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Abstract: The Caenorhabditis elegans (C. elegans) is an ideal model organism for studying human
diseases and genetics due to its transparency and suitability for optical imaging. However, manually
sorting a large population of C. elegans for experiments is tedious and inefficient. The microfluidic-
assisted C. elegans sorting chip is considered a promising platform to address this issue due to
its automation and ease of operation. Nevertheless, automated C. elegans sorting with multiple
parameters requires efficient identification technology due to the different research demands for
worm phenotypes. To improve the efficiency and accuracy of multi-parameter sorting, we developed
a deep learning model using You Only Look Once (YOLO)v7 to detect and recognize C. elegans
automatically. We used a dataset of 3931 annotated worms in microfluidic chips from various studies.
Our model showed higher precision in automated C. elegans identification than YOLOv5 and Faster
R-CNN, achieving a mean average precision (mAP) at a 0.5 intersection over a union (mAP@0.5)
threshold of 99.56%. Additionally, our model demonstrated good generalization ability, achieving an
mAP@0.5 of 94.21% on an external validation set. Our model can efficiently and accurately identify
and calculate multiple phenotypes of worms, including size, movement speed, and fluorescence. The
multi-parameter identification model can improve sorting efficiency and potentially promote the
development of automated and integrated microfluidic platforms.

Keywords: deep learning; C. elegans sorting; object detection; YOLOv7; multi-parameter sorting

1. Introduction

Since the 1970s, when Caenorhabditis elegans (C. elegans) was discovered by Sydney
Brenner, it has been recognized as an excellent model organism for studying the genetic
regulation of organ development and programmed cell death [1–3]. C. elegans plays a
valuable role in studying genetics, drug development, and cell biology due to its short
developmental cycle (3 to 4 days), small size (1 to 1.3 mm), ease of cultivation, and high
homology (~65%) of its genetic pathways with humans [4–6]. The phenotypes of C. elegans
differ (e.g., size and movement speed) at different developmental stages, meeting various
specific research demands [7,8].

The size, motility, and fluorescence expression of C. elegans are promising research
subjects in specific fields [9]. The varied sizes of C. elegans can facilitate an understanding
of complex biological processes, including embryogenesis, development, disease, and
aging [10,11]. The motility of worms is closely linked to the genetic mechanisms for main-
taining balance and movement, such as muscle contraction and synaptic plasticity [12–14].
Otherwise, the fluorescence expression of worms is a useful tool for labeling and observing.
For example, green fluorescent protein (GFP) is widely used for optical in vivo imaging
and phenotypic observation [11,15].
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Efficient and accurate C. elegans sorting has always been a significant challenge in
related studies [16]. C. elegans can be sorted based on different phenotypes, such as fluores-
cence expression, morphology, and motility characteristics [17]. The traditional C. elegans
sorting method requires manual selection under a microscope, which is labor-intensive
and requires skilled operators [18–20]. Later, the complex object parametric analyzer and
sorter (COPAS) was developed for efficient and high-throughput worm sorting, utilizing
fluorescent signals and other optical features [21,22]. However, the widespread use of
COPAS is limited due to its bulkiness, high cost, and operational complexity [23]. In recent
years, the advancements of lab-on-a-chip (microfluidics) have made it a promising platform
for facilitating various studies, such as microinjection and drug screening [24]. Microfluidic
chips are well suited for C. elegans studies due to their highly matched dimensions (in the
hundreds of microns to a few millimeters) [25–28]. In addition, they have the advantages of
low cost, good biocompatibility, and easy operation [29,30]. Thanks to software-controlled
microscopy and various programmable devices such as micropumps and microvalves,
microfluidic chips can rapidly and accurately sort worms [28]. However, these chips still
have limitations in integrated, high-content, and multi-parameter sorting [31]. Achieving
multi-parameter sorting integrated on a single microfluidic chip is challenging.

Computer vision can automate experimental processes to improve efficiency, enabling
a fast response time and customization for multiple complex backgrounds [32–36]. Multiple
computer vision techniques have shown good potential for the automated detection of
C. elegans [37–41]. Based on deep learning algorithms, a real-time detector system has
previously been developed for accurate worm localization, classification, and profile pre-
diction, including the Mask region-based convolutional neural network (R-CNN), Faster
R-CNN, and You Only Look Once (YOLO)v5 [41]. The latest version of YOLOv7 has been
recognized as one of the most accurate and fastest real-time object detectors, making it
ideal for optimizing applications in C. elegans. [42–44]. However, applications combining
YOLOv7 with microfluidics are yet to be developed.

In this study, we reported a deep learning model using YOLOv7 for microfluidic-
assisted C. elegans multi-parameter identification (Figure 1). We extracted C. elegans im-
ages in microfluidic chips from various studies as our datasets. Then, we annotated
3931 C. elegans to provide the data required for YOLOv7 training. These datasets, with a
large number of annotated images, ensure the effectiveness of our deep learning model.
Otherwise, we compared the performance of YOLOv7 to YOLOv5 and Faster R-CNN in
detecting C. elegans in microfluidic chips. Furthermore, we examined the generalizability of
YOLOv7 using an external validation set. The size and movement speed of C. elegans can be
computationally identified by YOLOv7, enabling the classification of multiple phenotypes
(size, motility, and fluorescence). Our model achieved a high precision with a mean average
precision (mAP) at a 0.5 intersection over a union (mAP@0.5) threshold of 99.56%. Our
model also exhibited good generalization abilities when tested on an external validation set,
achieving a mAP@0.5 of 94.21%. Thanks to the identification of multiple parameters with
our model, the efficiency of microfluidic-assisted C. elegans research has been improved.
Through this functional integration developed by our study, the automation and integration
of microfluidic systems are expected to be further improved.
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configuration; Section 2.7, comparison of YOLOv7, YOLOv5, and Faster R-CNN parame-
ters; and Section 2.8, calculation of worm size and movement speed. 

2.1. Application Scenario 
Microfluidic chips can be combined well with optical microscopes (e.g., inverted mi-

croscopes and fluorescence microscopes) in biology labs for C. elegans research. The com-
bination can potentially improve the efficiency and precision of biological research but 
requires the assistance of computer algorithms. Thus, our model focuses on the applica-
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our previously developed microfluidic chip, which is capable of sequentially loading C. 
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information of each C. elegans (e.g., size, movement speed, and fluorescence) and actively 
sort the required C. elegans from a mixture of C. elegans with different phenotypes. Our 
real-time vision-based multi-parameter identification model can improve the automation 
level of microfluidic systems. 
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C. elegans sorting. The videos from published studies were downloaded as raw data [45–
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reference videos with different imaging conditions from various papers. The acquired 
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Figure 1. Schematic of deep learning for microfluidic-assisted C. elegans multi-parameter identification
using YOLOv7.

2. Methods

This section discusses the methods used in the following sections: Section 2.1, applica-
tion scenario; Section 2.2, image acquisition; Section 2.3, dataset preparation; Section 2.4,
model configuration and installation; Section 2.5, evaluation metrics; Section 2.6, training
configuration; Section 2.7, comparison of YOLOv7, YOLOv5, and Faster R-CNN parameters;
and Section 2.8, calculation of worm size and movement speed.

2.1. Application Scenario

Microfluidic chips can be combined well with optical microscopes (e.g., inverted
microscopes and fluorescence microscopes) in biology labs for C. elegans research. The
combination can potentially improve the efficiency and precision of biological research
but requires the assistance of computer algorithms. Thus, our model focuses on the
application scenario of microfluidic chips. To capture images, perform morphological and
physiological measurements, and sort individual C. elegans, we can combine the model
with our previously developed microfluidic chip, which is capable of sequentially loading
C. elegans one-by-one (success rate~90.3%) [28]. Our model can detect and identify images
of worms moving in microfluidic devices captured by high-speed cameras of microscopes.
With image feedback, the model can accurately calculate and determine the phenotype
information of each C. elegans (e.g., size, movement speed, and fluorescence) and actively
sort the required C. elegans from a mixture of C. elegans with different phenotypes. Our
real-time vision-based multi-parameter identification model can improve the automation
level of microfluidic systems.

2.2. Image Acquisition

The dataset was obtained from published studies that utilized microfluidic chips for
C. elegans sorting. The videos from published studies were downloaded as raw data [45–64].
To improve the model’s robustness and the data’s diversity, we created datasets using
reference videos with different imaging conditions from various papers. The acquired
videos were sampled at 10-frame intervals to extract cropped worm images and annotate
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them, resulting in 3931 annotation boxes. After the training phase, the acquired data were
sorted into training, testing, and validation sets based on the GFP and WT classification.

2.3. Dataset Preparation

A large amount of annotated data are needed when training the deep learning model.
In this study, the worms in each image were annotated manually using the image annotation
software LabelImg, which supports the Visual Object Classes (VOC) format [65,66]. This
software can generate Extensible Markup Language (XML) files for the model.

To improve the performance of the model training process, we selected C. elegans,
which was easily recognizable in the channels as the primary training object. To promote
the convergence performance of the model, we carefully selected several worms that were
not in the channel as part of the dataset.

Each worm is located within an annotation box, and the number of these boxes
determines the dataset size in Figure 2. There were 2426 annotation boxes for the WT
category and 1505 for the GFP category. The annotation boxes were categorized into four
sets, namely training, testing, validation, and external validation sets. The training and
testing sets were used for model training and internal evaluation, while the validation set
was utilized for model adjustment. To verify the generalization ability of the model, we
also selected 318 annotated worms from separated video sources as the external validation
set. The split data ratio was set to 9:1 for training and validation sets to the testing set. The
training set to the validation set ratio was also set to 9:1. According to the above ratio, the
annotated GFP and WT numbers in each set are shown in Figure 2.
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2.4. Model Configuration and Installation

Our model had an overall structure, as shown in Figure 3. The spatial pyramid pooling
convolutional set pooling convolutional (SPPCSPC) module is used in object detection
algorithms, specifically in the YOLOv7 model. The SPPCSPC module refers to a Cross
Stage Partial Network (CSPNet) with a spatial pyramid pooling (SPP) block. The SPP block
pools the input tensor with various kernel sizes and concatenates the results. It shows the
difference in maximum pooling. Different pooling amounts correspond to different targets.
Moreover, the SPP block has four different scales of maximum pooling (the resolutions of
1 × 1, 5 × 5, 9 × 9, and 13 × 13) with four kinds of perceptual fields, distinguishing large
and small targets.
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Figure 3. The overall structure is generic YOLO architecture. The backbone extracts the feature
from the image. The neck enhances the feature map by combining different scales. The head pro-
vides the bounding box for detection. SPPCSPC, spatial pyramid pooling convolutional set pooling
convolutional; Conv, convolution; Conv2D, two-dimensional convolutional layer; RepConv, reparam-
eterized convolution; UpSampling2D, two-dimensional up-sampling layer; Concat, concatenate; CBS,
Conv2D_BN_SiLU (convolutional standardization activation function); MCB, Multi_Concat_Block
(multi-branch stacking module); TB, Transition_Block (transition block).

The innovative transition block (TB) is used for down-sampling. In convolutional
neural networks, two commonly used transition modules for down-sampling are a con-
volutional layer with a kernel size of 3 × 3 and a stride of 2 × 2, or a max pooling layer
with a stride of 2 × 2. YOLOv7 combines these two transition modules into a TB with
two branches. The left branch of the TB is a 2 × 2 stride max pooling followed by a 1 × 1
convolutional layer. The right branch of the TB is a 1 × 1 convolutional layer followed by a
convolutional layer with a kernel size of 3 × 3 and a stride of 2 × 2. The results from both
branches are stacked together when outputting.

The overall structure of our model utilized multi-branch stacking modules, represented
by the MCB in Figure 3 and illustrated in Figure 4. In this module, the input of the final
stacking module contained multiple branches. From left to right, the four branches shown
in Figure 4 consist of 1, 1, 3, and 5 CBS, respectively. After these branches were stacked,
they conducted another CBS for feature integration. The dense stacking corresponded to a
dense residual structure that included internal residual blocks. While increasing the depth
of the neural network can optimize and improve model accuracy, it may lead to vanishing
gradient problems. Internal residual blocks with skip connections can mitigate this issue.
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Figure 4. Multi-branch stacking module (i.e., MCB of Figure 3). The module is designed to enhance
the accuracy of multi-target detection. During training, a module is split into multiple branches of the
same or different modules. Then, multiple branches are integrated into a single module by designing
multi-scale feature extraction. Finally, a multi-branch stacking module is added to further improve
the precision of object detection.

YOLOv7 constructs a feature pyramid network (FPN) to enhance the feature extrac-
tion. The FPN is located between convolution (Conv) and reparameterized convolution
(RepConv) structures in Figure 3, including Conv but excluding RepConv. In the feature
utilization stage, YOLOv7 extracts three feature layers at different positions in the backbone
for object detection: the middle, lower middle, and bottom layers [67]. Each feature point
on each feature layer in YOLOv7 has three prior boxes. The channel number of each feature
layer can be adjusted using convolution so that the final number of channels is proportional
to the number of distinct categories. These three layers have different shapes when the
input is (640, 640, 3): feat = (80, 80, 512), feat2 = (40, 40, 1024), and feat3 = (20, 20, 1024).
The FPN is constructed using these three feature layers, combing feature layers of various
shapes to obtain better features. In YOLOv7, the FPN produces three enhanced features
with shapes of (20, 20, 512), (40, 40, 256), and (80, 80, 128), which are passed to the YOLO
detection head for result prediction. Unlike previous YOLO models, YOLOv7 employs a
RepConv structure before the YOLO detection head. RepConv structure introduces new
residual structures uniquely designed to aid in training. During prediction, these structures
can be effectively equivalent to a standard 3 × 3 convolution. Furthermore, they can reduce
network complexity while maintaining prediction performance.

2.5. Evaluation Metrics

The performance of YOLOv7 was evaluated using several metrics. Recall is the ratio
of all true positives (objects correctly identified) to the total of true positives and false
negatives (objects missed). Precision is the ratio of true positives to the total of true and
false positives (objects misidentified). AP is the area under the precision–recall curve, and
its average value for each class is the mAP. The intersection over union (IoU) threshold was
used to measure the degree of overlap between the predicted bounding box and the actual
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ground truth box. It is defined mathematically as the ratio of the intersection area of the
two boxes to their union. The F1 score, the harmonic mean of precision, and recall were
used to evaluate the overall performance of the model. Moreover, the detection speed of
the model in frames per second (FPS) on the tracked video was evaluated. Finally, the IoU
threshold for the tracked frame was set to 0.5.

The training process for this model involved two stages: the frozen stage and the
unfrozen stage. During the frozen stage, the backbone was frozen and the feature extraction
network remained unchanged. The training was conducted for 50 epochs. The backbone
was unfrozen and the feature extraction network was modified during the unfrozen stage.
The training was conducted for 300 epochs. The learning rate of the model was dynamically
adjusted, with a range of 1 × 10−4 to 1 × 10−2. The stochastic gradient descent optimizer
was used with a weight decay of 5 × 10−4. Real-time training progress monitoring was
achieved by performing an average evaluation every 10 epochs, which provided valuable
information on the model performance. This information helped to identify any overfitting
or underfitting issues and enabled the adjustment of hyperparameters or the training
process to improve model performance. For example, if the precision of the model decreases,
reducing the learning rate or increasing the number of epochs may help. Alternatively, if the
model is overfitting, regularization techniques may be applied to prevent the memorization
of training data. By conducting regular evaluations, the training process can be optimized
for maximum model performance.

The YOLO detection head generates prediction results of three feature layers with
shapes of (N, 20, 20, 255), (N, 40, 40, 255), and (N, 80, 80, 255), respectively. However,
these predictions do not correspond to the positions of the final predicted boxes on the
image. They need to be decoded to complete the process. In YOLOv7, each feature point
on each feature layer has three anchor boxes. The final 255 values of each feature layer can
be split into three sets of 85 parameters, which correspond to the 3 anchor boxes. These
85 parameters can be reshaped into (N, 20, 20, 3, 85), (N, 40, 40, 3, 85), and (N, 80, 80, 3,
85) for the three feature layers, respectively. Among these parameters, 85 can be further
divided into 4 + 1 + 80. The first 4 parameters are used to adjust the regression parameters
of each feature point and obtain the predicted box. The 5th parameter determines whether
each feature point contains an object. The last 80 parameters identify the object type in each
feature point.

First, the feature layer divides the image into grid cells in the object detection model.
Then, any grid cell that falls within an object’s corresponding box is used to predict the
object. Next, score filtering and non-maximum suppression (NMS) filtering are performed
to reduce the number of prediction boxes. Score filtering selects boxes with scores that meet
the confidence threshold, thus significantly reducing the number of boxes to be processed
during the overlap removal. Meanwhile, NMS selects the box with the highest score for a
certain category within a certain region. To apply NMS to each category independently,
each category is looped through, and the boxes with lower scores for the same category
are filtered out. After filtering, the boxes for each category are sorted in descending order
of their scores. Then, the box with the highest score is removed each time, and its overlap
with all other predicted boxes is calculated. Boxes with high overlap are removed. Finally,
the remaining prediction boxes are used for the final predictions. In our case, we used a
score filtering value of 0.5 and an NMS parameter (nms_iou) of 0.3.

2.6. Training Configuration

We trained our model on the Windows 10 operating system using an NVIDIA GeForce
RTX 3090 GPU with 32 GB RAM. We implemented our model using version 1.7.1 of the
PyTorch machine learning framework. Moreover, our model depended on NVIDIA’s
CUDA (version 11.1) and CUDNN libraries for support.
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2.7. Comparison of the YOLOv7, YOLOv5, and Faster R-CNN Parameters

Our study employed YOLOv7 to identify the WT and GFP datasets and compare its
performance against YOLOv5 and Faster R-CNN. We have used the best hyperparame-
ters for three models. The input size of the images for both YOLOv7 and YOLOv5 was
640 × 640, while the size for Faster R-CNN was 600 × 600. Additionally, the batch size for
training three models was the same and equaled 3. Table 1 summarizes the parameters
used to train the three models.

Table 1. Parameters used to train YOLOv7, YOLOv5, and Faster R-CNN.

Parameters Values

Optimizers stochastic gradient descent
Learning rate 1 × 10−4~1 × 10−2

Momentum 0.937
Learning decay 5 × 10−4

Pretrained Microsoft Common Objects in Context dataset
Number of epochs 300

2.8. Calculation of Worm Size and Movement Speed

To obtain the size of the C. elegans, we determined the actual size of each pixel point
based on the scale, and then computed the pixel positions of the worm’s boundaries.
The number of occupied pixels was used to determine the worm size. To determine the
movement speed of the C. elegans, we recorded the Greenwich time and left boundary of
the frame for each detected image, and calculated the difference in time and boundary
position between adjacent frames. We conducted tests using two distinct microfluidic
chips selected from the dataset videos. Then, we converted pixel numbers into actual
lengths of worms based on microfluidic chip lengths of 4.6875 × 103 µm (chip 1) and
3.4286 × 103 µm (chip 2), and resolutions of 863 × 725 pixels (chip 1) and 318 × 232 pixels
(chip 2). Consequently, we obtained the worm size and movement speed.

3. Results

We performed the process shown in Figure 5 using YOLOv7 to detect C. elegans during
sorting in microfluidic chips. We compared the performance of YOLOv7, YOLOv5, and
Faster R-CNN in Table 2. YOLOv7 achieved the highest mAP of 99.56% for detecting the
WT and GFP datasets, outperforming YOLOv5 and Faster R-CNN.

Table 2. Performance comparison between YOLOv7, YOLOv5, and Faster R-CNN.

Model Backbone Annotation Number mAP (%) AP of the WT (%) AP of the GFP (%)

Faster R-CNN Resnet50 3931 98.93 99.64 98.22
YOLOv5 Darknet-53 3931 99.03 100 98.06
YOLOv7 Darknet-53 3931 99.56 100 99.12

We compared the performance of YOLOv7, YOLOv5, and Faster R-CNN in C. elegans
detection, and the results of the evaluation metrics are shown in Table 3. The specific
results of the testing set are presented in Figures S1–S9 of the Supplementary Materials.
The three models used the same number of images for object detection, with 2426 and
1505 images for WT and GFP, respectively. YOLOv7 showed the fastest detection speed
among the three models, with an FPS of 52.112. Moreover, YOLOv7 exhibited higher
precision, achieving 100% and 97.39% for detecting WT and GFP, respectively. Although
Faster R-CNN showed a slightly better recall of 99.35% in GFP detection than the other
two models, overall, YOLOv7 demonstrated higher F1 scores in both WT and GFP detection.
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Table 3. Comparison of different models in target detection (YOLOv7, YOLOv5, and Faster R-CNN).

Metrics

Model Sample Type Detection
Speed (FPS) mAP (%) Model Size AP (%) F1 Recall (%) Precision (%) Annotation Number

Faster
R-CNN

WT
19.032 98.93 108

99.64 0.84 100 71.88 2426
GFP 98.22 0.85 99.35 74.76 1505

YOLOv5
WT

32.146 99.03 27.1
100 1 100 100 2426

GFP 98.06 0.96 96.13 95.51 1505

YOLOv7
WT

52.112 99.56 142
100 1 100 100 2426

GFP 99.12 0.97 96.13 97.39 1505

An external validation set can help ensure our model can generalize to new data rather
than overfitting the training data. Therefore, we compared the performance of YOLOv7,
YOLOv5, and Faster R-CNN on an external validation set to evaluate their generalization
ability. The results of the evaluation metrics are shown in Table 4. The specific results of the
external validation set are presented in Figures S10–S18 of the Supplementary Materials.
The three models used the same number of annotation boxes from the external validation
set, with 154 and 164 annotated WT and GFP C. elegans, respectively. YOLOv7 showed
the fastest detection speed among the three models, with an FPS of 52.508. In addition,
YOLOv7 exhibited the highest precision for both WT and GFP, reaching 95.24% and 89.47%,
respectively. YOLOv7 also showed the highest mAP of 94.21%, indicating that our model
has robust detection and classification capabilities for C. elegans. Otherwise, YOLOv7 had
the highest recall of 89.47% for GFP, although its recall for WT was slightly lower than that
of Faster R-CNN but still better than that of YOLOv5. Overall, YOLOv7 has a better balance
between precision and recall, with F1 scores of 0.95 and 0.89 for WT and GFP, respectively.

We applied our model to recognize C. elegans automatically in microfluidic chips from
videos. The mixed populations of WT and GFP C. elegans were imaged in the microfluidic
chips under an optical microscope. Our model could identify the fluorescent phenotype
of these worms (WT or GFP) and calculate their size and speed (Figure 6). In practical
application scenarios, microfluidic chips can be combined with our model to sort GFP and
WT worms into different channels to obtain a single target population. Moreover, combined
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with different microfluidic chip designs, the size and speed output results can also serve as
sorting criteria. As shown in Table 5, we employed twenty-eight worms for identification
in our model, including twenty-four WT and four GFP worms from chip 1 (Worm1–11 and
Worm25–28) and chip 2 (Worm12–24). The largest sized worm was 94,394.17 µm2 and the
smallest sized was 11,547.36 µm2. The fastest worm had a speed of 2827.30 µm/s, while
the slowest was 46.13 µm/s. Since the recognition was performed on videos, the speed 0 is
invalid due to interference from the video frame rate. Variations in C. elegans’ movement
speed may arise due to differences in video frame rates, air pump settings, and other
experimental conditions of the microfluidic chips [68]. However, it is important to note
that these factors do not invalidate the obtained results. On the contrary, they showcase the
adaptability of our model to diverse microfluidic application environments, highlighting
the robustness and effectiveness of our approach.

Table 4. Comparison of external validation results among different models (YOLOv7, YOLOv5, and
Faster R-CNN).

Metrics

Model Sample Type Detection
Speed (FPS) mAP (%) Model Size AP (%) F1 Recall (%) Precision (%) Annotation Number

Faster
R-CNN

WT
19.550 66.22 108

64.32 0.54 100 36.84 154
GFP 68.12 0.56 78.95 42.86 164

YOLOv5
WT

32.434 88.83 27.1
94.72 0.73 90.48 61.29 154

GFP 82.93 0.73 63.16 85.71 164

YOLOv7
WT

52.508 94.21 142
98.94 0.95 95.24 95.24 154

GFP 89.47 0.89 89.47 89.47 164

Table 5. Identification of WT and GFP C. elegans size and speed.

Sample Type Sample Size (µm2) Speed (µm/s)

WT Worm1 25,310.88 0.00
WT Worm2 23,094.72 0.00
WT Worm3 71,830.65 451.71
WT Worm4 13,989.51 61.05
WT Worm5 16,067.16 0.00
WT Worm6 22,249.08 511.05
WT Worm7 16,823.92 970.29
WT Worm8 12,188.88 0.00
WT Worm9 11,547.36 0.00
WT Worm10 34,372.35 1400.80
WT Worm11 16,271.28 0.00
WT Worm12 37,507.72 68.51
WT Worm13 56,537.78 55.95
WT Worm14 93,056.36 77.43
WT Worm15 76,269.74 61.26
WT Worm16 52,304.80 63.24
WT Worm17 48,196.18 93.28
WT Worm18 37,507.72 85.85
WT Worm19 56,537.78 67.00
WT Worm20 55,724.91 46.52
WT Worm21 52,304.80 46.13
WT Worm22 48,196.18 98.84
WT Worm23 62,866.91 131.96
WT Worm24 68,319.63 70.41
GFP Worm25 40,444.92 0.00
GFP Worm26 67,731.39 2827.30
GFP Worm27 94,394.17 1216.61
GFP Worm28 73,016.64 2028.55



Micromachines 2023, 14, 1339 11 of 15

Micromachines 2023, 14, 1339 11 of 16 
 

 

WT Worm19 56,537.78 67.00 
WT Worm20 55,724.91 46.52 
WT Worm21 52,304.80 46.13 
WT Worm22 48,196.18 98.84 
WT Worm23 62,866.91 131.96 
WT Worm24 68,319.63 70.41 
GFP Worm25 40,444.92 0.00 
GFP Worm26 67,731.39 2827.30 
GFP Worm27 94,394.17 1216.61 
GFP Worm28 73,016.64 2028.55 

 
Figure 6. The trained model detected WT and GFP C. elegans in input images and output the 
recognized size and speed. 

4. Discussion 
Researchers are increasingly using object detectors to study C. elegans. While 

fluorescent techniques are helpful for tracking and sorting C. elegans, sorting typically 
involves multiple parameters. Therefore, combining deep learning models with 
microfluidic chips is a critical way to achieve platform automation and improve the 
efficiency of multi-parameter identification. We developed a target detection model to 
identify WT and GFP C. elegans in microfluidic chips and generate their size and speed 
information. This approach can improve the precision and efficiency of microfluidic chips 
during C. elegans sorting, reducing errors associated with manual counting. 

We extracted C. elegans in microfluidic chips from videos and annotated them to 
create a dataset. We trained three commonly used detectors (YOLOv7, YOLOv5, and 
Faster R-CNN) using the dataset and validated their performance using an external 
validation set. The comparison results of their performance showed that YOLOv7 
outperformed the others in terms of recall, precision, and generalization ability. Therefore, 
we ultimately chose to apply YOLOv7 in our study. Our study provided a dataset of 
thousands of annotated worms. Additionally, we developed an engineering prototype 
that combines microfluidic chips and deep learning technology for efficient C. elegans 
sorting. The model provided a solution to identify multiple parameters of worms in 
microfluidic chips. 
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4. Discussion

Researchers are increasingly using object detectors to study C. elegans. While fluores-
cent techniques are helpful for tracking and sorting C. elegans, sorting typically involves
multiple parameters. Therefore, combining deep learning models with microfluidic chips is
a critical way to achieve platform automation and improve the efficiency of multi-parameter
identification. We developed a target detection model to identify WT and GFP C. elegans in
microfluidic chips and generate their size and speed information. This approach can im-
prove the precision and efficiency of microfluidic chips during C. elegans sorting, reducing
errors associated with manual counting.

We extracted C. elegans in microfluidic chips from videos and annotated them to create
a dataset. We trained three commonly used detectors (YOLOv7, YOLOv5, and Faster
R-CNN) using the dataset and validated their performance using an external validation set.
The comparison results of their performance showed that YOLOv7 outperformed the others
in terms of recall, precision, and generalization ability. Therefore, we ultimately chose
to apply YOLOv7 in our study. Our study provided a dataset of thousands of annotated
worms. Additionally, we developed an engineering prototype that combines microfluidic
chips and deep learning technology for efficient C. elegans sorting. The model provided a
solution to identify multiple parameters of worms in microfluidic chips.

In microfluidic chips, worms are introduced into microchannels, where they experience
fluid flow and confinement. These microfluidic channels are typically designed with specific
geometries and dimensions to create controlled flow conditions [17]. The worms are not
completely immobilized but rather constrained to move and navigate within the available
space, interacting with the fluid and channel walls. Some microfluidic chips are also
equipped with active forces, such as different types of pumps. The assistance of these active
forces helps ensure efficient sorting and prevent any potential interference or blockage
within the chips. The applied active forces and specific channel geometries influence
worm behaviors, allowing them to be sorted into different bifurcated channels based on
predefined criteria such as size and speed. The movement of worms may exhibit inherent
randomness and a tendency to interact with the channel sidewalls, displaying exploratory
behavior [68]. In further research, integrating our algorithm and microfluidic chips is
expected to measure, control, and predict worm behaviors precisely within microchannels,
contributing to a more reliable analysis.

We can also easily implement our identification model for efficient and automated
multi-parameter C. elegans sorting with our developed C. elegans soring microfluidic sys-
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tems, which are capable of continuously loading C. elegans with a 90.3% success rate [28].
Based on the current performance of our model, we anticipate achieving a high recognition
success rate and target population purity in practical applications. For example, C. elegans
is commonly used in drug screening and exhibits a wide range of variations in movement.
These variations can arise from various factors such as individual differences, drug effects,
and environmental conditions [69]. Addressing the variations in worm movement is crucial
for accurately assessing the effects of drugs in experiments. By leveraging our model, the
efficient and automated analysis of worm locomotion under different drug treatments can
be performed, thereby accelerating the drug screening process and enhancing screening
accuracy. Furthermore, precise measurements of worm movement variations can be used
to evaluate the toxicological effects of drugs and provide robust support for drug safety
assessments. We will further explore the potential applications of our deep learning model
in these areas.

5. Conclusions

C. elegans is a model organism with great potential in human disease and genetics
research. The efficient and accurate sorting of C. elegans has always been a challenge in
related research. Microfluidic chips are promising for C. elegans sorting due to their low cost,
good biocompatibility, and simple operation, compared with the cumbersome and ineffi-
cient manual operation and expensive COPAS. However, automated C. elegans sorting with
multiple parameters requires efficient identification technology due to the different research
demands for worm phenotypes. Therefore, we extracted and annotated 3931 worms from
videos as a dataset and selected YOLOv7 through the training, comparison, and external
validation of three detectors (YOLOv7, YOLOv5, and Faster R-CNN). YOLOv7 showed
high precision in worm recognition, achieving an mAP@0.5 of 99.56%. In addition, our
model has a good generalization ability, achieving an mAP@0.5 of 94.21% on the external
validation set while efficiently and accurately identifying multiple C. elegans phenotypes,
including size, movement speed, and fluorescence. This study comprehensively evaluated
the performance of YOLOv7 as a C. elegans recognition detector. Otherwise, we established
a new engineering prototype that combines microfluidics and deep learning technology.
We will further develop highly integrated and automated microfluidic chips based on our
model to better serve C. elegans-related research.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/mi14071339/s1, Specific results of the testing set. Figure S1. (a) The
mAP, (b) the log-average miss rate, and (c) the ground-truth results in Faster R-CNN. Figure S2.
(a) The recall, (b) the F1 score, (c) the precision, and (d) the AP results of WT C. elegans in Faster
R-CNN. Figure S3. (a) The recall, (b) the F1 score, (c) the precision, and (d) the AP results of GFP
C. elegans in Faster R-CNN. Figure S4. (a) The mAP, (b) the log-average miss rate, and (c) the ground-
truth results in YOLOv5. Figure S5. (a) The recall, (b) the F1 score, (c) the precision, and (d) the AP results
of WT C. elegans in YOLOv5. Figure S6. (a) The recall, (b) the F1 score, (c) the precision, and (d) the AP
results of GFP C. elegans in YOLOv5. Figure S7. (a) The mAP, (b) the log-average miss rate, and (c) the
ground-truth results in YOLOv7. Figure S8. (a) The recall, (b) the F1 score, (c) the precision, and (d) the
AP results of WT C. elegans in YOLOv7. Figure S9. (a) The recall, (b) the F1 score, (c) the precision, and
(d) the AP results of GFP C. elegans in YOLOv7. Specific results of the external validation set.
Figure S10. (a) The mAP, (b) the log-average miss rate, and (c) the ground-truth results in Faster
R-CNN. Figure S11. (a) The recall, (b) the F1 score, (c) the precision, and (d) the AP results of WT
C. elegans in Faster R-CNN. Figure S12. (a) The recall, (b) the F1 score, (c) the precision, and (d) the AP
results of GFP C. elegans in Faster R-CNN. Figure S13. (a) The mAP, (b) the log-average miss rate, and
(c) the ground-truth results in YOLOv5. Figure S14. (a) The recall, (b) the F1 score, (c) the precision,
and (d) the AP results of WT C. elegans in YOLOv5. Figure S15. (a) The recall, (b) the F1 score, (c) preci-
sion, and (d) the AP results of GFP C. elegans in YOLOv5. Figure S16. (a) The mAP, (b) the log-average
miss rate, and (c) the ground-truth results in YOLOv7. Figure S17. (a) The recall, (b) the F1 score,
(c) the precision, and (d) the AP results of WT C. elegans in YOLOv7. Figure S18. (a) The recall, (b) the
F1 score, (c) the precision, and (d) the AP results of GFP C. elegans in YOLOv7.
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