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Abstract
This article discusses an application for classifying urban spaces using convolutional neural networks (CNNs).
A seed dataset was initially generated composed of 630 photographs of urban spaces from the Adobe Stock
repository. This dataset was topped up with images produced by two generative artificial intelligence (AI)
engines, namely, Deep Dream Generator and Midjourney, making two additional augmented datasets, each
composed of 2200 images. The training process was carried out using four well-known CNNs, namely,
GoogLeNet, ResNet-18, ShuffleNet, and MobileNet-v2. The results show an increase of roughly 30% in the
predicting capabilities in both augmented datasets when compared to the seed dataset. Furthermore,
performance metrics are generally higher when using ResNet-18 which may suggest that this CNN ar-
chitecture is more applicable to urban classification projects. Finally, although both generative AI engines have
similar performance, Midjourney seems to slightly outperform Deep Dream Generator as a data aug-
mentation engine for urban spaces.
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Introduction

Urban spaces play a vital role in shaping the livability, functionality, and sustainability of cities. They are
designed for human use and interaction and, as such, are crucial for the well-being of individuals and
communities.1,2 Thus, the classification of urban spaces becomes a relevant topic for policymakers and city
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planners in order to make informed investment decisions to best serve the function of interaction in cities.3

Several attempts to classify urban spaces have been published in the literature4–6 depending on a wide range
of characteristics, such as (i) design-functional perspectives, (ii) socio-cultural perspectives, and (iii) political-
economic perspectives. Design-functional perspectives classify spaces according to their intended purpose,
characteristics, and physical layout,7,8 for example, public parks, markets, and playgrounds. Socio-cultural
perspectives classify spaces according to the type of individuals who utilize them and how they interact with
them,9 for example, everyday places, social environments, and negative spaces. Political-economic per-
spectives classify spaces according to the ownership, responsibilities, or management associated to them,10,11

for example, public property, secured public space, and themed public space. Even with these varied
perspectives, it is widely accepted in the literature12 that the increasing complexity of urban spaces makes
their classification a somewhat complicated task. In this light, machine learning models are ideal candidates to
facilitate such a process due to their capacity to learn patterns based on analyzing large amounts of data. This
article deals with the classification of urban spaces as described in Carmona,4 who defines 20 types that, to
some extent, are a combination of all abovementioned perspectives, using four overarching categories that
move in a highly continuous manner from clearly public spaces to clearly private spaces.

Convolutional neural networks (CNNs) are a type of deep learning model that are specifically designed for
image and video analysis based on the concept of convolution, which is a mathematical operation that is used
to extract features from an image.13 They can learn hierarchical representations of the input data by suc-
cessively applying convolutional and pooling layers to the input image, which eventually allows the model to
determine whether or not the input image falls into a given category or class. CNNs are particularly relevant in
data science, as they have demonstrated considerable effectiveness in a wide range of image and video
analysis tasks, such as object recognition, object detection, and semantic segmentation, as well as in other
fields, such as natural language processing, speech recognition, and medical image analysis.14,15 The ap-
plication of CNNs in architecture and urban design is a relatively recent field, though it has gained increasing
attention in research and practice.16,17 In architectural design, CNNs have been applied building façades for
the classification of their Gestalt principles,18 architectural styles,19 and their components.20 Other examples
in urban design include the classification of land use and land cover types, such as residential, commercial,
industrial, and green spaces,21–23 recognition of different street-level features by means of street-view image
analysis, such as urban versus non-urban settlements,24 quality of street frontage,25 and vegetation.26 The use
of CNNs in this context is accomplished by training a model on a relatively large dataset of labelled images,
where the model learns to recognize different patterns and features associated with the classes specified in the
dataset.

For meaningful deep learning models such as CNNs, generally large datasets must be used for training in
order to allow generalization of results and avoid overfitting issues; a well-known technique to address these
potential problems is data augmentation.27 Some popular data augmentation techniques include (i) geometric
transformations, such as flipping, cropping, rotation, and noise injection, and (ii) generative-based models,
such as generative adversarial networks (GANs)28,29 and diffusion models (DMs),30,31 where artificial in-
stances are generated in an attempt to emulate similar characteristics of the dataset needing augmentation.

GANs are basically composed of two sub-modules: a generator and a discriminator. The generator, given a
vector of random values, generates data with the same structure as the training data; the discriminator attempts
to classify data as real or fake when shown observations from both the training data and data coming from the
generator.32 GAN-based augmentations have been used previously to enlarge datasets for deep learning
models in a wide range of fields, most notably in medical sciences research.33–35 DMs, on the other hand,
follow a different path: during training, they progressively destruct data by injecting noise, which allows them
to then learn how to reverse this process. In this way, new instances can then be generated from just random
noise as a starting point.30 Text-to-image models are specific DMs that generate images from a descriptive text
or prompt. They have recently stunned the architectural visual culture (see Steinfeld36 for a recent
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thought-provoking discussion and recount of events on the rise of text-to-image generative models in ar-
chitecture). The use of DMs as a data augmentation technique is becoming a predominant method as they
seem to outperform GANs due to superior image quality and diversity.37,38 Under the generic umbrella term
of ‘generative AI’, both GANs and DMs have garnered increasing interest in architecture and urban studies
due to the possibility of generating a virtually infinite number of new designs/images.39–42

Once a suitable and meaningful dataset has been curated for classification, a CNN architecture is needed to
conduct the training. The architecture can be set up from scratch or based on an architecture and corre-
sponding weights from an already trained CNN in a related domain, the latter being commonly referred to as
transfer learning.43 Transfer learning techniques have been extensively applied in a wide range of appli-
cations, for example, text sentiment classification, image classification, human activity classification,
software defect classification, and multi-language text classification (see Weiss et al.44 for a comprehensive
review on transfer learning).

This work has three main objectives: first, to validate the suitability of CNNs as an effective AI technique
for classifying urban spaces; second, to assess the effectiveness of publicly available generative AI engines in
producing images for data augmentation purposes; and third, to identify, if any, a specific CNN architecture
among a set of well-known CNN architectures traditionally used for general image classification that
consistently performs higher when classifying urban spaces. Following the urban classes described in
Carmona,4 this work uses three datasets for the classification of urban spaces: a seed dataset composed of
630 photographs downloaded from the Adobe Stock repository45 and two augmented datasets, which are each
composed of the seed dataset topped up with generative AI images to make a total of 2200 instances. The
images used in the enlarged datasets were generated using the generative AI engines Deep DreamGenerator46

and Midjourney-v447 (these enlarged datasets are called ‘DDG-augmented dataset’ and ‘MJ4-augmented
dataset’, respectively, hereafter). These generative AI engines were selected because they are two of the most
popular and highly regarded image generators publicly available and accessible at the time of writing.48 The
generated images, although possessing high definition and detail, are sometimes disjointed and do not
necessarily coherently represent the urban space specified in the text prompt when judged by a human.
Nevertheless, they preserve many of the features of the particular class that make the urban space recognizable
when observed by a human; therefore, they were considered suitable for the purposes of this work. Due to the
varying number of photographs in the seed dataset, it is highly unbalanced; on the other hand, the augmented
datasets are perfectly balanced, as every urban category or class has the same number of elements. For the
training of these datasets, a transfer learning technique was used where the architectures of well-known CNNs
used for image classification were transferred to the domain discussed in this article. Four CNNs widely used
in data science for image classification problems were used for training in this work, namely, (i) GoogLeNet,49

(ii) ResNet-18,50 (iii) ShuffleNet,51 and (iv) MobileNet-v2.52 It was found that prediction capacity increases
roughly 30% when enlarging the dataset in all CNNs, even though the GAN-enlarged dataset possesses
images of urban spaces that are not always coherent. It was also observed that ResNet-18 outperforms the
other three CNNs used in this work in all prediction metrics, suggesting that this architecture could be more
capable of handling much larger datasets for urban classification. Finally, it was possible to observe that
Midjourney-v4 slightly outperforms Deep Dream Generator when used as a data augmentation technique in
the urban spaces domain, although both are decidedly capable of interpreting the main features of each class
of urban space studied in this work.

This article is organized as follows: the next section describes the generation of the seed and augmented
datasets for each category or class of urban space; the subsequent part covers the training process for the four
CNN architectures used on the datasets described in the previous section; then, the following section analyses
the results obtained and presents comparisons among the CNNs and datasets; the following section presents a
thorough discussion of the results, finishing with a section covering the conclusions of this work.

Medel-Vera et al. 3



Dataset generation

This section covers how the datasets were generated for this research. It is worth mentioning that the seed
dataset has been made publicly available for reproducibility purposes and can be found on Kaggle,53 a widely
used platform for data science resources. The augmented datasets are available upon request to the cor-
responding author.

Seed dataset

Initially, a seed dataset was generated as the main source of information using photographs from the Adobe
Stock repository.45 Only those belonging to the ‘Free’ category were used, which avoided the need to pay
royalty fees. The search of photographs was conducted using keywords and descriptions as provided in the
classes definition stated in Carmona4 and reproduced in Table 1. The corresponding labels for each class were
simply defined as the space type (e.g. ‘natural/semi-natural urban space’, ‘civic space’, ‘public open space’).
Regarding the image labelling process, it is acknowledged that this task can, in general, be conducted in three
different ways54: (i) whole image labelling, (ii) bounding box (rectangular subregion) labelling, and (iii)
polygon (complex region) labelling. In this work, a whole image labelling process was used, as it is of interest
to assess the capacity of a machine learning model to interpret images in their entirety and classify them as a
certain type of urban space. It is worth mentioning that no bias was introduced by the authors of this work in
the process of gathering photographs for each class during the search on the Adobe Stock repository, as the
photographs’ authors themselves labelled their photographs as part of uploading the files to the repository. It is
also relevant to state that photographs taken at night and those with a predominant presence of people were
ruled out. Although the search was conducted for the 20 classes of urban spaces defined by Carmona,4 some
classes were left void as no meaningful photographs were found. As a consequence, a dataset of 11 classes
was generated composed of 630 photographs; the 11 classes are highlighted in bold in Table 1. The dis-
tribution of photographs within each class is highly uneven (as shown in Figure 1) and, therefore, unbalanced
from a data science perspective. For consistency purposes, the classes are assigned in the same order as those
reported in Carmona4; therefore, labels for each class in the datasets will not appear in sequence. A sample of
photographs from the seed dataset is shown in Figure 2.

From Figure 1, it is possible to see the unbalanced nature of the seed dataset; class imbalance is a common
problem in real-world datasets and can have a detrimental effect in the performance of CNNs in classification
problems.55 Generally speaking, there are two types of class imbalance: (i) step or inter-class imbalance,
where there is a minority of classes with a similar number of samples, say S1, in comparison to a majority of
classes that also has a similar number of samples, say S2, but S1 and S2 differ substantially; and (ii) linear or
intra-class imbalance, where the number of samples among all classes varies in such a way that the difference
between consecutive classes is nearly constant (see Buda et al.56 and Ali et al.57 for comprehensive reviews on
class imbalance problems in classification problems using CNNs). In this light, the seed dataset used in this
work possesses a clear step or inter-class imbalance, as there is a minority of classes with a similar number of
instances (classes 1 and 2, which have ∼140 samples on average) compared to a majority of classes with a
relatively similar number of instances (classes 3 to 17, which have ∼36 samples on average). Certainly, the
number of samples between the majority and the minority is significantly different. It has been reported that
CNNs trained using datasets with step or inter-class imbalance, as is the case for the seed dataset, are more
likely to perform poorly when classifying those classes with a low number of samples because they are
predicted as rare occurrences.55 The imbalance problem with the seed dataset was then corrected by using
augmented datasets, which, from a data science perspective, can be regarded as ideal datasets, as they contain
an equal number of samples within each category.
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Table 1. Urban space types4 (categories in bold were used in this work).

Space type Distinguishing characteristics Examples

‘Positive’ spaces
1 Natural/semi-
natural urban
space

Natural and semi-natural features within urban
areas, typically under state ownership

Rivers, natural features, seafronts,
canals

2 Civic space The traditional forms of urban space, open and
available to all and catering for a wide variety of
functions

Streets, squares, promenades

3 Public open space Managed open space, typically green and available
and open to all, even if temporarily controlled

Parks, gardens, commons, urban
forests, cemeteries

‘Negative’ spaces
4 Movement space Space dominated by movement needs, largely

motorized transportation
Main roads, motorways, railways,
underpasses

5 Service space Space dominated by modern servicing,
requirements needs

Car parks, service yards

6 Left over space Space left over after development, often designed
without a function

‘SLOAP´ (space left over after planning),
modernist open space

7 Undefined space Undeveloped space, either abandoned or awaiting
redevelopment

Redevelopment space, abandoned
space, transient space

Ambiguous spaces
8 Interchange space Transport stops and interchanges, whether internal

or external
Metros, bus interchanges, railway
stations, bus/tram stops

9 Public ‘private’ space Seemingly public external space, in fact privately
owned and to greater or lesser degrees
controlled

Privately owned ‘civic’ space, business
parks, church grounds

10 Conspicuous spaces Public spaces designed to make strangers feel
conspicuous and, potentially, unwelcome

Cul-de-sacs, dummy gated enclaves

11 Internalized
‘public’ space

Formally public and external uses, internalized and,
often, privatized

Shopping/leisure malls, introspective
megastructures

12 Retail space Privately owned but publicly accessible exchange
spaces

Shops, covered markets, petrol stations

13 Third place
spaces

Semi-public meeting and social places, public and
private

Cafes, restaurants, libraries, town halls,
religious buildings

14 Private ‘public’
space

Publicly owned, but functionally and user
determined spaces

Institutional grounds, housing estates,
university campuses

15 Visible private
space

Physically private, but visually public space Front gardens, allotments, gated squares

16 Interface spaces Physically demarked but publicly accessible
interfaces between public and private space

Street cafes, private pavement space

17 User selecting
spaces

Spaces for selected groups, determined (and
sometimes controlled) by age or activity

Skateparks, playgrounds, sports fields/
grounds/courses

Private spaces
18 Private open spaces Physically private open space Urban agricultural remnants, private

woodlands
19 External private
space

Physically private spaces, grounds and gardens Gated streets/enclaves, private gardens,
private sports clubs, parking courts

20 Internal private
space

Private or business space Offices, houses, etc.
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Augmented datasets

The aim of the augmented datasets was to balance the seed dataset by topping up all classes with images
produced by popular text-to-image DMs until every one of the 11 classes is composed of 200 images; hence,
each augmented dataset is composed of 2200 images. Images were generated using the Text 2 Dream tool
from the Deep Dream Generator engine46 and the command/imagine in Midjourney-v4.47 Only text prompts
(no base images) were inputted in the generation of the images, which, in turn were the keywords and
description used for each urban class, as shown in Table 1 (e.g. ‘a car park’ was used as a prompt to generate
images from the category ‘service space’). All prompts included additional descriptors to make the images
more in line with those from the seed dataset, such as ‘in broad daylight’ and ‘as seen at street level’. Figures
3–5 show examples of generated images for every urban class in both enlarged datasets studied in this work. It
is worth highlighting the unpredictable nature of these images, as they may sometimes be incoherent by
having constituting elements that are fragmented or disorganized. Nevertheless, they do overall possess
similar feature maps for the urban space for which they were created in comparison with the photographs in
the seed dataset; hence, they were deemed suitable for the classification problem studied in this work. This
assumption has been previously validated in the literature: complete realism is not needed when using
artificial instances for data augmentation.58 Figure 6 shows a small sample of instances for interchange spaces
with a degree of incoherence or misplaced components that can be detected by human curation. Such
misplacement is mainly related to the position of trains, which are depicted in positions other than on tracks.

Convolutional neural network training processes

Training was carried out in MATLAB’s Deep Learning toolbox59 using the three datasets described in Section
2 bymaking use of the architecture and weights of four CNNswidely used in data science for image classification
problems, namely, (i) GoogLeNet,49 (ii) ResNet-18,50 (iii) ShuffleNet,51 and (iv) MobileNet-v2.52 They are all
classed as deep neural networks with a varying number of layers, specifically 22, 18, 50, and 53 layers for
GoogLeNet, ResNet-18, ShuffleNet, and MobileNet-v2, respectively. All of them have been previously used in

Figure 1. Distribution of photographs per class in the seed dataset.
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computer vision research in a wide range of fields and applications, such as aerial image classification,60 face
recognition,61 bruised nectarine detection,62 variants of cancer identification,63 handwritten character recog-
nition,64 garbage classification,65 dairy cow identification,66 crop diseases identification,67 palmprint recogni-
tion,68 and classification of retinal diseases,69 amongmany others. It is worth adding that the four CNNs selected
in this work have previously successfully performed in the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), which allows researchers to test algorithms for object detection and image classification at large
scale.70 ILSVRC uses a dataset of more than one million images, which are grouped into 1000 categories,
including animals, vehicles, fruits/vegetables, landscape elements, home appliances, and clothing items. The
generic architectures of these CNNs are shown schematically in Figure 7.

Regarding the training parameters, for all datasets, the learning rate was fixed to 0.01 and the size of the
subsets for training/test was defined as 80% and 20%, respectively. These were selected for the sake of
simplicity, as they are within typical ranges used in classification projects in the architectural domain.18,20

Additionally, the number of iterations per epoch was set to 3 (maximum of 20 epochs) for the seed dataset and
13 (maximum of 30 epochs) for the augmented datasets. These were selected after observing convergence

Figure 2. Sample photographs in the seed dataset.
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Figure 3. Sample of generated images for ‘positive’ urban spaces. (a) Natural/semi-natural urban spaces; (b) civic spaces;
(c) public open spaces.

Figure 4. Sample of generated images for ‘negative’ urban spaces. (a) Movement spaces; (b) service spaces.
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during previous trial runs with all datasets. In this line, Figure 8 summarizes the training accuracy (%) versus
the number of iterations for all the training processes carried out in this work using the three datasets and four
CNNs. From this figure, it is possible to see that all four CNNs are able to reach high accuracy at the end of the
training process; however, the rate at which such accuracy is reached varies significantly for the three datasets,
as indicated by the slope of each curve. For the augmented datasets, ResNet-18 and MobileNet-v2 seem to be
the architectures that reach higher levels of accuracy during training, which is a significant characteristic,
especially when it comes to datasets that are substantially larger than the ones used in this work (as is likely to
be the case in a real-world application in urban studies).

Analysis of the results

Once training was carried out, the predictive capacity of the CNNs was measured against the test datasets,
which were generated by randomly choosing 20% of the images from the original datasets (i.e.

Figure 5. Sample of generated images for ‘ambiguous’ urban spaces. (a) Interchange space; (b) internalized public space;
(c) third place spaces; (d) private public space; (e) visible private space; (f) user selecting spaces.

Figure 6. Sample instances with a degree of incoherence or misplacement in interchange spaces. (a) From DDG-
enlarged dataset; (b) from MJ4-enlarged dataset.
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126 photographs for the seed dataset and 440 images for each augmented dataset). Figures 9–11 show the
confusion matrices obtained for the test datasets from the seed dataset, DDG-augmented dataset, and MJ4-
augmented dataset, respectively. It is worth mentioning that the confusion matrix for the test seed dataset
(Figure 9) shows a higher prediction capacity for those classes better populated (e.g. classes 1 and 2), which is
an expected outcome considering the class distribution in the seed dataset, as shown in Figure 1. Using the
results shown in Figures 9–11, performance evaluation was conducted using four well-known metrics for
multiclass classification, namely, accuracy, precision, recall, and F1-score.

Accuracy was determined using equation (1), which measures how much the CNNs are correctly making
predictions on the entire dataset. Precision was determined for each class individually using equation (2) to
then take the unweighted mean (sometimes referred to as macro-precision) to measure the ability of the CNNs
to predict an individual positive. Similarly, recall was determined for each class individually using equation
(3) to then take the unweighted mean (sometimes referred to as macro-recall) to measure the ability of the
CNNs to find all positive individuals in the datasets. Finally, the F1-score was determined using equation (4)
(referred to as macro-F1-score, as it is determined using individual precision and recall for each class) by
combining precision and recall into a single measure, which mathematically represents the harmonic mean of

Figure 7. Generic architectures of the CNNs used in this work compared to a classic CNN architecture shown in (a);
(b) GoogLeNet; (c) ResNet-18; (d) ShuffleNet; (e) MobileNet-v2.
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Figure 8. Training accuracy for all training processes carried out in this work for the three datasets. (a) Seed dataset; (b)
DDG-augmented dataset; (c) MJ4-augmented dataset.
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precision and recall. Table 2 summarizes these metrics for the four CNNs and the three datasets used in this
work, where the maximum value is highlighted in bold. From this table, it is possible to observe that the
highest performance is obtained when using the ResNet-18 architecture. Additionally, Figure 12 shows a
graphical summary of these metrics, where it is possible to see that all metrics are substantially higher for the
augmented datasets compared to the seed dataset. From Figure 12, it is also possible to observe that the MJ4-
augmented dataset slightly outperforms the DDG-augmented dataset for three out of the four CNN archi-
tectures considered in this work

Accuracy ¼ True Positiveþ TrueNegative

True Positiveþ TrueNegativeþ False Positiveþ False Negative
(1)

Precision ¼ True Positive

True Positiveþ False Positive
(2)

Figure 9. Confusion matrices for the test seed dataset; (a) GoogLeNet; (b) ResNet-18; (c) ShuffleNet; (d) MobileNet-v2.
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Recall ¼ True Positive

True Positiveþ False Negative
(3)

F1 score ¼ 2

�
Precision � Recall
Precisionþ Recall

�
(4)

Discussion

- Seed (imbalanced) vs augmented (balanced) datasets: when assessing the performance of the four CNN
architectures and three datasets, it is possible to observe from the confusion matrices in Figure 9 that all
CNNs naturally struggle to correctly classify instances that belong to classes with few instances. This is
a known result when training CNNs architectures using imbalanced datasets; it has been reported in the
literature55 and was confirmed in this work. On the other hand, when the same CNN architectures are
trained using a perfectly balanced dataset, their performance substantially increases, where all classes

Figure 10. Confusion matrices for the test DDG-augmented dataset; (a) GoogLeNet; (b) ResNet-18; (c) ShuffleNet; (d)
MobileNet-v2.
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have equal probability of being correctly classified, as seen from the confusion matrices shown in
Figures 10 and 11.

- Labelling process: the results reported in this work are valid when a whole image labelling process is used
for urban space classification. However, it is acknowledged that the results could be different when
approaching the problem as a multi-label classification task, that is, where each instance can be as-
sociated with several labels simultaneously.71 Such an approach would require a different labelling
process to the one used in this work, such as bounding box labelling. This would allow identification of
individual components that belong to more than one urban space, for example, streets or trees, where the
model could then identify an urban space by integrating its different components. In any case, the
approach used in this work can be considered as a first approximation to the problem, and the use of
other labelling processes is left as a matter of further research.

- Training parameters: the results in this work were obtained for a specific set of numerical values for the
training parameters, namely, learning rate, size of subsets for training/test, number of iterations per
epoch, and maximum number of epochs. Although the numerical values selected for these parameters
were within traditional values typically used for this type of problem, it is acknowledged that they
remained unmodified throughout the training process. Hence, the results could be improved if these

Figure 11. Confusion matrices for the test MJ4-augmented dataset; (a) GoogLeNet; (b) ResNet-18; (c) ShuffleNet; (d)
MobileNet-v2.
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parameters were fine-tuned and/or enabled to dynamically change in an adaptive manner. Such an
approach has been reported in the literature18,20 and shown to be an effective and efficient way of
training. However, further improvement to the already high accuracy achieved with static training
parameters is left as a matter of future research on this topic.

-Generative AI engines:As seen from Figure 12, both generative engines used in this work seem to have a
fairly similar performance when used as an augmentation technique for classifying urban spaces.
However, when curated by a human, the generated images produced by Midjourney seem to have a
superior coherence, that is, it is less likely for components to be misplaced in comparison to those
produced by Deep Dream Generator. This is in line with a research result already reported in the
literature:58 complete realism is not absolutely necessary when using generative images as a data
augmentation technique; this is because the actual features that appear on the produced images, not their
placement therein, will likely dictate the quality of the image for classification purposes. Certainly, this
statement might not be valid for applications where realism and accuracy are required. Considering that
Midjourney and Deep Dream Generator were the two generative AI engines used, the topic discussed in
this paragraph is not necessarily valid when other publicly available generative AI engines are used,
such as DALL-E, Stable Diffusion AI, or Runway.

- Limitations: This work has been conducted using a specific set of CNN architectures that were trained
using three particular datasets. Therefore, the results reported in this article are limited to such a domain
and are not necessarily valid outside of it. Other well-known CNN architectures used in classification
problems, such as VGGNet or AlexNet, may also be well suited to perform in classification problems of
urban spaces and could potentially compete against the highest-performing architecture in this work,
namely, ResNet-18. In addition, and aiming at generalization, it is yet to be seen how these CNN

Table 2. Metrics for multiclass classification for the four CNNs and three test datasets.

Seed Dataset (%) DDG-Augmented Dataset (%) MJ4- Augmented Dataset (%)

Accuracy
GoogLeNet 83.2 90.0 89.1
ResNet-18 72.0 89.1 93.4
ShuffleNet 67.2 85.2 90.0
MobileNet-v2 78.4 88.6 93.0

Precision
GoogLeNet 83.2 90.2 89.3
ResNet-18 63.7 89.7 93.8
ShuffleNet 56.2 85.8 90.6
MobileNet-v2 70.6 88.7 93.1

Recall
GoogLeNet 82.3 90.0 89.1
ResNet-18 59.4 89.1 93.4
ShuffleNet 56.5 85.2 90.0
MobileNet-v2 65.6 88.6 93.0

F1-score
GoogLeNet 80.9 90.0 89.0
ResNet-18 59.2 89.2 93.4
ShuffleNet 55.8 85.2 90.2
MobileNet-v2 67.0 88.5 93.0
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architectures would perform when including the other urban spaces defined by Carmona4 that were not
included in this work. Finally, the results reported in this article are constrained by the specific urban
space classification used, that is, the design-functional perspective proposed by Carmona.4 In summary,
how the results reported in this work could be impacted by the use of other CNN architectures, the
inclusion of urban spaces left void in this work, and even a totally different system to classify urban
spaces is left as a matter of exploration in future research.

Conclusions

Classification of urban spaces is a pertinent topic for policymakers and city planners in order to make
informed investment decisions to foster interaction in cities. This is an ever-growing topic due to the in-
creasing complexity of contemporary cities, which makes the task of classification also progressively more
difficult. This makes machine learning models an ideal candidate for this purpose due to their capacity to learn
patterns based on analyzing large amounts of data. Among the several attempts made in the literature to
establish categories or classes of urban spaces, one such approach is based on a design-functional perspective.
This standpoint focuses on the intended use, character, and shape of the public space. Following a design-
functional perspective widely used in the literature, this work used three datasets to classify urban spaces
using CNNs. A seed dataset composed of 630 photographs, which was highly imbalanced, was initially used
in the training process and was later topped up with GAN-generated images to make two augmented datasets
composed of 2200 images each, which were perfectly balanced. Four CNNs widely known for their data
science and AI applications were used in the training processes, namely, GoogLeNet, ResNet-18, ShuffleNet,

Figure 12. Metrics for multiclass classification for the four CNNs and three test datasets. (a) Accuracy; (b) precision; (c)
recall; (d) F1-score.
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and MobileNetv2, which are 22, 18, 50, and 53 layers deep, respectively. These CNN architectures dem-
onstrated their suitability as effective AI techniques for classifying urban spaces, as their metrics for
multiclass classification averaged 75% in accuracy, 68% in precision, and 66% for both recall and F1-score.
These results validate the first research objective of this work. When using the generative AI engines for data
augmentation purposes, results showed that prediction performance for the test datasets (images not used
during training) increases substantially when CNNs were trained with the enlarged datasets in comparison
with those trained with the seed dataset. Although both generative AI engines demonstrated their suitability
for this purpose, Midjourney seems to slightly outperform Deep Dream Generator: when using the former,
metrics for multiclass classification improved by 21% in accuracy, 35% in precision, and 38% for both recall
and F1-score, averaging roughly a 30% improvement. These results validate the second research objective
of this work. Additionally, ResNet-18 seems to perform better in comparison with the other three CNN
architectures studied in this work; therefore, it might be more capable of handling larger training datasets,
such as those associated with big data projects in urban studies. This result validates the third research
objective of this work. This article’s expected contributions to the public space design domain include
facilitating the analysis of public space utilization through automation and improving understanding of public
spaces’ roles in fostering community engagement for governance and policymaking. Some real-life examples
of projects for which the results reported in this article could be useful are (i) urban revitalization projects for
the redevelopment of neglected public spaces to enhance aesthetic appeal, accessibility, and functionality; (ii)
placemaking initiatives to transform public spaces into inclusive and people-centric areas; and (iii) temporary
urban interventions to test and improve public spaces, such as pop-up parks or street closures. Further
improvement in prediction performance by using other labelling processes, training parameters, generative AI
engines, and CNN architectures is left as a matter of further research in the field of urban classification
projects.
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