 and 84 with an energy interval size of δ = 0.01V . Left:
The LLR parameter a, with statistical uncertainties obtained by running Nj = 5 independent
calculations per interval. Right: The resulting probability density Pβ (omitting uncertainties) for
V = 84 at β = 10.4. The single-peak structure persists for all values of β, confirming the expected
continuous crossover.

due to the non-zero size δ = 0.01V of the small energy intervals. We therefore use δ itself
to set the uncertainty on the plaquette jump: ϵ∆uP

= δ
6V

≈ 0.0017.
Now that we have reviewed our setup and uncertainty analyses, we present our results for

the SU(N) bulk transition for the action Eq. 1, starting with N = 4. Figure 6 presents our
SU(4) results for both a(uP ) (left) and the resulting probability density Pβ(uP ) for β = 10.4
(right). As discussed in Section III, the two-peak structure in Pβ(uP ) that characterizes
a first-order transition corresponds to a(uP ) results that are non-monotonic in the energy.
The 64 and 84 results for a(uP ) in Fig. 6 are clearly monotonic, and we correspondingly
observe a single peak in Pβ(uP ) for all values of β. This confirms that the SU(4) bulk
‘transition’ for the action Eq. 1 is a continuous crossover, in agreement with Ref. [47]. Note
that the smallest 44 volume produces a clearly non-monotonic a(uP ) — a spurious sign of
a first-order phase transition, which leads us to conclude that the 44 volume is too far from
the thermodynamic limit to be reliable.

SU(5) is the first case for which we observe a true first-order bulk phase transition, in
Fig. 7. While it is not obvious by eye, a(uP ) remains slightly non-monotonic for the larger
lattice volumes 64 and 84. It is much easier to see the resulting double-peak structure in the
probability density Pβ(uP ) at βbulk = 16.6552(4). This confirms a first-order transition, for
which we can read off the plaquette jump ∆uP = 0.035(2) directly from the Pβ(uP ) plot.

In the larger-N cases SU(6), SU(7) and SU(8), a(uP ) is clearly non-monotonic for all
three volumes, as shown in Figs. 8, 9 and 10, respectively. As expected, the ∆uP = 0.097(2),
0.118(2) and 0.130(2) at the corresponding first-order phase transitions are all significantly
larger than for SU(5). In particular, in Fig. 11 we are able to fit these three results to the
straight line ∆uP = 0.230(8)− 0.80(6)

N
, with χ2/d.o.f. = 1.094/1 corresponding to p = 0.296.

The SU(5) point falls well below this line, confirming that the SU(5) bulk transition for the
action Eq. 1 is only weakly first order [47].

Returning to the left panel of Fig. 10, let us comment on the strange behavior of the
SU(8) 84 results for a(uP ) in the non-monotonic transition region 0.44 ≲ uP ≲ 0.51. In
this region there is a sudden onset of fluctuations significantly larger than the statistical
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FIG. 8. SU(6) results, as in Fig. 6, now predicting a first-order transition at βbulk = 24.39220(26)

with ∆uP = 0.097(2).
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interval size of δ = 0.01V . A linear fit to the 6 ≤ N ≤ 8 results produces ∆uP = 0.230(8)− 0.80(6)
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uncertainties, which we do not observe for any other data set. This is likely responsible
for the ∼ 10× larger uncertainty on βbulk for SU(8) compared to SU(6) and SU(7). The
behavior of aj in our NR and RM iterations does not resemble what we see when the
energy interval sizes δ is made too large for log ρ to be approximately piecewise linear, and
we also obtain fluctuating results for smaller δ. We similarly obtain fluctuating results if
we increase the number of HMC trajectories per iteration, if we increase the number of
RM iterations following the 30 initial NR iterations, and if we increase the number Nj of
independent calculations. Finally, we reran these SU(8) 84 calculations using all three of
the other restricted importance sampling algorithms discussed in Section IV — over-relaxed
QHB, full-SU(N) over-relaxation, and naive MRRTT updates — in each case imposing hard
energy cut-offs. In all cases we observed large fluctuations in the transition region, which
we will continue to investigate in future work.
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VI. CONCLUSION

In this work we have applied the LLR density of states algorithm to investigate first-
order bulk transitions in pure-gauge SU(N) lattice Yang–Mills theories with the action
Eq. 1. We have provided a comprehensive review of the algorithm, which allows us to
evade the super-critical slowing down of importance-sampling techniques at such first-order
transitions. We focused in particular on algorithmic considerations for calculations with
large N ≥ 4, comparing several restricted importance sampling algorithms used within each
stochastic root-finding iteration, and adopting the HMC algorithm to obtain the results
presented above. These results allowed us to confirm [47] that the action Eq. 1 features
a bulk crossover for N = 4, which becomes weakly first-order for N = 5 and robustly
first-order for N ≥ 6.

From our results in Figs. 6–10, we can appreciate that first-order transitions are easiest to
observe with the LLR algorithm when the non-monotonic region of a(E) is large compared
to the small energy interval size δ, and when the non-monotonicity itself is large compared
to the uncertainties on a(E). Note that reducing δ leads to larger fluctuations in aj during
NR and RM stochastic root finding (Eqs. 13 and 14), increasing the uncertainties on a(E).
This leads us to the conclusion that the LLR algorithm performs best when analyzing strong
first-order transitions with large latent heat, for which both of these conditions are easiest
to satisfy with relatively large δ and relatively large statistical uncertainties. This may
be counter-intuitive, because it is precisely the opposite behavior to that of more familiar
importance-sampling approaches. The strange fluctuations in the SU(8) 84 results in Fig. 10,
which we discussed above and continue to study, may raise a caveat to this conclusion. These
fluctuations appear only for the strongest transition we have studied so far, and may be a
warning sign that generic difficulties might arise in LLR analyses of even stronger phase
transitions.

These considerations also highlight the challenges facing our ongoing investigations of
the deconfinement transition for SU(4) Yang–Mills theory, motivated by the Stealth Dark
Matter model [14, 15, 22] and ongoing observational searches for stochastic backgrounds
of gravitational waves [1–8]. The deconfinement transition is much weaker than the bulk
transition, and the relatively large 303 × 6 lattice volumes we are focusing on translate the
already-small latent heat Lh to an even smaller plaquette jump ∆uP ∝ Lh

N4
t

due to Eq. 3.
This implies a very small non-monotonicity in a(E), but resolving the transition with the
LLR algorithm to determine the latent heat and surface tension does appear to be within
reach.

In parallel with these studies of the deconfinement transition, it would be both interesting
and straightforward to use the LLR algorithm to efficiently map out the bulk phase structure
of the action Eq. 4 in the fundamental–adjoint (β–βA) plane. By repeating the work reported
here for non-zero values of r = βA

β
, we could locate the first-order bulk transition line in

this plane for a sequence of SU(N) gauge groups, and determine how its critical endpoint
moves as a function of N . This would build on earlier work including Refs. [47, 50, 56],
which previously established that the critical endpoint crosses the βA = 0 fundamental axis
for N = 5. We are also looking forward to applying the LLR algorithm to analyze phase
transitions in a variety of other theories, including bosonic matrix models.
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