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Abstract

The paper investigates a problem of forced vibrations of two finite length metabeams: one is
with periodically arranged internal hinges and the second one with periodically arranged internal
hinges and external supports. Based on the Euler-Bernoulli beam theory and the transfer matrix
method, general solutions of the periodic beams are obtained. Applying the Bloch-Floquet theory,
the explicit expressions are derived defining the metabeams band gap structures. The corresponding
band gap dispersion curves are plotted and analysed. It is shown that when the frequency of forced
vibrations coincides with the band gap frequencies a strong localization of flexible waves occurs at
the interfaces of the periodic beams. The localization of flexible waves increases significantly with
the number of hinges and supports.

Keywords: Band gaps, localization, resonance frequency

1. Introduction

Artificial materials and structures, called mechanical metamaterials, recently have received much
attention in many research studies and engineering applications [1, 2]. Due to structural or material
periodicity these materials possess new physical properties including negative refraction, frequency
stop-bands and cloaking, all unfeasible in naturally occurring materials [3]. Waves in these materials
can propagate only within certain frequency bands and are completely blocked within forbidden
bandgaps [4, 5].

Frequency bandgaps can be caused by the presence of local resonators, which are normally
either attached to the surface of the metamaterial structure or embedded inside [6]. Exhaustive
research has already been carried out on design criteria and properties of metamaterial structures
made of a single beam with local resonators [7, 8]. Frequency bandgaps in these metamaterial
structures occur due to local resonators absorbing kinetic energy from the oscillations propagating
through the metamaterial structure [9]. When the frequency of the external vibration and the
resonant frequency of the local resonators coincide, energy from these vibrations transferrs to the
local resonators [6]. On the other hand, the Bragg’s scattering in the periodic structures also leads
to generation of frequency bandgaps [10] due to the wavelengths of the Bragg scattering mechanism.
The presence of local resonators makes it possible to generate bandgaps at much lower frequencies
than the Bragg’s frequencies [11, 12]. The related applications are promising in vibration insulators,
frequency filters, waveguides and energy harvesting [9, 13, 14].
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Waves propagating through beams may cause damages for the structures and inaccuracies for
some experimental measurements. Especially important is the stability problem in structures which
can be modelled as beams, for example, high-speed trains in a railway structure. To guarantee
safety of high-speed trains, the mechanical properties of the train have to be chosen such that
the instability is prevented. The stability problems of the vibration of a bogie uniformly moving
along a Timoshenko beam on a viscoelastic foundation has been studied in [15], where it has been
shown that the stability of the model largely depends on the damping in the supports and in the
foundation. When the railway vehicle exceeds the minimum phase velocity of waves in the beam,
which may lead to the vibration of the system becoming unstable, the stability problems have been
investigated and instability intervals determined for varying parameters in [16–18].

Many engineering structures however are designed as one-dimensional periodically supported
structures. Examples include railway tracks, pipelines and multi-span bridges [19, 20]. Dynamic
behaviour of these structures are important for reducing their vibration response and failure, fatigue
and damage and reducing the transmitted noise to the surrounding environment. Band gap concept
have been used in several structural configurations for the control of the behaviour of waves in beams
which are widely used in engineering constructions. The existence of multi-flexural band gaps can be
exploited for the possibility of flexural vibration control of beams. Suppression of these vibrations
in an Euler–Bernoulli beam with attached lateral local resonators is studied in [21]. It is shown
that band gaps can be tuned by changing the geometry parameters and the spring constants of
the resonators. The possibility of enlarging the bandwidth by changing the geometrical or material
parameters is again revealed in [22]. Flexural waves in a periodic beam on elastic foundations are
considered in [23], where it is shown that the presence of an elastic foundation can result also in a
low frequency and wider range band gap.

If the periodicity of the metamaterial is infinite, the Bloch-Floquet theory is normally used to
reduce the analysis of the wave propagation to the problem for a single unit cell [24]. When the
periodic arrangement is confined within a finite spatial domain, the analysis becomes complicated
[25]. Normally the transfer matrix approach with finite element method is more convenient for the
investigation of finite periodic structures with boundary conditions imposed at the ends.

Most papers investigate wave propagation properties in an infinite periodic structure. However
understanding the oscillatory behaviour through finitely periodic media is important for analyzing
their acoustic properties, since the number of periodic cells is finite in most structures. In this
paper we investigate forced vibrations of finite length multi span beams with periodically arranged
intermediate external supports and internal hinges for qualitative and quantitative analysis of lo-
calization of flexible waves. Wave localization makes it possible to control the propagation of waves
and can lead to many new applications [26]. On the other hand, localization can result in local
energy concentrations which can affect the reliability and durability of engineering applications.
In both scenarios, since small irregularities can cause substantial consequences, it is important to
investigate the underlying physical mechanisms of wave and vibration localization. Stronger vibra-
tion localization leads to enhanced vibration energy harvesting capabilities [27]. To the best of the
authors’ knowledge, the strong localization of flexible waves in a finite periodic structure within the
forbidden frequencies of band gaps caused by both forced vibrations and periodicity has not been
reported before.

2. Statement of the problem

Consider an Euler-Bernoulli beam with one end x = 0 connected to a device driver that oscillates
with an amplitude U0 and frequency ω and the other end x = L is pinned or free to vibrate. In
the first problem in the meta beam region x ∈ (a, L) at points x = a+ (n− 1)d, (n = 1, 2, ...N) N
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internal hinges are located at a distance d from each other. In the second problem at equal distance
from internal hinges external intermediate supports are located (Fig.1).

Fig. 1: Cantilevered beam with N periodically arranged hinges and external supports

The equation of motion of Euler-Bernoulli beam can be described by the following equation

EI
∂4W±
∂x4

+ ρF
∂2W±
∂t2

= 0, (1)

whereW±(x, t) is the dynamic deflection of the beam, E is the elastic modulus, I is the area moment
of inertia, ρ is the bulk density, F is the cross-sectional area of the beam and subscript (−) denotes
the region x ∈ (0, a), subscript (+) denotes the region x ∈ (a, L).

Forced vibrations in the beam can be generated by different ways. One of them is commonly
used and technically easily realized oscillating driver connected to a fixed edge [28], where the
following boundary conditions can apply [29]

W−(0, t) = U0 cos(ωt),
∂W−(0, t)

∂x
= 0. (2)

At the beam interface x = a where the first internal hinge is placed the moments are equal to
zero, the beam deflection and shear are continuous

∂2W−(a, t)

∂x2
= 0,

∂2W+(a, t)

∂x2
= 0, (3)

W+(a, t) =W−(a, t),
∂3W+(a, t)

∂x3
=
∂3W−(a, t)

∂x3
. (4)

Conditions at the beam end and the interface conditions at points where periodic hinges or inter-
mediate supports are located will be defined.

Writing W±(x, t) = U±(x) cos(ωt), the amplitude functions U±(x) will satisfy the following
equation

d4U±
dx4

− p4U± = 0, where p4 =
Fρω2

EI
. (5)

Satisfying boundary conditions (2) and the first boundary condition in (3), the solution in the
meta-beam region x ∈ (0, a) can be written as follows

U−(x) =
U0(cosh(ap) cos(px) + cos(ap) cosh(px))

cos(ap) + cosh(ap)

+A0

(
sin(p(a− x)) + sinh(ap) cos(px)− cosh(ap) sin(px)− cosh(px)(sin(ap) + sinh(ap))

cos(ap) + cosh(ap)

+ sinh(px)
)
, (6)

where the integration constant A0 will be determined from the interface conditions at x = a.

3



In the periodic structure we will consider solutions in a basic unit cell x ∈ (βn − d, βn), βn =
a+ nd, n = 1, 2, ...N).

Two periodic structures will be considered:
PH beam: a meta beam with periodically arranged N internal hinges which are placed at the

end points of the unit cells x = βn − d and x = βn.
PHS beam: a meta beam with periodically arranged N internal hinges and N intermediate

external supports. The hinges are placed at the end points of the unit cells x = βn − d, x = βn and
the intermediate supports are placed at the middle of the unit cells x = βn − d/2.

Interface conditions at points where the internal hinges are located starting from x = a+ d can
be cast as

d2U+(x)

dx2
= 0,

[
d3U+(x)

dx3

]
= 0, [U+(x)] = 0. (7)

Interface conditions at points where the external supports are located are[
d2U+(x)

dx2

]
= 0,

[
dU+(x)

dx

]
= 0, U+(x) = 0. (8)

In (7) and (8) [·] is a jump of a function across the interfaces.

3. Propagator matrix approach

3.1. Meta PH beam with periodically arranged internal hinges

In the basic unit cell the solution of the amplitude functions U+(x) from (5) satisfying the first
boundary condition in (7) at x = βn and x = βn − d can be written as

(9)
U+(x) = c1 (sin(p(βn − x))− g(x) sin(dp))

+ c2 (sinh(p(βn − x))− g(x) sinh(dp)) ,

where

g(x) =
cos(p(βn − x)) + cosh(p(βn − x))

cos(dp)− cosh(dp)
, (10)

and c1 and c2 are unknown constants.
Since the rest of interface contact conditions in (7) are imposed on the functions U+(x) and

d3U+(x)

dx3
, it is convenient to introduce the following column vectors

U+(x) =

 U+(x)

d3U+(x)

dx3

 , C =

(
c1

c2

)
. (11)

Using (9) the solution in the matrix form can be written as

U+(x) = P(x)C, (12)

where

P(x) =

(
sin(p(βn − x))− g(x) sin(dp)) sinh(p(βn − x))− g(x) sinh(dp)

p3(cos(p(βn − x)) + f(x) sin(dp)) −p3(cosh(p(βn − x)) + f(x) sinh(dp))

)
, (13)
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and

f(x) =
sin(p(βn − x)) + sinh(p(βn − x))

cos(dp)− cosh(dp)
. (14)

A propagator matrix method can be used now to link the field values of the vectors U+(βn) and
U+(βn − d) in the unit cell.

Since
U+(βn) = P(βn)C and U+(βn − d) = P(βn − d)C, (15)

the vector C can be eliminated giving the following relation linking the vector field values within a
unit cell

U+(βn) = RU+(βn − d), R = P(βn)P
−1(βn − d), (16)

where R is a unimodal propagator matrix, which links the field vectors at the ends of the n-th cell.
Note that the elements of matrix R do not depend on the cell number:

R =

(
r11 r12
r21 r22

)
, (17)

and

r11 =
sin(dp) cosh(dp)− cos(dp) sinh(dp)

sin(dp)− sinh(dp)
, r22 = r11, (18)

r12 =
2 sin(dp) sinh(dp)

p3(sin(dp)− sinh(dp))
, r21 =

p3(1− cos(dp) cosh(dp))

sin(dp)− sinh(dp)
. (19)

The relation (16) will enable to establish a link between values of the vectors U+(a) and U+(L)
and evaluate the relative deflections of the beam at any unit cell of the meta beam with periodically
arranged internal hinges in proportion to meta beam deflection at point x = a.

3.2. Meta PHS beam with periodically arranged internal hinges and external interme-
diate supports

Consider now a meta beam with periodically arranged N internal hinges and N intermediate
supports. The hinges are placed at the end points of the unit cell x = βn − d, x = βn and the
intermediate supports are placed at the middle of the unit cells at points x = βn − d/2 (Fig.1).

In the unit cell the solutions at the points where the hinges are placed and satisfying conditions

d2U1+(βn)

dx2
= 0,

d2U2+(βn − d)

dx2
= 0 (20)

in both sides of the external intermediate supports can be cast as

U1+(x) = C1 sin(p(x− βn)) + C2 sinh(p(x− βn)) + C0(cos(p(x− βn))− cosh(p(x− βn))), (21)

U2+(x) = A1 sin(p(x−βn+d))+A2 sinh(p(x−βn+d))+D0(cos(p(x−βn+d))−cosh(p(x−βn+d))).
(22)

From four interface conditions (8) it follows that

U1+(βn − d/2) = 0, U2+(βn − d/2) = 0, (23)

dU1+(βn − d/2)

dx
=
dU2+(βn − d/2)

dx
,

d2U1+(βn − d/2)

dx2
=
d2U2+(βn − d/2)

dx2
(24)

the constants C1, C2, A1 and A2 can be expressed via C0 and D0 as follows

C1 = D0ψϕ
−1 csc(dp/2) + C0θϕ

−1, C2 = C0ϑϕ
−1 −D0csch(dp/2)ψϕ

−1, (25)
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A1 = −D0θϕ
−1 − C0 csc(dp/2)ψϕ

−1, A2 = C0ψϕ
−1csch(dp/2)−D0ϑϕ

−1, (26)

where the following notations are made

ϕ = 2(cot(dp/2)− coth(dp/2)), ψ = csc(dp/2) + csch(dp/2), (27)

θ = 1− cot2(dp/2) + 2 cot(dp/2) coth(dp/2) + csc(dp/2)csch(dp/2), (28)

ϑ = 1 + cot2(dp/2)− 2 cot(dp/2) coth(dp/2)− csc(dp/2)csch(dp/2). (29)

It follows from (21), (22) and (25), (26) that

U1+(βn) = P1C0, U2+(βn − d) = P2C0, (30)

where

U1+(βn) =

 U1+(βn)

d3U1+(βn)

dx3

 , U2+(βn − d) =

 U2+(βn − d)

d3U2+(βn − d)

dx3

 , C0 =

(
C0

D0

)
(31)

P1 = ϕ−1

(
0 2ϕ

p3γψ p3(θ − ϑ)

)
, P2 = ϕ−1

(
2ϕ 0

p3(ϑ− θ) −p3γψ

)
, (32)

and
γ = csc(dp/2) + csch(dp/2).

Now the vector C0 can be eliminated to obtain

U+(βn) = QU+(βn − d), (33)

where
Q = P1P

−1
2 , U+(βn) = U1+(βn), U+(βn − d) = U2+(βn).

Matrix Q is a unimodal propagator matrix of the wave field for the Euler–Bernulli metastructure
beam, which connects the vectors U+(βn) and U+(βn−d) at the ends of the n-th cell where internal
hinges are placed.

Elements of matrix Q can be expressed as

p11 =
cosh(dp)− cos(dp)− 4 sin(dp/2) sinh(dp/2)− 2 sin(dp) sinh(dp)

2(sin(dp/2) + sinh(dp/2))2
, p22 = p11

p12 =
4 sin(dp/2) sinh(dp/2)(sin(dp/2) cosh(dp/2)− cos(dp/2) sinh(dp/2))

p3(sin(dp/2) + sinh(dp/2))2
, (34)

p21 = −2p3(cos(dp/2) cosh(dp/2) + 1)(sin(dp/2) cosh(dp/2)− cos(dp/2) sinh(dp/2))

(sin(dp/2) + sinh(dp/2))2
.

The relation (33) will be used to establish a relationship between vectors U+(a) and U+(L)
and evaluate the deflections of the beam at any unit cell of meta beam with periodically arranged
internal hinges and external supports in proportion to the deflection at the starting point x = a.
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3.3. Solutions for the relative deflections and ”shear” functions

If M is a unimodal matrix, where M stands for matrices R or Q, then in the region of the
meta beam where the hinges and external supports are located the unimodal propagator matrix
Mn linking the vectors at points x = a and x = a + nd can be constructed by repeating (16) or
(33) n times:

U+(a+ nd) = MnU+(a). (35)

Since MN−nU+(a+ nd) = MNU+(a) = U+(a+Nd) the vectors can be linked at x = a+Nd = L
and x = a+ (n− 1)d in the following way

MN−n+1U+(a+ (n− 1)d) = U+(L). (36)

According to Sylvester’s matrix polynomial theorem [30] the elements of the n-th power of a
2× 2 unimodal matrix M = {mij}2i,j=1 can be expressed as

Mn =

(
M11(n) M12(n)

M21(n) M22(n)

)
, (37)

where
M11(n) = m11Sn−1 − Sn−2, M12(n) = m12Sn−1,

M21(n) = m21Sn−1, M22(n) = m22Sn−1 − Sn−2, (38)

and Sn(η) are the Chebyshev polynomials of second kind, namely

Sn(η) =
sin((n+ 1) arccos(η))

sin(arccos η)
, η =

m11 +m22

2
. (39)

In vector notations the interface condition (4) at x = a can be written as

U+(a) = U−(a), where U−(a) =

 U−(a)

d3U−(a)

dx3

 . (40)

If follows from (35) and (40) that the unknown constant A0 can be determined from the following
matrix equation

MNU+(a) = U+(L), (41)

where

U+(a) =


2A0(cos(ap) sinh(ap)− sin(ap) cosh(ap))

cos(ap) + cosh(ap)
+

2U0 cos(ap) cosh(ap)

cos(ap) + cosh(ap)

2A0p
3(cos(ap) cosh(ap) + 1)

cos(ap) + cosh(ap)
+
p3U0(cos(ap) sinh(ap) + sin(ap) cosh(ap))

cos(ap) + cosh(ap)

 . (42)

For a PHS beam both free edge and pinned edge at x=L can be considered. Since a PH beam
cannot have a free edge, for this beam only pinned edge at x = L is considered [31], [32].

In the case of the free edge

d2U+(L)

dx2
= 0,

d3U+(L)

dx3
= 0, U+(L) =

(
U+(L)

0

)
. (43)
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For a pinned edge beam

d2U+(L)

dx2
= 0, U+(L) = 0,U+(L) =

(
0

f(L)

)
, (44)

where f(x) =
d3U+(x)

dx3
is the beam’s “shear” function and in (43) and (44) U+(L) and f(L) are

unknown displacement and ”shear” which need to be determined from the interface condition given
at x = a.

In the case of a free edge beam the constants A0 and U+(L) can be determined from the equation(
M11(N) M12(N)

M21(N) −M22(N)

)
U+(a) =

(
U+(L)

0

)
. (45)

It follows that
U+(a) =M22(N)U+(L), f(a) = −M21(N)U+(L), (46)

where
U+(L) = U0∆

−1
1 (cos(ap) + cosh(ap)), (47)

∆1 =M21p
−3(cos(ap) sinh(ap)− sin(ap) cosh(ap)) +M22(cos(ap) cosh(ap) + 1). (48)

The equation ∆1(ω) = 0 defines the bands of resonance frequencies of a beam with a free edge at
x = L. From (43) it follows that

U+(a+ d(n− 1)) =M22(N − n+ 1)U+(L), f(a+ d(n− 1)) = −M21(N − n+ 1)U+(L). (49)

Taking into account that m11 = m22 = η and

M22(n) = ηSn−1(η)− Sn−2(η) = Tn(η), (50)

where Tn(η) is the Chebyshev polynomials of first kind and M21(n) = m21Sn−1, we can define the
relative displacement and relative “shear” at any unit cell of the periodic part of the beam in the
following way

Ũn =
U+(a+ d(n− 1))

U+(a)
=
TN−n+1(η)

TN (η)
, f̃n =

f(a+ d(n− 1))

f(a)
=
SN−n(η)

SN−1(η)
. (51)

In the case of a pinned edge beam the constants A0 and f(L) will be determined from the following
equation (

M11(N) M12(N)

M21(N) −M22(N)

)
U+(a) =

(
0

f(L)

)
, (52)

and from (46)
f(a) =M11(N)f(L), U+(a) = −M12(N)f(L), (53)

where
f(L) = −U0p

3∆−1
2 (cos(ap) + cosh(ap)), (54)

∆2 =M11(cos(ap) sinh(ap)− sin(ap) cosh(ap)) +M12p
3(cos(ap) cosh(ap) + 1). (55)

The equation ∆2(ω) = 0 defines the bands of resonance frequencies of the beam with pinned edge
at x = L.
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It follows from (26) that

U+(a+ d(n− 1)) =M12(N − n+ 1)U+(L), f(a+ d(n− 1)) =M11(N − n+ 1)U+(L). (56)

Thus in this case

Ũn =
U+(a+ d(n− 1))

U+(a)
=
SN−n(η)

SN−1(η)
, f̃n =

f(a+ d(n− 1))

f(a)
=
TN−n+1(η)

TN (η)
. (57)

In (51) and (57) Ũn and f̃n define relative deflections and “shear” of any unit cell of the periodic
part of the meta-beam in proportion to the meta-beam deflection and “shear” at point x = a.

3.4. Solution of the problem for infinite periodic beams

Applying the Bloch -Floquet periodicity condition U0(βn) = λU0(βn − d) at both ends of the
unit cell results in the following eigenvalue problem

(M− λI)U+(βn) = 0, (58)

where M stands for matrix R for a meta beam with periodically arranged internal hinges and Q
for a meta beam with periodically arranged internal hinges and external intermediate supports, I
is a 2 × 2 identity matrix, λ = exp(ikd) and k is the the Bloch–Floquet wave number. It follows
from (58) that the eigenvalues of the periodic structure satisfy the following equation:

1− 2λm11 + λ2 = 0. (59)

It follows from (59) that cos kd = m11, and, since m11 = η, the equation defining the gaps of the
infinite beam with internal hinges can be found from

cos(kd) =
sin(dp) cosh(dp)− cos(dp) sinh(dp)

sin(dp)− sinh(dp)
. (60)

The equation defining the gaps of the infinite beam with internal hinges and supports can be written
as

cos(kd) =

cosh(dp)− cos(dp)− 4 sin

(
dp

2

)
sinh

(
dp

2

)
− 2 sin(dp) sinh(dp)

2

(
sin

(
dp

2

)
− sinh

(
dp

2

))2 . (61)

Thus by virtue of properties of a unimodal propagator matrix defined in sections 3.1 and 3.2 for the
solution of a finite length periodic structure we determined the band gaps of counterpart infinite
periodic structure.

4. Analysis and conclusions

It follows from (60) and (61) that the condition |η|> 1 defines band gaps in an infinite metastuc-
ture beams. Dispersion curves defining band gaps in the first Brillouin zone, are presented in Figure
2, where Ω = ωd2

√
(EI)−1ρA is a dimensionless bending frequency of the metastructure. For a

beam with periodically arranged hinges (PH) dashed horizontal lines on dispersion curves (Fig. 2a)
determine bounds of the first gap Ω ∈ (22.37, 39.43), the second and third gaps Ω ∈ (61.62, 88.73)
and Ω ∈ (120.78, 157.75), respectively (also shown as black dots on Fig. 7). There is also a cut-off
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(a) Band structure of a beam with hinges
(b) Band structure of a beam with hinges
and external supports

Fig. 2: Dispersion curves.

frequency at Ω = 9.6 below which the waves cannot propagate. For the beam with periodically
arranged hinges and external suppers (PHS) the bounds of frequency ranges which determine the
band gaps are Ω ∈ (14.65, 39.5), Ω ∈ (88.1, 157.7), Ω ∈ (248.3, 351.9), respectively (Fig. 2b). Within
the same frequency range the band gaps in this case are fewer but wider and there is no a frequency
cut-off.

Dependence of the deviation |η| on the dimensionless frequency Ω is presented in Figure 3. For
a PH beam the parameter |η| takes the same maximal values |η|max(Ω) = 1.404 in the middle of
the band gaps, which are the points where |η|> 1. In particular at Ω = 30.9 for the first band gap.
For the beam with periodically arranged hinges and external supports the maximum values of |η|
are different and higher, in particular |η|max(Ω) = 2.24, |η|max(Ω) = 3.05 and |η|max(Ω) = 2.95 for
first, second and third gaps, respectively.

Fig. 3: Graphs of deviation functions |η|. The blue and red curves show the band structure of a beam with
periodically arranged hinges and a beam with periodically arranged hinges and external supports.

The relative functions Ũn and f̃n are described by Chebyshev polynomials Tn(η) and Sn(η).
Figure 4 shows the graphs of T̃n = TN−n+1(η)/Tn(η) and S̃n = SN−n+1(η)/Sn(η) for values of η > 1
and η < 1. The two curves practically coincide even at η = 1.05 and N = 10, whereas the values
of these curves diverge already at η = 0.95. Since for |η|> 1 the functions T̃n and S̃n practically
coincide, all results which are presented below for relative deflection function are valid also for the
relative “shear” for both a PH beam with a pinned edge and a PHS beam with free or pinned edges.

Figure 5 shows the relative deflection Ũn as a function of the number of cells n for both PH
and PHS beams with free and pinned edges for N = 20. The values are calculated at the mid
point Ω = 30.9 (|η|= 1.404) of the first band gap for the PH beam (the red lines), at the mid point
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(a) (b)

Fig. 4: Functions T̃n = TN−n+1(η)/Tn(η) (red curve) and S̃n = SN−n+1(η)/Sn(η) (blue curve) for (a) η = 1.05, (b)
η = 0.95.

Fig. 5: Relative deflections for N=20 (a) for a PH (red lines) and a PHS (blue lines) beams at the middle of the first
frequency band gap.

Ω = 25.7 (|η|= 2.02) of the first band gap for the PHS beam (the blue lines). The black lines show
values of the relative deflection Ũn at points close to the first gap boundaries, where |η|= 1.05 for
both PH and PHS beams. The graphs show that a strong localization (displacement and ”shear”
attenuation) of a flexible wave occurs when the frequency of the forced vibration coincides with the
midpoint frequency of the first band gap even for the number of cells as few as N = 10. Moreover
there is a stronger localization of acoustic flexible waves in the case of a PHS beam compared to a
PH beam. Figure 4b confirms that outside the band gaps a localization of the relative displacement
and “shear “ does not occur at the forced vibration frequencies .

Since
Tn−1(η)

Tn(η)
≈ 0.41 for η = 1.404, for a PH beam and

Tn−1(η)

Tn(η)
≈ 0.23 for η = 2.2, (n > 2)

for the PHS beam, the discrete function Ũ can be approximated with high accuracy at the middle
frequency of the first band gap by a continuous function as follows

TN−n+1(η)

TN (η)
∼ Q(α) = 0.41Nα and Q(α) = 0.23Nα. (62)

for PH and PHS beams defined in interval α = (x − a)/(L − a), x ∈ (a, L − a). This can be used
to compare the localisation of waves for different number of cells of the same length beam.

Figure 6 shows the variation of the relative deflection Ũn ∼ Q(α) along the beam’s periodic part
for N = 5, N = 10 and N = 20 for the same length of the beam L. The dot points on the curve for
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N = 10 corresponding to the exact values of the relative deflection confirm the high accuracy of the
approximation of the function Q(α). Analysis of these curves shows that the localization of acoustic
flexible waves significantly increases with increasing number of hinges and supports. Moreover there
is stronger localization of acoustic flexible waves for a PHS beam compared to a PH beam.

Fig. 6: Continuous approximation functions of the discrete relative deflection for (a) a meta beam with periodically
arranged internal hinges (Solid lines) Q(α) = 0.41Nα and (b) with periodically arranged internal hinges and external
intermediate supports (dashed lines) Q(α) = 0.23Nα for different number of cells.

In the problem of a wave propagation in a periodic infinite structure a very slight deviation of
the parameter |η| from 1 results in the wave band gap formation. However it follows from Figure
5 that in the finite periodic structures it is more important a large deviation of the parameter |η|
from 1, since a stronger localization happens for the PHS beam, for which the values of η are much
larger than than for the PH beam (Fig. 3).

The results show that the localization of amplitudes of meta-baem displacements takes place
only near the interface of the first cells. The flexible wave can not freely travel via periodic structure
at frequencies within forbidden bands and are practically localized at the neighborhood of the first
periodic cells. This effect takes place already at N = 10. This localization effect is very close to
some results of wave localization in finite periodic structure discussed in [33] and [34].

Figures 7 and 9 show the graphs of the function ∆(Ω), (zeros of which define resonance fre-
quencies), for both a PH beam with a pinned edge and a PHS beam with a free or pinned edge
within the first and second frequency gaps. The black dot points on the Ω axis are the bounds of
these frequency gaps. For a comparative analysis the graphs of the function ∆(Ω) on Figure 10 are
presented within the range 0 < Ω < 200 for a PH beam with a pinned edge for N = 10 and N = 1.

The analysis of data on Figures 7-10 shows that increasing the number of hinges and supports
significantly increases the number of zeroes of resonance frequencies outside the band gaps, but
within the gaps it does not change the location and the number of zeroes, which are located mostly
outside the frequency gaps. There are only a few zeroes of the resonance frequency within the
frequency gaps. Due to the periodicity there exist anti-resonance frequencies outside the forbidden
gaps at which the displacements approach to zero. Within the gaps in the PHS beam the locations
of zeroes of the resonance frequency are slightly different for pinned and free edge boundary cases.
The same results are expected to be valid in the range of the subsequent gaps.

The main results can be summarized as follows
1. The PH and PHS structures in the homogeneous infinite beam can open wide frequency

12



(a) (PH beam) First gap. (b) (PH beam) Second gap.

Fig. 7: Graphs of the function ∆(Ω) for the PH beam with pinned edge, first and second gaps, a = 4d, N = 20.

(a) (PHS beam) First gap (b) (PHS beam) Second gap

Fig. 8: Graphs of the function ∆(Ω) for the PHS beam with a pinned edge for a = 4d, N = 20.

band gaps. Within the same frequency range the band gaps for PHS beams are fewer and wider
and unlike the PH beam there is no a cut-off frequency below which waves cannot propagate.

2. In the problem of forced vibration of PH and PHS beams localization of flexible waves occurs
when the frequencies of forced vibrations coincide with the “forbidden” frequencies of band gaps.
The strong localization occurs at the mid frequencies of the band gaps. The localization takes
place even in the case of small number of hinges and supports. The number of hinges and supports
essentially increases the localization of acoustic flexible waves.

3. A beam with periodically arranged internal hinges and external intermediate supports demon-
strates stronger localization of acoustic flexible waves compared to a beam with only periodically
arranged internal hinges.

4. Due to periodicity there exist the anti-resonance frequencies outside of forbidden gaps at
which the displacements approach to zero.

5. At frequencies within forbidden band gaps where a flexible wave cannot freely travel via
periodic structure it is practically localized at the neighborhood of the first periodic cells.

6. Localization of acoustic flexible waves significantly depends on the number of hinges and
external supports. The localization is stronger for larger numbers of hinges and external supports.

7. The resonance frequencies are mostly outside the forbidden frequency band gaps for both a
beam with periodically arranged internal hinges and external intermediate supports and a beam
with only periodically arranged internal hinges.
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(a) (PHS beam) First gap (b) (PHS beam) Second gap

Fig. 9: The function ∆(Ω) for the PHS beam with a free edge for a = 4d, N = 20.

(a) (b)

Fig. 10: The function ∆(Ω) in frequency range 0 < Ω < 200 for a PH beam with a pinned edge for a = 4d, (a) N=10,
(b) N=1.
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[20] Garćıa-Palacios J., Samart́ın A., Melis M. (2012). Analysis of the railway track as a spatially
periodic structure. Proc. of the Institution of Mechanical Engineers, Part F: Journal of Rail
and Rapid Transit. 226(2), pp.113-123.

[21] Wang T., Sheng M.P., Qin Q.-H. (2016). Multi-flexural band gaps in an Euler–Bernoulli beam
with lateral local resonators, Physics Letters A, Vol. 380(4), pp. 525-529.

[22] Xiang H.J., Shi Z.-F. (2009). Analysis of flexural vibration band gaps in periodic beams using
differential quadrature method, Computers and Structures, Vol. 87(23–24), pp. 1559-1566.

[23] Yu D., Wen J., Shen H., Xiao Y., Wen X. (2012). Propagation of flexural wave in periodic
beam on elastic foundations, Physics Letters A, Vol.376(4), pp. 626-630.

[24] Chen J., Chao I., Chen T. (2022). Bandgaps for flexural waves in infinite beams and plates
with a periodic array of resonators, Journal of Mechanics, Vol 38, pp. 376–389.

[25] Kobayashi, F., Biwa, S. and Ohno, N. (2004). Wave transmission characteristics in periodic me-
dia of finite length: multilayers and fiber arrays. International journal of solids and structures,
41(26), pp.7361-7375.

[26] Chen Z., Y. Yang, Z Lu, Y Luo, (2013). Broadband characteristics of vibration energy har-
vesting using one-dimensional phononic piezoelectric cantilever beams. Physica B: Condensed
Matter 410, pp. 5-12.

[27] Ma, T. X., Fan, Q. S., Zhang, C., Wang, Y. S. (2022). Flexural wave energy harvesting by the
topological interface state of a phononic crystal beam. Extreme Mechanics Letters, 50, 101578.
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