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Abstract

An approximate analytical technique is developed for bounding the first-
passage probability of lightly damped nonlinear and hysteretic oscillators
endowed with fractional derivative elements and subjected to imprecise sta-
tionary Gaussian loads. In particular, the statistical linearization and stochas-
tic averaging methodologies are integrated with an operator norm-based
approach to formulate a numerically efficient proxy for the first-passage
probability. This proxy is employed to determine the realizations of the
interval-valued parameters of the excitation model that yield the extrema of
the failure probability function. Ultimately, each failure probability bound
is determined in a fully decoupled manner by solving a standard optimiza-
tion problem followed by a single evaluation of the first-passage probability.
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The proposed approximate technique can be construed as an extension of
a recently developed operator norm scheme to account for oscillators with
fractional derivative elements. In addition, it can readily treat a wide range
of nonlinear and hysteretic behaviors. To illustrate the applicability and ef-
fectiveness of the proposed technique, a hardening Duffing and a bilinear
hysteretic nonlinear oscillators with fractional derivative elements subject to
imprecise stationary Gaussian loads are considered as numerical examples.

Keywords: Uncertainty quantification, First-passage probability, Imprecise
probabilities, Fractional derivative, Stochastic averaging, Statistical lineariza-
tion

1 Introduction

Stochastic excitation models furnish a versatile probabilistic tool to assess the ef-
fect of uncertain dynamic loads on structural systems [1–4], where Gaussian pro-
cesses have been employed in numerous engineering applications [5–7]. In this
setting, the first-passage probability [8] constitutes a suitable performance mea-
sure for structural dynamical systems under stochastic excitation whose behavior
can be classified as acceptable (safe) or unacceptable (failed). From a practi-
cal perspective, however, a crisp definition of the corresponding excitation model
parameters remains challenging due to, for instance, lack of knowledge, scarce
or noisy data, or conflicting evidence [9]. Thus, evaluating the effect of these
parametric uncertainties on the first-passage probability is pivotal for reliability
assessment purposes.

In light of this, employing interval-valued excitation model parameters repre-
sents a standard approach for developing uncertainty quantification frameworks
[10]. Hence, the stochastic response process becomes interval-valued, and there-
fore the corresponding failure probability also becomes an interval variable [11].
Bounding the latter can be computationally demanding even for small-scale linear
systems, since reliability assessment must be performed for different realizations
of the interval model parameters [12]. To address this issue, several approaches
have been proposed to bound first-passage probabilities (e.g., [13–16]). In the
context of linear structural systems under Gaussian excitation, the operator norm-
based decoupling framework proposed in [17, 18] allows estimating the failure
probability bounds in a fully decoupled manner with the solution of two standard
optimization problems, followed by two reliability analyses. Such an approach
has been extended recently in [19] to account for nonlinear systems by resorting
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to the statistical linearization method [20].
Further, fractional calculus has become the focal point of research for the ef-

ficient modeling of diverse systems [21]. In terms of engineering applications, it
has been extensively used to construct, for instance, accurate models for captur-
ing the viscoelastic behavior of materials [22, 23], or for describing the impedance
of electrical systems [24]. In this regard, several approaches with different advan-
tages and limitations have been developed to assess the stochastic response of sys-
tems endowed with fractional derivative elements (e.g., [25–29]). Nevertheless,
a persisting challenge in the field of stochastic dynamics relates to determining
the first-passage probability of nonlinear single-degree-of-freedom (SDOF) sys-
tems with fractional derivative elements; see, indicatively, [30–34]. To this end,
methods such as stochastic averaging [35, 36] and statistical linearization [20, 37]
have been proven as rather efficient and versatile tools. Their extensive use over
the last decades relates to their capacity to treat systems exhibiting a wide range
of nonlinear and hysteretic behaviors under diverse types of stochastic excitation
(e.g., [38–40]).

In this paper, an analytical approximate technique is proposed for bounding
the first-passage probability of nonlinear oscillators with fractional derivative ele-
ments and subject to stationary Gaussian loads, in which the corresponding excita-
tion model parameters are interval-valued. Specifically, the statistical linearization
and stochastic averaging methodologies are combined with the operator norm-
based framework proposed in [18] to develop a numerically efficient proxy for the
first-passage probability. The parameter values that yield the minimum and max-
imum of the proxy function are used to determine the lower and upper bounds,
respectively, of the first-passage probability. Hence, the repeated evaluation of
the failure probability is circumvented, and the sought bounds can be estimated
in a fully decoupled manner. The proposed technique can be construed as an
extension of the operator norm-based linearization scheme developed in [19] to
account for systems with fractional derivative elements. Its advantage relates to
the fact that it can readily treat diverse nonlinear and hysteretic behaviors while
exhibiting relatively low computational cost. Two numerical examples are used
to assess the efficacy of the technique. Namely, a hardening Duffing and a bi-
linear hysteretic nonlinear oscillators with fractional derivative elements subject
to imprecise Gaussian loading are considered, while comparisons with reference
values computed by a direct double-loop implementation are used to validate the
obtained results.
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2 Problem description

2.1 Nonlinear oscillator with fractional derivative elements

The governing equation of motion of a class of stochastically excited nonlinear
oscillators endowed with fractional derivative elements is given by

ẍ(t) + βDα
0,tx(t) + g(x, ẋ) = q(t), (1)

where x denotes the response displacement and a dot over a variable accounts for
time differentiation. Further, β is a constant damping coefficient, g(x, ẋ) is an ar-
bitrary nonlinear function that can account also for hysteretic response behaviors,
and q(t) represents the system excitation modeled as a zero-mean stationary Gaus-
sian process described by the power spectrum Sqq(ω). Finally, Dα

0,t(·) denotes the
Caputo fractional derivative operator of order α defined as [21]

Dα
0,tx(t) =

1

Γ(1− α)

∫ t

0

ẋ(τ)

(t− τ)α
dτ, (2)

where 0 < α < 1 and Γ(·) denotes the Gamma function.

2.2 Interval-valued first-passage probability

Choosing appropriate model parameter values in Eq. (1) is usually associated with
considerable uncertainty levels due to, for instance, lack of knowledge or conflict-
ing evidence [9]. To address this issue, it is often preferred to represent these
parameters using the so-called non-traditional models for uncertainty quantifica-
tion [10]. In this regard, assume that a set of parameters θ ∈ Rnθ associated
with the excitation model are represented as interval variables. That is, they are
bounded by the hyper-rectangle

Θ =
{
θ ∈ Rnθ : θLi ≤ θi ≤ θUi , i = 1, 2, . . . , nθ

}
, (3)

where θLi and θUi denote, respectively, the lower and upper bounds between which
the true value for the i-th parameter is expected to lie. Note that, in this set-
ting, the power spectrum of the excitation process satisfies Sqq(ω) = Sqq(ω,θ).
Hence, Eq. (1) involves both random and interval variables, and thus, the dynamic
response becomes an interval stochastic process [10]. This must be properly ac-
counted for to assess the performance of the corresponding oscillator.
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The first-passage probability [8], denoted as PF , constitutes a suitable measure
of performance when the structural behavior can be qualified as acceptable or
unacceptable. Specifically, the corresponding first-passage event is defined as

F = max
t∈[0,T ]

max
ℓ=1,2,...,nh

∣∣∣∣hℓ(t)h∗ℓ

∣∣∣∣ > 1, (4)

where T denotes the simulation period and hℓ(t), ℓ = 1, 2, . . . , nh, are the re-
sponses of interest with corresponding thresholds h∗ℓ > 0. Thus, failure occurs
when the magnitude of any response of interest obtained by solving Eq. (1) ex-
ceeds its maximum allowable level at any instant of the simulation period. In this
context, the first-passage probability can be explicitly defined as

PF = P (hℓ(t) > h∗ℓ for some t ∈ [0, T ] and some ℓ ∈ {1, 2, . . . , nh}) , (5)

where P (·) denotes the probability of the event inside the parentheses. Since the
interval-valued parameters θ affect the characteristics of the stochastic excitation,
then PF (θ) = P (F |θ). Moreover, the first-passage probability satisfies [10]

PF (θ) ∈
[
PL
F , P

U
F

]
=

[
min
θ∈Θ

PF (θ),max
θ∈Θ

PF (θ)

]
, (6)

where PL
F and PU

F denote the lower and upper bounds of PF (θ), respectively.
Therefore, the evaluation of the bounds for PF (θ) involves, in principle, the solu-
tion of two optimization problems with the failure probability as objective func-
tion. A straightforward solution treatment leads to the so-called double-loop ap-
proaches, where reliability analysis is performed in the inner loop and the outer
loop comprises an optimization procedure (with respect to the parameters θ) [12].

3 Proposed linearization framework to bound first-passage prob-
abilities

While the bounds on the first-passage probability in Eq. (6) provide valuable in-
formation for decision-making processes, their direct determination using double-
loop approaches often proves computationally challenging [11]. To address this
issue, a novel approach has been proposed in [19] by combining the statistical
linearization method [20] with an operator norm-based solution treatment [17]. In
this setting, the computationally demanding problem of bounding the first-passage
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failure probability of a class of nonlinear structural systems under Gaussian ex-
citation has been simplified significantly. Specifically, each bound in Eq. (6) can
be computed by considering a single deterministic optimization problem in con-
junction with a single reliability analysis. Building on some of the previous ideas,
an approximate analytical technique based on the integration of the statistical lin-
earization and stochastic averaging methodologies with an operator norm-based
decoupling framework is proposed next to account for nonlinear oscillators with
fractional derivative elements.

3.1 Equivalent linear oscillator determination

For a given realization of the interval parameters θ, and considering that the oscil-
lator in Eq. (1) is lightly damped, its response follows a pseudo-harmonic behavior
described by [20, 41]

x(t) = A(t) cos(ω(A)t+ ψ(t)) (7)

and
ẋ(t) = −ω(A)A(t) sin(ω(A)t+ ψ(t)). (8)

In Eqs. (7) and (8), ω(A) denotes the amplitude-dependent natural frequency,
and A(t) and ψ(t) correspond to the response amplitude and phase, respectively.
These are considered as slowly-varying with respect to time processes, and thus,
constant over one cycle of oscillation [20]. Therefore, assuming that A(t) = A
and ψ(t) = ψ, and manipulating Eqs. (7) and (8) leads to

A2 = x2(t) +

(
ẋ(t)

ω(A)

)2

. (9)

Next, Eq. (1) is written for simplicity as [32]

ẍ(t) + β0ẋ(t) + g0(x, ẋ) = q(t), (10)

where
g0(x, ẋ) = βDα

0,tx+ g(x, ẋ)− β0ẋ. (11)

In Eq. (11), β0 = 2ζ0ω0, where ω0 and ζ0 denote the natural frequency and damp-
ing ratio of the corresponding linear oscillator. Further, applying a statistical lin-
earization treatment, Eq. (10) is approximated by the equivalent linear oscillator
[20, 41, 42]

ẍ(t) + (β0 + β(A)) ẋ(t) + ω2(A)x(t) = q(t), (12)
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where β(A) and ω2(A) denote the amplitude-dependent equivalent elements of the
linearized system. For the determination of the equivalent elements, the difference
between Eqs. (10) and (12) is formulated and minimized in the mean-square sense
over one cycle of oscillation [20]. This leads to

β(A) =
ω2
0

Aω(A)
F1(A) +

β

ω1−α(A)
sin
(απ

2

)
− β0 (13)

and

ω2(A) =
ω2
0

A
F2(A) + βωα(A) cos

(απ
2

)
, (14)

with

F1(A) = −
1

π

∫ 2π

0

g(A cosϕ,−Aω(A) sinϕ) sinϕdϕ, (15)

F2(A) =
1

π

∫ 2π

0

g(A cosϕ,−Aω(A) sinϕ) cosϕdϕ (16)

and ϕ = ω(A)t+ψ. The interested reader is directed to [32, 38, 41] for a detailed
derivation of Eqs. (10)-(16).

The amplitude-dependent equivalent elements in Eqs. (13) and (14) are then
approximated by corresponding time-dependent equivalent elements. Specifi-
cally, taking expectations on Eqs. (13) and (14), the equivalent elements are given
by [20]

βeq =

∫ ∞

0

β(A)p(A)dA (17)

and
ω2
eq =

∫ ∞

0

ω2(A)p(A)dA, (18)

where p(A) denotes the response amplitude probability density function (PDF).
In this context, the equivalent linear system in Eq. (12) becomes

ẍ(t) + (β0 + βeq) ẋ(t) + ω2
eqx(t) = q(t). (19)

Clearly, the response amplitude PDF is required for the computation of βeq
and ω2

eq in Eqs. (17) and (18). Thus, following the standard stochastic averaging
method, the stochastic differential equation governing the slowly varying response
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amplitude process is constructed, and the associated Fokker-Planck equation is
formulated (e.g., [35])

∂p(A)

∂t
=− ∂

∂A

{(
−1

2
(β0 + βeq)A+

πSqq(ωeq)

2ω2
eqA

)
p(A)

}
+

1

4

∂

∂A

{
πSqq(ωeq)

ω2
eq

∂p(A)

∂A
+

∂

∂A

(
πSqq(ωeq)

ω2
eq

p(A)

)}
.

(20)

Notably, for the general case of linear systems subject to stationary excitation,
i.e., when ∂p(A)

∂t
= 0, a straightforward solution of Eq. (20) is readily available in

the form of a Rayleigh distribution (e.g., [43, 44]). This result has been recently
extended in [45] and a closed-form expression for the response amplitude PDF
p(A) corresponding to oscillators with fractional derivative elements has been
proposed. This has the form

p(A) =
sin
(
απ
2

)
A

ω1−α
0 σ2

exp

(
−
sin
(
απ
2

)
ω1−α
0

A2

2σ2

)
, (21)

where

σ2 =
πSqq(ωeq)

(β0 + βeq)ω2
eq

. (22)

In passing, it is noted that Eqs. (21) and (22) have been further generalized to
account for both standard oscillators and oscillators with fractional derivative el-
ements subject to non-stationary excitation; the interested reader is directed to
[27, 33, 40, 42, 44] for a relevant discussion.

3.2 Operator norm-based solution treatment

To exploit the linearity of the equivalent oscillator given by Eq. (19), an operator
norm-based solution treatment [17, 19] is implemented for determining the failure
probability bounds in Eq. (6). Without loss of generality, the zero-mean discrete
Gaussian load in Eq. (19) is modeled by adopting the Karhunen-Loève expansion
[46]. Specifically,

q(tk,θ, ξ) = ψ
T
k (θ)ξ, (23)

k = 1, 2, . . . , nT , represents the loading at time tk = (k−1)∆t, where ∆t denotes
the time step, nT = T/∆t + 1 is the number of time instants, and ξ ∈ Rnξ is a
standard Gaussian random variable vector. Further, ψk(θ) corresponds to the k-th
column of the matrix Ψ(θ) = Λ1/2(θ)ΥT(θ), where Λ(θ) denotes the diagonal
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nξ × nξ matrix comprising the nξ largest eigenvalues of the stochastic load co-
variance matrix Σ(θ), and Υ(θ) denotes the nT ×nξ matrix of the corresponding
eigenvectors, i.e., Σ(θ)Υ(θ) = Υ(θ)Λ(θ).

Next, assume that the vector containing the nT discrete values of the ℓ-th nor-
malized response of interest is defined as

h̄ℓ(θ, ξ) =
1

h∗ℓ

[
hℓ(t1,θ, ξ) · · · hℓ(tnT

,θ, ξ)
]T
, (24)

for ℓ = 1, 2, . . . , nh. Further, defining the vector

h̄(θ, ξ) =
[
h̄T
1 (θ, ξ) . . . h̄T

nh
(θ, ξ)

]T
, (25)

and since the equivalent oscillator in Eq. (19) enables a linear relationship be-
tween the system response and the excitation, a linear relationship between the
responses of interest at discrete time instants and the basic random variables is
also established as [47, 48]

h̄(θ, ξ) = M(θ)ξ. (26)

In Eq. (26), M(θ) ∈ RnTnh×nξ is obtained in terms of the response thresholds,
the matrix Ψ(θ), and the adopted integration rule for the equation of motion.
The linear mapping M(θ) depends on the parameters θ since the latter affect the
stochastic excitation model. In this context, the induced (p1, p2)-norm of M(θ) is
given by

∥M(θ)∥p1,p2 = sup
ξ ̸=0

∥M(θ)ξ∥p1
∥ξ∥p2

= sup
ξ ̸=0

∥h̄(θ, ξ)∥p1
∥ξ∥p2

, (27)

where ∥·∥pi denotes the pi-norm of a vector (i = 1, 2). Following the presentation
in [17, 19], the values p1 = ∞ and p2 = 2 are adopted in the ensuing analysis.
Thus, it can be argued that the operator norm expression in Eq. (27) quantifies the
maximum amplification of the response magnitude, in terms of the maximum ab-
solute value of the normalized responses over time, with respect to the magnitude
of the input vector ξ, in terms of its Euclidean distance. This choice also enables
the analytical evaluation of the operator norm [49].

The key idea of the proposed framework is that the values of θ that yield the
minimum (maximum) amplification of the response magnitude will also yield the
lower (upper) bound for the failure probability [17]. In other words, the function
∥M(θ)∥p1,p2 is employed as a numerically efficient proxy for the failure prob-
ability function PF (θ). Hence, the values of θ that determine the extrema of
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∥M(θ)∥∞,2 are employed to determine the bounds of PF (θ) in Eq. (6). This
leads to [

PL
F , P

U
F

]
≈
[
PF

(
θ∗,L

)
, PF

(
θ∗,U

)]
, (28)

where
θ∗,L = argmin

θ∈Θ
∥M(θ)∥∞,2 (29)

and
θ∗,U = argmax

θ∈Θ
∥M(θ)∥∞,2 . (30)

Clearly, the solution of two deterministic optimization problems to derive the
parameter values that yield the extrema of the operator norm, followed by two
corresponding reliability analyses, are sufficient for estimating the failure proba-
bility bounds PL

F and PU
F in Eq. (28). In other words, the repeated evaluation of

the failure probability associated with the direct solution of Eq. (6) is bypassed by
virtue of the proposed framework.

3.3 Summary of the proposed approach

The herein proposed approach comprises the following key aspects to bound the
first-passage probability of nonlinear oscillators with fractional derivative ele-
ments. First, the statistical linearization and stochastic averaging methodologies
are combined to determine an equivalent linear system for any given realization
of the interval-valued model parameters. Based on this linearization an associ-
ated operator norm function is defined. The resulting mapping is employed as
a proxy function to estimate the parameter values that determine the bounds of
the first-passage probability via Eq. (28). Ultimately, the bounds in Eq. (6) are
approximated in a two-step process as follows:

1. Solve Eqs. (29) and (30) to determine the parameter values θ∗,L and θ∗,U

that yield the failure probability bounds. It is noted that the evaluation
of ∥M(θ)∥∞,2 at any given value of θ involves two main tasks, namely,
(i) finding an equivalent linear oscillator according to Section 3.1, and (ii)
computing the corresponding matrix M(θ) in Eq. (26). Since the function
∥M(θ)∥∞,2 is non-smooth, suitable search algorithms must be adopted for
the solution of the related optimization problems.

2. Estimate the failure probability bounds, that is, PL
F ≈ PF (θ

∗,L) and
PU
F ≈ PF (θ

∗,U). This is done by considering the nonlinear oscillator in
Eq. (1) in conjunction with any suitable reliability assessment method.
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The proposed approach encompasses some attractive features pertaining to its
practical implementation. First, the numerical cost of solving Eqs. (29) and (30)
is relatively low, since evaluating the corresponding objective function is sig-
nificantly less computationally intensive than estimating the corresponding first-
passage failure probability. In addition, by virtue of the proposed two-step imple-
mentation, failure probability bounds are computed in a fully decoupled manner.
That is, a single estimation of the failure probability by means of any suitable
reliability analysis method is sufficient to determine each bound in Eq. (28). Fi-
nally, the adoption of the statistical linearization and averaging methodologies
allows to treat diverse nonlinear and hysteretic response behaviors, while exhibit-
ing low computational cost. Overall, the developed framework can be regarded as
a versatile and computationally efficient alternative for bounding the first-passage
probability of a class of nonlinear oscillators endowed with fractional derivative
elements.

4 Numerical examples

In this section, two numerical examples are considered to assess the efficacy of
the proposed framework. Specifically, first-passage probability bounds are de-
termined for a hardening Duffing and a bilinear hysteretic nonlinear oscillators
endowed with fractional derivative elements. For both examples, the load q(t) in
Eq. (1) is modeled as a zero-mean Gaussian stochastic process characterized by
the Clough-Penzien spectrum [50]

Sqq(ω) =
ω4
(
ω4
g + (2ζgωgω)

2
)
S0[

(ω2
g − ω2)2 + (2ζgωgω)2

] [
(ω2

f − ω2)2 + (2ζfωfω)2
] , (31)

with S0 denoting the intensity of the excitation, ωg and ωf representing the natu-
ral circular frequencies of the filter, and ζg and ζf representing the corresponding
damping ratios. These parameters are modeled as interval variables in the sub-
sequent examples, with reference values given by Sref

0 = 0.50, ωref
g = 12.47,

ωref
f = 5.43, ζ ref

f = 0.80 and ζ ref
g = 0.68.

In all cases addressed herein, the first-passage failure event is defined in terms
of the displacement response x(t) as

F = max
t∈[0,T ]

|x(t)|
x∗

> 1, (32)

where T = 18 s is the reference period and x∗ is the maximum admissible dis-
placement level. Further, a time step of ∆t = 0.03 s is assumed. For illustration
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purposes, the entire set of eigenvalues of the covariance matrix is considered in
Eq. (23). Therefore, the discrete representation of the stochastic excitation in-
volves a total of nξ = 601 random variables for the examples in the ensuing
analysis. It is noted that alternative responses of interest, such as the oscillator ve-
locity or acceleration, can also be considered in the definition of the failure event
F in Eq. (32).

Following the presentation in Section 3, the implementation of the herein pro-
posed approach requires the solution of Eqs. (29) and (30). In particular, the
stochastic search technique presented in [51] is adopted to this end. The latter has
proved rather effective to address a class of optimization problems involving struc-
tural dynamical systems under stochastic excitation. Nevertheless, alternative op-
timization schemes can also be implemented to determine θ∗,L and θ∗,U . Further,
first-passage probabilities are evaluated using subset simulation [52, 53], a well-
established reliability analysis method. Specifically, failure probability estimates
are obtained by averaging the results of ten independent subset simulation runs
with 2000 samples per stage each. The number of independent runs and samples
per stage can be certainly reduced for practical implementation purposes. More-
over, alternative reliability analysis methods can also be implemented. Finally,
reference values for the failure probability bounds are obtained using a direct
double-loop approach that employs the stochastic optimization method in [51] to
find the extrema of PF (θ), subset simulation [52] for estimating the first-passage
probability corresponding to the oscillator in Eq. (1), and the customary strategy
of employing the same sequence of pseudorandom numbers to evaluate the failure
probability at different realizations of the interval-valued parameters [54].

4.1 Duffing nonlinear oscillator with fractional derivative elements

In this section, a hardening Duffing nonlinear oscillator with fractional derivative
elements is considered. Specifically, the nonlinear function in Eq. (1) is defined
as

g(x, ẋ) = ω2
0x(1 + εx2), (33)

where ε > 0 is a constant controlling the magnitude of the nonlinearity. Next,
following the presentation in Section 3, the equivalent linear oscillator in Eq. (19)
is determined for any given value of the interval parameter vector θ. Taking into
account the nonlinear function given by Eq. (33), the quantities F1(A) and F2(A)
are computed from Eqs. (15) and (16), respectively. This, in turn, allows deter-
mining the amplitude-dependent equivalent element β(A) and ω2(A) in Eqs. (13)
and (14). These expressions are then substituted into Eqs. (17) and (18) which, in
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conjunction with the stationary response amplitude PDF given by Eq. (21), lead
to

βeq = −β0 +
β sin2

(
απ
2

)
ω1−α
0 σ2

∫ ∞

0

A

ω1−α(A)
exp

(
−
sin
(
απ
2

)
ω1−α
0

A2

2σ2

)
dA (34)

and

ω2
eq = ω2

0 +
β sin

(
απ
2

)
cos
(
απ
2

)
ω1−α
0 σ2

∫ ∞

0

Aωα(A) exp

(
−
sin
(
απ
2

)
ω1−α
0

A2

2σ2

)
dA

+
3εω1+α

0 sin
(
απ
2

)
4σ2

∫ ∞

0

A3 exp

(
−
sin
(
απ
2

)
ω1−α
0

A2

2σ2

)
dA,

(35)

respectively. Clearly, Eqs. (34), (35) and Eq. (22) define a coupled system of
nonlinear algebraic equations to be solved for determining the equivalent elements
βeq and ω2

eq. This is done by resorting to the simple iterative scheme described in
Appendix A. Nevertheless, alternative solution strategies can also be adopted.

In the ensuing analysis, the system parameter values in Eqs. (1) and (33) are
α = 0.5, ω0 = 10, β = 2ζ0ω

2−α
0 = 6.32 with ζ0 = 0.1, and ε = 2. In addition, the

response threshold in Eq. (32) is x∗ = 0.37.

4.1.1 Case I: Clough-Penzien spectrum with two interval-valued parame-
ters

First, for demonstration purposes, the following values are considered for the pa-
rameters of the Clough-Penzien spectrum in Eq. (31): S0 = Sref

0 θ1, ωf = ωref
f θ2,

ζf = ζ ref
f θ2, ωg = ωref

g and ζg = ζ ref
g , where θ1 and θ2 are interval variables such

that 0.8 ≤ θi ≤ 1.2, i = 1, 2. Thus, it is assumed that ωg and ζg are equal to
their reference values, whereas the parameters S0, ωf and ζf are bounded between
80% and 120% of their corresponding reference values.

The key idea of the herein proposed framework is to employ the operator norm
∥M(θ)∥∞,2 defined in Eq. (27), which is associated with the equivalent linear
oscillator corresponding to the excitation model defined by θ, as a numerically
efficient proxy for the failure probability function. That is, PF (θ) is evaluated at
the parameter values that minimize (maximize) ∥M(θ)∥∞,2 in order to obtain the
lower (upper) bound of the first-passage probability. In this regard, Fig. 1 shows
the contours of PF (θ) and ∥M(θ)∥∞,2, which have been generated by evaluating
both functions at different values of θ distributed over [0.8, 1.2]2. The resulting
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curves for the failure probability function, which are fairly rugged due to the in-
herent variability of sampling-based estimates, have been smoothed to provide a
more clear representation of the function behavior. It is seen that an increase in θ1
can be compensated by a decrease in θ2 to maintain the same failure probability
level, and a similar behavior holds for the operator norm function. Hence, in-
creasing the intensity of the excitation S0 can be compensated by also increasing
the natural frequency ωf and damping ratio ζf of the associated filter to achieve
a similar reliability level. Furthermore, Fig. 1 shows that PF (θ) and ∥M(θ)∥∞,2

are reduced (increased) for lower (higher) values of θ1 and higher (lower) values
of θ2. Hence, the failure probability, which quantifies the plausibility of unaccept-
able structural behavior, and the operator norm, which quantifies the amplification
of the vector of basic random variables ξ, seem to be reduced for weaker and more
damped excitations. Correspondingly, stronger and less damped excitations lead
to higher values of these functions. Moreover, Fig. 1 also indicates that PF (θ) and
∥M(θ)∥∞,2 are minimized for θ1 = 0.8 and θ2 = 1.2, while their corresponding
maxima are obtained for θ1 = 1.2 and θ2 = 0.8. Thus, both functions achieve their
extrema at the same values of θ. These aspects highlight the validity of employing
the operator norm as a proxy for the failure probability in this example, since both
functions present a similar behavior with respect to the interval parameters θ.

(a) (b)

Fig. 1: Contours of the objective functions of a Duffing nonlinear oscillator (ε =
2) with fractional derivative elements (α = 0.5): (a) failure probability function
PF (θ), (b) operator norm function ∥M(θθθ)∥∞,2.
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Next, the herein proposed approach is employed to bound the first-passage
probability. In this regard, the optimization problems stated in Eqs. (29) and (30)
are first solved to determine θ∗,L and θ∗,U , respectively. These parameter values,
which yield the extrema of the operator norm function ∥M(θ)∥∞,2, are then as-
sumed to determine the extrema of the first-passage probability [17, 19]. Finally,
the failure probability function is evaluated at θ∗,L and θ∗,U to estimate the lower
and upper bounds of the failure probability according to Eq. (28).

The parameter values obtained by the proposed approach are shown in Ta-
ble 1, where reference results derived by a standard double-loop implementation
are also included for comparison. The corresponding values of the operator norm
function, ∥M(θ)∥∞,2, and of the failure probability function, PF (θ), are also
shown in Table 1. It is seen that the minima of the failure probability and op-
erator norm functions are achieved by minimizing θ1 and maximizing θ2, while
the corresponding maxima are obtained by maximizing θ1 and minimizing θ2.
These results agree with the contours presented in Fig. 1. Moreover, it is noted
that the parameter values determined by applying the proposed method are very
similar to the corresponding reference results. In fact, due to the inherent variabil-
ity of sampling-based reliability estimates, the rather small differences observed
between the bounds identified by the proposed method and their reference values
can be neglected in practice. This highlights the validity of the proposed decou-
pling strategy, in which a proxy for the failure probability function is developed
by integrating the statistical linearization and stochastic averaging methodologies
with an operator norm-based solution treatment.

Table 1: Failure probability bounds of a Duffing nonlinear oscillator (ε = 2) with
fractional derivative elements (α = 0.5) for nθ = 2; comparison with reference
results obtained by a standard double-loop implementation.

Proposed approach Reference results

PL
F PU

F PL
F PU

F

θ1 0.800 1.200 0.800 1.200
θ2 1.200 0.800 1.200 0.800

PF (θ) 6.54× 10−3 4.92× 10−1 6.27× 10−3 4.94× 10−1

∥M(θ)∥∞,2 2.08× 10−2 4.40× 10−2 2.08× 10−2 4.40× 10−2
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4.1.2 Case II: Clough-Penzien spectrum with five interval-valued parame-
ters

The case of all user-defined parameters in Eq. (31) characterized as interval-valued
and bounded between 80% and 120% of their reference values is considered next.
Thus, the excitation model parameters are given by S0 = Sref

0 θ1, ωg = ωref
g θ2,

ωf = ωref
f θ3, ζg = ζ ref

g θ4, ζf = ζ ref
f θ5, where θi ∈ [0.8, 1.2], i = 1, 2, . . . , 5, are

interval variables. In passing, it is noted that the dimension of the vector θ ∈ Θ
is higher than the corresponding vector in Section 4.1.1. Therefore, this case can
be interpreted as the characterization of a higher degree of uncertainty in terms of
the excitation model parameter values.

To study the relationship between the failure probability function and the op-
erator norm function, Fig. 2 presents a scatter plot of PF (θ) and ∥M(θ)∥∞,2

evaluated at different values of θ. Specifically, 5000 realizations of θ ∈ Θ ob-
tained by means of Latin Hypercube Sampling [55] are considered to generate
Fig. 2. Despite the fact that the functional relationship between both quantities
is not injective, the results indicate that there is a clear trend between them; that
is, higher (lower) values of ∥M(θ)∥∞,2 correspond to higher (lower) values of
PF (θ). Moreover, the average time required to estimate PF (θ) is roughly 16
times longer than that required to evaluate ∥M(θ)∥∞,2 for the different realiza-
tions of θ. The previous outcomes highlight the suitability of the operator norm
function as a numerically efficient proxy for the failure probability function in the
context of this example.

The results obtained by the proposed approach are presented in Table 2, where
reference values obtained by a direct double-loop implementation are also in-
cluded for comparison. It is readily seen that the herein developed framework for
determining the failure probability bounds exhibits a high accuracy degree. No-
tably, the decoupling strategy presented in Section 3.2 circumvents the repeated
evaluation of PF (θ) at different realizations of θ, thereby requiring only two relia-
bility analyses to estimate such bounds. Furthermore, the model parameter values
identified by the developed framework are almost identical to the corresponding
reference values. In this regard, and following a similar pattern to the results
presented in Table 1, increasing the excitation intensity and reducing the damp-
ing levels in Eq. (31) leads to higher values of PF (θ), whereas weaker and more
damped excitations tend to reduce the failure probability level. In addition, the
failure probability bounds reported in Table 2 are wider than those determined in
Table 1. This outcome is reasonable from a reliability viewpoint, since the dimen-
sion of the vector θ considered in Case II is larger than in Case I. In other words,
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Fig. 2: Failure probability PF (θ) vs. operator norm ∥M(θθθ)∥∞,2 of a Duffing non-
linear oscillator (ε = 2) with fractional derivative elements (α = 0.5) evaluated at
different realizations of θ.

Case I can be regarded as a subset of Case II, reinforcing the fact that the prob-
ability bounds are wider in the latter case. As anticipated, the herein proposed
framework can effectively bound the first-passage probability for the example un-
der consideration.

Table 2: Failure probability bounds of a Duffing nonlinear oscillator (ε = 2) with
fractional derivative elements (α = 0.5) for nθ = 5; comparison with reference
results obtained by a standard double-loop implementation.

Proposed approach Reference results

PL
F PU

F PL
F PU

F

θ1 0.801 1.199 0.801 1.199
θ2 0.800 1.186 0.801 1.139
θ3 1.195 1.169 1.200 1.159
θ4 1.193 0.802 1.196 0.800
θ5 1.200 0.800 1.197 0.802

PF (θ) 1.32× 10−3 6.81× 10−1 1.20× 10−3 6.94× 10−1

∥M(θ)∥∞,2 1.75× 10−2 5.30× 10−2 1.76× 10−2 5.31× 10−2
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4.2 Bilinear hysteretic oscillator with fractional derivative elements

Next, a bilinear hysteretic oscillator with fractional derivative elements is consid-
ered. The governing equation of motion is given by Eq. (1) with [20, 56]

g(x, ẋ) = γω2
0x(t) + (1− γ)ω2

0xyz. (36)

In Eq. (36), γ denotes the post- to pre-yield stiffness ratio, xy is the critical value
at which yielding occurs, and z is a state variable satisfying

xyż = ẋ [1−H(ẋ)H(z − 1)−H(−ẋ)H(−z − 1)] , (37)

where H(·) denotes the Heaviside step function. Considering Eq. (36), Eqs. (15)
and (16) become

F1(A) =

{ 4xy
π

(
1− xy

A

)
, A > xy

0, A ≤ xy
(38)

and

F2(A) =


A

π

(
Λ− 1

2
sin(2Λ)

)
, A > xy

A, A ≤ xy

, (39)

respectively, with Λ = arccos
(
1− 2xy

A

)
. Then, considering Eqs. (38) and (39) in

conjunction with Eq. (21), Eqs. (17) and (18) yield

βeq =− β0 +
β sin2

(
απ
2

)
ω1−α
0 σ2

∫ ∞

0

A

ω1−α(A)
exp

(
−
sin
(
απ
2

)
ω1−α
0

A2

2σ2

)
dA

+
4xyω

2
0(1− γ) sin

(
απ
2

)
πω1−α

0 σ2

∫ ∞

xy

1− xy

A

ω(A)
exp

(
−
sin
(
απ
2

)
ω1−α
0

A2

2σ2

)
dA

(40)

and

ω2
eq =ω

2
0 − (1− γ)ω2

0

{
exp

(
−
x2y sin

(
απ
2

)
2σ2ω1−α

0

)

−
sin
(
απ
2

)
πω1−α

0 σ2

∫ ∞

xy

(
Λ− 1

2
sin(2Λ)

)
A exp

(
−
sin
(
απ
2

)
ω1−α
0

A2

2σ2

)
dA

}

+
β sin

(
απ
2

)
cos
(
απ
2

)
ω1−α
0 σ2

∫ ∞

0

ωα(A)A exp

(
−
sin
(
απ
2

)
ω1−α
0

A2

2σ2

)
dA,

(41)
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respectively. Similar to the case examined in Section 4.1, Eqs. (40), (41) and
(22) define a coupled system of nonlinear algebraic equations to be solved for
determining the equivalent elements βeq and ω2

eq. To this end, the iterative scheme
described in Appendix A is applied.

The values α = 0.5, ω0 = 10 and β = 2ζ0ω
2−α
0 = 6.32 with ζ0 = 0.1 are used

for the system parameters in Eq. (1), while in Eq. (36), γ = 0.2 and xy = 0.016.
Finally, the response threshold in Eq. (32) is x∗ = 0.29.

4.2.1 Determination of first-passage failure probability bounds

It is assumed that all parameters of the stochastic excitation model in Eq. (31) are
interval-valued. They are given by S0 = Sref

0 θ1, ωg = ωref
g θ2,

ωf = ωref
f θ3, ζg = ζ ref

g θ4 and ζf = ζ ref
f θ5, where θi ∈ [0.8, 1.2], i = 1, 2, . . . , 5, are

interval variables. That is, each parameter of the excitation model is assumed to
be bounded between 80% and 120% of its corresponding reference value.

Subsequently, the first-passage failure probability of the bilinear oscillator de-
fined by Eqs. (1), (36) and (37) is bounded by employing the framework described
in Section 3 in conjunction with Eqs. (40) and (41). Table 3 reports the results ob-
tained by the proposed approach, which are compared against reference values
determined by a direct double-loop implementation. It is seen that the failure
probability bounds obtained by the proposed method are quite similar to their ref-
erence values. Moreover, given the inherent variability associated with sampling-
based reliability estimates, the bounds estimated by both methods can be regarded
as equivalent in practice. In addition, it is seen that the model parameter val-
ues that yield the extrema of PF (θ), which are explicitly identified by the direct
double-loop approach under consideration, are very similar to those that deter-
mine the extrema of ∥M(θ)∥∞,2, which are explicitly obtained by means of the
herein developed framework. Hence, the regions of the parameter space Θ that
yield the minimum and maximum values of the operator norm function also seem
to provide the minimum and maximum values of the failure probability function,
respectively. In this regard, it is noted that the estimation of the first-passage
probability bounds by the proposed decoupling approach requires, according to
Eq. (28), only two evaluations of the failure probability function. As already
pointed out, this feature can yield significant computational savings since it cir-
cumvents the repeated evaluation of PF (θ) at different realizations of θ.
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Table 3: Failure probability bounds of a bilinear hysteretic oscillator (γ = 0.2,
xy = 0.016) with fractional derivative elements (α = 0.5) for nθ = 5; comparison
with reference results obtained by a standard double-loop implementation.

Proposed approach Reference results

PL
F PU

F PL
F PU

F

θ1 0.800 1.200 0.803 1.199
θ2 0.802 0.800 0.810 0.810
θ3 1.200 0.800 1.198 0.801
θ4 1.200 0.800 1.199 0.809
θ5 1.199 0.800 1.196 0.802

PF (θ) 2.25× 10−3 9.82× 10−1 2.00× 10−3 9.83× 10−1

∥M(θ)∥∞,2 2.11× 10−2 1.61× 10−1 2.15× 10−2 1.61× 10−1

4.2.2 Effect of the fractional derivative order on the first-passage probabil-
ity bounds

Next, the proposed framework is employed to investigate how the fractional order
α affects the first-passage probability bounds. Firstly, the relationship between
the operator norm and the failure probability functions is shown in Fig. 3, where
scatter plots of ∥M(θ)∥∞,2 vs. PF (θ) are depicted for various values of the frac-
tional order; namely, for α = 0.25, α = 0.5 and α = 0.75. For each plot, 5000
realizations of θ ∈ Θ were generated with Latin Hypercube Sampling [55]. Note,
in passing, that the damping coefficient in Eq. (1) is given by β = 2ζ0ω

2−α
0 with

ζ0 = 0.1. Figure 3 indicates that, despite the non-injective relationship between
PF (θ) and ∥M(θ)∥∞,2, a positive trend between them exists for the considered
values of the fractional order. Hence, it is argued that the values of θ that mini-
mize (maximize) the operator norm function also minimize (maximize) the fail-
ure probability function. This also agrees with the results presented in Table 3
and supports the adoption of ∥M(θ)∥∞,2 as a numerically efficient proxy of the
failure probability function for the cases under consideration.

Table 4 shows the failure probability bounds obtained by the proposed ap-
proach for different values of the fractional order α. It is readily seen that in-
creasing the value of α results in decreasing the failure probability levels for the
example under consideration. Such behavior is expected from a structural dynam-
ics viewpoint since, in general, larger values of the fractional order are associated
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(a) (b) (c)

Fig. 3: Failure probability PF (θ) vs. operator norm ∥M(θθθ)∥∞,2 of a bilinear
hysteretic oscillator (γ = 0.2, xy = 0.016) with fractional derivative elements
evaluated at different realizations of θ: (a) fractional order α = 0.25, (b) fractional
order α = 0.5, (c) fractional order α = 0.75.

with greater dissipation levels. This, in turn, may result in a reduction of the mag-
nitude of the response displacement, and thus, shift the probability mass towards
smaller response levels. In particular, the lower bound for the failure probability
appears more sensitive to the value of α than the corresponding upper bound. For
instance, increasing the fractional order from α = 0.25 to α = 0.75 decreases
the value of PU

F by approximately 3%, whereas the value of PL
F decreases by

(roughly) one order of magnitude. Hence, the value of the fractional order can
have a significant impact on the reliability of the considered bilinear hysteretic
oscillator with fractional derivative elements. Finally, validation calculations in-
dicate that the bounds shown in Table 4 agree satisfactorily well with reference
values obtained from a direct double-loop implementation. These results, as well
as the results presented in Tables 2 and 3, highlight the applicability of the herein
developed framework, in the sense that it represents a versatile and computation-
ally efficient alternative for bounding the failure probability of a class of nonlinear
oscillators endowed with fractional derivative elements and subject to stationary
Gaussian excitation.

5 Concluding remarks

In this paper, an approximate analytical technique has been proposed for bounding
the first-passage probability of lightly damped nonlinear and hysteretic oscillators
endowed with fractional derivative elements, and subjected to imprecise stationary

21



Table 4: Failure probability bounds of a bilinear hysteretic oscillator (γ = 0.2,
xy = 0.016) with fractional derivative elements for different values of the frac-
tional order α.

Fractional order (α) Lower bound (PL
F ) Upper bound (PU

F )

0.25 1.81× 10−2 9.99× 10−1

0.50 2.25× 10−3 9.82× 10−1

0.75 7.16× 10−4 9.66× 10−1

Gaussian loads. Specifically, the statistical linearization and stochastic averaging
methodologies have been integrated with an operator norm-based solution treat-
ment, and a numerically efficient proxy function for the first-passage probability
has been established. Then, the first-passage probability function has been eval-
uated at the parameter values that determine the minimum and maximum of the
proposed proxy to approximate the lower and upper bounds of the first-passage
probability. A salient feature of the herein developed framework is that each
first-passage probability bound is computed in a fully decoupled manner. That
is, the repeated evaluation of the failure probability function at different realiza-
tions of the interval-valued parameters is effectively circumvented by virtue of the
adopted solution treatment. Moreover, it can readily treat a wide range of nonlin-
ear and hysteretic behaviors and can be extended, in principle, to account for non-
stationary excitation loads. Overall, the proposed framework can be construed
as an extension of a recently developed linearization-based decoupling scheme to
account for systems with fractional derivative elements. A hardening Duffing and
a bilinear hysteretic nonlinear oscillators with fractional derivative elements sub-
ject to imprecise Gaussian loads have been considered in the numerical examples
section to assess the efficacy of the proposed framework. Based on comparisons
with reference values, it has been shown that the technique represents a versatile
and computationally efficient alternative to bound the first-passage probability of
a class of nonlinear oscillators subject to stationary Gaussian loads.
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Appendix A. Iterative procedure for determining the equivalent
linear oscillator

The solution of Eqs. (17), (18) and (22) for a given value of θ, which yields the
equivalent linear elements βeq and ωeq in Eq. (19), is carried out by means of the
following iterative procedure:

1. Initialize σ2
old with a small positive value. In this contribution, σ2

old ← 10−4

is considered.

2. Substitute σ2
old into Eq. (21) to get the response amplitude PDF p(A).

3. Obtain the equivalent linear elements βeq and ωeq by Eqs. (17) and (18),
respectively.

4. Use the values of βeq and ωeq obtained in step 3 to evaluate the variance
σ2

cand according to Eq. (22).

5. If |σ2
cand − σ2

old|/σ2
old ≤ 10−5 stop the procedure and retrieve βeq and ωeq.

Otherwise, set σ2
old ← σ2

cand and go back to step 2.
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