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Abstract

Copula theory has become one of the most important ideologies and methodologies for mod-

eling the dependence among random variables. Rather than using point performance metrics

such as Pearson linear correlation, copula functions enable us to construct the multivariate

distributions among the concerned random variables by starting from the corresponding

marginal distributions. Hence, it gives us a full description of the dependence mode.

The most frequently used copula models are parametric copulas such as Gaussian, Clay-

ton, and Gumbel copulas. However, in many practical scenarios, these copulas often fail to

fully describe the dependence as real data often contain complex patterns with multi-modals.

In addition, classic copulas are mostly studied in their bivariate form, leaving the applica-

tion of copulas into higher dimensional data non-trivial. This thesis intends to approach the

above-mentioned problems by utilizing Bayesian samplers into mixture copulas. In particu-

lar, we study the problems of estimating, selecting, and simulating mixture components of

copulas by using Bayesian approaches. Families of multivariate elliptical and skew-elliptical

copulas are given special attention as they can be naturally extended to higher dimensions.

For applications, we apply our proposed approaches to study the dependence among

financial markets. Meanwhile, we extend the application of our Bayesian mixture copulas

to improve the oversampling methods for imbalance learning problems in the field of data

science.

The thesis mainly consists of four major parts. In the first part, we applied the Bayesian

sparse finite mixture model to the copula mixture modeling, which enables us to estimate

and select the correct finite mixture copulas simultaneously without having to repeatedly

estimate various forms of models and compare their AICs or BICs.

The second part focused on the construction of infinite mixture t copulas using the

Dirichlet process prior. Although we are concentrated on the t copulas due to their use-

fulness in financial applications. This approach can be extended to more general copulas.

The approaches further advance the previously proposed finite mixture Bayesian approaches
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despite being more complicated in terms of modeling.

The third part further extends previous parts to construct the non-parametric Bayesian

copula mixture models for serially correlated data. In particular, we discuss the modeling

of the hidden Markov models (HMM) with multivariate emission distributions. We use

copula theories to decompose the construction of multivariate emission distributions into

univariate marginal distributions and a dependence structure. Meanwhile, many real-life

applications of HMM have an unknown number of states, which need to be manually specified

by analysts if the classic HMM method is used. Introducing the hierarchical Dirichlet process

into the Copula-HMM model enables us to infer the number of unknown states from the

dataset automatically. We thoroughly introduce the inference method of this non-parametric

Bayesian copula-HMM model therein.

The final part is about the introduction and study of the evaluation metrics of imbalance

learning problems as well as applying the mixture copulas approach to solving the data

imbalance. One major obstacle of applying the copulas approach to imbalanced datasets is

the high dimensional features of many tasks. On the other hand, data science applications

often include features that are discrete-valued, while most of the copulas literature only

deals with continuous random vectors. Therefore, we develop the MCMC approaches for

estimating the mixed valued copulas (i.e., the copula contains both continuous and discrete

valued variables) and apply them to estimate the dataset and perform the oversampling.

The Bayesian approach would be useful in these tasks as the real applications often involve

high dimensional large dataset, whereas the classic MLE approaches struggle in this case

due to the exponential complexity in evaluating the discrete dimensions. The approaches

are applied to the simulated dataset to prove its validity in the paper. Meanwhile, the real

oversampling task is performed using mixture copulas, and the results are compared with

the classic random oversampling and the SMOTE approaches.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Background and motivation

The development of the concept of the copula, which can be dated back to the early work of

Sklar (1959, 1973), has received tremendous attention in the past few decades, especially in

the area of finance, where modeling the correlation across an asset and estimating the risk

of a portfolio are essential (Cherubini et al., 2004; Jaworski et al., 2010; McNeil et al., 2015).

The power of this tool arises from Sklar’s theorem in (Sklar, 1959, 1973), which states that

for an arbitrary multivariate distribution, there exists a copula that decomposes the high

dimensional distributions into a link function and univariate margins. This enables us to

construct the high dimensional structure using a “bottom-up” approach from the univariate

margins instead of directly working with the multivariate part (Smith, 2011). Instead of using

the summary statistics such as Pearson correlations, which can only capture the degree of bi-

variate linear dependence, modeling the dependence through copulas gives a full description

of the dependence structure among the random variables.

When applying the copula methods to real life, such as modeling the dependence between

global trading markets, it is often insufficient to rely on a single parametric copula family

because of the data complexity and heterogeneity. A possible remedy is to use the mixture

modeling, McLachlan et al. (2019) give a recent comprehensive review of this classic statis-

tical topic. In terms of the copula functions, we are therefore motivated to write a copula

function as the mixture of others.

In most of the research papers regarding the topics of finite mixture models, it is common

1



to assume that the mixed distributions come from the same parametric family. This is also

mentioned in McLachlan et al. (2019); Gelman et al. (2013). However, in the literature on

copula methods, mixture copulas consisting of several parametric copula families are also

common. Hu (2006) is one of a few pioneering works of the mixture copula application

in the field of finance. The author used mixed Normal-Gumbel-Survival Gumbel copula

with empirical marginal distributions to model the stock dependence between FTSE 100

of the U.K., Nikkei 225 of Japan, S&P 500 of the U.S.A. and Hang Seng of H.K. S.A.R.,

quasi-likelihood was used for parameters estimation, and Chi-square test was applied for

the goodness of fit. Arakelian and Karlis (2014) uses the expectation maximization (EM)

approach to estimate the mixture copula with two components and use them to detect

the changing dependence between financial markets, the combination of Gaussian, Clayton,

and Gumbel Copula is mainly considered there, and the model selection criteria is log-

likelihood. Vrac et al. (2012) combined the dynamic clustering with the gradient ascent to

solve the mixture copula, Frank copula family with nonparametric margins are used in their

geographical application, the best model is selected by minimizing the approximate weight of

evidence (AWE), the asymptotic convergence of their methods are obtained. More recently,

Liu et al. (2022) proposed to construct the semi-parametric conditional mixture copulas to

assess the global currency market, their best models are selected by comparing the Bayes

information criterion (BIC), and asymptotic consistency is obtained therein.

On the other hand, the vast majority of the mixture copula literature handles the model

estimation and selection problem by employing the classic MLE-based framework (Hu, 2006;

Arakelian and Karlis, 2014; Cai and Wang, 2014; Roy and Parui, 2014; Liu et al., 2019). The

exploration of Bayesian approaches in the field of mixture copula remains relatively few. This

is also true when we extend our discussion range to the whole field of copula modeling as

pointed out by the survey of Smith (2011), where they comprehensively discussed the existing

Bayesian copula approaches.

We outline some studies of the Bayesian methods in copulas modeling as follows. In

terms of the Bayesian inference of copula parameters, some typical studies include Pitt et al.

(2006), where the Gaussian regression copula was estimated by Markov Chain Monte Carlo

(MCMC). Almeida and Czado (2012) studied the estimation problems of time-varying copula

models using Bayesian computational approaches. Smith et al. (2012) constructed the skew-

t copulas using the Bayesian framework. Smith and Klein (2021) estimated the regression

copula using Hamiltonian MCMC and the method of variational inference, Deng et al. (2023)

provided scalable variational Bayes approaches for skew-t copulas.

2



In terms of Bayesian copula selections, Some previous works include Huard et al. (2006),

where the author treats the copula parameters as a nuisance and selects the copula with the

highest posterior probability. Their method is free from estimating the copula parameters.

Silva and Lopes (2008) proposed to select the model using deviance information criteria

(DIC), expected Bayes information criteria (EBIC), and expected Akaike information criteria

(EAIC). They also pointed out the importance of the joint estimation of copula parameters

using the Bayesian approach from the perspective of considering parameter dependence.

Their work can be viewed as the Bayesian version of the popular frequentist AIC (BIC)

approaches.

Nevertheless, as mentioned previously, the construction of mixture copulas under the

setting of Bayesian frameworks lacks thorough consideration in the literature, and the previ-

ous discussed Bayesian methods of copula estimation and selection are not directly suitable

for the mixture copula models. Moreover, the applications of mixture copula models are

relatively limited in the literature. The main topics of this thesis are therefore to discuss

mixture copula estimation and selection problems using Bayesian frameworks and we also

intend to extend the relevant mixture copula applications in the field of finance and data

science.

There is a long history of debate regarding whether the Bayesian approach or the fre-

quentist approach is the best in terms of statistical modeling. There is no answer yet. We

study primarily the Bayesian methods here, mainly due to its advantage in terms of auto-

matic model selection, estimation and inference while simultaneously sampling mechanism,

especially when empowered by the MCMC scheme. Meanwhile, the Bayesian viewpoints are

less considered in the copula field when compared with the classic approach. However, as

the famous sentence by George E.P.Box stated (Box et al., 2011), All models are wrong, but

some are useful. We do not try to compare the general mindset of the statistical approach

as all methodologies have their pros and cons, but use them as we find them effective in

solving our problems.

1.1.2 Overall structure of the thesis

The structure of the rest of the thesis is organized as follows. The remainder of the first chap-

ter is mainly concerned with the general introduction of the basic definitions and methodolo-

gies used in later chapters, including some fundamental definitions and theorems regarding

the copula theory, different types of parametric copulas, and the methodology of Bayesian
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computation.

The second chapter proposes the Bayesian method that would enable us to select and

estimate the correct finite mixture copulas simultaneously. This is done by first overfitting

the model and then conducting the Bayesian estimations. The MCMC algorithm as well

as the EM algorithm, are proposed for implementing the Bayesian method. We verify the

correctness of our approach by numerical simulations and the real data analysis is done

by studying the dependencies among three major financial markets. The methodology is

particularly useful when applied to the mixture copula with heterogeneous components.

The third chapter proposes an infinite mixture Student t copula model using a nonpara-

metric Bayesian approach. We establish a corresponding MCMC sampler for this model.

In contrast to the normal mixture model, our proposed model is more suitable for data

exhibiting tail dependence, which is frequently encountered in financial risk management.

We evaluated the proposed algorithm through theoretical simulations and real data analysis.

Parameter estimation results from the simulations demonstrate that our approach is compet-

itive when compared to the standard maximum likelihood estimation method. The analysis

of real financial data supports the validity of our approach and highlights the importance of

applying a t copula in the presence of heavy tails.

In the fourth chapter, we develop the copula Bayesian infinite hidden Markov model

(copula-iHMM) by extending the theory of the third chapter to the correlated data. This is

in particular very useful in terms of modeling the financial data as they are time-correlated

instead of the i.i.d case discussed in the previous chapter.

In the fifth chapter, we introduce the basics of imbalance learning and study the statisti-

cal properties of empirical ROC-AUC, which is the most commonly used metric in measuring

the performance of the classifiers when applied to the imbalanced learning task. We demon-

strate both analytically and empirically that the empirical AUC estimation could be highly

volatile in many circumstances when applied to an imbalanced dataset. To be more specific,

we have proved that under some frequently encountered circumstances, variances of the em-

pirical AUC estimator increase with the imbalanced level of the dataset. Hence, under the

imbalanced setting, variances could be high. Furthermore, we conduct several simulations

and experiments to solidify our findings. Therefore, when the empirical ROC-AUC is used

to summarize the classifier’s performance, especially when the dataset presents a high-class

imbalance, we must include the information on the variance to make our finding reliable.

In the sixth chapter, we apply the Bayesian approach to estimate the mixture copula

with discrete margins, we further apply our models to solve the class imbalanced problems
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by oversampling the mixture copulas. The methodology makes it possible to learn and

sample from the data set with the discrete and continuous features existing simultaneously.

On the other hand, the discreetness of factors in a data set is not naturally considered for the

classic SMOTE algorithm of imbalance learning, and classic random oversampling is simply

performed by generating the already existing points, which do not give any new information

to the classifiers and is easy to overfit. Copula methods enable us to generate new points

with the correlation structure memorized by learning from the training set. Hence, the

overfitting problems are reduced. Experiments with synthetic and real data are done in the

chapter following the introduction of the methodology. The outcomes show the validity of

the approach when compared with the benchmark methods.

Finally, the seventh chapter is devoted to the conclusion remarks and possible future

research directions.

1.2 Copula functions

Copula functions are widely applied in the modeling of multidimensional random vectors.

For a d-dimensional application, copula functions are defined over the d-hypercube [0, 1]d,

and they satisfy the definition of probability distributions. Following the definition in Nelsen

(2006); McNeil et al. (2015), the copula function C(·) : [0, 1]d → [0, 1] is a d-variate distri-

bution function that satisfies the following conditions.

1. The copula function is non-decreasing in every dimension. In particular, for any di-

mension k and C(u1, u2, . . . , uk, . . . , ud) ≥ C(u1, u2, . . . , vk, . . . , ud) if uk ≥ vk.

2. C(u1, u2, . . . , ud) = 0 if one or more arguments among d dimensions equal to zero. If

all arguments except uk equal to 1, we have C(1, 1, . . . , uk, . . . , 1) = uk.

3. Define the subtraction operator

∆uk
vk
C(u1, u2, . . . , ud) = C(u1, u2, . . . , uk, . . . , ud)− C(u1, u2, . . . , vk, . . . , ud).

For Cartesian product ⊗d
i=1[vi, ui] ⊂ [0, 1]d, we have

∆ud
vd
. . .∆u2

v2
∆u1

v1
C(·) ≥ 0.

In summary, as stated by McNeil et al. (2015), a copula function is a multivariate
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distribution function with uniform margins.

Sklar’s theorem (Sklar, 1959) enables the application of copula functions into applied mod-

elings. It states that any multivariate random vector (X1, X2, . . . , Xd) with distribution

F (x1, x2, . . . , xd) can be constructed from its marginal distributions F1, F2, . . . , Fd and cop-

ula function C. Particularly, for any d-dimensional distribution, there exists a copula

C : [0, 1]d → [0, 1] such that

F (x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd)). (1.1)

The copula function is unique if the xj are all continuous. If some of the xj are discrete, the

copula is unique in the range of the marginal distributions. Sklar’s Theorem allows us to

form a multivariate distribution by linking the underlying univariate marginal distributions

with a copula function. The copula therefore gives us the full description of the relation

between variables, which is more informative than single correlation statistics.

For an absolutely continuous distribution F (·), the relationship between the distribution

and copula densities can be obtained by differentiating both sides of (1.1) such that

∂dF (x1, x2, . . . , xd)

∂x1∂x2 · · · ∂xd

= f(x1, x2, . . . , xd) = c(F1(x1), F2(x2), ..., Fd(xd))
d∏

i=1

fi(yi),

where c(·) is the density of the copula C(·).

1.3 Parametric copula families

1.3.1 Elliptical copulas

The elliptical copulas are one of the most common choices for modeling the dependence

structures among variables, especially in high dimensional settings (Smith and Loaiza-Maya,

2022). From the Sklar theorem, copulas are of the form

C(u1, u2, . . . , ud) = F (F−1
1 (u1), F

−1
2 (u2), . . . , F

−1
d (ud)). (1.2)

Since the elliptical distribution is closed under the marginalization, we can therefore get the

corresponding parametric copula implicitly defined by (1.2). For example, by inverting the

marginal of the standard multivariate normal distribution, we obtain the normal copula,
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which is

CP (u1, u2, . . . , ud) =

∫ ϕ−1(ud)

−∞
· · ·
∫ ϕ−1(u1)

−∞

(
(2π)d|P |

)−1/2
exp(−1

2
x′P−1x)dx, (1.3)

where P is the positive definite correlation matrix, and x = (ϕ−1(u1), ϕ
−1(u2), . . . , ϕ

−1(ud))
′

with ϕ(·) being the quantile function. On the other hand, taking the same action to the

multivariate t distribution yields the t copula,

Cv,P (u1, u2, . . . , ud) =

∫ t−1
v (ud)

−∞
· · ·
∫ t−1

v (u1)

−∞

Γ(1
2
(v + d))/Γ(v

2
)√

(πv)d|P |
(1 +

y′P−1y

v
)dy, (1.4)

t−1
v (u1) is the quantile function of the univariate standard t distribution with v degree of

freedom and y = (t−1
v (u1), t

−1
v (u2), t

−1
v (u3), . . . , t

−1
v (ud))

′, P is a correlation matrix. The

respective copula density c(·) can be obtained due to the differentiation

f(F−1
1 (u1), F

−1
2 (u2), . . . , F

−1
d (ud)) = c(u1, u2, . . . , ud)

d∏
j=1

fj(F
−1
j (uj)). (1.5)

One potential advantage of using the t copula (1.4) over the normal copula is its ability to

model the tail dependence. That is, we wish to measure the degree of dependence on the

upper tail ρu and on the lower tail ρl,

ρl = lim
u→0+

P(X2 ≤ F−1
2 (u) | X1 ≤ F−1

1 (u)) = lim
u→0+

C(u, u)

u

ρu = lim
u→1−

P(X2 > F−1
2 (u) | X1 > F−1

1 (u)) = lim
u→1−

1− 2u+ C(u, u)

u
.

For the two dimensional copula d = 2, we have ρl = ρu = 0 for the normal copula but

for the t copula with v degree of freedom we have

ρl = ρu = 2Fv+1;t(−
√

(v + 1)(1− c)/(1 + c)),

where Fv+1;t(·) is the t distribution function with v degree of freedom. One criticism of

the elliptical copula families is their symmetric property c(u) = c(1 − u), which might

be unrealistic for modeling the asymmetrical correlation that often occurs in the financial

market (Ang and Chen, 2002). Therefore, many authors have proposed the skewed elliptical

copula. Smith et al. (2012) proposed the skew t copula and the estimation of the parameters is
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performed by MCMC. Wu et al. (2014) uses a nonparametric Bayesian approach to construct

infinite mixture skew normal copula. Wei et al. (2019) explored some theoretical properties of

the skew-normal copula. Alternatively, Archimedean families of copulas are another solution

for the issue.

1.3.2 Skew-normal distribution and copula

We consider variables from the skew-normal distribution (Azzalini, 1985; Azzalini and Valle,

1996). Suppose that we have two normal variables X0 and Xj, X0 is standard normal. Then

we define the corresponding skew-normal random variable Yj via

Yj = δj|X0|+
√

1− δ2jXj, (1.6)

where δj ∈ (−1, 1) is a given skewness parameter. We denote this as Yj ∼ SkewNormal(λj),

where

λj =
δj√
1− δ2j

. (1.7)

The resulting distribution for such a variable is given by (Azzalini and Valle, 1996, eq. 1.1)

fj(yj) =

√
2

π
e−y2j /2Φ(λjyj). (1.8a)

Note that when δj = 0, all skew-normal results reduce to the normal case. Φ(u) is the

cumulative density function of the standard normal.

We now extend this result to d dimensions by considering the following d+1-multivariate

normal random vector: (
X0

X

)
∼ Nd+1

(
0,

(
1 0T

0 P

))
,

where X is the random vector and P is its correlation matrix. Jointly, the density of the

d-multivariate skew normal is written as Azzalini (1985); Azzalini and Valle (1996)

f(y) = 2(2π)−d/2|Pδ|−1/2 exp

(
−1

2
yTP−1

δ y

)
Φ(αTy), (1.8b)
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where

yT = (y1, y2, . . . , yd)

δT = (δ1, δ2, ..., δd),

λT = (λ1, λ2, ..., λd),

Λ = (Id − diag(δ)2)1/2,

Pδ = Λ(λλT + P )Λ,

α = Λ−1P−1λ(λTP−1λ+ 1)−1/2.

When δ = 0 the skew-normal results degenerate to the standard joint Gaussian distribution.

Hence, we are able to represent more complex, especially asymmetrical data distributions

using the skewed family.

Therefore, rewriting our results to obtain the multivariate skew-normal copula as in (Wu

et al., 2014; Wei et al., 2019), we have

cSN(u1, u2, . . . , ud) =
f
(
F−1
1 (u1), F

−1
2 (u2) . . . , F

−1
d (ud)

)∏d
j=1 fj

(
F−1
j (uj)

) , (1.9)

where the subscript “SN” refers to “skew-normal”. Here the forms of f are in (1.8), and we

may use the integral of (1.8a) to obtain F−1
j (numerically).

1.3.3 Archimedean copulas

Archimedean copulas have been widely researched and applied in the field of credit risk

modeling (McNeil et al., 2015). They can be constructed by satisfying the following linear

additive property, that is,

φ−1(C(u1, u2, . . . , ud)) =
d∑

i=1

φ−1(ui), (1.10)

where φ(·) : [0,+∞) → [0, 1] is usually called the Archimedean copula generator satisfying

convexity, continuity, and completely monotonicity with φ(0) = 1 and limt→∞ φ(t) = 0. The

generator with such properties can be derived from the Laplace transform of the positive
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random variable X with its distribution function having FX(0) = 0,

φ(t) =

∫ ∞

0

exp(−tx)dFX(x).

Taking different forms of φ(t) yields different Archimedean families of copulas, a comprehen-

sive table can be found in the textbooks (Nelsen, 2006, Table 4.1). We give several copulas

that we will use with their generators in Table 1.1, and the corresponding distribution func-

tion is C(u1, . . . , ud) = φ(
∑d

i=1 φ
−1(ui)).

Table 1.1: Some classic Archimedean family of copulas.

Copula type φ(t) θ range
Frank θ−1 ln ( 1

1+(exp (−θ−t)−exp (−t))
) R \ {0}

Gumbel exp (−tθ−1
) [1,+∞)

Clayton† (1 + θt)−θ−1

+ (0,+∞)

† We denote (·)+ := max(·, 0)

One noticeable property of the Archimedean copula is its exchangeability. That is, for

any permutation σ(i) of {1, 2, . . . , d}, we have C(u1, u2, . . . , ud) = C(uσ(1), uσ(2), . . . , uσ(d)).

This characteristic would be attractive for some applications, such as portfolio default mod-

eling in the credit market. However, for the more general purpose, it might be undesirable

when we have the copula dimension d ≥ 3 since this implies that the connection between

variables is assumed to be homogeneous. Some improvement has been made on this problem,

including nonexchangeable copulas named asymmetric Archimedean copulas (Genest et al.,

1998; McNeil et al., 2015)

Cγ(u1, u2, . . . , ud) = (
d∏

j=1

uγi
j )C(uγ1

1 , uγ2
2 , . . . , uγd

d ).

Otherwise, some amendment in (1.10) yields so-called nonexchangeable nested Archimedean

copula (Joe, 1997).

Different Archimedean copulas can model different kinds of dependence, Figure.1.1 gives

us a plot of 4 different types of copulas. In particular, normal and Frank copulas are sym-

metric in the sense of c(1 − u1, 1 − u2) = c(u1, u2) with 0 tail dependence but the Frank

copula was, in addition, proved to be radial symmetric (Frank, 1979). Gumbel copula is able
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to depict the extreme upper tail dependence with pu = −2θ−1
Gumbel +2 but pl = 0. Oppositely,

the Clayton copula is able to describe the extreme lower tail dependence with pl = 2−θ−1
Clayton

for θClayton > 0 but ρu = 0.

Figure 1.1: A plot of different families of Copula with 2000 points, θ = 0.6, 5, 3, 3 for Normal,
Clayton, Frank, Gumbel Copula respectively.

1.3.4 Mixture copulas

For complex data structures in many real-life applications, a single parametric copula might

be insufficient to capture all important features when performing analysis. It is therefore

motivated to introduce finite mixture copulas,

Cmix =
K∑
i=1

wiC
(i),

K∑
i=1

wi = 1, wi ≥ 0 ∀i = 1, 2, . . . , K. (1.11)

Where C(i) refers to a single copula component and K is usually a predefined hyperparam-

eter. In classic finite mixture models’ discussion, C(i) are from the same parametric family
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(McLachlan et al., 2019). However, mixture models with heterogeneous components are also

common in the copula literature, see (Hu, 2006; Arakelian and Karlis, 2014) for examples.

It is straightforward to check (1.11) to satisfy the definition of the copula function.

1.4 MCMC methods of Bayesian computation

In this section, we introduce the basics of Bayesian statistics and its computational methods.

Markov Chain Monte Carlo (MCMC) is given specific attention. This will be the primary

estimation and inference method we use to study our copula functions.

1.4.1 Bayesian statistics and motivation of MCMC

In the realm of Bayesian statistics, we treat the parameters θ ∈ Θ to be estimated with

uncertainty. That is, instead of directly applying the data to optimize the likelihood of

models, we first utilize some prior knowledge of the models proposed and describe them as the

probability distributions p(θ). We hence apply our data D = {X1, X2, . . . , Xn} and models

to infer the posterior probability distribution adjusted from our prior. Mathematically

speaking, the mindset of this process can be expressed as the classic Bayesian formula.

p(θ | D) = p(D | θ)p(θ)∫
p(D | θ)p(θ)dθ

. (1.12)

For the most frequently used examples, such as the posterior distributions from the i.i.d

Gaussian distribution. Analytical forms of the posterior mean µ and covariance matrix Σ

can be obtained by using conjugate priors, see Bishop and Nasrabadi (2006) for detailed

computation. On the other hand, the analytical forms of the denominator for (1.12) are

often unavailable for more complex distributions. The information known to us is merely

the numerator. That is,

p(θ | D) ∝ p(D | θ)p(θ). (1.13)

We need to come up with some computational approaches such that the posterior distribution

of (1.12) can be evaluated. One straightforward idea is to evaluate the denominator using
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numerical integration. such that

p̂(θ | D) = p(D | θ)p(θ)∑
i p(D | θi)p(θi)∆θi

. (1.14)

Unfortunately, the usual complexity of such approaches is O(Nd) where N is the scale of

precision, and d is the dimension of parameter space. The exponential term in the complexity

indicates that these kinds of methods suffer from the curse of dimension (Köppen, 2000)

when the dimension d becomes large. The tasks would very soon become computationally

prohibitive as d→∞.

To overcome the dependence between the dimension of integration and the complex-

ity of numerical approximation. Monte Carlo methods are often sought. That is, we can

approximate the posterior distribution as

p̃(θ | D) = p(D | θ)p(θ)
1
M

∑M
i=1 p(D | θi)

. (1.15)

Where {θ1,θ2, . . . ,θi, . . . ,θM} is a finite collection of M points sampled from the prior p(θ).

The method needs M points for one evaluation, independent from the dimensionality d, and

the prior is usually some well-studied distributions. However, the prior and the resultant

posterior are usually far distant for tasks where the data are informative. This means the

exploration of parameter spaces using the prior p(θ) is often very slow and inefficient. More

sophisticated approaches are necessary in this regard.

In the following, we introduce Markov Chain Monte Carlo (MCMC) simulation ap-

proaches. They are types of approaches where we simulate data from Markov chains, and

we expect the limiting distributions of Markov chains to be our posteriors. By proposing a

reasonable transition kernel, we expect samples from the chain are much well guided than

the random samples from priors.

1.4.2 Basic of MCMC methods

A stochastic process (θ1,θ2, . . . ) is a Markov chain if for any set B with non-zero measure,

we have

P (θn ∈ B | θn−1,θn−2, . . . ,θ1) = P (θn ∈ B | θn−1).

That is, the distribution of the next sample is only dependent on the previous one. In

this thesis, we only consider homogenous Markov chains such that the transition kernel
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P (θn ∈ B | θn−1) takes the same form for all n = 2, 3, 4, . . . .

There might exist an invariant distribution for the Markov chain. That is, for any set

with non-zero measure, we have an invariant distribution Π(θ) and∫
P (θn ∈ B | θn−1)dΠ(θn−1) = Π(θn ∈ B).

In this case, the chain will remain in the invariant distribution once the previous state is

sampled from it.

We want to sample points θ1,θ2, . . . ,θn, . . . from the Markov chain so that when they

reach stationary, they are sampled from the posterior distribution p(θ | D). More formally,

by proposing the appropriate transition kernel P (θn ∈ B | θn−1), the outcome we hope to

reach is therefore

N−1

N∑
j=1

g(θj)→
∫

g(θ)p(θ | D)dθ N →∞ (1.16)

almost surely for any g(·) that is L1(Θ) integrable with respect to the posterior measure

and the initial guess θ1 can be arbitrary (in the almost surely sense) within the support of

parameter distribution.

This is the result of Tierney (1994), which states that if a Markov chain has the invariant

distribution π and it is aperiodic, π-irreducible as well as satisfying some forms of recurrent

conditions, it has the unique stationary distribution π such that P (θn ∈ B | θ1)→ π(θ ∈ B)
as n → ∞ for θ1 ∈ Θ almost surely and (1.16) is satisfied. See Geweke et al. (2011) for

extended discussion.

Therefore, as long as we are able to construct such chains with the invariant distribution

to be the posterior p(θ | D). We would be able to reach the stationary distribution p(θ | D)

when we sample the chain sufficiently long.

The convergence speed of chains needs to be assessed case-by-case in the MCMC appli-

cations as there are currently no comprehensive results available. The most straightforward

way is by inspecting the trace plot to see if it is unstable. Some numerical diagnostics

are also available such as Gelman-Rubin diagnostic (Gelman and Rubin, 1992), Geweke

diagnostic (Geweke, 1991). When the stationary is detected, we often apply (1.16) with

truncation. That is (N −M − 1)−1
∑N

j=M+1 g(θj) is usually considered to discard the first

M non-stationary points called burn-in stage.
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1.4.3 Metroplis-Hastings algorithm and its variants

The Metropolis-Hasting algorithm (M-H) and its variant are the most popular MCMC ap-

proaches. In order to sample from the posterior distribution p(θ | D), it is necessary to

propose the Markov chain such that the invariant distribution is the posterior as we argued

in the last section. This is realized by first sampling a new point θ∗ from a proposal distri-

bution q(·), and then calculating the acceptance rate α to see if we should accept θ∗ so that

θt = θ∗ in the chain or just keep last point so θt = θt−1. The steps are the following.

1. Initialize starting state θ0.

2. For t = 1 to N do

(a) Propose a new state θ∗ from the proposal distribution q(θ∗|θt−1).

(b) Compute acceptance probability:

α(θ∗,θt−1) = min

(
1,

p(θ∗|D)
p(θt−1|D)

× q(θt−1|θ∗)

q(θ∗|θt−1)

)
.

(c) Draw u ∼ Uniform(0, 1).

(d) If u < α(θ∗,θt−1) then

i. Accept the proposed state: θt = θ∗.

(e) Else

i. Reject the proposed state: θt = θt−1.

3. Output: {θ1,θ2, . . . ,θN}.

In this regard, we can see that the density of the transition kernel is of the mixture form

such that

k(θt | θt−1) = α(θt,θt−1)q(θt|θt−1) +
(
1−

∫
α(θ∗,θt−1)q(θ

∗|θt−1)dθ
∗)δθt−1(θt). (1.17)

The M-H transition kernel (1.17) can be verified to satisfy the reversible condition

p(θ∗ | D)k(θ | θ∗) = p(θ | D)k(θ∗ | θ). (1.18)
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A sufficient (but not necessary) condition to have the posterior distribution p(θ | D) being
the invariant distribution of the Markov chain. This is because (1.18) implies

p(θ∗ | D) =
∫

p(θ | D)k(θ∗ | θ)dθ

by integrating both side with respect to θ. Furthermore, for the kernel of the M-H (1.17),

p(θ∗ | D)k(θ | θ∗) = α(θ,θ∗)q(θ|θ∗)p(θ∗ | D) +
(
1−

∫
α(θ,θ∗)q(θ|θ∗)dθ

)
δθ∗(θ)p(θ∗ | D)

= min (q(θ|θ∗)p(θ∗ | D), p(θ|D)× q(θ∗|θ)) +
(
1−

∫
α(θ∗,θ)q(θ∗|θ)dθ

)
δθ(θ

∗)p(θ | D)

= p(θ|D)q(θ∗ | θ)min

(
p(θ∗|D)
p(θ|D)

× q(θ|θ∗)

q(θ∗|θ)
, 1

)
+
(
1−

∫
α(θ∗,θ)q(θ∗|θ)dθ

)
δθ(θ

∗)p(θ | D)

= α(θ∗,θ)q(θ∗|θ)p(θ | D) +
(
1−

∫
α(θ∗,θ)q(θ∗|θ)dθ

)
δθ(θ

∗)p(θ | D) = p(θ | D)k(θ∗ | θ).

The second part of the addition are equivalent when we interchange the position of θ

and θ∗ because it is 0 unless θ = θ∗.

1.4.4 Block-wise M-H sampling

The M-H algorithm is sometimes easier to implement in blocks. This often occurs when

we want to take some latent variables into consideration so that our modeling becomes

clearer. Mathematically, suppose our goal is to sample the distribution of θ, it might be

more straightforward if we can add latent vectors z,k such that

p(θ | D) =
∫

p(θ, z,k | D)dzdk

and p(θ | z,k,D) is easier to sample. We can, in this case, use the block-wise sampling

strategy to construct the Markov chain for p(θ, z,k | D) and the target θ is the marginal of

the stationary distribution which can be collected by simply ignoring the latent dimensions

of samples.

Define the partition of θ into B blocks: θ = (θ1,θ2, . . . ,θB). We give the generalized

algorithm of block-wise sampling as follows.

1. Initialize starting state θ0 inside the relevant domain.

2. For t = 1 to N do
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(a) For b = 1 to B do

i. Propose a new block state θb∗ from the proposal distribution qb(θ
b∗|θb

t−1,θ
<b
t ,θ>b

t−1),

where θ<b
t represents the blocks updated before block b at iteration t, and θ>b

t−1

represents the blocks not yet updated at iteration t.

ii. Compute block acceptance probability:

αb(θ
b∗,θb

t−1) = min

(
1,

p(θb∗,θ<b
t ,θ>b

t−1|D)
p(θb

t−1,θ
<b
t ,θ>b

t−1|D)
×

qb(θ
b
t−1|θb∗,θ<b

t ,θ>b
t−1)

qb(θb∗|θb
t−1,θ

<b
t ,θ>b

t−1)

)
.

iii. Draw ub ∼ Uniform(0, 1).

iv. If ub < αb(θ
b∗,θb

t−1) then

A. Accept the proposed block state: θb
t = θb∗.

v. Else

A. Reject the proposed block state: θb
t = θb

t−1.

3. Output: {θ1,θ2, . . . ,θN}.

For some blocks, the analytical distribution of p(θb∗ | θ<b
t ,θ>b

t−1D) might be available.

In this case, we will usually let qb(θ
b∗|θb

t−1,θ
<b
t ,θ>b

t−1) := p(θb∗ | θ<b
t ,θ>b

t−1D) called Gibbs

sampler and the acceptance rate of this step is 1.

This is because by substituting the proposal distribution, we get:

αb(θ
b∗,θb

t−1) = min

(
1,

p(θb∗,θ<b
t ,θ>b

t−1|D)
p(θb

t−1,θ
<b
t ,θ>b

t−1|D)
×

p(θb
t−1 | θ<b

t ,θ>b
t−1,D)

p(θb∗ | θ<b
t ,θ>b

t−1,D)

)
Now, the factor involving the ratios of the joint distributions simplifies to the ratio of the

conditional distributions for block b:

p(θb∗,θ<b
t ,θ>b

t−1|D)
p(θb

t−1,θ
<b
t ,θ>b

t−1|D)
=

p(θb∗ | θ<b
t ,θ>b

t−1,D)
p(θb

t−1 | θ<b
t ,θ>b

t−1,D)

Hence, the acceptance rate αb is:

αb(θ
b∗,θb

t−1) = 1

every proposed sample is accepted for the Gibbs sampler.
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Chapter 2

Finite mixture copula estimation and

selection using Bayesian methods

2.1 Introduction

In this chapter, we develop a Bayesian MCMC and EM approach of estimating and selecting

the mixture copula models. The general framework of the methodology is called sparse finite

mixture model, first developed and proofed theoretically by Rousseau and Mengersen (2011)

and later applied in several works including (Gelman et al., 2013; Van Havre et al., 2015;

Malsiner-Walli et al., 2016; Frühwirth-Schnatter and Malsiner-Walli, 2019). In contrast to

employing the classical methodologies to select mixture copula models such as repeatedly

calculating AIC (Wagenmakers and Farrell, 2004), BIC (Kuha, 2004), Bayes factor (Kass

and Raftery, 1995), and DIC (Spiegelhalter et al., 2014) for different forms of models and

comparing their values, Bayesian modeling of sparse finite mixture estimates and selects its

components simultaneously. This is particularly convenient in the case of mixture model

inference and selection as the number of candidate best models is sometimes combinatorial

(e.g. mixture models with heterogeneous components).

We therefore propose to estimate and select the copula mixture by the framework of the

Bayesian sparse finite mixture models in this chapter, which has rarely been done elsewhere

in the literature. Following our introduction, the rest of the chapter is organized as follows.

In section 2.2, we introduce the general framework of the Bayesian sparse copula mixture

models, including how we overfit and construct the valid priors of the copula mixture first

and then proceed to estimate the parameters while simultaneously determining the correct
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number of components. These are followed by outlining the implementation algorithms of

MCMC and EM, which are constructed based on the model

Cmix(u1, u2) = w1Cfr(u1, u2) + w2CNo(u1, u2) + w3CCl(u1, u2) + w4CGu(u1, u2), (2.1)

where Cfr, CNo, CCl, CGu is the Frank Copula, Normal Copula, Clayton Copula and Gumbel

Copula respectively. As we can see from Figure 1.1, the mixture of them would be able

to describe various dependence patterns such as extreme upper tail, extreme lower tail, or

spherical symmetric. The connection of our approach with the penalized likelihood method

fromWang (2008); Cai andWang (2014) has also been made through the EM approach in this

section. In the following numerical simulations, we test the validity of our algorithms using

the model (2.1). Furthermore, we also work with 3-dimensional mixture of Gaussian copulas

in Section 2.3.3 to further demonstrate the validity of our approach in multi-dimensional

situations. In the section on real data analysis, we again apply the model (2.1) along with

our Bayesian sparse mixture methods to study the dependence among major stock markets

in Shanghai, Hong Kong, and New York.

2.2 Estimation and selection

The general starting point is to construct the model by writing out

Cmix(u) =
K∑
j=1

wjCj(u;θj), (2.2)

with the knowledge that a true model has the form

C0(u) =
K′∑
j=1

wjCj(u;θ
0
j ), for K ′ ≤ K.

where Cj(·), Ck(·) for any j, k ≤ K can either from the same parametric family or not,

although for the former case, one needs to take extra measures for the label switching prob-

lems (Gelman et al., 2013, Section 22.3). We then proceed to directly estimate (2.2) by the

Bayesian approach of finite mixture models but with regularized Dirichlet weighting priors.

Rousseau and Mengersen (2011) showed that by applying this approach to the standard finite

mixture distribution, it would clear out the redundant components asymptotically as long
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as the regularity conditions are met. In particular, they showed for w = (w1, w2, . . . , wK) ∼
Dirichlet(α1, α2, . . . , αK) with maxj=1,2,...,K αj < dim(θj)/2 plus some other constraints,

the posterior estimation of weights has the property
∑K

j=K′+1E[wj|D] = OP (1/
√
n). This re-

sult has shown us the extra stability of the Bayesian estimation due to its shrinkage property

compared with the maximum likelihood approach (MLE) since the MLE of an over-fitted

model only guarantees the convergence to an unidentifiable set with the limiting distribution

C∞(·) = C0(·) in the domain as n→∞ (Feng and McCulloch, 1996). However, the asymp-

totic results do not guarantee sparsity. This would cause a failure to identify the correct

number of components if, for example, i, j, k ≤ K, wiCi(u)+wjCj(u) = wkCk(u) is achievable

in the model setting.

On the other hand, Cai and Wang (2014) approached the mixed copula estimation and

selection problem using penalized MLE approach. In terms of its nature, this approach is

quite similar to Bayesian estimation. However, the authors only applied penalties to the

weighting parameters, whereas the Bayesian counterpart typically applies penalties to all

parameters especially when the informative priors are used. The connection between these

two approaches is established using the EM approach of the posterior, as outlined at the end

of Section 2.2.2, where we compare the maximization form of the posterior mode and the

penalized MLE.

2.2.1 Markov chain Monte Carlo

We show the MCMC sampling algorithm of model (2.1), but the general framework and

methodology of the inference remain the same for all forms of (2.2). In addition, it is

straightforward to extend the work to the high dimensional implicit copulas introduced in

Smith (2023), including some skew elliptical copulas by minor modifications. Hence, our

approaches remain valid in high-dimensional settings.

For the d-variate data set of sample size n, Dn = {X1,X2, . . . ,Xn} whereXi ∈ Rd repre-

sents an i.i.d sampling from some multivariate distribution. In most cases, we do not possess

any additional information regarding the marginal distributions, it would be necessary to

estimate them together or treat them as nuisance parameters using the nonparametric ap-

proach. That is, we either specify the marginal parametric model so that the likelihood for

the i.i.d data is

p(Dn | α,θmix) =
n∏

i=1

cmix(F1(Xi1;α1), F2(Xi2;α2), . . . , Fd(Xid;αd);θmix)
d∏

j=1

fj(Xij;α1).
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Or, to avoid misspecification of the marginal models, we use the semiparametric approach.

The pseudo-likelihood for the i.i.d data is

p(Dn|θmix) ∝
n∏

i=1

cmix(F̂n1(Xi1), F̂n2(Xi2), . . . , F̂nd(Xid);θmix)

where we have

F̂nj(x) =
1

n+ 1

n∑
i=1

I(Xij ≤ x).

Other alternatives of the margins F̂n = (F̂n1, F̂n2, . . . , F̂nd) such as kernel density estima-

tions are also available (Patton, 2012). Therefore, only θmix is estimated here. In this paper,

we focus on the discussion of semiparametric cases.

We specifying the prior of w and θmix with

π(w) ∼ Dirichilet(α1, α2, . . . , αK)

π(θmix) ∼ Nd(0, Id)

Note that for any copula parameters which do not have the range (−∞,+∞), when

convenient, we transfer them from the original parameter space to R so that θ = ϕ(θ0) ∈
(−∞,+∞). Hence, we will be able to unify the prior to be normal. In case of the model

(2.1), denote θmix ∈ (−∞,+∞)4, the original parameters can be obtained by

θoriclayton = exp (θmixclayton)

θorigumbel = exp (θmixgumbel) + 1

θorinormal =
1− exp (−θmixnormal)

1 + exp (−θmixnormal)
.

θorifrank = θmixfrank

(2.3)

where θori refer to the parameters in the classical copula settings and θmix··· refer to the param-

eters after the transformation ϕ(·). We augment our data to (Xi, Zi), where Zi denotes the

cluster of the point i, so that p(Xi | Zi = k,θmix) ∝ ck(F̂n1(Xi1), F̂n2(Xi2), . . . , F̂nd(Xid);θk).

The Metropolis–Hasting algorithm of sampling the posterior p(θmix,w | Dn) follows as:

1. Setting initial values θ
(0)
mix,w

(0).

2. Denote the current round to be t, iteratively updating Z
(t)
i such that p(Z

(t)
i | Z

(t)
\i ,Dn,w)
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∝ p(Xi | Z(t),w)p(Z
(t)
i | w) for i = 1, 2, . . . , n using Gibbs procedure; this can be sam-

pled from the multinomial distribution with pk =
wkck(F̂n(Xi)|θk)∑
j wjcj(F̂n(Xi)|θi)

with k = 1, 2, . . . , K.

3. For all i = 1, 2, . . . , K , we propose f(θ∗i | θt−1
i ) ∼ Nd(θ

t−1
i , Σ̂) where Σ̂ is updated

every 50 iterations from the sample variance of previously accepted points. We accept

the θ∗i = θti with the acceptance rate

ai =

∏ni

j=1 ci(Xij; θ
∗
i )π(θ

∗
i )f(θ

t−1
i | θ∗i )∏ni

j=1 ci(Xij; θ
t−1
i )π(θt−1

i )f(θ∗i | θt−1
i )

.

4. Update w(t) ∼ Dirichilet(α1 +
∑n

i=1 I(Z
(t)
i = 1), . . . , αK +

∑n
i=1 I(Z

(t)
i = K)), where

α1, α2, . . . , αK are set to be 1/K to satisfied the regularity condition of Rousseau and

Mengersen (2011).

5. Repeat steps 2–4 until the stopping criteria are reached, for example, after 10,000

iterations.

The MCMC method would be sufficient for our purpose. However, by setting up the

EM method for the posterior mode, we can bridge between the Bayesian methods and the

penalized likelihood methods discussed in Wang (2008); Cai and Wang (2014). In addition,

the EM approach could enable a truncation process during its iterations, making the final

results much more straightforward to read. That is, only the components selected by the

EM would have non-zero weightings after the algorithm stops.

2.2.2 EM algorithm

Start from the complete data (Xi, Zi) where Zi is the cluster label as previously. Therefore,

we denote Q(Z) := log p(w,θmix, Z|X); our goal is to work iteratively so that

(wt+1, θt+1) = argmaxθ,w

∫
Q(Z)p(Z |X,θt

mix,w
t)dZ = argmaxθ,wEp(Z|X,θt

mix,w
t)(Q)

(2.4)
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In more detail,

Q(Z) = log p(w,θmix, Z|X)

∝ log p(X|w,θmix, Z) + log p(Z|w) + log p(w,θmix)

∝ log
n∏

i=1

K∏
j=1

cj(Fn(Xi); θj)
I(Zi=j) + log

n∏
i=1

K∏
j=1

w
I(Zi=j)
j

+ log
K∏
j=1

w
(αj−1)
j −

K∑
j=1

1

2
||θj||2 + C,

where we have denoted the irrelevant constant to be C, and p(w,θmix) = p(w)p(θmix).

Hence, we take the expectation so that the argmax of (2.4) would be equivalent as

argmaxw,θmix

∑
i,j

log cj(F̂n(Xi); θj)E(I(Zi = j))

+
∑
i,j

E(I(Zi = j)) logwj +
K∑
j=1

(αj − 1) logwj −
K∑
j=1

1

2
||θj||2

=
∑
i,j

rtij log cj(F̂n(Xi); θj) +
∑
i,j

rtij logwj − (1− 1

K
)
∑
j

logwj −
∑
j

1

2
||θj||2,

(2.5)

where we have taken αj = 1/K to make it less informative while satisfying the regularity

condition of Rousseau and Mengersen (2011) and

rtij =
wt

jcj(yi|θtj)∑
j w

t
jcj(yi|θtj)

To achieve the maximum, we differentiate with respect to wj while adding the Lagrange

multiplier λ(1−
∑

wj), we have

wt+1
j =

1

N + 1−K

(∑
i

wt
jcj(yi|θtj)∑

j w
t
jcj(yi|θtj)

− (1− 1

K
)

)
. (2.6)

Differentiate with respect to θj, and it can be solved numerically using quasi-Newton

methods.
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We note that the goal of the EM method is to find the mode of the log posterior

log p(w,θmix|X) ∝
∑
i

log
∑
j

wjcij(F̂n(Xi); θj)− (1− 1

K
)
∑
j

logwj −
∑
j

1

2
||θj||2

=
∑
i

log
∑
j

wjcij(F̂n(Xi); θj)− n
∑
j

Ωw
(1−1/K)(wj)− n

∑
j

Ωθmix

(1/2)(θj),

(2.7)

This form shares a similar structure as (3.2) in Wang (2008) or (3) in Cai and Wang (2014)

despite the fact that they do not penalize the copula parameters. Wang (2008) proved the
√
n—asymptotic consistency and sparsity of their semiparametric SCAD-penalized likelihood

approach. The validity of our Bayesian methods will be tested empirically in the next part.

However, the theoretical demonstrations of consistency are more challenging to consider with

Dirichlet distribution priors due to the singularity of logwi at wi = 0 (Fan and Li, 2001).

One shortcoming of using the EM method is the difficulty in obtaining the confidence

interval of estimators. Bootstrap could be a very computationally intensive solution. On the

other hand, one may consider the fisher information matrix −E∇∇w,θ log p(X | ŵ, θ̂mix)

as an asymptotic approximation of the precision matrix. Gelman et al. (2013) (p. 324)

provide an approach to iteratively calculate the asymptotic variance matrix along with the

parameter estimations.

2.3 Numerical simulations

2.3.1 Markov chain monte carlo

We perform two types of numerical simulations. Firstly, we assume that the marginal distri-

butions of the data are perfectly known. Therefore, we focus on the estimation of the copula

using the data (Ui1, Ui2, . . . , Uid) = (Fi1(X1), Fi2(X2), . . . , Fid(Xd)) for i = 1, 2, . . . , n. the

dimension d is set to be 2 for our simulation purpose. Our working model is (2.1). That is,

Cmix(u1, u2) = w1Cfr(u1, u2) + w2CNo(u1, u2) + w3CCl(u1, u2) + w4CGu(u1, u2).

We sample the data from different true models, which are submodels of (2.1), and we esti-

mate them using the MCMC method of Section 2.2.1. Secondly, we assume that the marginal

distributions are unknown, we hence estimate the margins empirically using F̂np(x) =
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1
n+1

∑n
i=1 I(Xip ≤ x). Thus, we have (Ûi1, Ûi2, . . . , Ûid) = (F̂i1(X1), F̂i2(X2), . . . , F̂id(Xd))

for i = 1, 2, . . . , n and the copula parameters can be estimated thereafter.

We perform 3000 MCMC iterations for all models, with the first 2500 points discarded

as the burning stage. The number of the sample points is n = 400, 800, 2000. Tables 2.1

and 2.2 display the simulation results. In general, the weighting parameters as well as the

copula parameters of non-zero weighting components approach the truth with decreasing

Monte Carlo standard deviation. The mean and error estimations of the copula parameters

with zero weightings remain close to its priors, which might be considered as an advantage

over the penalized method used in Wang (2008); Cai and Wang (2014) as they proved that

the zero weighting copula parameters would end up randomly in their parameter spaces by

using their penalized likelihood approach. Three major misidentification cases were found

in tables, that is, n = 400, 800 of Frank copulas simulations in Table 2.1 and n = 800 of

Frank copulas in the Table 2.2. All cases mentioned seem to be misidentified as normal

copulas, which are understandable as the normal copula and Frank copula share very similar

structures with zero tail dependence.

2.3.2 Expectation maximization

In this part, we investigate the performances of the EM algorithm introduced in Section 2.2.2.

The approach is computationally demanding. Therefore, we only show the results with the

sample size of n = 200, 400, 800 for one-component copulas. Data are generated directly

from the true copula models. More specifically, for each sample size of n = 200, 400, 800, we

generate 10 batches of data from the true distribution. Every batch is learned by the EM

method, and the stopping criteria are 1000 full iterations or the absolute sum of the parame-

ters increase less than 0.001 for an iteration. We calculate the mean and variance estimators

for each sample size. Table 2.3 displays the results of the EM approach. It shows compara-

ble outcomes with the MCMC. Although all algorithms fail to distinguish the Frank copulas

from the normal ones due to their similarities, other copulas are selected with satisfactory

accuracy. One clear advantage of using the EM is its convenience in introducing an exit

mechanism for unlikely copulas during the training process. That is, due to the shrinkage

term of the weight in (2.6), we can eliminate components when their corresponding weights

fall down to non-positive during the training. By adding this procedure, we can automati-

cally consider fewer mixture components at later stages. As we can see from Table 2.3, there

are many components with deterministic 0 weightings. However, the shortcomings of the

25



T
ab

le
2.
1:

M
C
M
C
es
ti
m
at
io
n
s
of

th
e
co
p
u
la

w
it
h
th
e
m
ar
gi
n
al

d
is
tr
ib
u
ti
on

s
fu
ll
y
k
n
ow

n
.
T
h
e
n
u
m
b
er
s
in
si
d
e
p
ar
en
th
es
es

in
d
ic
at
e
st
an

d
ar
d
er
ro
rs
,
an

d
es
ti
m
at
io
n
s
of

th
e
tr
u
e
co
m
p
on

en
ts

ar
e
d
en
ot
ed

in
b
ol
d
fo
n
t.

T
ru

e
C
o
p
u
la
(p

a
ra

m
)

M
C
M

C
E
st
im

a
ti
o
n

n
C
la
y
to

n
G
u
m
b
e
l

N
o
rm

a
l

F
ra

n
k

w
θ

w
θ

w
θ

w
θ

N
o
rm

a
l(
0
.5
)

4
0
0

0
.0
8
9
(0

.0
8
8
)

1
.5
6
8
(1

.6
7
0
)

0
.0
4
7
(0

.0
3
6
)

3
.8
0
1
(2

.7
5
0
)

0
.8

3
9
(
0
.1

0
5
)

0
.4

4
4
(
0
.0

4
6
)

0
.0
2
5
(0

.0
3
2
)

-0
.0
2
9
(0

.9
9
4
)

8
0
0

0
.0
4
3
9
(0

.0
6
6
)

1
.1
7
3
(1

.5
8
6
)

0
.0
0
7
(0

.0
1
1
)

2
.4
9
4
(1

.3
7
0
)

0
.9

4
0
(
0
.0

6
6
)

0
.5

1
4
(
0
.0

2
6
)

0
.0
0
9
(0

.0
1
4
)

0
.1
1
3
(0

.9
1
6
)

2
0
0
0

0
.0
3
9
(0

.0
4
9
)

1
.3
6
3
(1

.4
2
4
)

0
.0
2
8
(0

.0
3
4
)

3
.0
8
7
(1

.9
6
8
)

0
.9

1
3
(
0
.0

6
3
)

0
.4

9
4
(
0
.0

2
4
)

0
.0
2
0
(0

.0
3
8
)

0
.0
4
3
(1

.1
2
0
)

C
la
y
to

n
(5

)
4
0
0

0
.9

9
0
(
0
.0

1
1
)

4
.9

1
4
(
0
.2

4
6
)

0
.0
0
5
(0

.0
1
0
)

2
.4
9
0
(1

.6
1
2
)

0
.0
0
3
(0

.0
0
5
)

0
.5
2
6
(0

.2
2
4
)

0
.0
0
2
(0

.0
0
3
)

0
.0
1
2
(0

.9
6
5
)

8
0
0

0
.9

9
2
(
0
.0

0
9
)

4
.8

7
6
(
0
.1

8
5
)

0
.0
0
3
(0

.0
0
6
)

2
.6
4
1
(1

.7
7
4
)

0
.0
0
3
(0

.0
0
5
)

0
.4
8
8
(0

.2
0
7
)

0
.0
0
2
(0

.0
0
4
)

0
.0
3
7
(0

.9
4
4
)

2
0
0
0

0
.9

9
6
(
0
.0

0
3
)

5
.0

9
1
(
0
.1

3
3
)

0
.0
0
1
(0

.0
0
2
)

2
.4
1
1
(1

.5
6
9
)

0
.0
0
1
(0

.0
0
2
)

0
.5
6
8
(0

.2
0
5
)

0
.0
0
1
(0

.0
0
1
)

-0
.1
9
8
(0

.9
8
3
)

G
u
m
b
e
l(
2
.5
)

4
0
0

0
.0
1
7
(0

.0
2
7
)

1
.6
7
6
(1

.5
0
5
)

0
.9

5
7
(
0
.0

3
8
)

2
.4

8
6
(
0
.1

0
5
)

0
.0
2
2
(0

.0
3
3
)

0
.5
3
0
(0

.2
1
0
)

0
.0
0
4
(0

.0
0
7
)

0
.0
8
0
(1

.0
0
2
)

8
0
0

0
.0
0
2
(0

.0
0
4
)

1
.4
8
0
(1

.5
9
3
)

0
.9

9
1
(
0
.0

0
9
)

2
.7

0
1
(
0
.0

7
1
)

0
.0
0
4
(0

.0
0
7
)

0
.5
4
5
(0

.2
1
0
)

0
.0
0
2
(0

.0
0
5
)

0
.0
7
0
(1

.0
5
1
)

2
0
0
0

0
.0
0
6
(0

.0
0
8
)

1
.4
4
2
(1

.2
6
8
)

0
.9

8
8
(
0
.0

1
4
)

2
.4

7
0
(
0
.0

4
8
)

0
.0
0
5
(0

.0
1
1
)

0
.5
3
3
(0

.1
9
4
)

0
.0
0
1
(0

.0
0
2
)

-0
.0
9
1
(0

.9
6
8
)

F
ra

n
k
(5

)
4
0
0

0
.0
6
1
(0

.0
8
3
)

1
.9
0
3
(1

.5
1
2
)

0
.0
3
0
(0

.0
4
1
)

2
.3
8
6
(2

.1
1
5
)

0
.8
7
5
(0

.0
8
7
)

0
.6
4
7
(0

.0
3
8
)

0
.0

3
3
(
0
.0

4
7
)

0
.4

1
6
(
1
.0

3
7
)

8
0
0

0
.0
5
8
(0

.0
4
1
)

3
.7
7
4
(2

.7
5
1
)

0
.0
1
9
(0

.0
3
9
)

2
.3
2
4
(2

.0
4
3
)

0
.8
9
9
(0

.0
5
5
)

0
.6
0
3
(0

.0
3
1
)

0
.0

2
4
(
0
.0

3
1
)

0
.2

8
0
(
0
.9

8
4
)

2
0
0
0

0
.0
0
7
(0

.0
1
2
)

1
.3
5
8
(1

.2
2
3
)

0
.0
0
4
(0

.0
0
7
)

2
.2
5
5
(1

.3
9
4
)

0
.2
0
5
(0

.0
5
5
)

0
.7
9
0
(0

.0
4
1
)

0
.7

8
4
(
0
.0

5
8
)

4
.4

0
8
(
0
.2

8
5
)

0
.5
G
u
m
b
e
l(
2
.5
)+

0
.5
C
la
y
to

n
(5

)
4
0
0

0
.4

3
9
(
0
.0

5
7
)

6
.0

7
9
(
0
.7

6
1
)

0
.5

3
3
(
0
.0

5
9
)

2
.7

5
6
(
0
.2

4
2
)

0
.0
2
4
(0

.0
3
6
)

0
.5
6
9
(0

.2
0
7
)

0
.0
0
4
(0

.0
0
7
)

0
.1
7
6
(1

.0
0
3
)

8
0
0

0
.5

6
7
(
0
.0

3
4
)

5
.3

3
2
(
0
.3

9
0
)

0
.4

2
9
(
0
.0

4
0
)

2
.3

2
8
(
0
.1

4
3
)

0
.0
0
2
(0

.0
0
4
)

0
.5
1
4
(0

.2
1
0
)

0
.0
0
2
(0

.0
0
4
)

0
.1
2
6
(0

.9
7
6
)

2
0
0
0

0
.5

0
9
(
0
.0

3
4
)

5
.1

1
1
(
0
.3

5
6
)

0
.4

8
0
(
0
.0

3
2
)

2
.5

0
5
(
0
.0

7
6
)

0
.0
0
5
(0

.0
0
8
)

0
.5
2
3
(0

.2
0
0
)

0
.0
0
6
(0

.0
0
7
)

0
.1
8
2
(1

.0
0
5
)

0
.5
C
la
y
to

n
(5

)+
0
.5
N
o
rm

a
l(
0
.5
)

4
0
0

0
.5

1
3
(
0
.0

8
7
)

5
.1

5
0
(
1
.0

5
4
)

0
.0
6
1
(0

.0
7
0
)

2
.6
0
6
(2

.3
5
3
)

0
.3

8
3
(
0
.0

9
5
)

0
.5

5
4
(
0
.0

8
0
)

0
.0
4
4
(0

.0
6
7
)

0
.2
8
0
(1

.0
3
6
)

8
0
0

0
.5

7
3
(
0
.0

4
1
)

4
.1

0
7
(
0
.3

3
6
)

0
.1
6
5
(0

.0
7
9
)

1
.8
3
3
(0

.5
3
4
)

0
.1

9
1
(
0
.1

4
4
)

0
.4

1
0
(
0
.1

2
6
)

0
.0
6
9
(0

.0
8
6
)

0
.3
6
5
(1

.0
2
8
)

2
0
0
0

0
.4

5
6
(
0
.0

3
5
)

5
.5

0
0
(
0
.3

7
2
)

0
.0
6
9
(0

.0
4
6
)

2
.7
5
0
(0

.7
8
8
)

0
.4

7
3
(
0
.0

3
5
)

0
.4

6
6
(
0
.0

3
5
)

0
.0
0
2
(0

.0
0
3
)

-0
.1
0
5
(0

.9
4
1
)

26



T
ab

le
2.
2:

M
C
M
C

es
ti
m
at
io
n
s
of

th
e
co
p
u
la

w
it
h
th
e
m
ar
gi
n
al

d
is
tr
ib
u
ti
on

s
es
ti
m
at
ed

b
y
em

p
ir
ic
al

d
is
tr
ib
u
ti
on

.
T
h
e

n
u
m
b
er
s
in
si
d
e
p
ar
en
th
es
es

in
d
ic
at
e
st
an

d
ar
d
er
ro
rs
,
an

d
es
ti
m
at
io
n
s
of

th
e
tr
u
e
co
m
p
on

en
ts

ar
e
d
en
ot
ed

in
b
ol
d
fo
n
t.

T
h
e
co
rr
es
p
on

d
in
g
tr
u
e
m
ar
gi
n
al

d
is
tr
ib
u
ti
on

is
N
(1
,1
)
an

d
N
(0
.5
,1
).

T
ru

e
C
o
p
u
la
(p

a
ra

m
)

M
C
M

C
E
st
im

a
ti
o
n

n
C
la
y
to

n
G
u
m
b
e
l

N
o
rm

a
l

F
ra

n
k

w
θ

w
θ

w
θ

w
θ

N
o
rm

a
l(
0
.5
)

4
0
0

0
.0
0
3
(0

.0
0
5
)

1
.6
3
7
(1

.7
8
5
)

0
.1
1
4
(0

.1
2
5
)

2
.0
1
5
(1

.0
7
3
)

0
.8

7
8
(
0
.1

2
4
)

0
.5

9
0
(
0
.0

3
8
)

0
.0
0
5
(0

.0
0
9
)

0
.0
6
4
(0

.9
9
3
)

8
0
0

0
.0
8
(0

.0
8
)

1
.5
4
3
(1

.3
2
1
)

0
.0
0
8
(0

.0
1
1
)

2
.5
6
9
(1

.7
5
8
)

0
.8

8
6
(
0
.1

0
2
)

0
.5

6
8
(
0
.0

3
3
)

0
.0
2
6
(0

.0
3
7
)

0
.2
4
6
(1

.0
5
4
)

2
0
0
0

0
.0
2
5
(0

.0
3
9
)

0
.8
4
5
(1

.0
3
9
)

0
.0
2
1
(0

.0
2
1
)

1
.7
4
0
(0

.7
8
6
)

0
.9

5
2
(
0
.0

4
8
)

0
.5

4
1
(
0
.0

2
2
)

0
.0
0
2
(0

.0
0
4
)

-0
.0
7
2
(0

.9
5
1
)

C
la
y
to

n
(5

)
4
0
0

0
.9

8
7
(
0
.0

1
5
)

4
.8

5
6
(
0
.2

4
0
)

0
.0
0
6
(0

.0
1
4
)

2
.6
4
8
(1

.7
1
8
)

0
.0
0
4
(0

.0
0
7
)

0
.5
3
0
(0

.2
0
4
)

0
.0
0
2
(0

.0
0
4
)

0
.0
6
1
(0

.9
2
9
)

8
0
0

0
.9

9
4
(
0
.0

0
6
)

4
.7

3
3
(
0
.1

8
5
)

0
.0
0
3
(0

.0
0
5
)

2
.9
5
7
(1

.7
9
3
)

0
.0
0
1
(0

.0
0
2
)

0
.4
9
9
(0

.2
2
6
)

0
.0
0
1
(0

.0
0
3
)

-0
.0
5
0
(1

.0
2
3
)

2
0
0
0

0
.9

9
6
(
0
.0

0
4
)

5
.4

2
3
(
0
.1

3
0
)

0
.0
0
2
(0

.0
0
4
)

3
.4
3
8
(2

.2
3
6
)

0
.0
0
1
(0

.0
0
2
)

0
.5
3
9
(0

.1
9
7
)

0
.0
0
1
(0

.0
0
1
)

-0
.0
8
8
(0

.9
5
9
)

G
u
m
b
e
l(
2
.5
)

4
0
0

0
.0
0
9
(0

.0
1
8
)

1
.5
8
9
(1

.5
3
3
)

0
.9

7
1
(
0
.0

3
4
)

2
.8

3
0
(
0
.1

2
2
)

0
.0
1
8
(0

.0
3
1
)

0
.5
5
4
(0

.1
9
0
)

0
.0
0
2
(0

.0
0
4
)

-0
.1
0
4
(1

.0
8
8
)

8
0
0

0
.0
0
5
(0

.0
0
7
)

2
.2
9
3
(2

.8
6
2
)

0
.9

8
1
(
0
.0

2
1
)

2
.6

5
2
(
0
.0

8
4
)

0
.0
1
2
(0

.0
1
9
)

0
.4
8
4
(0

.1
9
9
)

0
.0
0
2
(0

.0
0
3
)

0
.0
7
6
(0

.9
3
1
)

2
0
0
0

0
.0
0
4
(0

.0
0
8
)

2
.2
9
5
(2

.6
4
7
)

0
.9

9
3
(
0
.0

0
8
)

2
.5

3
0
(
0
.0

4
4
)

0
.0
0
1
(0

.0
0
1
)

0
.5
2
2
(0

.2
1
6
)

0
.0
0
2
(0

.0
0
4
)

0
.1
5
6
(0

.9
6
2
)

F
ra

n
k
(5

)
4
0
0

0
.0
1
2
(0

.0
1
6
)

2
.2
2
0
(2

.8
0
9
)

0
.0
9
6
(0

.0
9
9
)

2
.3
3
3
(1

.0
1
9
)

0
.0
0
5
(0

.0
1
0
)

0
.5
3
2
(0

.1
9
7
)

0
.8

8
7
(
0
.0

9
4
)

4
.5

3
3
(
0
.3

7
6
)

8
0
0

0
.1
4
7
(0

.0
4
4
)

4
.6
6
4
(1

.4
1
4
)

0
.0
0
6
(0

.0
1
1
)

2
.4
3
0
(1

.6
3
4
)

0
.8
3
6
(0

.0
4
8
)

0
.5
9
9
(0

.0
2
8
)

0
.0

1
1
(
0
.0

1
8
)

0
.1

4
5
(
1
.0

2
8
)

2
0
0
0

0
.0
0
5
(0

.0
0
7
)

2
.3
3
4
(3

.1
3
5
)

0
.0
5
0
(0

.0
2
8
)

2
.6
5
9
(0

.8
3
3
)

0
.0
1
6
(0

.0
2
4
)

0
.4
5
3
(0

.2
0
8
)

0
.9

2
9
(
0
.0

2
3
)

5
.1

0
7
(
0
.2

8
1
)

0
.5
G
u
m
b
e
l(
2
.5
)+

0
.5
C
la
y
to

n
(5

)
4
0
0

0
.5

5
1
(
0
.0

8
5
)

4
.3

2
7
(
0
.5

5
6
)

0
.3

6
3
(
0
.1

2
9
)

2
.5

8
6
(
0
.2

7
6
)

0
.0
8
0
(0

.1
3
5
)

0
.6
0
3
(0

.2
0
6
)

0
.0
0
6
(0

.0
0
9
)

0
.0
7
2
(1

.0
7
1
)

8
0
0

0
.4

1
3
(
0
.0

4
6
)

5
.1

4
9
(
0
.5

2
6
)

0
.5

3
8
(
0
.0

6
0
)

2
.6

4
5
(
0
.1

6
7
)

0
.0
5
0
(0

.0
5
0
)

0
.5
5
8
(0

.2
1
1
)

0
.0
0
3
(0

.0
0
7
)

-0
.0
3
1
(1

.1
3
6
)

2
0
0
0

0
.5

3
1
(
0
.0

3
0
)

4
.7

9
2
(
0
.2

7
0
)

0
.4

6
4
(
0
.0

3
1
)

2
.5

0
0
(
0
.0

8
9
)

0
.0
0
4
(0

.0
0
8
)

0
.5
0
8
(0

.1
9
7
)

0
.0
0
1
(0

.0
0
2
)

0
.1
0
4
(1

.0
2
6
)

0
.5
C
la
y
to

n
(5

)+
0
.5
N
o
rm

a
l(
0
.5
)

4
0
0

0
.5

0
2
(
0
.0

8
2
)

4
.8

7
1
(
0
.9

9
2
)

0
.0
4
4
(0

.0
7
7
)

2
.3
7
6
(1

.2
3
0
)

0
.4

5
0
(
0
.1

0
9
)

0
.4

8
8
(
0
.0

7
7
)

0
.0
0
5
(0

.0
0
9
)

-0
.1
2
2
(0

.9
6
0
)

8
0
0

0
.5

2
6
(
0
.0

4
2
)

5
.3

2
1
(
0
.4

6
1
)

0
.0
1
5
(0

.0
2
0
)

2
.8
4
1
(1

.8
8
8
)

0
.4

4
4
(
0
.0

5
4
)

0
.4

8
5
(
0
.0

4
8
)

0
.0
1
5
(0

.0
2
6
)

0
.0
6
5
(1

.0
2
1
)

2
0
0
0

0
.5

3
4
(
0
.0

3
4
)

4
.7

2
5
(
0
.3

2
5
)

0
.1
0
6
(0

.0
5
8
)

1
.7
5
1
(0

.3
5
3
)

0
.3

5
1
(
0
.0

7
0
)

0
.5

1
2
(
0
.0

6
0
)

0
.0
0
9
(0

.0
1
1
)

0
.0
1
5
(0

.9
6
6
)

27



EM approach are also very clear. It is more computationally demanding especially when we

seek to obtain some estimation errors or work with high dimensional copulas. On the other

hand, the EM seeks to find the posterior mode which is less favorable than the posterior

mean in statistical decision theories, while the MCMC approach gives full posterior distri-

butions, and it is well acknowledged that the performance of the EM could be affected by

starting points.

2.3.3 Multi-dimensional cases

We proceed to test the effectiveness of our approach in a multi-dimensional case. As the

classic Archimedean families of copulas are rarely used in multi-dimensional (i.e. the di-

mensions more than 3) applications due to the restriction of their parameter spaces. We

apply the more commonly used Gaussian mixture copulas with 3 components to perform

the estimations while the dimension of the data is set to be 3. That is, we use the MCMC

sampler to estimate the model

cNormalMix = wαcα(u;Σα) + wβcβ(u;Σβ) + wγcγ(u;Σγ). (2.8)

A major obstacle to performing MCMC of such type is the sampling of the correlation ma-

trices (Σα,Σβ,Σγ). The valid sampler should generate symmetric positive definite matrices

every time with every entry from 0 to 1 and 1 in their diagonal. The approach will be

made clearer in the latter chapter. On the other hand, when performing the MCMC sam-

pling with mixture copulas from the same parametric families, it should also be noticed

that label-switching problems often occurred. This is because that (2.8) has 3! equivalent

forms by just switching the labels, some engineering efforts should be made to mitigate the

circumstances. After every round of iteration, one can post-process the model so that the

component with the highest weighting always ranks first. In addition, if the weightings are

too close to distinguish, further criteria such as det|Σ|+ trace(Σ) should be used.

In this study, we use the data simulated from the submodels of (2.8) with parameters

(Σ12
α ,Σ23

α ,Σ13
α ) = (0.7, 0.7,−0.6)

(Σ12
β ,Σ23

β ,Σ13
β ) = (0.6, 0.6, 0.6)

(Σ12
γ ,Σ23

β ,Σ13
γ ) = (−0.7, 0.7, 0.7).
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And we set the true weighting of the experiments to be

(wα, wβ, wγ) = (1, 0, 0) (wα, wβ, wγ) = (0, 0.7, 0.3)

respectively. Furthermore, the sample sizes of the simulated data are set to be

n = 400, 800, 2000.

Table 2.4 displays the results of experiments. It shows good signs of convergence to the

truth while we increase the sample size. For the 2000 sample size experiments, the true

components are successfully filtered out with low uncertainty, indicating the effectiveness of

our proposed approach beyond the classical two-dimensional copula applications.

2.4 Real data analysis

In the real data analysis, we use financial trading data from three major indices, that is,

Standard&Poors 500 (SP 500), Shanghai Composite Index (SSEC), and Hang Seng Index

(HSI). Daily close prices from 09.Oct.2017 to 29.Sep.2022 were extracted, we aligned three

series with the common trading days among them, other days were omitted. To ease the

analysis of the dependence pattern among them, we take the log returns respectively so that

Ri = logPi− logPi−1, i = 1, 2, 3. This method of transforming stock prices into log returns is

a well-established technique in the field of financial analysis, as evidenced by several studies

(Fergusson and Platen, 2006; Almeida and Czado, 2012; Ardia and Hoogerheide, 2014). Table

2.5 shows the Pearson and Spearman correlation among markets. SSEC and HSI display

strong levels of dependence, while their connection with SP500 is relatively weak for those

two markets. However, as we argued previously, the single metric of correlation does not give

the full picture of the dependence. It is therefore reasonable to apply the mixture copula

models for further analysis. In addition, the Ljung-Box tests to the absolute values |Ri| of
series indicate all series are correlated to themselves through time. Moreover, the augmented

Dickey-Fuller tests show that they are covariance stationary. To apply the copula models

to the autocorrelated data, we use the standard method of standardizing. That is, the
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autocorrelation is removed by rescaling the volatility of the GARCH(1,1) model, assume

Rt = µ+ σtzt i.i.d zt ∼ N(0, 1)

σ2
t = ασ2

t−1 + βz2t−1 + γ,
(2.9)

We apply the data (Z1, Z2, . . . , ZT ) = (R1−µ
σ1

, R2−µ
σ2

, . . . , RT−µ
σT

) to copula model and use semi-

parametric approach of Section 2.2.1 to learn the parameters. The MCMC samplings are

done 5000 times with the last 500 times used for analyzing the parameters. Table 2.6 shows

the results of the estimation with the insignificant components omitted. As we observe the

strong Clayton components in the first two columns, but the Gumbel components, on the

other hand, are all very weak among three markets. Due to the asymmetry nature of the

Clayton copula at its left tail, which can be seen in Figure 1.1. This indicates the existence

of asymmetry dependence among markets, especially at the lower left tail, and the depen-

dence on the upper right tail is less obvious. Our finding means that the stock markets are

usually more easily to have a downward comovement but much less likely to move upward

together. In contrast, the dependence pattern between HSI and SP500 is more symmetrical,

with dominating Normal and Frank components and a very weak Gumbel component. Given

the absence of extreme left tail dependence, a portfolio consisting of HSI and SP500 indexes

is less likely to experience significant losses compared to other cross-market portfolios during

extreme financial conditions.

Table 2.5: Pearson and Spearman Correlation among three markets from Oct 2017 to Sep
2020

SSEC HSI SP500 SSEC HSI SP500
Pearson Correlation Spearman Correlation

SSEC 1 0.699 0.18 1 0.679 0.173
HSI 0.699 1 0.25 0.679 1 0.224

SP500 0.18 0.25 1 0.173 0.224 1

2.5 Concluding remarks

In this chapter, we study the Bayesian approach of estimating the overfitted finite mixture

copula models; MCMC and EM approaches were tested to verify its validity, and applications
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Table 2.6: Parameters estimation of the stocks data with mean estimator and 90% credible
interval.

SSEC-HSI SSEC-SP500 HSI-SP500

Clayton
w 0.280(0.144,0.372) 0.685(0.508,0.814) 0
θ 2.53(1.65,3.65) 0.168(0.069,0.247)

Gumbel
w 0 0 0.104(0.015,0.257)
θ 1.484(1.130,2.368)

Normal
w 0.668(0.587,0.785) 0.222(0.062,0.350) 0.528(0.350,0.672)
θ 0.722(0.681,0.764) 0.366(0.190,0.563) 0.400(0.269,0.561)

Frank
w 0 0 0.33(0.201,0.542)
θ -0.534(-1.557,0.509)

in the real financial market were done.

Compared with the classic MLE approaches, the Bayesian sampling scheme presented

can make the uncertainty of estimators readily available. Hence, we were able to filter

the mixture components that were not significant. The existing literature also showed the

theoretical merit of Bayesian estimation when compared with the MLE.

If more precise parameter estimation is needed, one could first apply our proposed ap-

proach to the model. After filtering out the insignificant component, a second round of

estimation could be applied to the submodel. Two rounds of estimation would be sufficient

in most cases.
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Chapter 3

Nonparametric Bayesian modeling on

infinite mixture Student t copulas

3.1 Introduction

In this chapter, we introduce a Bayesian method for estimating an infinite mixture t copula,

which is more robust to the corresponding normal mixture model when the data exhibit

extreme tail dependence. For instance, in terms of financial modeling, it is widely recognized

that the returns of the market exhibit behavior with heavy tails (Borak et al., 2011; Nolan,

2014; Zi-Yi, 2017; Sun et al., 2020; Van Tran and Kukal, 2022), and the returns of financial

assets usually experience large co-movements in the event of an extreme market condition

(Hu, 2006; Muteba Mwamba and Angaman, 2021; Zi-Yi, 2017). Under these circumstances,

using the Student t copula instead of a normal copula will be beneficial, this is because

the student t copula is able to depict the extreme market dependence while the normal

counterpart fails to achieve this ability (McNeil et al., 2015). Hence, we construct the

infinite mixture of the t copula to improve the modeling outcome from the classic normal

model.

To the best of our knowledge, few articles consider the infinite t mixture copula model.

Wei and Li (2012) studied the estimation of the infinite mixture t-distribution using vari-

ational inference, and Wu et al. (2014, 2015) discussed the infinite mixture normal and

skew-normal copula. Our intention here is to extend their work to the scenario of the t

copula-based infinite mixture model. In terms of the MCMC techniques employed in this

chapter, our approach is inspired by the slice sampling approach discussed in Walker (2007)

34



and Kalli et al. (2011). The sampler is of the Gibbs–Metropolis–Hasting (Gibbs-MH) type,

and the general methodology of this sampling scheme can be understood from the introduc-

tion chapter and chapters on Bayesian computation in Gelman et al. (2013).

This remaining chapter is organized as follows, in section 3.2, we give an introduction to

the model construction of infinite mixture t copulas. In section 3.3, we introduce the Gibbs-

MH algorithm for the estimation of the model parameters, which is followed by a simulation

study and a real-data analysis using the returns of the Shanghai Composite Index and

Shenzhen Component Index from 2018 to 2023. The model correctly identifies the number

of mixture components in the simulation study and returns sensible results when compared

with the benchmark model in the real-data experiment.

3.2 Infinite mixture t copula and the Dirichlet process

We present the non-parametric Bayesian framework for estimating mixture copulas, the

main advantage of which is its ability to automatically determine the number of mixture

components. We would like to restate the shortcomings of the classic approach hereby.

The MLE-based approaches typically treat the number of mixture components as a hyper-

parameter and must be specified in advance for the mixture copula estimation. Determining

the number of components usually involves many rounds of estimations and comparisons by

employing performance metrics such as the AIC, BIC, and DIC. This iterative process can

be burdensome, particularly when working with data involving many clusters.

Additionally, deriving confidence intervals for the estimators of mixture copula parame-

ters can pose significant challenges when employing MLE-based methods. On the other hand,

Bayesian methodologies intrinsically consider uncertainty, thus providing a clear advantage

in these scenarios.

If compared with the previous chapter, the former discussion proposed using the MCMC

scheme of sparse finite mixture models to estimate while selecting mixture copulas. However,

the usefulness of the approach depends on correctly specifying the upper limit of the mixture

components. Therefore, setting the component number too low would lead to incorrect

model specifications, while setting the number too high could make the algorithm slow. We

work with an infinite mixture model here, which automatically determines the number of

components without the need to specify the upper limit. In addition, sample points can only

be allocated among a limited number of mixture components for the infinite model during

iterations, whereas for the finite mixture counterpart, the allocation probability of every
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point must be calculated on each component.

To facilitate non-parametric Bayesian modeling, we start by constructing the infinite

mixture t copula as follows:

Cinf(u1, u2, . . . , ud) =
∞∑
k=1

wkCPk,vk(u1, u2, . . . , ud). (3.1)

The density of which is expressed as

cinf(u1, u2, . . . , ud) =
∞∑
k=1

wkcPk,vk(u1, u2, . . . , ud), (3.2)

constrained by
∑

k wk = 1 and wk ≥ 0 ∀k.
Following our discussion, introducing the infinite model and applying the non-parametric

Bayesian approach would free us from the need to manually select the hyperparameter K,

which is the number of mixture components in the classical finite mixture model

cfinite(u1, u2, . . . , ud) =
K∑
k=1

wkcPk,vk(u1, u2, . . . , ud).

To further construct the non-parametric Bayesian approach, the prior of

{(wk,Pk, vk) | k = 1, 2, . . . }

for (3.2) is set to follow a Dirichlet process (DP), denoted by G ∼ DP (α,G0), where α is the

concentration parameter of the Dirichlet process and G0 is the base measure covering the

parameter space of t copula. The main properties of the DP are as follows: For any event

S, E(G(S)) = G0(S) and var(G(S)) = G0(S)(1−G0(S))
1+α

. Here, G sampled from the DP can be

written in the following atomic form:

G =
∞∑
k=1

wkδΘk
,

where δ is the usual notation of the Dirac delta, Θk = (Pk, vk) denotes the parameters of

the kth clustering (i.e., the kth mixture component of the copula in our analysis).

For an arbitrary observation Yi from a mixture model, we introduce latent variables

ki, ∀i = 1, 2, . . . , n, such that the conditional distribution Yi|ki,Θki ∼ FΘki
. The overall
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sampling process of the DP prior can be constructed to follow the stick-breaking process

(Ishwaran and James, 2001). Similar to the presentation in Papaspiliopoulos and Roberts

(2008), this can be formulated as

(Pk, vk) ∼ G0,

Vk ∼ Beta(1, α),

wk = Vk

k−1∏
s=1

(1− Vs),

k = 1, 2, 3, . . .

If given the complete information of each point D = {(yi, ki,Θki) ∀i = 1, 2, . . . , n}, we have
the posterior of DP G|D ∼ DP (α + n,

αG0+
∑n

i=1 δΘki

α+n
) (see the chapter on non-parametric

Bayesian models in Murphy (2023) for a good explanation of the details). Hence, by intro-

ducing G ∼ DP (α,G0) as the prior for the mixture components, our copula mixture model

is expressed as

cinf(· · · ) =
∫

cΘ(· · · )dG(Θ) =
∞∑
k=1

wkcPk,vk(u1, u2, . . . , ud),

which is equivalent to saying that a copula dataset Ui ∼ Cinf(·) follows

G ∼ DP (α,G0),

Θk1 ,Θk2 , . . .Θkn ∼ G,

Ui ∼ CΘki
.

Within the scope of this Bayesian framework, our primary objective is to estimate the

parameters

{(wk,Pk, vk) | k = 1, 2, . . . }

by using the posterior sampling techniques.
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3.3 Sampling methodology

3.3.1 Gibbs-MH process

Assume the i-th copula data point is expressed as

ui = (ui1, ui2, . . . , uid) = (F1(yi1), F2(yi2), . . . , Fd(yid)),

where the margins of the d-dimensional data set of the sample size n, Dn = (y1,y2, . . . ,yn)

are unknown. Again, we estimate the margins of the data empirically using

uij =
1

n+ 1

n∑
m=1

I{ymj ≤ yij} ∀i = 1, 2, . . . , n. (3.3)

This is the same as the previous chapter, in the spirit of inference for margins, where the

margins of the copulas and their dependence structure are treated separately (see Genest

et al. (1995); Joe (2005) for details).

The goal of the estimation, as stated at the end of the previous section, is to estimate

the parameters wk,Pk, vk for all k ∈ {1, 2, 3, . . . }. To ease the inference, we first augment

our data to add two extra dimensions, and the complete data are now written as C =

{(ui, ki, zi), i = 1, 2, . . . , n | ui ≥ 0, ki ∈ [1,+∞), zi > 0}. Moreover, the likelihood of point

i, w.r.t. the model (3.2) for the complete data is

LP,v,w(ui, ki, zi) =
wki

rki
I(zi ≤ rki)cPki

,vki
(ui). (3.4)

Here, {rk}∞k=1 is a deterministic positive sequence decreasing to zero with respect to k, which

can be set by us. For example, rk = exp (−αk) or r̃k = βγ−ηk, where α, β, γ, η are predefined

hyperparameters. P,v,w are the collections of Pk, vk and wk for all k respectively.

The rationale for introducing the constant sequence {rk}∞k=1 is as follows. For the conve-

nience of implementation, the number of candidate clusters that we could potentially allocate

to each sample point should be finite. This can be realized by decreasing rk to zero, as there

exists k ≥ k∗ such that rk < zi in (3.4). More discussion on this point is available in Kalli

et al. (2011). The validity of the augmentation (3.4) is clarified by the following proposition.

Proposition 1. The marginal density of ui with respect to LP,v,w(ui, ki, zi) is (3.2).
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Proof. We interchange the integral and summation if necessary∫
R+

∑
k

wk

rk
I(zi ≤ rk)cPk,vk(ui)dzi =

∑
k

∫
R+

wk

rk
I(zi ≤ rk)cPk,vk(ui)dzi

=
∑
k

wkcPk,vk(ui) = (3.2).

Therefore, sampling from the augmented variables (ui, ki, zi)
n
i=1 and taking the marginal

value of ui is equivalent to sampling from (3.2). To realize the posterior sampling stated

at the end of Section 3.2, we sample from p(P,v,w, {ki}ni=1, {zi}ni=1 | U). We utilize the

following Gibbs-MH procedure:

Initialization: In our simulation, we assume K0, which is the initial number of different

components with non-zero weight in (3.2), to be 5. This value should be sufficient for most

cases, but we can always lift this restriction to have more clusters. We set rk in the equation

(3.4) to be rk = (1 − κ)κk−1 for k = 1, 2, . . . , 10, . . . according to Kalli et al. (2011), and

we choose κ = 0.1 in our simulation. For i = 1, 2, . . . , n, we initialize ki to a randomly

sampled integer from 1 to K0, and we set P0
i = I, z0i ∼ U(0, ri), and Vi ∼ Beta(1, α), where

α can be determined by solving the approximation E(K | α, n) ≈ α ln (1 + n
α
), as indicated

by Antoniak (1974). Here, K refers to the number of mixture components in the data.

Therefore, if α = 0.5 and n = 500, the expected number of groups would be approximately

two. Other methods to determine with α are also available, such as hierarchical gamma

priors (Escobar and West, 1995) and empirical Bayes (McAuliffe et al., 2006). The prior

of the degrees of freedom v should be set with care. It is generally not easy to estimate

the degrees of freedom (Sun et al., 2020), especially when we have very few data or if the

distribution is not sharp enough. Therefore, we assign a relatively strong prior to it to avoid

large oscillations in the MCMC sampling. Hence, we let vi ∼ 1 + Gamma(1, 1) for all i as

priors. These priors of vi are efficient, especially for heavy-tailed financial data.

For data Dn = (y1,y2, . . . ,yn), we transform them into copula data using

ui = (ui1, ui2, . . . , uid) = (F1(yi1), F2(yi2), . . . , Fd(yid))

for U = {u1,u2, . . . ,un}. Where the margins F1, F2, . . . , Fd must be estimated, we use (3.3).

Step 1: We use Metropolis–Hasting (M-H) steps for updating the correlation matrix.

The natural choice would be to use the inverse Wishart distribution S ∼ IW(Σ, d + 2),
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where d is the dimension of the copula model, E(S) = Σ as per Wu et al. (2015). However,

we found the mixing rate of the MCMC to be slow, especially for high dimensional data.

Hence, we adopted the following approach of Danaher and Smith (2011):

For every component k = 1, 2, . . . ,maxq=1,2,...,n k
t−1
q and for τ = 2, 3, . . . , d. j = 1, . . . , τ −

1. By denoting t the current iteration and t− 1 the last iteration. We iterated the following

steps.

Step 1.1: Propose lnewτj ∼ N (lt−1
τj , 0.12), Pnew = diag−

1
2 (Σ)Σdiag−

1
2 (Σ), where Σ−1 =

Lnew(Lnew)T . Matrix L is a lower triangular matrix with (L)ττ = 1 and (L)τj = lτj for

τ > j, τ = 1, 2, . . . , d. We update each lτj individually.

Step 1.2: Calculate the acceptance aΣ = max{1, ck(Uk|Pnew,vt−1
k )p0(lnew

τj )p(lt−1
τj |lnew

τj )

ck(Uk|Pt−1,vt−1
k )p0(l

t−1
τj )p(lnew

τj |lt−1
τj )
} , where

p0 is the prior density N (0, 0.52), Uk = {ui ∈ U | kt−1
i = k, ∀i} and p is the random walk

proposal.

Step 1.3: Accept Pt
k = Pnew

k with probability aΣ; otherwise, reject it so that Pt
k = Pt−1

k

and Lt
k = Lt−1

k .

We repeat these steps until we have first exhausted all possible j, τ and then exhausted

all k.

Step 2: We simulate

p(vtk | vt
1,2,...,k−1,v

t−1
k+1,...,P

t,wt−1, {kt−1
i }ni=1, {zt−1

i }ni=1,U), k = 1, 2, . . . , max
i=1,2,...,n

kt−1
i

The proposal of vk follows the argument from the supplementary material of Frühwirth-

Schnatter and Pyne (2010) by letting

log(vnewk − 1) ∼ U
(
log(vt−1

k − 1)− ϵ, log(vt−1
k − 1) + ϵ

)
.

We set ϵ = 0.1, but this can be tuned. Therefore, for every component that has points

assigned to it. We can perform a simulation as follows:

Step 2.1: Propose vk so that log(vnewk − 1) ∼ U
(
log(vt−1

k − 1)− ϵ, log(vt−1
k − 1) + ϵ

)
.

Step 2.2: Calculate the acceptance avk = max{1, ck(Uk|Pt,vnewk )pGamma(vnew−1)(vnewk −1)

ck(Uk|Pt,vt-1k )pGamma(vt−1−1)(vt-1k −1)
}.

Step 2.3: Accept vtk = vnewk with probability av; otherwise, we let vtk = vt−1
k .

Step 3: We have the following update for zi, i = 1, 2, . . . , n.

p(zti | zt1,2,...,i−1, z
t−1
i+1,i+2,...,n,P

t,vt,wt−1, {kt−1
i }ni=1,U) ∼ U(0, (1− κ)κkt−1

i −1).
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Step 4: We perform the following update for ki, i = 1, 2, . . . , n

p(kt
i = k | kt

1,2,...,i−1, k
t−1
i+1,i+2,...,n,P

t,vt,wt−1, {zti}ni=1,U) ∝ ck(ui|vtk,Pt
k)r

−1
k wt−1

k I(zti ≤ rk).

After Step 4, we remove the redundant states with no assigned data point. If points assign

new states, the corresponding copula parameters are sampled from the priors.

Step 5: We perform the following update for Vk, k = 1, 2, . . . ,maxi=1,2,...,n k
t
i , where

maxi=1,2,...,n k
t
i denotes the maximum number of components allocated at the current round:

V t
k ∼ Beta(1 +

n∑
i=1

I(kt
i = k), α+

n∑
i=1

I(kt
i > k)).

We can then update wk as follows:

wt
k = Vk

k−1∏
s=1

(1− Vs).

Step 6: The components should be ranked according to their weights in descending order,

and relabelling should be performed accordingly. A new set of copula data u∗ can be sampled

from the current round of parameters c(·;vt,wt,P t). To obtain the data from the estimated

multivariate distribution, we invert the copula data u∗ using (3.3).

We iterate Steps 1–6 until the maximum number of iterations has been reached.

3.3.2 Sampling distributions

This part clarifies the sampling distributions used in Steps 2–4 by proving the corresponding

formulations. First, we show that by proposing the log-uniform distribution in Step 2.1, the

M-H acceptance probability av in Step 2.2 follows.

Proposition 2. Let the prior of vk ∼ 1+Gamma(1, 1) for all k. In M-H Steps 2.1 and 2.2,

the proposal distribution of vnewk follows log(vnewk −1) ∼ U
(
log(vt−1

k −1)−ϵ, log(v
t−1
k −1)+ϵ

)
.

Then, the acceptance rate avk obtained in the M-H steps follows Step 2.2.

Proof. The acceptance rate follows avk = max{1, ck(Uk|P t,vnewk )pGamma(vnew−1)p(vt−1
k |vnewk )

ck(Uk|P t,vt-1k )pGamma(vt−1−1)p(vnewk |vt−1
k )
}. Fur-

thermore, for the point v′ sampled from the above proposal, we have

p(v′ | v) = pU(log(v
′ − 1) | v)|d log(v

′ − 1)

dv′
| = 1

2ϵ(v′ − 1)
,
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inside the corresponding interval. Hence, the result of Step 2.2 follows.

The next propositions explain the sampling distributions in Steps 3–4.

Proposition 3. The conditional sampling distribution of zi follows

p(zti | zt1,2,...,i−1, z
t−1
i+1,i+2,...,n,P

t,vt,wt−1, {kt−1
i }ni=1,U) ∼ U(0, rki),

where rki = (1− κ)κki−1 in Step 3.

The conditional sampling distribution of ki is

p(kt
i = k | kt

1,2,...,i−1, k
t−1
i+1,i+2,...,n,P

t,vt,wt−1, {zti}ni=1,U) ∝ ck(ui|vtk,Pt
k)r

−1
k wt−1

k I(zti ≤ rk).

Furthermore, this follows a discrete categorical distribution

ki ∼ Cat(p1, p2, . . . , pk∗),

where pi = p(kt
i = i) and k∗ depends on rk.

Proof. From (3.4), we have the following:

p(zti | zt1,2,...,i−1, z
t−1
i+1,i+2,...,n,P

t,vt,wt−1, {kt−1
i }ni=1,U) ∝ p(ui, k

t−1
i , zti | Pt,vt,wt−1)

∝ I(zi ≤ rkt−1
i

).

This yields a uniform distribution from 0 to rkt−1
i

. Similarly,

p(kt
i = k | kt

1,2,...,i−1, k
t−1
i+1,i+2,...,n,P

t,vt,wt−1, {zti}ni=1,U) ∝ p(ui, k
t
i , z

t
i | Pt,vt,wt−1)

∝ ck(ui|vtk,Pt
k)r

−1
k wt−1

k I(zti ≤ rk).

Here, kt
i is chosen from [1,+∞) for our infinite models. However, because rk decreases to

zero as k approach positive infinity, we take k∗ + 1 = min{k : rk < zti}. When k > k∗, we

have p(kt
i = k | · · · ) = 0. Hence, we complete the proof with

pk =
ck(ui|vtk,Pt

k)r
−1
k wt−1

k I(zti ≤ rk)∑
cj(ui|vtj,Pt

j)r
−1
j wt−1

j I(zti ≤ rj).

Finally, we prove the sampling distribution of Step 5.
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Proposition 4. With the prior of Vk ∼ Beta(1, α), wk = Vk

∏k−1
s=1(1 − Vs), the conditional

distribution p(V t
k | · · · ) follows Step 5.

Proof. We denote kt = (kt
1, k

t
2, . . . , k

t
n), V = (V1, V2, . . . ). Therefore,

p(Vk | vt,V\k,P
t,kt,U) = p(Vk | V\k,k

t) ∝ p(kt | V )p0(Vk)

∝ V 0
k (1− Vk)

α−1

n∏
i=1

wki ∝ V 0
k (1− Vk)

α−1
∏

{i:ki≥k}

wki

∝ V 0
k (1− Vk)

α−1
∏

{i:ki=k}

Vk

∏
i:ki>k

(1− Vk) ∝ V
∑n

i=1 I(ki=k)
k (1− Vk)

α+
∑n

i=1 I(ki>k)

This follows the density function of Beta(1 +
∑n

i=1 I(k
t
i = k), α+

∑n
i=1 I(k

t
i > k)).

3.3.3 Label-switching problems

It is well known that the MCMC steps of mixture models will cause the problem of label

switching (Gelman et al., 2013, Section 22.3). This is basically caused by the identifiability

of the latent clustering variables, which in our cases are ki,∀i = 1, 2, . . . , n. For a mixture

model of K components, there are K! equivalent ways of labeling these components. It is as

if we have five different baskets, and we can therefore number these baskets in 5! equivalent

ways. To mitigate the label-switching problem, we add a post-processing step after every

epoch. That is, after we finish Steps 1–5, we add an extra step to relabel the clusters as per

their weighting percentage wk so that the cluster with a lower weight wk is always ranked

beneath one with a higher weight. If the label switching is not fully resolved, further criteria

can be considered to distinguish between groups.

3.4 Numerical simulations

3.4.1 Data with known margins

To verify the practicability of the algorithm, we first work directly with the copula data.

This corresponds to the case when we have exact knowledge of the marginal distributions.

Hence, for a d dimensional point yi = (yi1, yi2, . . . , yid), the copula data can be obtained

without errors by the transform uij = Fj(yij), j = 1, 2, . . . , d. Therefore, we directly sample

43



points from the mixed three-dimensional t copula distribution of

Cmix(u1, u2, u3) = w1CP1,v1(u1, u2, u3) + w2CP2,v2(u1, u2, u3) (3.5)

with (
(P1)12, (P1)13, (P1)23

)
= (0.8,−0.6,−0.5), v1 = 3, w1 = 0.7

and (
(P2)12, (P2)13, (P2)23

)
= (−0.5,−0.7, 0.4), v2 = 1.5, w2 = 0.3.

We further simulate points from the three-component mixed t copula

Cmix3(u1, u2, u3) = w1CP1,v1(u1, u2, u3) + w2CP2,v2(u1, u2, u3) + w3CP3,v3(u1, u2, u3) (3.6)

with

(
(P1)12, (P1)13, (P1)23

)
= (0.6,−0.5,−0.4), v1 = 4, w1 = 0.7;(

(P2)12, (P2)13, (P2)23
)
= (−0.7,−0.8, 0.5), v2 = 1.6, w2 = 0.2;

and (
(P3)12, (P3)13, (P3)23

)
= (0.3, 0.6, 0.5), v3 = 5, w3 = 0.1.

To give a graphical sense of the mixture data, we take approaches similar to those in

Burda and Prokhorov (2014). We plot the marginal densities of our simulated dependence

patterns (3.6) for (u1, u2) and (u2, u3). In addition, we transformed our copula data back

into distribution data using the inversion of the standard normal marginal CDF Φ−1(u).

Figure 3.1 displays the results. As the plot reveals, dependence patterns are mixed from

different directions. This becomes clearer when we observe the multi-modal features of the

transformed data in the second row of Figure 3.1, which is a good incentive for us to apply

a mixture model approach. We therefore use our algorithm to estimate the parameter from

the sampled data. The full posterior parameter distribution was simulated using Gibbs-

MH 10,000 times. Figure 3.2 depicts the MCMC sampling trace plots of the component

weightings estimated from the simulated data of setting (3.5) using 1000 points. The labels of

the weightings are ranked by their values such that w1 ≥ w2 ≥ w3 ≥ · · · ≥ · · · . All weightings
except for those of the first two components decrease to zero after around 3000 iterations,
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Figure 3.1: Contour plots of the marginal densities for the simulation example (3.6)
(u1, u2) and (u2, u3) (above) and the transformed density plots

(
Φ−1(u1),Φ

−1(u2)
)
and(

Φ−1(u2),Φ
−1(u3)

)
, when the standard normal marginal distribution Φ(·) are used.

showing the validity of the algorithm in determining the number of groups. For the 1000-

point simulation of (3.5), we have the mean estimation of (ŵ1, ŵ2, ŵ3) = (0.72, 0.27, 0.005)

with 95% confidence intervals of (0.61, 0.81), (0.19, 0.39), and (0, 0.03) respectively. Figure

3.3 provides the corresponding trace plots and density plots of the degrees of freedom for the

first two mixture components, with the corresponding posterior mean v̂1 = 2.95, v̂2 = 1.55,

and the 95% credible regions I1 = (2.29, 4.29) and I2 = (1.15, 2.33), respectively, for the

dataset with 1000 observations.

The full results of the parameter estimations are reported in Table 3.1, and we compare

them with the results of L-BFGS-B MLE, which is embedded in R software using fit-

Copula() in library(Copula) (Hofert et al., 2022). We fixed the number of mixture

components to be the true value of two.

In Table 3.1, it is evident that Bayesian samplers yield estimations comparable to those of
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Figure 3.2: Left: Trace plot of the weighting parameters w1, w2, w3. Right: Corresponding
density estimation of the weighting

Figure 3.3: Degrees-of-freedom posterior estimations of the first two mixture components
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Table 3.1: Comparison of the Gibbs-MH algorithm with L-BFGS-B MLE for model 3.5

Gibbs-MH L-BFGS-B MLE

Mean estimate 95% CI Point estimate Truth

N 200 500 1000 200 500 1000 200 500 1000
(P1)12 0.70 0.76 0.78 (0.57, 0.81) (0.67, 0.84) (0.72, 0.83) 0.71 0.78 0.79 0.8
(P1)13 -0.54 -0.62 -0.63 (−0.67,−0.36) (−0.69,−0.54) (−0.69,−0.57) -0.57 -0.63 -0.63 -0.6
(P1)23 -0.40 -0.51 -0.53 (−0.56,−0.20) (−0.61,−0.40) (−0.62,−0.43) -0.40 -0.52 -0.54 -0.5
(P2)12 -0.38 -0.65 -0.51 (−0.82,−0.22) (−0.81,−0.46) (−0.76,−0.18) -0.8 - 0.75 -0.56 -0.5
(P2)13 -0.53 -0.63 -0.66 (−0.84, 0.03) (−0.76,−0.41) (−0.76,−0.52) -0.53 -0.66 -0.66 -0.7
(P2)23 0.47 0.53 0.58 (0.12, 0.71) (0.30, 0.72) (0.34, 0.76) 0.72 0.58 0.64 0.4
v1 1.94 2.6 2.96 (1.39, 2.80) (1.87, 3.87) (2.29, 4.19) 2.17 2.7 2.95 3
v2 2.72 1.87 1.55 (1.26, 5.56) (1.32, 2.84) (1.15, 2.33) 1.2 2.4 1.60 1.5
w1 0.76 0.75 0.72 (0.56, 0.90) (0.67, 0.84) (0.61, 0.81) 0.83 0.76 0.73 0.7
w2 0.21 0.21 0.27 (0.09, 0.35) (0.16, 0.33) (0.19, 0.38) 0.17 0.24 0.27 0.3

Starting values of
(
(P1)

0
12, (P1)

0
13, (P1)

0
23, (P2)

0
12, (P2)

0
13, (P2)

0
23, v

0
1 , v

0
2 , w

0
1, w

0
2

)
= (0, 0, 0, 0, 0, 0, 3, 3, 0.7, 0.3). The concentration parameter

α = 0.2. The confidence interval (CI) of the MLE is not given because it was not included in the R package. The bold numbers are the best
estimate in terms of the absolute loss between the Bayesian method and the MLE method on the same dataset.

the maximum likelihood estimation (MLE) based methods implemented by fitCopula()

in the library(Copula) package. This holds true for both the absolute and mean squared

loss of the parameters, even when the correct number of mixture components is provided for

MLE estimation.

Furthermore, we note that the MLE-based estimations are highly sensitive to the initial

values in these cases. Variations in initial values can lead to substantially different final

estimations. In our application, we give the correct weightings (w1, w2) = (0.7, 0.3) as the

starting value for the MLE estimations. We found that some other weighting values could

lead to substantially distant results. On the other hand, the high-dimensional setting makes

it challenging to obtain asymptotic variances of the parameters for the MLEs, and the

efficacy of bootstrapping methods for computing confidence intervals of estimators becomes

uncertain.

In contrast, Bayesian posterior sampling naturally incorporates the credible region, pre-

senting a more dependable approach for parameter estimation.

We conducted an additional simulation using model (3.6). More specifically, we sampled

N = 2000 and N = 3000 points from the three-component mixture copula. The sampler

was run for 10,000 full iterations, with the initial 8000 iterations discarded as burn-in points.

Similar to the previous analysis, we compare the results with those obtained using the MLE

approach. Table 3.2 presents the sampler’s results alongside the MLE method’s results,

which were obtained using the R library. Furthermore, Figure 3.4 compares the true model

data with the posterior sampling distributions of N = 3000 data points.

Our results for this simulation case (Table 3.2 and Figure 3.4) reveal that the MLE

method produces more precise estimates when the sample size is N = 2000. However, as the

number of observations increases to N = 3000, the MLE’s and the Bayesian sampler exhibit
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Table 3.2: Comparison of the Gibbs-MH algorithm with L-BFGS-B MLE for the model 3.6

Gibbs-MH L-BFGS-B MLE

Mean estimate 95% CI Point estimate Truth

N 2000 3000 2000 3000 2000 3000

(P1)12 0.58 0.60 (0.52, 0.83) (0.55, 0.64) 0.61 0.61 0.6
(P1)13 -0.35 -0.39 (−0.42,−0.30) (−0.54,−0.45) -0.42 -0.50 -0.5
(P1)23 -0.31 -0.39 (−0.40,−0.25) (−0.45,−0.34) -0.37 -0.41 -0.4
(P2)12 -0.60 -0.69 (−0.73,−0.38) (−0.82,−0.54) -0.67 -0.73 -0.7
(P2)13 -0.74 -0.79 (−0.81,−0.66) (−0.87,−0.71) -0.79 -0.82 -0.8
(P2)23 0.45 0.53 (0.24, 0.60) (0.39, 0.69) 0.50 0.57 0.5
(P3)12 -0.16 0.15 (−0.69, 0.66) (−0.14, 0.43) 0.25 0.12 0.3
(P3)13 0.17 0.53 (−0.68, 0.72) (0.22, 0.77) 0.87 0.68 0.6
(P3)23 0.13 0.38 (−0.48, 0.73) (0.12, 0.62) 0.64 0.53 0.5
v1 3.35 3.93 (2.80, 4.05) (3.30, 4.88) 3.8 3.98 4
v2 1.28 1.50 (1.15, 2.30) (1.15, 2.33) 1.44 1.62 1.6
v3 2 2.82 (1.00, 3.96) (1.79, 4.97) 4.94 4.2 5
w1 0.77 0.73 (0.69, 0.83) (0.69, 0.78) 0.74 0.75 0.7
w2 0.22 0.18 (0.14, 0.23) (0.17, 0.30) 0.18 0.18 0.2
w3 0.01 0.08 (0.00, 0.03) (0.05, 0.12) 0.07 0.07 0.1

Starting values of

((P1)
0
12, (P1)

0
13, (P1)

0
23, (P2)

0
12, (P2)

0
13, (P2)

0
23, (P3)

0
12, (P3)

0
13, (P3)

0
23, v

0
1 , v

0
2 , v

0
3 , w

0
1, w

0
2, w

0
3) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0.3, 0.4, 0.3).

The concentration parameter α = 0.2. The confidence interval (CI) of the MLE is not given because it was not included in the R package. The
bold numbers are the best estimate in terms of the absolute loss between the Bayesian method and the MLE method on the same dataset.

similar performances. Note that the MLE approach relies on the correct specification of

the number of components, whereas the Bayesian algorithm automatically determines the

number of groups. Therefore, the MLE method possesses additional information, which

gives it an advantage. Furthermore, as presented in Table 3.1, the MLE-based approach is

sensitive to the initial starting point and does not inherently provide confidence intervals.

In contrast, the Bayesian sampler does not suffer from these issues.

3.4.2 Data with unknown margins

The previous section discusses the case when the margins of the data are known from ex-

ternal knowledge. We therefore focused on estimating the copulas. For most applications,

margins are unknown and need to be estimated using the data. In this scenario, we use non-

parametric estimation (3.3) for the marginal distributions before we perform the MCMC

samplings.
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Figure 3.4: Left: Pair plots of i.i.d. observations from the true model (3.6). Right: The
posterior model using 3000 observations generated by the Bayesian sampler after the burn-in
stage.

In this part, to produce our synthetic data, we first sample the copula points directly using

the copula function (3.5). We further set the true underlying margins of our synthetic data to

be the standard normal distributions so the sampled points from the copula are inverse trans-

formed by the quantile function of the standard normal distribution marginally. Note that in

practice, the data we gather are
(
yi1, yi2, . . . , yid

)
=
(
F1

−1(ui1), F2
−1(ui2), . . . , Fd

−1(uid)
)
, i =

1, 2, . . . , n, where the margins F1, F2, . . . , Fd are unknown. We therefore proceed with our

general procedure by first estimating the margins empirically using (3.3) and then estimate

the copula using the data (ûi1, ûi2, . . . , ûid), i = 1, 2, . . . , n obtained from (3.3). For the sake

of comparison, the copula data used are the same data used to produce Table 3.1, and all

aspects of the algorithms are kept the same as the previous part except for extra marginal

estimations. We display the results in Table 3.3. Both the MCMC and MLE methods fail to

obtain good estimations for n = 200, in contrast to the previous experiment (Table 3.1). In

the current n = 200 case, the MCMC approach obtains the right signs of the correlations for

the first mixture component but fails to be successful for the other parameters while the MLE

method gives the same estimation for both components, even when we start the iteration

with the true values of the weighting parameters. As the sample size increases, we obtain

similar performances for both approaches when compared with the results in Table 3.1, in-

dicating the validity of using empirical estimations (3.3) when margins are unknown. Again,

we find the performances of the MLE approach highly dependent on the correct specifica-
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tions and initial starting values, and we give good initial points because we know the true

parameters. However, this can be difficult in real applications.

Table 3.3: Comparison of the Gibbs-MH algorithm with L-BFGS-B MLE for the
model 3.5 with margins being the standard normal distributions. Starting values of
((P1)

0
12, (P1)

0
13, (P1)

0
23, (P2)

0
12, (P2)

0
13, (P2)

0
23, v

0
1, v

0
2, w

0
1, w

0
2) = (0, 0, 0, 0, 0, 0, 3, 3, 0.7, 0.3) were

used. The concentration parameter α = 0.2. The confidence interval (CI) of the MLE is not
given because it was not included in the R package. The margins are treated as unknown
when conducting the estimation, and non-parametric estimations (3.3) were used for the
margins.

Gibbs-MH L-BFGS-B MLE

Mean estimate 95% CI Point estimate Truth

N 200 500 1000 200 500 1000 200 500 1000
(P1)12 0.47 0.78 0.79 (0.31, 0.66) (0.70, 0.84) (0.74, 0.83) 0.2 0.79 0.80 0.8
(P1)13 -0.55 -0.64 -0.62 (−0.68,−0.43) (−0.72,−0.56) (−0.68,−0.55) -0.2 -0.60 -0.64 -0.6
(P1)23 -0.23 -0.54 -0.54 (−0.42,−0.06) (−0.65,−0.42) (−0.62,−0.45) -0.20 -0.50 -0.56 -0.5
(P2)12 0.08 -0.68 -0.51 (−0.55, 0.70) (−0.87,−0.30) (−0.68,−0.29) 0.2 - 0.80 -0.44 -0.5
(P2)13 -0.06 -0.64 -0.69 (−0.63, 0.75) (−0.77,−0.46) (−0.77,−0.54) -0.2 -0.7 -0.64 -0.7
(P2)23 0.03 0.53 0.61 (−0.62, 0.59) (0.25, 0.76) (0.43, 0.72) -0.2 0.63 0.60 0.4
v1 1.19 3.01 3.59 (1.07, 1.38) (2.10, 4.58) (2.68, 4.83) 2.39 3 1.43 3
v2 2.48 2.64 1.6 (1.13, 4.75) (1.54, 4.20) (1.32, 2.02) 2.39 3 1.43 1.5
w1 0.93 0.74 0.72 (0.58, 1.00) (0.66, 0.84) (0.64, 0.78) 0.70 0.77 0.70 0.7
w2 0.07 0.22 0.27 (0.00, 0.41) (0.13, 0.31) (0.20, 0.36) 0.30 0.23 0.30 0.3

3.5 Real data analysis

We collected the daily closing prices of the Shanghai Stock Exchange 50 Index (SSE 50)

and Shenzhen Stock Exchange 100 Index (SZSE 100) from January 3, 2018, to March 17,

2023; 1263 trading days in total. We converted these daily closing prices Pt into log returns

using the formula rt+1 = log(Pt+1/Pt). The summary statistics of the log returns over the

aforementioned period are presented in Table 3.4.

Table 3.4: Summary statistics of the daily log return between January, 2018, and March,
2023.

Min Max Skewness Kurtosis JB test p value ADF test p-value
Shanghai -0.07 0.07 -0.14 5.66 < 2.2× 10−16 0.01
Shenzhen -0.09 0.05 -0.37 4.98 < 2.2× 10−16 0.01

The daily log return data exhibit the strong sign of a heavy tail, with the Jarque–Bera

(JB) test significantly rejecting the null hypothesis of normality. It is generally recognized

that the Shanghai and Shenzhen indexes have a strong correlation. Our analysis aims to
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determine if there is any change in the dependence pattern, especially one due to the oc-

currences of the COVID-19 pandemic after 2020. This situation naturally fits our model

as we do not know how many mixtures exist. However, although the ADF test rejects the

existence of the unit root, the log return of these indexes does not form an i.i.d. series. This

is illustrated in Figure 3.5, where the plot of the absolute log return of the Shanghai index

clearly shows some auto-correlation, although the log return plot on the left is seemingly not

correlated. Note that a Ljung–Box test with five lags was rejected for the squared log return

of the Shanghai and Shenzhen indexes.

Figure 3.5: Auto-correlation of the log return (left) and the absolute log return (right) of
the Shanghai composite index for Jan. 2018 to March 2023

To produce the i.i.d. series of log returns, we model each marginal series using a t-

GARCH(1,1), i.e.,

rt = σtϵt ϵt ∼ tv

σ2
t = β + α0σ

2
t−1 + α1r

2
t−1.

(3.7)

In particular, the innovation of our model (3.7) ϵt is fit by the standard t-distribution, which is

more consistent with the heavy tails of the market returns. After we fit the GARCH model to

each marginal return series, we extract the standard innovation by εi = ( ri1
σi1

, ri2
σi2

, . . . , rin
σin

), i =

1, 2, where n refers to the total number of observations, which is n = 1263. The index i

indicates whether the series is from Shanghai or Shenzhen. The p-values of the Ljung–Box

test with five lags after scaling for ε21 and ε22 were 0.31 and 0.75, respectively, indicating

the sign of weak or no temporal correlation. We further applied the marginal empirical

distribution ui = F̂i(ϵi) =
1

n+1

∑n
t=1 I{ϵ̂t ≤ ϵi} so that the marginal data was transformed
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into the copula data to enable the model training. Figure 3.6 displays the highly positive

correlated pattern with heavy extreme dependence of the transformed copula data, which

supports the credibility of using t copula structures. We applied our infinite mixture model

Figure 3.6: Transformed copula data from the Shanghai and Shenzhen log returns

to the transformed copula data, running 10,000 full iterations for each parameter. We

considered the initial 8000 iterations to be the burn-in period, as done previously. Figure 3.7

displays the plot of the posterior predictive points (transformed back to the original scale

using the inverse of the empirical functions) against the original standardized residuals. The

predictive points generated by the samplers closely resemble the original residuals, indicating

a good fit using our model.

Moreover, the posterior proportion of w1 remains consistently high, with a mean of

97.63% and a standard deviation of 0.015, strongly suggesting that only one component is

needed. Figure 3.8 presents the trace plot of v1 and the correlation (P1)12, which represent

the parameters of the first mixture component.

To further validate our approach, we again compared the estimation with the MLE ap-

proach of a single-component t copula, which was implemented in R using the library men-

tioned previously. The results are listed in Table 3.5. The close results of the two methods

confirm that the parameter estimation of the infinite t copula mixture has comparable qual-

ity to that of the MLE estimation embedded in the standard package library(Copula)

in R. In this case, the Bayesian approach has more flexibility in determining the number of

mixture components, with a shorter confidence region regarding the degree of freedom v.

Our analysis of the results reveals that the dependence structure of the Shenzhen–

52



Figure 3.7: Samples from the estimated Bayesian sampler (left) and data from the real
standardized residuals (right)

Figure 3.8: Trace plot of (P1)12 and v1.

Table 3.5: Comparison of the Gibbs-MH algorithm with L-BFGS-B MLE on Shanghai-
Shenzhen stock data. “CI” refers to the confidence interval.

Gibbs-MH L-BFGS-B MLE of a single t copula

Mean estimate 95% Credible Region Point estimate 95% CI

(P1)12 0.84 (0.82, 0.85) 0.84 (0.83, 0.86)
v1 6.2 (4.6, 8.6) 8.32 (4.1, 12.5)
Log-likelihood 789.5 790.3

Shanghai stock market remained unchanged before and after the COVID-19 pandemic. The

correlation remains consistently high throughout the period, with only one mode, and the

tail dependence is significant, as evidenced by the degrees-of-freedom parameters. Estimat-

ing the degrees of freedom is crucial in financial applications, as it captures the co-movement

of financial assets during extreme losses (or returns). A normal copula cannot grasp this
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feature.

To express this more mathematically, we define the extreme tail loss as Λ = limu→0 P(X1 ≤
F−1
1 (u) | X2 ≤ F−1

2 (u)), where F1(X1) and F2(X2) represent the marginal return distribu-

tions of individual assets. In terms of the copula, we have Λ = limu→0
P(F1(X1)≤u,F2(X2)≤u)

P(F2(X2)≤u)
=

limu→0
C(u,u)

u
. Citing results from (McNeil et al., 2015, p.249-250), we find that Λ = 0

for the normal copula and Λ = 2Ft,v+1

(
−
√

(v + 1)(1− r)/(1 + r)
)
for the t copula with

degrees of freedom v, correlation parameter r, and distribution function Ft,v+1(·) referring to

the corresponding t-distribution. Consequently, according to the posterior mean estimation

parameters, the extreme lower tail dependence between the SSE 50 and SZSE 100 stocks

is 45%. In other words, there is a 45% probability that the SZSE 100 index will suffer a

significant loss when the SSE 50 experiences an extreme loss. This type of information would

be lost if a normal copula instead of a t copula were to be used. Therefore, it is advisable to

model the dependence of financial assets using a t copula when compared with the normal

conterpart.

3.6 Concluding remakrs

In this chapter, we have developed the infinite Student t copulas using the non-parametric

Bayesian approach. More specifically, the stick-breaking process was used to construct our

models, and the application in the Shanghai-Shenzhen market was performed.

The construction of t infinite mixture copulas would be useful, especially in the area of

financial risk management. This is because the ability to capture the extreme dependence

among financial instruments is essential in this field. Further extensions can be done to

consider the mixture of skew t copulas, which can make the detection of skewness possible.
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Chapter 4

Copula hidden Markov model with

unknown number of states

4.1 Introduction

The hidden Markov model (HMM) (Rabiner and Juang, 1986) has been widely applied

as a tool for modeling the regime switches in finance (De Angelis and Paas, 2013; Dias

et al., 2015; Nguyen, 2018). Therefore, extending the mixture of copulas into the setting of

hidden Markov models can ensure that the transition matrix among states can be effectively

estimated. The copula-HMM structure is a convenient tool for modeling multivariate time

series when cross-sectional dimensions are correlated.

Studies have been conducted on copula–HMM models. Derrode and Pieczynski (2016);

Yu (2017) applied the Gaussian copula–HMM model to the field of signal processing. Ötting

et al. (2021); Ötting and Karlis (2022) analyzed football games data using the HMM models

with the emission distributions formed by Frank, Clayton, and AMH copulas. The number

of states was selected based on the best AIC and BIC scores. Oflaz et al. (2023) used the

binomial copulas along with the HMM structure for chronic disease analysis. Zimmerman

et al. (2022) incorporated the inference for margins (IFM) techniques into the EM method

and proposed the efficient IFM–EM approach for the copula–HMM model estimations.

However, in the classic HMM model, the number of states have to be specified as a

hyperparameter, which is inconvenient for many tasks, as this information is usually not

available as prior knowledge. To determine the number of states from the data, conventional

approaches use the AIC or BIC to compare models with different hyperparameters. This
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involves repeated estimation of the models from the data.

In contrast, we employ an infinite hidden Markov model (Beal et al., 2001; Van Gael

et al., 2008; Fox et al., 2011; Maheu and Yang, 2016) to enable automatic state number

determination for copula–HMM structures. This is realized by utilizing the hierarchical

Dirichlet process (HDP) of Teh et al. (2006) to construct an infinite hidden Markov model.

Tekumalla and Bhattacharyya (2016) mentioned the concept of HDP–HMM–copula models

in their introduction but the latter implementation and application directly focused on the

multivariate normal.

In this study, we introduce inference approaches for a copula-based infinite hidden Markov

model. This is followed by numerical simulations for validation, and real data applications

to detect different dependence modes between major stock markets.

4.1.1 Copula–iHMM model

We can write the multimodal data in the mixture form as

F (x1, x2, . . . , xd) =
K∑
i=1

wiF
i(x1, x2, . . . , xd),

K∑
i=1

wi = 1, wi ≥ 0.

Where F i, i = 1, 2, . . . , K represents the different distributions (McLachlan et al., 2019).

The density form of the aforementioned distribution (if it exists) can be expressed as

f(x1, x2, . . . , xd) =
K∑
i=1

wif
i(x1, x2, . . . , xd)

=
K∑
i=1

wic
i(F1(x1), F2(x2), . . . , Fd(xd);Θi)

d∏
j=1

f i
j(xj;α

i
j).

(4.1)

The second equality is obtained by applying

f(x1, x2, . . . , xd) = c(F1(x1), F2(x2), . . . , Fd(xd))
d∏

j=1

fj(xj).

to every component of the mixture f i, i = 1, 2, . . . , K, where f i
j is the corresponding jth

margin.

For time-series data, utilizing the model (4.1) directly is inappropriate. Therefore, we

introduce a copula-based hidden Markov model as follows.
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Let the stochastic process be defined as {(Ht,Ot) | t = 1, 2, 3, . . . }, whereHt ∈ {1, 2, 3, . . . , K}
are discrete-valued hidden states such that the Markov property satisfies

p(Ht = k | Ht−1 = j,Ht−2, Ht−3, . . . ) = p(Ht = k | Ht−1 = j) = pjk.

We denote the K ×K matrix P as a homogeneous transition matrix such that (Pt)ij =

(P )ij = pij, t = 1, 2, . . . , T. In particular, pjk does not change with time for all state transi-

tions between Ht and Ht−1.

By contrast, Ot = (xt
1, x

t
2, . . . , x

t
d) follows multivariate emission distributions such that

their densities are

Ot | Ht = k ∼ ck
(
F k
1 (x

t
1), F

k
2 (x

t
2), . . . , F

k
d (x

t
d);Θk

) d∏
j=1

fk
j (x

t
j;α

k
j ). (4.2)

Ht−1 Ht Ht+1

Ot−1 Ot Ot+1

. . . . . .

Figure 4.1: Hidden Markov model as a directed graphical model. The hidden states are
denoted Ht and the observed emission states are Ot.

Figure 4.1 shows a graphical representation of the HMM structure. We represent our

observed distributions using the copulas (4.2) and Sklar’s theorem.

Furthermore, we aimed to simultaneously infer the number of states K, copula param-

eters Θk, marginal parameters αk
j , and hidden states H1, H2, . . . , HT considering T -length

observable data

O1:T = (O1,O2, . . . ,OT ).

We realized this by using the hierarchical Dirichlet process (Teh et al., 2006), a non-

parametric Bayesian framework, to extend the hidden Markov model to the infinite hidden

Markov model; this ensures that the number of states can be estimated alongside other

parameters of interest.
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4.2 Priors of Dirichlet processes and Hierarchical Dirich-

let processes in mixture modeling

4.2.1 Dirichlet priors

For the self contained purpose, the Dirichlet process is denoted in this chapter by DP (α,B0),

where α is the positive concentration parameter and B0 is the base probability measure. Sam-

ple B1 ∼ DP (α,B0) is an atomic probability measure such that, for any finite segmentation

of the sample space Ω such that ∪ni=1Ei = Ω and Ei ∩ Ej = ∅ ∀i, j, we have(
B1(E1), B1(E2), . . . , B1(En)

)
∼ Dirichlet(αB0(E1), αB0(E2), . . . , αB0(En)).

Dirichlet(·) denotes Dirichlet probability distribution.

Therefore, for finite mixture distributions within the parametric family of densities,

{f(·; θ) | θ ∈ Θ}. We set the DP as a prior such that the mixture is as follows:

B1 ∼ DP (α,B0)

fmix =

∫
θ∈Θ

f(· | θ)dB1.

Let us revisit the stick-breaking representation of Dirichlet priors of Sethuraman (1994),

the generation process for B1 is

θi ∼ B0, vi ∼ Beta(1, α)

w1 = v1, wi = vi

i−1∏
j=1

(1− vj)

i = 1, 2, 3, . . . .

where Beta(1, α) is the beta distribution with the parameters 1 and α. The stick-breaking

process is now denoted as {wi}∞i=1 ∼ SBP(α).

Furthermore, the latent group label for every point i is now denoted by ki ∈ {1, 2, 3, . . . }.
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The generation process of samples Oi, i = 1, 2, . . . , T can be represented as

k1, k2, k3, . . . , kT ∼Multinomial(w1, w2, . . . )

θj ∼ B0, j = 1, 2, . . . , K

Oi ∼ fki(· | θki), i = 1, 2, . . . T.

4.2.2 Hierarchical Dirichlet priors

The hierarchical Dirichlet (Teh et al., 2006; Gelman et al., 2013) adds a different layer to the

introduced Dirichlet process. For Dirichlet processes with concentration parameters α, β, we

obtain:

B1 ∼ DP (α,B0),

Bj ∼ DP (β,B1), j = 1, 2, 3, . . .

Therefore, the sample from the first layer of DP was used as the base measure for later

layers. One significant feature of this structure is that the later layers share the same

parameter, θi ∼ B0 as the top layer. This enables a dependent inference among levels.

Van Gael (2012) provides the stick-breaking construction of the hierarchical Dirichlet process

as

{wi}∞i=1 ∼SBP(α)(
pj1, pj2, . . . , pjk,

∑
m≥k+1

pjm
)
∼Dirichlet

(
βw1, βw2, . . . βwk, β(

∑
m≥k+1

wk)
)
,∀k

θj ∼B0

j = 1,2, 3, . . . .

The second line of the above representation is denoted by SBP(β, {wi}∞i=1) for simplicity.

The infinite hidden Markov model can be naturally constructed from the representation

because we can treat pj = (pj1, pj2, pj3, . . . )
T , j = 1, 2, 3, . . . as the transition vector from

state j to any other state. We employ the notations in Section 4.1.1. The IHMM in the
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setting of the mixture copulas can be expressed as

{wi}∞i=1 ∼ SBP(α),

pj ∼ SBP(β, {wi}∞i=1), (Θj,α
j) ∼ B0 j = 1, 2, 3, . . .

Ht = s2 | Ht−1 = s1 ∼ ps1s2 , H1 = 1, t = 1, 2, . . . , T

Ot | Ht = k ∼ ck
(
F k
1 (x

t
1), F

k
2 (x

t
2), . . . , F

k
d (x

t
d);Θk

) d∏
l=1

fk
l (x

t
l ;α

k
l ),

where αj = (αj
1,α

j
2, . . . ,α

j
d)

T .

From the current construction, E(pij) = E[E(pij | {wi}∞i=1)] = E[wj]. This enables fast

switching between states (Dufays, 2016), which is disadvantageous for some applications.

Fox et al. (2011) proposed the sticky infinite hidden Markov model to mitigate the issue.

This is realized by adding a sticky probability to the current state j such that

(
pj1, pj2, . . . , pjk,

∑
m≥k+1

pjm
)
∼

Dirichlet
(
βw1/(β + κ), βw2/(β + κ), . . . , (βwj + κ)/(β + κ), . . . , β(

∑
m≥k+1

wk)/(β + κ)
)
.

Therefore, the current state becomes more persistent for κ > 0, and the original iHMM

recovers when κ = 0. For financial analysis, retaining the original iHMM construction might

help to ensure that sudden changes in market conditions can be detected (Dufays, 2016)

4.3 Bayesian parameters estimation

In this section, we present a posterior Bayesian inference methodology for the copula–iHMM.

Considering sequential data O1:T = (O1,O2, . . . ,OT ) , our aim is to sample from the

posterior

p

(
(Θi)

∞
i=1(α

i)∞i=1; (wi)
∞
i=1; (Hi)

T
i=1, P, α, β | O1:T

)
.

A major difficulty in performing posterior inference of the iHMM is its infinite structure.

In particular, the transition from one state to an infinite state must be considered. This

problem can be overcome using the slice sampler proposed in Walker (2007); Van Gael et al.

(2008).

Particularly, we augment the posterior distribution with another set of ancillary variables
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(ut)
T
t=1 such that

p
(
Ht = s2, ut | Ht−1 = s1, P

)
= I(0 < ut < ps1s2).

where I(·) denotes an indicator function.

The augmentation maintains the marginal transition probability as∫
p
(
Ht = s2, u

′
t | Ht−1 = s1, P

)
du′

t = ps1s2 .

Meanwhile, as

p
(
Ht = s2 | ut, Ht−1 = s1, P

)
∝ p
(
Ht = s2, ut | Ht−1 = s1, P

)
= I(0 < ut < ps1s2).

This prevents us from considering the states si, sj with psisj ≤ ut at the point Ot.

Therefore, after augmentation, the posterior distribution of interest becomes

p

(
(Θi)

∞
i=1, (α

i)∞i=1, (wi)
∞
i=1, (Hi)

T
i=1, (ui)

T
i=1, P, α, β | O1:T

)
.

Let J = {(Θi)
∞
i=1, (α

i)∞i=1, (wi)
∞
i=1, (Hi)

T
i=1, (ui)

T
i=1, P, α, β} be the joint parameters of inter-

est.

We used Gibbs within Metropolis–Hasting approaches to perform posterior sampling.

The steps can be broken down as follows after we set up the initialization:

1. Sample p
(
(Θi)

K
i=1, (α

i)Ki=1 | J\(Θi)
K
i=1,(α

i)Ki=1
, O1:T

)
by first sampling p

(
(αi)Ki=1 | J\(αi)Ki=1

, O1:T

)
and then followed by p

(
(Θi)

K
i=1 | J\(Θi)

K
i=1

, O1:T

)
, where K is the largest number of

states by considering the current group label.

2. Sample p(P | J\P , O1:T ), which consists of sampling p1,p2, . . .pK from the correspond-

ing posterior Dirichlet distributions.

3. Sample p
(
(wi)

K
i=1 | J\(wi)Ki=1

, O1:T

)
and the concentration parameters p

(
α, β | J\α,β, O1:T

)
.

These samplers can be considered together, and their posterior distributions are related

to the Pólya urn representation of the hierarchical Dirichlet process (see Teh et al.

(2006); Van Gael (2012); Maheu and Yang (2016)).

4. Sample p
(
(ui)

T
i=1 | J\(ui)Ti=1

, O1:T

)
. This step should be looped until

min
t=1,2,...,T

(ut) > max
s=1,2,...,K

(psK+1)
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is satisfied. This is to guarantee that we have considered all possible non-vanished

states. For every loop, K should be increased to ensure that K ← K + 1 and the

corresponding parameters (pK ,ΘK ,α
K , wK) of the newly considered states should be

sampled from priors.

5. Sample p
(
(Hi)

T
i=1 | J\(Hi)Ti=1

, O1:T

)
. Applying the forward–backward techniques of the

classic HMM becomes possible after the slice sampler of step 4.

6. Remove the empty states after step 5. Label-switching problems can be adjusted at

this step if required. For example, ranking the clusters according to their conditional

likelihood usually distinguishes them well. This ranking criterion can be further refined

to consider the transition matrix if necessary.

7. Return to step 1 and begin a new iteration. The algorithm is stopped when the

maximum number of iterations is reached.

For application in this study, we provide more details for the use of a t-copula with

normal margins; however, the framework also applies to other copulas.

Sample (Θi)
K
i=1 and (αi)Ki=1 The sampling of distribution parameters consists of sam-

pling from the copula parameters (Θi)
K
i=1 and from the marginal distributions (αi)Ki=1. Im-

portant techniques of inference for margins (IFM) (Genest et al., 1995; Joe and Xu, 1996) in

the copula theory can be utilized for estimation. Particularly, the marginal parameters can

be estimated separately from the copula structure. For normal margins, with parameters

αi
j = (µi

j, σ
i
j) ∀i = 1, 2, . . . , K and j = 1, 2 . . . , d, we propose parameters according to the

conjugate posterior, considering the current round of state labels. For the parameters of the

ith group, the particular group data Gi = {Ot | Ht = i}.
We set the prior of any (µi

j, σ
i
j) with i = 1, 2, . . . , K and j = 1, 2, . . . , d as

p0(µ
i
j, τ

i
j) = NIG(µi

j, τ
i
j |µ0, λ0, α0, β0),

where τ ij = 1/σi
j
2
, µ0 = 0, λ0 = 1, α0 = 0.5, β0 = 0.005.

Set the cardinality of set |Gi| = n and let Ō be the sample mean of the data in the set.

The updated parameters for the posterior normal inverse gamma distribution are

µ′ =
λ0µ0 + nŌ

λ0 + n

λ′ = λ0 + n
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α′ = α0 +
n

2

β′ = β0 +
1

2

n∑
j=1

(Oij − Ō)2 +
nλ0

2(λ0 + n)
(Ō − µ0)

2

where points Oi1 , Oi2 , ..., Oin are the data from Gi. Therefore, we sample from the con-

jugate posterior

(µi
j

∗
, σi

j

∗
) ∼ p∗(µi

j, τ
i
j |Gi) = NIG(µi

j, τ
i
j |µ′, λ′, α′, β′).

This is posterior, considering only the margins. We apply the Metropolis–Hasting steps

to accept the proposed (µi
j
∗
, σi

j
∗
). Therefore,

α
(µi

j
∗
,σi

j
∗
)
=

∏
t∈i1,i2,...,in

ci
(
F i
1(x

t
1), . . . , F

i
j (x

t
j ;µ

i
j
∗
, σi

j
∗
), . . . , F i

d(x
t
d)

)
fi
j

(
xt
j ; (µ

i
j
∗
, σi

j
∗
)
)
p0(µ

i
j
∗
, σi

j
∗
)p∗(µi

j , τ
i
j |Gi)∏

t∈i1,i2,...,in
ci

(
F i
1(x

t
1), . . . , F

i
j (x

t
j ;µ

i
j , σ

i
j), . . . , F

i
d
(xt

d
)
)
fi
j

(
xj ; (µ

i
j
∗, σi

j
∗)

)
p0(µ

i
j , σ

i
j)p

∗(µi
j
∗, τi

j
∗|Gi)

.

For the t-copula densities, we must sample the d× d positive definite correlation matrix

Ri and degree-of-freedom parameters νi for any group i = 1, 2, . . . , K. The sampling of Ri

is obtained from Danaher and Smith (2011), which is the same as the previous chapter.

In particular, we sample one element at a time from the lower triangular matrix Li such

that (Li)jj = 1, ∀j = 1, 2, . . . d. Thereafter, Σ−1
i = LiL

T
i and Ri = diag(Σ)−

1
2 (Σ)diag(Σ)−

1
2 .

For row j = 1, 2, . . . , d, the following procedure is looped from column k = 1, . . . , j − 1:

(i) Sample from the random walk proposal to update the lower triangular matrix of the

current round (Li)
∗
jk ∼ N((Li)jk, 0.05

2).

(ii) Calculate new correlation such that

Σ∗−1
i = Li

∗Li
∗T , R∗

i = diag(Σ)−
1
2 (Σ)diag(Σ)−

1
2

(iii) The proposal matrix is accepted as per the probability

αR∗ =∏
t∈i1,i2,...,in c

i
(
F i
1(x

t
1), . . . , F

i
d(x

t
d);R

∗)p0((Li)
∗
jk)p

∗((Li)jk|(Li)
∗
jk)∏

t∈i1,i2,...,in c
i
(
F i
1(x

t
1), . . . , F

i
d(x

t
d);R

)
p0((Li)∗jk)p

∗((Li)∗jk|(Li)jk)
.

where the prior p0 ∼ N(0, 0.52) and the proposal p∗((Li)
∗
jk|(Li)jk) ∼ N((Li)jk, 0.05

2).
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To sample the degrees of freedom νi, we follow the approach of Frühwirth-Schnatter and

Pyne (2010) and propose the following:

log(ν∗
i − 1) ∼ U(log(νi − 1)− ϵ, log(νi − 1) + ϵ).

The prior distribution of νi is set to p0(νi − 1) ∼ Gamma(1, 1). The acceptance rate is

αν∗ =∏
t∈i1,i2,...,in c

i
(
F i
1(x

t
1), . . . , F

i
d(x

t
d); ν

∗)p0(ν∗
i − 1)(ν∗

i − 1)∏
t∈i1,i2,...,in c

i
(
F i
1(x

t
1), . . . , F

i
d(x

t
d); ν

)
p0(νi − 1)(νi − 1)

.

Sampling p(P | J\P , O1:T ) To sample p1,p2, . . .pK , recall the posterior distributions of

the Dirichlet distribution such that for any i = 1, 2, . . . , K

(pij)
K
j=1,

∞∑
j=K+1

(pij) | J\P ∼ Dirichlet(β′
1, β

′
2, . . . , β

′
K , β

∞∑
j=K+1

wj)

β′
τ = βwτ +

T−1∑
t=1

I(Ht = i,Ht+1 = τ), τ = 1, 2, . . . , K.

Sampling p
(
(wi)

K
i=1 | J\(wi)Ki=1

, O1:T

)
The inference of the posterior distribution of (wi)

K
i=1

is related to the Pólya urn representation of the hierarchical Dirichlet process hidden Markov

model(Teh et al., 2006; Van Gael, 2012; Maheu and Yang, 2016).

Following Teh et al. (2006), we obtain the following posterior sampler:

(wi)
K
i=1,

∞∑
j=K+1

wj ∼ Dirichlet(m·1·,m·2·, . . . ,m·K·, α).

In the Pólya urn representation, (m·1·,m·2·, . . . ,m·K·) are the states of the samples drawn

from the top-level DP (α).

To simulate (m·1·,m·2·, . . . ,m·K·) in each iteration, we sequentially draw

mi,j,t ∼ Bin
(
1, βwj/(t− 1 + βwj)

)
t = 1, 2, . . . ,

T−1∑
τ=1

I(Hτ = i,Hτ+1 = j).

We denote Bin(n, p) as the binomial distribution of n trails with probability p. Therefore,
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m·j· =
∑

i

∑
t mijt.

Sampling p
(
α, β | J\α,β, O1:T

)
The sampling of hyperparameters follows directly from

Teh et al. (2006); Fox et al. (2011); Maheu and Yang (2016); Dufays (2016).

Proceeding from the last step, set m··· =
∑

ijtmijt. The sampling of α consists of

α̃ ∼ Bin
(
1,m···/(m··· + α)

)
, ˜̃α ∼ Beta(α + 1,m···)

α ∼ Gamma(η0 +
K∑
j=1

I(m·j· > 0)− α̃, γ0 − log ˜̃α).

where η0, γ0 are hyperparameters. We set them to 1 and 5 for the later simulations and

real-data experiments, respectively.

The sampling of β consists of

β̃i ∼ Bin

(
1,

∑
j

∑T−1
t=1 I(Ht = i,Ht+1 = j)∑

j

∑T−1
t=1 I(Ht = i,Ht+1 = j) + β

)
, i = 1, 2, . . . , K

˜̃βi ∼ Beta

(
β + 1,

∑
j

T−1∑
t=1

I(Ht = i,Ht+1 = j)

)
, i = 1, 2, . . . , K

β ∼ Gamma(η1 +m··· −
∑
i

β̃i, γ1 −
∑
i

log ˜̃βi).

We set the hyperparameters η1 = 1, γ1 = 5.

Sampling p
(
(ui)

T
i=1 | J\(ui)Ti=1

, O1:T

)
The ancillary parameters should be sampled ac-

cording to

p
(
u1 | J\(ui)Ti=1

, O1:T

)
∼ U(0, wH1)

p
(
ut | J\(ui)Ti=1

, O1:T

)
∼ U(0, pHt−1Ht), t = 2, 3, . . . , T

This procedure is repeated if mint=1,2,...,T (ut) < maxs=1,2,...K(psK+1) and if new states arise,

and all the corresponding parameters of the copulas and margins should be sampled from

the priors for this new state. Furthermore, the new state K + 1 has an initial transition

matrix

(
pj1, pj2, . . . , pjK+1,

∑
m≥K+2

pjm
)
∼ Dirichlet

(
βw1, βw2, . . . βwK+1, β(

∑
m≥K+2

wm)
)

j = K + 1
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The top level DP (α) corresponds to

wK+1 = (1−
K∑
i=1

wi)vK+1, vK+1 ∼ Beta(1, α).

The transition probability from other existing states to state K is set as

piK+1 = (1−
K∑
j=1

pij)VK+1, VK+1 ∼ Beta
(
βwK+1, β(1−

K+1∑
i=1

wi)
)

i = 1, 2, . . . , K.

Finally, we update the largest number of states in the current iteration K by adding one.

Sampling p
(
(Hi)

T
i=1 | J\(Hi)Ti=1

, O1:T

)
To sample the hidden state (Hi)

T
i=1, we employed

the forward–backward trick of the classical hidden Markov model.

Working backwardly,

p(Ht = i | Ht+1:T , O1:T , u1:T ) ∝

p(Ht | O1:t, u1:t)p(Ht+1, ut+1 | Ht) = I(ut+1 < pHtHt+1)p(Ht | O1:t, u1:t)

The backward iteration from t = T, T − 1, T − 2, . . . enables us to sample the hidden

state Ht if we know

p(Ht | O1:t, u1:t), t = 1, 2, 3, . . . , T

.

These values are computed by working forward. In particular, for t = 1, 2, 3, . . . , T

p(Ht | O1:t,u1:t) ∝ p(Ht, Ot, ut | O1:t−1, u1:t−1)

∝ p(Ot | Ht, ut, O1:t−1, u1:t−1)
∑
S

p(Ht, ut, Ht−1 = S | u1:t−1, O1:t−1)

∝ p(Ot | Ht)
∑
S

I(0 < ut < psHt)p(Ht−1 = s | O1:t−1, u1:t−1).

Here,

p(H1 | O1, u1) ∝ p(O1 | H1)p(H1 | u1) ∝ I(0 < u1 < wH1)p(O1 | H1).

Thereafter, follow Steps 6–7.
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4.4 Simulation studies

We conducted simulation studies for two and three hidden Markov model states. On both

occasions, we simulated the data points for three different sets of parameters with sequence

lengths T = 1000 for 2-state models and T = 2000 for 3-state models. We used our proposed

MCMC sampler with 10000 iterations; the first 8000 points were discarded as burn-in. The

last 2000 iterations were used as the posterior means and 95% credible interval calculations.

Specifically, we assumed that for each Ht = k, k = 1, 2, 3. The synthetic data were obtained

from

O | Ht = k ∼ ckt
(
F k
1 (x1), F

k
2 (x2), . . . , F

k
d (xd);R

k, νk
) d∏
j=1

fk
j (xj;µ

k
j , σ

k
j ).

where ct(·;R, ν) is the t-copula with the correlation matrix R and degrees of freedom ν.

Further, we assumed that the data dimensions d = 3. We assumed that the marginal

distributions follow fj(µj, σj) ∼ N(µj, σj). To generate the synthetic HMM, we first sampled

Ht = k | Ht−1 = j ∼ pjk. This step generates the copula data

(u1,u2, . . . ,uT ) | H1:T ∼
T∏
i=1

cHi
t (·, RHi , νHi).

Thereafter, we inverted the copula data in every dimension using their marginal distribu-

tions, [(Oi)j | Hi = k] = Fj
−1((ui)j;µ

k
j , σ

k
j )., where Fj

−1 is the inverse normal distribution

of group k.

In our simulation studies, we used

f 1 = (f 1
1 , f

1
2 , f

1
3 ) ∼ N(µ1 = (0.1, 0.1, 0.1)T ,Σ1 = 0.12I3),

and f 1
j , j = 1, 2, 3 as marginal distributions of state one. In addition,

f 2 = (f 2
1 , f

2
2 , f

2
3 ) ∼ N(µ2 = (−0.1,−0.1,−0.1)T ,Σ2 = 0.12I3)

are marginal distributions of state 2. Here, Id is the d-dimensional identity matrix. For
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three-state simulations, we set

f 1 ∼ N(µ1 = (0.1, 0.1, 0.1)T ,Σ1 = 0.12I3)

f 2 ∼ N(µ2 = (−0.1,−0.1,−0.1)T ,Σ2 = 0.12I3)

f 3 ∼ N(µ3 = (0, 0, 0)T ,Σ3 = 0.12I3).

Furthermore, the transition matrix for the 2-state and 3-state HMM is set as

P =

[
0.7 0.3

0.4 0.6

]

and

P ′ =

0.6 0.3 0.1

0.5 0.4 0.1

0.7 0.1 0.2

 .

Table 4.1: Simulation results of the 2-state copula infinite hidden Markov models with
samples n = 1000.

Params
Simulation 1 (T = 1000) Simulation 2 (T = 1000) Simulation 3 (T = 1000)

Mean
1

Credible interval 1 True
value
1

Mean
2

Credible interval 2 True
value
2

Mean
3

Credible interval 3 True
value
3

(R1)12 0.671 (0.607, 0.724) 0.7 0.751 (0.704, 0.793) 0.8 0.888 (0.869, 0.907) 0.9

(R1)13 0.487 (0.389, 0.571) 0.6 0.651 (0.589, 0.701) 0.7 0.796 (0.761, 0.830) 0.8

(R1)23 0.454 (0.356, 0.545) 0.5 0.542 (0.472, 0.610) 0.6 0.700 (0.649, 0.742) 0.7

(R2)12 −0.651 (−0.703,−0.586) -0.7 −0.784 (−0.825,−0.741) -0.8 −0.914 (−0.930,−0.894) -0.9

(R2)13 −0.555 (−0.618,−0.475) -0.6 −0.694 (−0.750,−0.630) -0.7 −0.780 (−0.812,−0.739) -0.8

(R2)23 0.472 (0.392, 0.543) 0.5 0.634 (0.568, 0.691) 0.6 0.697 (0.640, 0.741) 0.7
ν1 3.000 (2.370, 3.815) 3 3.120 (2.54, 3.91) 3 3.310 (2.574, 4.439) 4
ν2 3.951 (2.888, 5.123) 3 3.800 (2.85, 5.20) 4 4.471 (3.277, 6.109) 5
p11 0.643 (0.594, 0.690) 0.7 0.711 (0.673, 0.750) 0.7 0.704 (0.663, 0.744) 0.7
p12 0.357 (0.310, 0.406) 0.3 0.289 (0.250, 0.327) 0.3 0.296 (0.256, 0.337) 0.3
p21 0.355 (0.313, 0.401) 0.4 0.414 (0.364.0.467) 0.4 0.427 (0.376, 0.478) 0.4
p22 0.644 (0.598, 0.686) 0.6 0.585 (0.533, 0.635) 0.6 0.573 (0.522, 0.624) 0.6

We report the number of active states K estimated using the copula-iHMM model for

the last 2000 MCMC iterations in Figure 4.2. The state numbers are correctly estimated for

every case because the models choose the correct specifications under posterior estimations.

Tables 4.1 and 4.2 report the parameter estimation results with the corresponding MCMC

95% credible intervals. For 2-state models, the estimators of the degrees of freedom ν are

less precise when compared with the correlation and transition matrices. This is expected

because estimations of ν require numerical inversions and the densities are less sensitive to

the parameter. However, the true values of ν were all covered by the 95% credible intervals

of the MCMC and the components with larger true degrees of freedom obtained larger mean
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Figure 4.2: Estimated active states K for the copula-iHMM 2-state models (above) and
3-state models (below) using the last 2000 iterations.
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Table 4.2: Simulation results of 3-state copula infinite hidden Markov models with samples
n = 2000.

Params
Simulation 1 (T = 2000) Simulation 2 (T = 2000) Simulation 3 (T = 2000)

Mean
1

Credible interval 1 True
value
1

Mean
2

Credible interval 2 True
value
2

Mean
3

Credible interval 3 True
value
3

(R1)12 0.719 (0.68, 0.76) 0.7 0.57 (0.495, 0.635) 0.6 0.779 (0.748, 0.808) 0.8

(R1)13 0.608 (0.56, 0.65) 0.6 0.53 (0.446, 0.609) 0.5 0.702 (0.663, 0.735) 0.7

(R1)23 0.515 (0.46, 0.57) 0.5 0.41 (0.318, 0.490) 0.4 0.614 (0.559, 0.662) 0.6

(R2)12 −0.673 (−0.747,−0.584) -0.7 −0.58 (−0.662,−0.471) -0.6 −0.775 (−0.818,−0.723) -0.8

(R2)13 −0.616 (−0.677,−0.543) -0.6 −0.48 (−0.580,−0.375) -0.5 −0.624 (−0.692,−0.559) -0.7

(R2)23 0.506 (0.426, 0.580) 0.5 0.33 (0.330, 0.505) 0.4 0.524 (0.452, 0.594) 0.6

(R3)12 −0.653 (−0.794,−0.499) -0.7 −0.39 (−0.597,−0.048) -0.6 −0.764 (−0.852,−0.631) -0.8

(R3)13 0.65 (0.519, 0.750) 0.7 0.48 (0.316, 615) 0.6 0.799 (0.721, 0.857) 0.8

(R3)23 −0.665 (−0.771,−0.529) -0.7 -0.4 (−0.599, 0.002) -0.6 −0.722 (−0.809,−0.550) -0.8
ν1 3.931 (3.161, 4.986) 5 4.16 (3.013, 5.920) 4 5.68 (4.288, 7.755) 6
ν2 3.87 (2.879, 5.555) 4 2.79 (2.265, 3.353) 3 3.656 (2.676, 5.020) 5
ν3 2.863 (2.080, 4.028) 3 2.06 (1.51, 2.89) 3 2.751 (2.015, 4.268) 4
p11 0.626 (0.571, 0.680) 0.6 0.59 (0.487, 0.661) 0.6 0.585 (0.536, 0.632) 0.6
p12 0.292 (0.248, 0.337) 0.3 0.32 (0.255, 0.388) 0.3 0.318 (0.278, 0.360) 0.3
p13 0.082 (0.051, 0.117) 0.1 0.10 (0.057, 0.154) 0.1 0.097 (0.070, 0.127) 0.1
p21 0.498 (0.426, 0.574) 0.5 0.45 (0.371, 0.532) 0.5 0.482 (0.421, 0.544) 0.5
p22 0.406 (0.336, 0.470) 0.4 0.45 (0.381, 0.522) 0.4 0.435 (0.381, 0.488) 0.4
p23 0.096 (0.060, 0.138) 0.1 0.10 (0.055, 0.149) 0.1 0.082 (0.048, 0.123) 0.1
p31 0.728 (0.600, 0.850) 0.7 0.65 (0.491, 0.796) 0.7 0.64 (0.529, 0.749) 0.7
p32 0.059 (0.000, 0.144) 0.1 0.01 (0, 0.076) 0.1 0.116 (0.043, 0.199) 0.1
p33 0.212 (0.122, 0.312) 0.2 0.33 (0.201, 0.500) 0.2 0.243 (0.157, 0.331) 0.2

estimations for every simulation.

For 3-state models, the performance of the sampler was maintained at similar levels.

However, large errors were observed. For example, in Simulation 2 in Table 4.2, the true

values of ν3 and p32 are not covered by the credible region of the MCMC sampler. This is

because State 3 has fewer samples than States 1 and 2, which makes the estimations worse.

However, the estimation for States 1 and 2 in simulation 2 maintained a good level.

Overall, the estimation results are reasonably good, with a small bias with respect to the

truth, and do not having significantly wide MCMC credible intervals for most parameters.

This demonstrates the effectiveness of the proposed approach in estimating the number of

mixture components and their corresponding parameters of interest when setting the copula-

iHMM model.

4.5 Real data analysis

We employed our proposed copula-iHMM model to study the bilateral relations between

the Shanghai Composite Index (SSECI) and the Hang Seng Index (HSI), the Standard &

Poor’s 500 Index (SPX), and the Financial Times Stock Exchange 100 index (FTSE), four

important global financial indices. The daily closing prices of the four series from January

2018 to July 2023 were taken. We computed the corresponding log returns using log(rt/rt−1).
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Figure 4.3: Returns of SSECI-HSI and FTSE-SPX from January 2018 to July 2023 using
daily closed prices. The shaded regions are the times when the series are under the state
Ht = 2

The returns from the common trading days between SSECI and HSI, SPX and FTSE were

then paired respectively into a 2-dimensional time series.

Rather than using the classic approach in the copula literature by first employing the

GARCH model to extract the changing volatility, and then proceeding with the copula

estimation of the standardized data (Arakelian and Karlis, 2014), we directly applied our

infinite hidden Markov model to the series. This approach is beneficial because the hidden

Markov is directly applied to the time series. Meanwhile, the transition matrix can provide

a more detailed dynamic structure of the series compared to ordinary finite mixture copulas

c = w1c1 + w2c2, . . . , wncn, wi ≥ 0,
∑

wi = 1.

The parametric families we chose to fit the data were t-copulas along with normal margins,

which were the same as the parametric models used in the simulation studies. All parameters

of the margins and copulas were unknown, and we let our MCMC sampler determine their

corresponding posterior distributions.

The MCMC algorithm was run for 10000 iterations, with the first 8000 iterations dis-

carded as burn-in and the last 2000 iterations used as estimators of the posterior distribu-

tions, consistent with the simulation.

Table 4.3 presents our estimation results for the copula parameters and transition matri-

ces. We omitted reporting the marginal distributions, as they are almost identical between

states with approximately zero means.
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Table 4.3: Estimation results of SSECI-HSI and SP500-FTSE100 daily returns from January
2018 to July 2023 using copula infinite hidden Markov models.

Estimated Parameters
SSECI-HSI SPX-FTSE

Mean estimate Credible interval Mean estimate Credible interval

(R1)12 0.61 (0.567, 0.647) 0.49 (0.421, 0.558)
(R2)12 0.68 (0.566, 0.772) 0.42 (0.331, 0.507)
(R3)12 0.60 (0.400, 0.773)
ν1 11.5 (8.00, 16.67) 7.47 (4.45, 11.76)
ν2 6.23 (3.29, 9.73) 6.74 (4.17, 10.04)
ν3 2.93 (2.05, 5.22)
p11 0.97 (0.951, 0.985) 0.97 (0.953, 0.981)
p12 0.03 (0.014, 0.049) 0.03 (0.018, 0.046)
p13 0.001 (0, 0.003)
p21 0.69 (0.480, 0.850) 0.06 (0.034, 0.100)
p22 0.31 (0.144, 0.520) 0.94 (0.897, 0.965)
p23 0.002 (0, 0.009)
p31 0.005 (0, 0.052)
p32 0.04 (0, 0.123)
p33 0.96 (0.861, 0.997)

For the SSECI-HSI estimation, the estimated number of states K has the probability

p(K = 2) = 0.9995, p(K = 3) = 0.0005.

This implies that we are strongly in favor of the two-state HMM. State 1 was estimated to be

more persistent, with a 3% transition probability to another state. This corresponds to the

usual market conditions. However, State 2 can easily return to State 1 with a probability of

approximately 69%, and State 2 has a higher correlation with lower degrees of freedom. This

could correspond to oscillating market conditions when the co-movement of market prices is

considerably more extreme than usual. However, this was observed less often. We estimated

the posterior mode of the state labels for each trading day; 5% of the days were determined

to follow State 2, and the other days were estimated to follow State 1.
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For results for SPX-FTSE, the number of states K has a posterior distribution

p(K = 2) = 0.9965, p(K = 3) = 0.0035.

This implies that we are also in favor of the two-state HMM. Among the trading days, 71.4%

of the days are determined to follow State 1, 28.6% of the days have the posterior mode in

State 2.

This differs from our observations in the patterns of SSECI-HSI. SPX-FTSE data seem

to be more sticky, indicating that provided the series has entered a certain state, it is prone

to remain in this state over time. Meanwhile, the parameters of the first two states appear

to be close to each other. By comparing this case with the short-term market oscillation

case in the SSECI-HSI pattern, State 2 on the SPX-FTSE data might indicate another type

of market dependence.

Figure 4.3 shows the log returns for the series. The gray regions represent the times when

the series enters a different state other than the most common state. The oscillating states

of HSI-SSECI occasionally arise as time progresses. In contrast, the switching from State 1

to State 2 in the SPX-FTSE pattern was more persistent.

4.6 Concluding remarks

This chapter is an advancement of the previous chapter to consider the data with correla-

tion. This would be useful when we want to directly apply our copula method to the time

series data. For example, the time-correlated stock returns. Our proposed copula-iHMM

model, constructed on the basis of the hierarchical Dirichlet process (HDP), would be able

to automatically infer the number of hidden states. Therefore, it would be particularly suit-

able when applied to dynamically changing data since the tuning of the number of states is

avoided each time. In financial risk management, the computation of value-at-risk and other

risk metrics can benefit from this framework compared with the usual finite mixture copula

approach (Hu, 2006). This is because HMM provides a transition matrix from state to state.

This detailed transition structure is unavailable in the finite mixture model. One can also

extend this copula-iHMM framework to other state-of-the-art copulas, such as vine copulas

and factor copulas. This enriches the applicable scenarios of the copula-iHMM framework.
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Chapter 5

Introduction to imbalance learning

and the empricial ROC-AUC metrics

5.1 Introduction

Imbalanced learning problems are classification tasks in which the proportion of instances

differs significantly among classes. Imbalanced datasets are common in many areas of applied

sciences, such as medical image diagnostics (Mena and Gonzalez, 2006; Rezaei et al., 2020),

financial fraud detection (Bhattacharyya et al., 2011), or cybersecurity (Cieslak et al., 2006).

Learning from an imbalanced dataset poses certain problems. Models tend to capture a

lot more information from the majority class but often fail to identify the minority class.

Therefore, when used for prediction, the ability to predict the minority classes can be weak.

Several methods exist to tackle this problem from different angles, including sampling

techniques such as random oversampling, random undersampling, and the synthetic minority

oversampling technique (SMOTE). Another remedy is cost-sensitive approaches, which are

realized by giving different weights to different classes. For a more detailed discussion of the

nature of the imbalanced problems and some relevant methodologies, readers are referred

to (He and Garcia, 2009).

Measuring the performance of a classifier on imbalanced data requires a different approach

from handling the class imbalance problem. The receiver operating characteristics (ROC)

curve is commonly used to assess the capabilities of binary classifiers (Streiner and Cairney,

2007). It is a plot of false-positive versus true-positive rates in the space of R2. Statistical

techniques are often required to compare two ROC curves or decide if a certain ROC curve
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is above an ideal standard. Table 4.2 of (Pepe et al., 2003, p. 80) provides a useful list

of the statistical indexes for describing the ROC curve, including the area under the curve

(AUC), single ROC point (McNeil and Hanley, 1984), partial AUC (pAUC) (McClish, 1989),

symmetry point, and Kolmogorov-Smirnov measure. Among those indexes, the area under

ROC curves (ROC-AUC) is by far the most popular metric for the performance of a classifier

in many scientific fields (He and Garcia, 2009).

To estimate the ROC-AUC from the data, the empirical AUC estimator is often used.

This chapter will first introduce the empirical ROC-AUC metrics followed by studying the

variances of this estimator when it is used in an imbalanced learning task. We first proved

that under many common situations, variances of the empirical AUC increase with the

imbalanced level of the dataset, and we further use simulations and real data analysis to

demonstrate that, if classifiers are applied to an imbalanced dataset, there is a risk that the

empirical AUC estimation will have high variances. Therefore, extra attention is required

when using the empirical AUC to assess the models’ performance on highly imbalanced

data. The importance of the findings lies in their implication on the experimental design

and model evaluations under the imbalanced setting. One must either carefully design their

experimental methodologies to mitigate the issue mentioned or fully report variances of

metrics when performing the evaluation procedures.

The structure of the chapter is as follows. The next section introduces notations used.

This is followed by the main analytical results of the study in Section 5.3. We proceed to

verify our findings using simulations in Section 5.4, and the real data analysis is performed

in Section 5.6 to manifest the implications for learning tasks.

5.2 Classification

For the binary classification task with features, X = (x1, x2, x3, . . . , xp), and the class la-

bel Y = {0, 1}. The usual framework of evaluating a classifier’s performance, followed by

Krzanowski and Hand (2009), is to define a real-valued continuous score function S(X) :

Rp → R. The aim of defining such a function is to have sufficient separation between the

positive (class 1) and negative (class 0) classes. Without loss of generality, we expect a high

score for a positive instance and a low score for a negative instance.

An example of the score function is S(x) = P (Y = 1 | X = x). This case presents

the probability of an instance belonging to class 1 given its features. If X is regarded as a

Rp-valued random vector from the probability space (Ω,Σ, P ), S(X) becomes a real-valued
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random variable. Hence, we can consider the score distributions of two classes; that is, for

the absolute continuous S(X), (S(X) | Y = 1) ∼ f and (S(X) | Y = 0) ∼ g are densities

of the positive and negative population, and the corresponding distribution functions are

denoted as F,G.

To make a classification decision, a threshold t ∈ R is needed. Instances with scores

larger than t are classified as positive, and vice versa. Thus, given a threshold t, the false-

positive rate (FPR) becomes fp(t) = 1 − G(t), and the true-positive rate (TPR) becomes

tp(t) = 1−F (t). We further let pP and pN represent the prior proportion of the positive and

negative classes. Therefore, the accuracy of the prediction is tp(t) × pP + (1 − fp(t)) × pN

or simply tp(t)× pP + (1− fp(t))× (1− pp) since pN + pp = 1.

5.2.1 The area under a receiver operating characteristic curve

The ROC curve can be constructed from the scores and the threshold. If we vary the

decision threshold t from −∞ to +∞ and plot the corresponding (fp(t), tp(t)), the ROC

curve is obtained (Bradley, 1997). Assume we have the continuous densities of the positive

and negative scores. Since fp(t) = 1 − G(t) and tp(t) = 1 − F (t), smiliar as (Krzanowski

and Hand, 2009, p. 23), we arrive at

tp(t) = 1− F (G−1(1− fp(t))) (5.1)

For fp(t) ∈ (0, 1). This fully characterizes the ROC curve using F and G, which must start

from (0, 0) and end with (1, 1).

An important convention in the ROC analysis is to consider only the ROC curves that are

fully above the chance diagonal y = x. This is because, if we obtained an ROC curve with

some portions below the chance diagonal, we could flip the decision of our classifier in those

portions to make the ROC curve above the chance diagonal. Another usual consideration

is to study only cases in which the ROC curve is concave. If a continuous ROC curve has

a non-concave portion, we can construct a new randomized classifier with better prediction

power than the preadjusted one and obtain the concave ROC curve (Krzanowski and Hand,

2009, Section 8.3). The most straightforward approach to compare two ROC curves is to

see if one ROC curve is over the other. The curve that lies above corresponds to the better

classifier. However, this approach is not always applicable as, in most cases, the ROC curves

cross each other. In this situation, the area under the ROC curve can be computed for

comparison. If two classifiers C1 and C2 have AUC1 > AUC2 , we usually consider C1 to have
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better overall performance. Let SP and SN represent the random variables that follow the

score distributions of positive and negative populations. Given Equation (5.1), the AUC can

be interpreted in terms of the probability as follows:

AUC =

∫ 1

0

tp(fp) d(fp)

= −
∫ ∞

−∞
tp(t)

d
(
fp(t)

)
dt

dt

=

∫ ∞

−∞

(
1− F (t)

)
g(t)dt

=

∫ ∞

−∞
P
(
SP > SN | SN = t

)
P(SN = t)dt

= P
(
SP > SN

)

(5.2)

Therefore, the AUC can be understood as the probability of a randomly drawn positive

sample’s score being higher than a randomly drawn negative sample’s score. A widely

adopted approach of estimating the AUC from the testing samples is calculating the area

under the empirical ROC curve, which is drawn from tp(t) = 1− F̂ (Ĝ−1(1 − fp(t))) where

F̂ and Ĝ are the corresponding empirical distributions. The empirical AUC estimator is

equivalent to Mann-Whitney U statistics, as first pointed out by Bamber (1975). We have

Â =
1

nNnP

∑
i,j

[I(SPj
> SNi

) +
1

2
I(SPj

= SNi
)], (5.3)

where nN , nP refers to the numbers of positive and negative testing samples, SPj
, SNi

are the

instances drawn from the corresponding random variables, and I(·) is the 0-1 indicator. For

the continuous scores, we obtain the unbiasedness from

E(Â) = E(
1

nNnP

∑
i,j

[I(SPj
> SNi

)]) = P
(
SP > SN

)
,

which coincides with (5.2). Furthermore, the variance of Â is also important and requires

scrutiny. The remainder of this chapter discusses this variance in the class imbalance setting.

Although the ROC-AUC has become a popular measure for assessing ROC curves, some

scholars note that it has some deficiencies when used to compare performance between

classifiers. For example, McNeil and Hanley (1984) find that two ROC curves might cross

each other for a similar AUC with differing properties. Moreover, even if the curves are not
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crossed, we may only be interested in certain regions of ROC and thus only need to summarize

some portions of the area. They propose comparing the ROC using a single point of the ROC

curve when the FPR or TPR is fixed. McNeil and Hanley (1984) emphasized that the ROC-

AUC would give equal weight to every point of the FPR, but, in some areas of application,

such as a clinic, only certain intervals of the FPR are of real concern. Therefore, they propose

using partial AUC (pAUC) instead of the full AUC. pAUC is defined as pAUC =
∫ c2
c1

y(x)dx

where [c1, c2] are the concerned interval of the FPR. Hand (2009) notes that the use of the

AUC would automatically change the misclassification cost for different classifiers. Therefore,

it is inconsistent, and they propose a new measure to evaluate the ROC: H-measure.

Despite the potential flaws of the AUC discussed above, it remains one of the most widely

used summary statistics of the ROC curve. The following sections analyze the variance of

the empirical AUC estimator (5.3).

5.3 Variance of the empirical AUC estimator

Variances of the empirical AUC estimator play an essential role in model evaluations and

experimental design. Model evaluations are often concerned about whether a model’s true

AUC is above the required level or whether one classifier’s AUC is significantly higher than

another. This yields a hypothesis test requiring variances. In experimental design, variances

influence determination of the sample size required to achieve specific statistical power in ex-

periments. A related study is Hanley and McNeil (1982), which explores methods of calculat-

ing the sample size required to distinguish the AUC from continuous and discrete rating data.

Obuchowski and McCLISH (1997) provide detailed methods of calculating different sample

sizes for different indexes of ROC, which include AUC, pAUC, and single-point sensitivity.

However, this formula is under the assumption of binormal scores. Further, Blume (2009)

explores the bounds of maximum and minimum samples required for a specific test level

with less assumption. Janes and Pepe (2006) comes up with an optimal positive-negative

ratio to ensure the empirical AUC, pAUC estimator has minimal asymptotic variance.

Hanley and McNeil (1982) introduce a formula for estimating the variance of the empirical

AUC estimator (5.3),

s2(Â) =
1

nNnP

(A[1− A] + [np − 1][Q1 − A2] + [nN − 1][Q2 − A2]), (5.4)
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where Â and A are denoted as the empirical estimator and the true AUC of the classifier.

We define Q1 as the probability that the scores of two randomly selected positive samples

are larger than that of another randomly selected negative sample, i.e.,

Q1 = P(SP1 , SP2 > SN).

Meanwhile, Q2 is defined similarly as the probability that the scores of two randomly selected

negative samples are less than that of a randomly selected positive sample, that is,

Q2 = P(SN1 , SN2 < SP ).

As Q1 and Q2 are difficult to compute, they also suggest an approximation by the true

underlying AUC

Q1 =
A

2− A
, Q2 =

2A2

(1 + A)
. (5.5)

The approximation of Q1 and Q2 becomes exact when the positive and negative scores follow

the exponential distribution. The numerical experiments performed by Hanley and McNeil

(1982) suggest that it is a good approximation in most cases.

Assuming the positive class to be the minority, let us denote x as the number of positive

samples in the dataset and M as the total number of samples. We use p = x
M

to denote the

proportion of the minority. Then,

v(x) =
1

x(M − x)
[A(1− A) + (x− 1)(

A

2− A
− A2) + (M − x− 1)(

2A2

(1 + A)
− A2)] (5.6)

is a decreasing function with respect to x–that is, if we fix the sample size M , the true AUC

A and use (5.5) as the approximation of Q1 and Q2. The approximated variance (5.6) of the

empirical AUC will increase as the dataset becomes increasingly imbalanced. This can be

summarized as the following Proposition:

Proposition 5 (Li (2020)). Let M be the fix sample size, x ∈ (1,M/2)∩Z+ be the number

of minority class, Q1 and Q2 be defined as (5.5), 0.5 ≤ A < 1. Then, v(x) is a decreasing

function with respect to x.

Proof. See Appendix.

Although Proposition 5 is a result under the special case, that is, we compute Q1 and

Q2 under the circumstances of exponential scores, it gives us a good approximation of how
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variances could change as the data become increasingly imbalanced.

If we work under the exact definition of Q1 and Q2, monotonicity still holds when we

pose some restriction to the score distributions.

Proposition 6. Let minority and majority score distributions have densities SP ∼ f(x)

and SN ∼ g(x), which belong to a location family. That is , f(x) = h(x − µP ) and g(x) =

h(x−µN) , and h(x) is a symmetry density around 0. Then, (5.4) with nP = x, nN = M−x

is a decreasing function with respect to x. Otherwise, if there exists a monotone increasing

function T (x) such that T (SP ) ∼ h(x− µP ) and T (SN) ∼ h(x− µN), the result still holds.

Proof. From the proof of Proposition 5, it suffices to prove that Q1 − Q2 ≤ 0. Hence, we

complete the proof by combining the result from Proposition 5.

As the following, let scores for the positive and negative populations be continuously

distributed with CDF F (x) = H(x − µP ) and G(x) = H(x − µN), respectively. We denote

SP1 , SP2 to be a sample drawn independently from the score distribution of the positive

population and SN to be a sample drawn independently from the score distribution of the

negative population. Then, we have

Q1 = P(SP1 , SP2 > SN) = P(T (SP1), T (SP2) > T (SN)).

By independence,

Q1 =

∫
R

P (T (SP1) > x, T (SP2) > x | T (SN) = x)P (T (SN) = x)dx

=

∫
R

P (T (SP1) > x | T (SN) = x)P (T (SP2) > x | T (SN) = x)P (T (SN) = x)dx

=

∫
R

P (T (SP1) > x)P (T (SP2) > x)P (T (SN) = x)dx.
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Therefore,

Q1 =

∫
R

[1−H(x− µP )]
2h(x− µN)dx

=

∫
R

[1−H(z + µN − µP )]
2h(z)dz

=

∫
R

H2(µP − µN − z)h(z)dz =

∫
R

H2(µP − µN + z)h(z)dz,

where we use the symmetry property h(−z) = h(z) to change the variable at the last equality.

Similarly, let SN1 , SN2 be samples drawn independently from the negative population.

Q2 = P (SP > SN1 , SN2) =

∫
R

G(x)2f(x)dx

=

∫
R

H(x− µN)
2h(x− µP )dx =

∫
R

H2(µP − µN + z)h(z)dz = Q1.

Therefore, Q1 −Q2 = 0. Hence, we complete the proof.

The Proposition 6 contains many commonly considered score distributions, such as the

binormal scores with the same variance SP ∼ N(µP , σ
2), SN ∼ N(µN , σ

2) or the scores that

can be transformed into the binormal scores.

Suppose we release the condition of Proposition 6. In that case, the monotonicity of

variances with respect to the proportion of the minority p is not always guaranteed. As

shown later, there might exist an optimal p < 0.5 such that the minimum variance is achieved

for a fixed M . However, in a practical sense, this ratio is unlikely to approach near 0. Hence,

under the problems of high class imbalance, the volatility of the estimation is still of great

concern.

To explore the optimal proportion p, we write (5.4) as

s2(Â) =
1

M2p(1− p)
(A[1− A] + [Mp− 1][Q1 − A2] + [M(1− p)− 1][Q2 − A2]) (5.7)

By denoting Q1 − A2 = α∗, Q2 − A2 = β∗, A(1− A) = γ∗,

(5.7) =
1

M

(
1

Mp(1− p)
[γ∗ − α∗ − β∗] +

α∗

1− p
+

β∗

p

)
.
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For a fixed M , we seek the stationary point by differentiating with respect to p and equating

it to 0,

(α∗ − β∗)p2 + 2(β∗ +
γ∗ − α∗ − β∗

M
)p− (β∗ +

γ∗ − α∗ − β∗

M
) = 0. (5.8)

As α∗ − β∗ = Q1 − Q2, we have proofed the monotonicity of s2 with respect to p ∈ (0, 0.5)

previously whenQ1−Q2 ≤ 0, what left to be discussed is the case when α∗−β∗ = Q1−Q2 > 0.

Now, since

A = P (SP > SN) =

∫
R

(1− F (y))g(y)dy =

∫
R

G(x)f(x)dx (5.9)

By Jensen’s inequality,

α∗ = Q1 − A2 =

∫
R

(1− F (y))2g(y)dy − (

∫
R

(1− F (y))g(y)dy)2 ≥ 0

β∗ = Q2 − A2 =

∫
R

(G(x))2f(x)dx− (

∫
R

G(x)f(x)dx)2 ≥ 0.

(5.10)

Practically speaking, β∗ + γ∗−α∗−β∗

M
≈ β∗ because γ∗, α∗, β∗ are at the same scale, which is

often much smaller than the scale of M . So, we can solve (5.8) by neglecting γ∗−α∗−β∗

M
.

poptim ≈
√
β∗

√
α∗ +

√
β∗

. (5.11)

The result (5.11) becomes exact asymptotically, but a large dataset is not required for this

approximation to be sufficiently accurate.

By noticing from (5.10) that

α∗ = Ep(y)∼g(1− F (Y ))2 −
(
Ep(y)∼g(1− F (Y ))

)2
= V ar(1− F (SN))

β∗ = Ep(x)∼f (G(X))2 −
(
Ep(x)∼f (G(X))

)2
= V ar(G(SP )).

(5.12)

The expression (5.11), therefore, coincides with (Janes and Pepe, 2006, eq. 6.1). However,

their derivation works from the asymptotic variance of Â proposed by DeLong et al. (1988),

s2(Â) =
V ar(G(SP ))

nP

+
V ar(1− F (SN))

nN

.

Our derivation, however, is based on the finite sample variances, which enables the error

analysis of (5.11) when the dataset is small. Under the previously mentioned location family
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case, as Q1 = Q2, we have poptim = 1
2
.

5.4 Numerical simulation

We have shown in the last section that imbalanced levels of datasets could influence the

empirical AUC estimator’s variances. Additionally, the shapes of score distributions could

also affect the estimator’s accuracy. Therefore, in this section, we perform simulations by

assuming the analytical distributions of scores. Monte Carlo simulations are performed to

calculate sample statistics. This is done by first sampling the scores from the assumed

distributions with the batch size n = 200, 500 and the replication is done for 500 times. The

asymptotic theory guarantees their convergence to the actual value. Therefore, the Monte

Carlo results are considered benchmarks when we assess the accuracy of approximations

(5.6). In this section, we aim to determine how the optimal point (5.11) changes while the

shapes of the scores change. We want to investigate the magnitude of variances in extremely

imbalanced cases to see whether it is significant and examine the accuracy of the exponential

approximation (5.6).

5.4.1 Normal score distribution

We begin by assuming that the score follows a normal distribution, a popular choice in

the literature (Zou et al., 1997; Zou and Hall, 2000; Qin and Hotilovac, 2008). Assume

that positive and negative scores are independently distributed with SP ∼ N (µP , σ
2
P ) and

SN ∼ N (µN , σ
2
N). We focus on discussing cases in which the positive class is the minority.

Therefore,

AUC = P(Sp − SN > 0) = Φ

(
µP − µN√
σ2
P + σ2

N

)
where Φ represents the standard normal CDF and

Q1 =

∫
R

(1− Φ(
x− µP

σP

))2ϕ(µN ,σN )(x)dx

Q2 =

∫
R

Φ(
x− µN

σN

)2ϕ(µP ,σP )(x)dx

where ϕ(µ,σ)(x) =
1√
2πσ2

exp (x−µ)2

2σ2 .

The positive and negative scores share the same variance. That is, SP ∼ N (µP , σ
2) and

SN ∼ N (µN , σ
2). Proposition 6 has proved that the poptim = 0.5. Therefore, variances of the
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empirical AUC increased with the decreasing proportion of minorities. To explore the optimal

ratio (5.11), we fix the distribution of the majority as the standard normal, SN ∼ N (0, 1),

while, for the minority distribution, we set SP ∼ N (µP , σ
2
P ) where σP ∈ (0.1, 10) and µp is

adjusted according to

µP =
√
σ2
P + σ2

NΦ
−1(AUC) + µN (5.13)

Therefore, we can investigate it under a certain level of actual AUC.

Figure 5.1: Optimal ratios poptim for various standard deviations and AUCs

Fig 5.1 plots the optimal proportions of the positive class under the changing σp and

three different AUC levels. As we are discussing the minority population, values above

the horizontal line become meaningless. Notably, the actual AUC merely influences the

optimal ratio under the binormal scores. The ratio is monotonically increasing with respect

to standard deviations of the positive population, which is intuitively reasonable as we need

more points to estimate when scores are much more uncertain. Therefore, we expect the

outcome of Proposition 5 and 6 also holds for binormal scores with σP > σN .

Following the discussion above, we perform our simulations in three cases: σP = σN = 1,
σP

2
= σN = 1, and 2σP = σN = 1. The negative scores are set to be the standard normal

while the mean of the positive score is properly adjusted according to (5.13). In the first two

cases, the empirical AUC achieves its lowest variances when the minority has the proportion

poptim = 1/2 while the last one has poptim < 1/2.

Figure 5.2 plots the positive and negative binormal densities with σP = σN = 1, µN = 0
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Figure 5.2: The positive and negative binormal scores with σP = σN = 1, µN = 0, and AUC
= 0.85 (left). The corresponding standard errors plot with sample size 200, 500 by Monte
Carlo and (5.6) .

and AUC= 0.85. The Monte Carlo sample variances decrease with the increasing proportion

of the minority. The exponential approximation using the sample mean of Â also shows its

monotonicity, as we proved in the Proposition 5, and it is a conservative but close approxi-

mation to the truth. As shown in the plot, variances reach a very high level when the dataset

is extremely imbalanced. To give a numerical sense of the fluctuation, we use the asymptotic

interval of the empirical AUC following from (Krzanowski and Hand, 2009, Section 4.3.2),

(
A− s(Â)Φ−1(1− αc

2
), A+ s(Â)Φ−1(1− αc

2
)
)
, (5.14)

where αc is the type I error and A is the true AUC. If A is 0.85, with the sample size equaling

500, the 95% coverage of Â when the proportion of the minority equal to p = 0.05, 0.1 is

approximately (0.77, 0.92) and (0.80, 0.90), and the deviation is significant and beyond any

negligible levels.

Fig 5.3 plots the densities and variances with 0.5σP = σN = 1 or σP = 2σN = 1,

respectively. The actual AUC is set to be 0.85. When σP = 2σN , standard errors of the

empirical AUC become even larger compared with Fig 5.2. The proxy (5.6) is slightly

biased downwards but still gives a reasonably close estimation. Further, the latter plot with

σP = 0.5σN has the minimum variance at p < 0.5. In this case, the proxy (5.6) gives a

very conservative value, especially when the dataset is imbalanced. Nevertheless, it correctly

displays the trend of standard errors when the dataset becomes highly imbalanced. That

is, variances of the empirical AUC increase quickly when p approaches 0. When σP = 2
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Figure 5.3: Plots of densities and standard errors with 0.5σP = σN = 1 (above) and 2σP =
σN = 1 (below), µP = 0 and AUC= 0.85.

and AUC 0.85, the 95% coverage of Â with p = 0.1 and nP + nN = 500 is approximately

(0.79, 0.92). However, for the σP = 0.5 case, the interval is (0.81, 0.89).

As the plots show, variances of the empirical AUC surge to a high level when p → 0

in all three cases. Despite when σP = 1/2, s2(Â) having a local minimum on p < 1/2, its

behavior on the extremely imbalanced data remains unchanged. Moreover, standard errors

of the empirical AUC would be influenced by the uncertainty of scores; higher uncertainty

in the minority classes can lead to the higher standard errors of Â.
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5.4.2 Probabilistic score distributions

In this section, we perform simulations based on the bi-beta score distributions, which restrict

the range of scores to [0, 1]. This feature agrees with the property of probabilistic classifiers.

Some popular such classifiers include logistic regression (Kleinbaum et al., 2002), naive Bayes

(Zhang et al., 2009; Ren et al., 2009), and neural networks with specific structures Ruby and

Yendapalli (2020).

In the following, we assume score distributions of the positive and negative populations

to be F ∼ Beta(α, β) and G ∼ Beta(β, γ) with γ = 5. The actual AUC and Q1 , Q2

can be calculated numerically from (5.9) and (5.10). In Fig 5.4, we vary the parameter α

with different fixed β and depict the corresponding dynamics of poptim (5.11), the relative

variances of scores σ2
P/σ

2
N , and the changing AUCs. Compared with what we did in the

binormal simulations, controlling the AUC of bi-beta scores is demanding when we change

the parameters. However, the values of optimal proportion appear to be predominantly

controlled by the relative variances between the positive and the negative regardless of the

AUCs. Lower relative variances of the positive correspond to lower optimal proportions

of the minority with the relative variance equal to 1 being the threshold. This finding is

consistent with what we observe in Fig. 5.1. Therefore, as in the previous section, we also

conduct three simulations with σP = σN , σP < σN , and σP > σN .

Fig 5.4 plots the empirical AUC variances using the Monte Carlo and approximations

(5.6) with SN ∼ Beta(3, 5) and SP ∼ Beta(5, 3), Beta(8, 3), Beta(3, 3). This corresponds to

σP = σN , σP ≈ 0.8σN , and σP ≈ 1.2σN , respectively. The pattern we observe closely follows

Fig. 5.2 and Fig. 5.3. High relative variances of positive scores can lead to high standard

errors of empirical AUCs. When σP < σN , the optimal proportion of the minority class

poptim < 0.5. The performances of the proxy (5.6) are sensible for the top and bottom cases.

When σP < σN , it gives the correct trend but might be too conservative, as discussed in the

binormal cases.

For the top, middle, and bottom plots in Fig 5.5, the standard errors of the empirical

AUC estimator and the true AUCs when p = 0.05, 0.1 with the sample size being 500

are stop = 0.037, 0.027,AUCtop = 0.86, smiddle = 0.020, 0.014,AUCmiddle = 0.95, sbottom =

0.059, 0.042,AUCbottom = 0.69. Even for the least variant middle case, the 95% interval

when p = 0.05 is as wide as (0.91, 0.99). Hence, enough attention must be paid to the

variances of empirical AUC when the data tested are imbalanced.
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Figure 5.4: The plot of α with respect to optimal proportions of minority (left), the plot of
α with respect to relative variances (middle), and the plot of α vs. AUC (right).

5.5 Computing sample sizes required

This section is devoted to computing the sample size required to correctly reject the wrong

null hypothesis H0 : A ≤ θ0 in contrast to the alternative H1 : A > θ0 when we use the

empirical AUC estimation (5.3).

Several studies have discussed the problems of sample size calculation with regard to ROC

curves and AUC. Some seminal works include (Hanley and McNeil, 1983), who proposed the

method of comparing two correlated AUCs. However, their approach to computing the

correlation is based on the assumption of normality. DeLong et al. (1988) further improved

the method by removing the normality assumption.

We test whether a classifier has a true AUC value A larger than θ0, which typically

involves a statistical test with

H0 : A ≤ θ0 H1 : A > θ0 (5.15)

for a fix θ0 = α. As suggested by Krzanowski and Hand (2009, Chapter 4), we use the

statistic

T =
Â− θ0

sθ0(Â)
(5.16)

where Â is an estimation of A and sθ0 is the variance of the Â when A = θ0. We estimate

the variance sθ0 using Equation (5.4). We aim to reject the null hypothesis H0 when our
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Figure 5.5: Plots of empirical AUC variances with σP = σN (top), σP < σN (middle), and
σP > σN from bi-Beta distribution with G ∼ Beta(3, 5)
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true AUC, A, deviates from θ0. That is, by considering the imbalance levels, we want to

compute the sample size needed to achieve satisfactory statistical power.

As discussed, the empirical AUC estimator has a high variance when it is applied to

highly imbalanced datasets. Therefore, we aim to examine the extent to which different

imbalance levels could impact the required sample sizes when the type I and II errors are

given. More specifically, if our true AUC is θ1, which is different from θ0, we want to perform

the testing (5.15) with the confidence level 1− α and statistical power β. That is,

P

(
Â− θ0
sθ0

> Φ−1(1− α)

)
≥ β,

that is equivalent to

P

(
Â− θ1
sθ1

>
θ0 − θ1 + Φ−1(1− α)sθ0

sθ1

)
≥ β. (5.17)

If θ1 is the true AUC, Â−θ1
sθ1

is asymptotically normal. Therefore, if our imbalance level is p,

to calculate the minimum sample size required for a given power β , we have to solve the

following equation:
θ0 − θ1 + Φ−1(1− α)sθ0

sθ1
= −Φ−1(β).

Rearranging the equation,

ϕ−1(1− α)sθ0 + ϕ−1(β)sθ1 − (θ1 − θ0) = 0. (5.18)

As shown in Section 5.4, the approximationQ1 =
A

2−A
andQ2 =

2A2

1+A
gives either conservation

or close results of variances. Therefore, it is a suitable approximation for the sample size

calculation. We proceed to use (5.6) to compute the standard error, that is,

sθ =

√
1

nNnP

(
θ[1− θ] + [np − 1]

[
θ

2− θ
− θ2

]
+ [nN − 1]

[
2θ2

1 + θ
− θ2

])
. (5.19)

Substituting (5.19) into (5.18), we can solve Equation (5.18) numerically (e.g., the Newton-

Raphson method). The following Table 5.1 lists the minimum samples required to achieve

90% and 80% power for a 95% confidence level hypothesis test with the null hypothesis

being H0 : θ ≤ 0.8, H1 : θ > 0.8. The true AUC θ1 is supposed to be 0.85, 0.9, 0.95 under
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the dataset with several proportions of the minority p = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5. We

visualize the statistical power β = 80% case in Fig.5.6.

Table 5.1: Minimum samples required to achieve 90% power (left) and 80% power (right)
for the 95% confidence level hypothesis test H0 : θ ≤ 0.8, H1 : θ > 0.8 . The true θ =
0.85, 0.9, 0.95, p = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5).

p θ1 = 0.85 θ2 = 0.9 θ3 = 0.95

0.01 22560 4962 1790
0.05 4566 1005 363
0.1 2328 512 185
0.2 1217 267 97
0.3 857 188 68
0.4 688 150 54
0.5 601 130 47

p θ1 = 0.85 θ2 = 0.9 θ3 = 0.95

0.01 16562 3763 1433
0.05 3362 764 291
0.1 1715 289 149
0.2 898 204 78
0.3 632 143 55
0.4 508 115 44
0.5 446 100 39

Figure 5.6: Plot of samples required to achieve 80% power for 95% one side hypothesis test

We can conclude from Table 5.1 and Fig 5.6 that samples required to maintain a rea-

sonable statistical power become extremely large when the dataset is highly imbalanced,

especially when the true AUC is close to the tested level θ0. Influences of imbalanced levels

must be considered when conducting such experiments.
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5.6 Real dataset experiments

5.6.1 Student performance prediction

To illustrate how an imbalanced dataset might affect the estimation of empirical ROC-

AUCs in real experiments, we first take a dataset from the Kaggle website named on-time

graduation classification 1. The dataset collects the grade point average (GPA) of each

student for four semesters and records if they graduate on time (see Table 5.2). Specifically,

each GPA column is real-valued with the range of [0, 4] up to two decimal points. The label

column If Graduate is Boolean to indicate whether a specific student had passed.

Column Name GPA s1 GPA s2 GPA s3 GPA s4 If Graduate
Data Type Float Float Float Float Boolean

Table 5.2: On-time graduation dataset structure

The dataset is highly imbalanced because only a few students did not graduate on time.

To be specific, 92% of students in this dataset completed their degree, and 8% did not

graduate on time. The total number of data points is 1687. We perform stratified tenfold

cross-validation to compute the mean empirical AUC and the sample standard deviation.

The variance approximation formula (5.6) is also used for comparison.

Table 5.3: Mean AUCs and corresponding standard deviations of the graduation dataset

Classifiers Mean AUC
Standard errors

Tenfold Approximation (5.6)

Logistic Regression (LR) 0.512 0.025 0.084
K-nearest Neighbors (KNN) 0.511 0.021 0.084
Naive Bayes (NB) 0.582 0.068 0.086
Random Forest (RF) 0.515 0.030 0.084
Adaptive Boosting (Adaboost) 0.522 0.031 0.085
Extreme Gradient Boosting (XGBoost) 0.601 0.095 0.086
SMOTE-LR 0.629 0.068 0.086
SMOTE-KNN 0.610 0.066 0.086
SMOTE-NB 0.621 0.071 0.086
SMOTE-RF 0.589 0.071 0.086
SMOTE-AdaBoost 0.616 0.062 0.086
SMOTE-XgBoost 0.634 0.083 0.086

Table 5.3 reports the results of our experiments. We use six popular classifiers–logistic

1https://www.kaggle.com/oddyvirgantara/on-time-graduation-classification
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regression, K-nearest neighbors, naive Bayes, random forest, adaboost, and xgboost–together

with their corresponding SMOTE versions to deal with the imbalanced dataset. For the

tenfold validation, every test set has 168 samples with approximately 8% being the minority

samples. As the table shows, variances of the estimation on test sets are not negligible. The

standard errors even increase with the sample mean, which would discredit their mean values

statistically. Specifically, we consider the confidence interval (mean − 1.645s/
√
10,mean +

1.645s/
√
10), where s is the tenfold standard errors. Fig 5.7 gives us the outcome for the

RF, KNN, and LR models. Their confidence intervals reach or almost reach the threshold

x = 0.5, meaning they might not be statistically better than a random guess.

Notably, the sample means Â of the xgboost, SMOTE-xgboost, SMOTE-adaboost, SMOTE-

NB, SMOTE-KNN, and SMOTE-LR models are all higher than 0.6. However, their high

sample variances indicate that they could not be confirmed to have AUCs higher than 0.6

statistically at a 95% confidence level. Therefore, in a highly imbalanced dataset, the stan-

dard errors must be considered along with sample means of empirical AUCs to reach any

correct conclusions.

Figure 5.7: Mean AUCs of tenfold validations and the corresponding ±1.645s/
√
10 interval

using the graduation data

5.6.2 Wine quality prediction

We offer two other examples of binary classification tasks using the red wine quality dataset 2

originally sourced from Cortez et al. (2009). The dataset contains 11 real-valued features

2https://archive.ics.uci.edu/ml/datasets/wine+quality
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of red wine and an ordinal label column with a scale of 0 − 10, which indicates the quality

of the wine. The typical samples are displayed in Table.5.4.

Features sample 1 sample 2 sample 3
Fix acidity 7.4 7.8 11.2

Volatile acidity 0.7 0.88 0.28
Citric acidity 0 0 0.56
Residual sugar 1.9 2.6 1.9

Chlorides 1.9 2.6 1.9
Free.sulfur.dioxide 11 25 17
Total.sulfur.dioxide 34 67 60

Density 0.9978 0.9968 0.9980
PH 3.5 3.2 3.16

Sulphates 0.56 0.68 0.58
Alcohol 9.4 9.8 9.8
Quality 5 5 6

Table 5.4: Typical samples of the red-wine dataset

The total number of samples in the dataset is n = 1599. In the first task, we classify the

red wine with a quality lower than 5 to be a bad wine and that with quality higher than 5

to be not bad. For the second task, we classify great wine as wine with a quality greater

than or equal to 7; otherwise, it is not great. Both tasks are highly imbalanced. For the first

task, 63 samples are bad with the proportion of the minority p = 0.039. For the second task,

217 samples are great. Our imbalanced level is p = 0.136. We use stratified tenfold cross-

validation with the standard z normalization applied to both assignments. We summarize

the results using the same classifiers as in the previous section and compute corresponding

mean AUCs and standard errors. The outcome is listed in Table.5.5, and the corresponding

confidence interval is plotted in Fig 5.8.

Every test set of task 1 has 159 samples with p = 0.039, and every test set of task 2 has

159 samples with p = 0.136. The table and figure reveal that the estimation is overall more

volatile for task 1 than for task 2. This observation is consistent with our expectation that

working with more imbalanced datasets could result in more uncertainty of the empirical

AUC estimation. In the figure, the classifier with the highest mean AUC in the task 1 is

the xgboost model with a wide confidence interval (0.67, 0.81). The interval of the xgboost

model in task 2 decreases to (0.87, 0.92), which gives us more certainty. However, even in

the latter case, we cannot consider the mean estimation 0.896 alone as the variances’ scale

cannot be ignored. This is particularly important when deciding if one classifier is greater
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Table 5.5: Mean AUCs and corresponding standard deviations of the red wine set

Classifiers
Mean AUC

Standard errors
Tenfold Approximation (5.6)

Task1 Task2 Task 1 Task 2 Task1 Task2

Logistic Regression (LR) 0.533 0.643 0.071 0.039 0.123 0.069
K-nearest Neighbors (KNN) 0.521 0.675 0.037 0.047 0.122 0.068
Naive Bayes (NB) 0.577 0.774 0.059 0.029 0.124 0.062
Random Forest (RF) 0.506 0.757 0.023 0.05 0.121 0.064
Adaptive Boosting (Adaboost) 0.557 0.692 0.083 0.047 0.124 0.067
Extreme Gradient Boosting (XGBoost) 0.740 0.896 0.131 0.048 0.118 0.047
SMOTE-LR 0.713 0.795 0.067 0.033 0.121 0.060
SMOTE-KNN 0.667 0.802 0.106 0.058 0.124 0.060
SMOTE-NB 0.667 0.770 0.095 0.061 0.124 0.063
SMOTE-RF 0.623 0.816 0.080 0.046 0.125 0.058
SMOTE-AdaBoost 0.672 0.794 0.092 0.043 0.123 0.061
SMOTE-XgBoost 0.693 0.898 0.115 0.040 0.122 0.046

Figure 5.8: Mean AUCs of tenfold validations and the corresponding ±1.645s/
√
10 interval

of task 1 (left) and task 2 (right) using the red wine data

than another or if one classifier’s AUC is above certain thresholds.

By inspecting Table 5.3 and Table 5.5, we see that, even in the real data analysis, the

approximation (5.6) still gives conservative or otherwise close results of variances, which is

consistent with our finding in the simulation section. Therefore, if one can only go through

the test set once due to the computational limit so that sample variances are not available,

it is sensible to use the approximation (5.6) as a substitute for the variances estimation.

5.7 Concluding remarks

This chapter aims to make an introduction to the problem of imbalance learning, especially

its most popular evaluation metrics - empirical ROC-AUC. We carefully study the statistical
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properties of the empirical AUC under the setting of highly imbalanced datasets. When we

encounter such scenarios, variances of the empirical AUC could be very high. Therefore,

we must report the information on the deviation before we make conclusions about the

performance of our models.
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Chapter 6

Mixture copulas with discrete

margins and their application to

imbalanced data

6.1 Introduction

To mitigate the class size imbalance, many methods have been proposed to create an ar-

tificially balanced dataset with the same properties as the original data set. For instance,

the random oversampling technique creates a larger balanced set by randomly generating

instances from the minority class using its empirical distribution. Alternatively, random un-

dersampling erases members of the majority class at random until the dataset is balanced.

Some experiments with these two methods for different classifiers can be found in Mohammed

et al. (2020). Although these two simple techniques indeed improve the accuracy of the clas-

sifier, they are not without drawbacks. By removing members of the majority class, random

undersampling methods may discard useful information in the dataset. Methods that employ

random oversampling are prone to overfitting (He and Garcia, 2009).

A popular and very powerful alternative that addresses the shortcomings of the random

oversampling method is the synthetic minority over-sampling technique (SMOTE) introduced

in Chawla et al. (2002). Rather than simply using the empirical distribution of the minority

class, SMOTE generates new points using a nearest-neighbor approach. First, given a value

of K. SMOTE randomly chooses two points: x0, a base point in the minority class, and

x′, which is one of the K nearest neighbors of x0. A new point x∗ is added to the minority
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class, which is a randomly chosen convex combination of x0 and x′:

x∗ = Ux0 + (1− U)x′, U ∼ U(0, 1),

where U refers to the uniform distribution. SMOTE and its variants enjoy great success in

a wide variety of applications; see Fernández et al. (2018) for a recent overview.

However, challenges remain for the SMOTE algorithm. The performance of the algorithm

can be highly sensitive to K, whose choice for a particular application can then become

somewhat arbitrary. The results sometimes have large variance. Moreover, because the

assignment of x∗ uses a uniform distribution, SMOTE may not be suited to skewed data

sets (Wang and Japkowicz, 2004; He and Garcia, 2009; Fernández et al., 2018).

To avoid these issues, recently several authors have been using copula functions to im-

plement the oversampling. These functions are powerful tools for modeling the dependence

between different factors in the data. Zhu et al. (2019) oversampled an imbalanced data

set using a Gaussian copula with a kernel-based marginal distribution. Xue et al. (2022)

apply the copula-based oversampling methods in an imbalanced rock burst data set. In this

work, the authors use both a Gaussian copula and t-copula with the marginal distribution

of each factor chosen by using Kolmogorov–Smirnov (KS) statistics. Both articles show the

validity of the methods for their particular data set, as well as superiority over the SMOTE

for certain of the classifiers.

Though the copula-based approaches in those manuscripts show promise, they share

a shortcoming with the SMOTE method: they are not well designed for data sets with

categorical (discrete) marginal factors. However, in many applications (for example the

credit card approval task), many of the factors are categorical: educational background,

nationality, etc. Moreover, for simplicity, many of the more quantitative variables (income,

age) are often placed into categorical bins for study. Simply ignoring the discrete treatment

of these factors in the data may hinder the effectiveness of the final results.

We hereby consider the problem of oversampling in data sets with both continuous and

discrete features. We introduce the idea of implementing the oversampling using mixture of

normal and skew-normal copulas with discrete margins by Bayesian augmentation and the

correlated pseudo method in Deligiannidis and Doucet (2018). Our work is an extension

of the work of Pitt et al. (2006); Smith and Khaled (2012); Gunawan et al. (2019), where

the former two papers introduced Bayesian augmentation approaches to estimate copulas

with discrete margins. Gunawan et al. (2019) introduced the work of Deligiannidis and
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Doucet (2018) into copulas literature and used the correlated pseudo method to estimate

Archimedean copulas. On the other hand, in the paper of Gunawan et al. (2019), their im-

plementations and applications mainly focused on the one-parameter Archimedean families,

which might not be well suited for many complex data. We extend their approaches to the

normal and skew-normal copulas of any dimensions.

Current studies of copulas with discrete margins largely use Gaussian copulas (Pitt et al.,

2006; Smith and Khaled, 2012; Meyer, 2013; Jiryaie et al., 2016). Some authors have also

considered cases of Archimedean copulas (Smith and Khaled, 2012; Gunawan et al., 2019;

Geenens, 2020) or other classic copulas such as t copulas for the discreteness problems (Smith

et al., 2012). In order to make the considerations suitable for higher dimensions as well as

complex data, vine copulas are of major interest (Smith, 2011; Smith and Khaled, 2012;

Panagiotelis et al., 2012; Loaiza-Maya and Smith, 2019). However, despite the usefulness of

mixture models of copulas in modeling complex distribution patterns, they are less studied

under the circumstances. Therefore, in this chapter, we study algorithms for estimating

parameters of mixture copulas with discrete or mixed margins using Bayesian approaches.

Normal and skew-normal mixture copulas are given special attention. Furthermore, we

propose to use copula mixture models in the field of imbalanced learning. The integration of

Bayesian sampling methods, coupled with the algorithm’s capacity to incorporate discrete

data features, renders the mixture copulas aptly suited for addressing the real problems in

the field of data science.

The rest of this chapter is organized as follows. In section 6.2, we introduce the para-

metric families of mixture copulas we use throughout the discussion. This is followed by the

statistical construction of copulas with discrete margins, which we shall encounter in many

real-life applications. Section 6.4 is devoted to discussing the relevancy of identifiability

under the setting of this study. Furthermore, section 6.5 introduces the most well-known

augmentation techniques when dealing with discreet margins and we outline why this classic

approach may not be efficient when complex copula models along with large datasets are

applied. In section 6.6, we introduce the main learning algorithm of this study. To test the

algorithm, we perform experiments on synthetic and real data in section 6.7.
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6.2 Mixture copulas

We utilize mixture of normal copulas and skew-normal copulas. That is, we consider two

mixture models

CNormalMix =

K1∑
i=1

wiC
(i)
N and CSkewm =

K2∑
i=1

wiC
(i)
SN.

Where the density of the normal copula denoted as c
(i)
N follows (1.3) and the density of skew

normal copula c
(i)
SN follows (1.9). Furthermore, we estimate them by Bayesian Markov chain

Monte Carlo (MCMC) sampling to enable the model selection and parameter estimation

simultaneously by specifying a large K, as we studies in the first chapter, and the redundant

groups would be assigned a zero weight asymptotically (Rousseau and Mengersen, 2011).

6.3 The categorical case

We now compute the analog of the copula density in the case that all of the random variables

are discrete. We denote these variables as sj to distinguish them from the continuous case

and suppose that there are d of them. The discrete variables in the classification problems

of interest are typically data category identifiers, so we further assume that the sj take on

integral values. In this case, it is convenient to define the following difference operator:

∆jC(v1, v2, . . . , vd) ≡ C(v1, v2, . . . , Fj(sj), . . . , vd)− C(v1, v2, . . . , Fj(sj − 1), . . . , vd), (6.1a)

vj ≡ Fj(sj). (6.1b)

With the definition in (6.1), we can find the probability mass function by taking repeated

differences:

p(s1, s2, . . . , sd) = ∆1∆2 · · ·∆dC
(
F1(s1), F2(s2), . . . , Fd(sd)

)
≡ ∆1,2,3,...,dC, (6.2)

where p(·) refers to the probability mass function and we have defined the iterated operator

∆ for simplicity.

We will now consider cases where the data set contains both continuous and categorical

variables.

Assume we have m categorical variables and d−m continuous variables. Therefore, The
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distribution can be expressed as

F (s1, s2, ..., sm, xm+1, ..., xd) = C
(
F1(s1), F2(s2), . . . , Fm(sm), Fm+1(xm+1), . . . , Fd(xd)

)
.

We are then computing a hybrid between a probability mass and density function. Hence,

with first m dimensions to be discrete features, and let (s,x) = (s1, s2, ..., sm, xm+1, ..., xd)
T .

By assuming the absolutely continuous of the considered copula functions, we have :

f(s,x) = f(x)p(s | x) = c(u)
d∏

j=m+1

fj(xj)∆1,2,3,...,mC(v | u). (6.3)

Where

v = (v1, v2, . . . , vm)
T =

(
F1(s1), F2(s2), . . . , Fm(sm)

)T
(6.4)

is the copula variables with the categorical margins, and

u = (um+1, um+2, . . . , um+d)
T =

(
Fm+1(xm+1), Fm+2(xm+2), . . . , Fm+d(xm+d)

)T
(6.5)

is the copula variables with continuous margins. We denote C(v | u) =
∫ v

0
c(v′ | u)dv′ to be

the conditional copula function given u, c(u) =
∫
c(v′,u)dv′ is the marginal copula density

of continuous variables.

6.4 Model identifiability

The identifiability problems are important in statistics. As this chapter studies the ap-

proaches of discrete copulas and mixture models. One may raise doubt about the model’s

identifiability.

First of all, as noted in the Sklar theorm, the copulas are only uniquely defined up

to the range of marginal distributions. This poses identifiability issues for the copulas with

discrete variables as one could use different copulas to construct the same discrete probability

distribution. Faugeras (2017) gave examples regarding this problem. This would in general

decrease the reliability of any conclusions drawn from a user-chosen copula in modeling

procedures if variables have discreetness (Faugeras, 2017; Geenens, 2020). Some tools are

available for diagnosing the identifiability of this type. Nasr and Remillard (2023) proved
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that for parametric families of copulas with parameters θ ∈ Θ, it is identifiable whenever

Cθ(F1(x1), F2(x2), . . . , Fd(xd)) is injective with respect to θ ∈ Θ. In other words, Cθ1(·) must

not equivalent to Cθ2(·) when θ1 ̸= θ2 in the domain of consideration. When margins are

unknown, they suggested using empirical margins to check the conditions. On the other

hand, we are in favor of the point raised by the paper that as long as we are aware of

the restrictions posed, it is reasonable to proceed by using one particular choice of copulas

in applications. For the sampling task considered in the chapter, it is most important to

reconstruct the dependency in the domain of concern. That is, abilities to reconstruct the

probability distributions through copulas are the main consideration, which is guaranteed

by Sklar’s theorem.

The identifiability of mixture models of copulas is another potential problem. This refers

to the scenario when we have two mixtures and
∑K

i=1 piFi =
∑K′

j=1 p
′
jF

′
j but left and right

side are not equivalent up to the label permutation. That is, pi = p′i, Fi = F ′
i ∀i and

K = K ′ does not hold even after any label adjustment. Seminal works regarding this issue

for general finite mixture models include Teicher (1961, 1963) and Yakowitz and Spragins

(1968). Yakowitz and Spragins (1968) proved that the mixture models are identifiable if

and only if the corresponding class of the component-wise distributions is linearly dependent

over the real number field.

The identifiability issue of this kind is difficult to address in general and usually needs to

be considered case by case for different families of mixtures. Holzmann et al. (2006) proved

the identifiability of elliptical mixtures. Otiniano et al. (2015) showed that the multivariate

skew normal and zero mean univariate skew t mixtures are identifiable. Therefore, the

identifiability of the normal mixture copulas within their own normal parametric family can

be readily obtained by recalling the construction formula∑
i

wiCi(u1, u2, . . . , ud;Pi) =
∑
i

wiΦd(Φ
−1(u1),Φ

−1(u2), . . . ,Φ
−1(ud);Pi,µ = 0).

Where Φ(·) is the distribution of standard normal, Φd(·;P ) is the zero mean multivariate

normal distribution with the standardized covariance matrix P . If there exist two different

normal copula mixtures such that ΣiwiCi = Σw′
iC

′
i. This means∑

i

wiΦd(Φ
−1(u1),Φ

−1(u2), . . . ,Φ
−1(ud);Ri) =

∑
i

w′
iΦd(Φ

−1(u1),Φ
−1(u2), . . . ,Φ

−1(ud);P
′
i )

which contradict the identifiability of the normal mixtures.
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Deeper identifiable results are not available among mixture copula literature to the best

of the authors’ knowledge, other works discussed and applied the mixture of copulas ei-

ther claimed the identifiability is not the key issue in their assignments (Wang, 2008; Cai

and Wang, 2014; Mazo and Averyanov, 2019) or totally ignored identifiability problems.

Otherwise, they declared it as open questions (Arakelian and Karlis, 2014; Kosmidis and

Karlis, 2016; Mazo and Averyanov, 2019). We quote the ideas from Mazo and Averyanov

(2019) that although identifiability is very important in statistical theory, verifying it can

be difficult and the applied statistical work often achieves satisfactory outcomes for models

with identifiability issues, such as neural networks. Hence, for many cases including mixture

copulas applications as above, the identifiability problem may be set aside.

Besides, in our study, we use the Bayesian paradigm of estimations, Rousseau and

Mengersen (2011) showed us that as long as the parameters α1, α2, . . . , αK′ for the Dirich-

let weighting prior w ∼Dirichlet(α1, α2, . . . , αK′) are small enough, along with some other

regularity conditions. The overfitted finite mixtures achieve the sparsity. That is, if the sam-

ples are from the true model
∑K

i=1 pifi, using the overfitted model
∑K′

i=1 pifi where K ′ > K

for Bayesian estimations would result in
∑K′

K+1 wi = O(1/
√
n) asymptotically under the

regularity. This outcome adds another layer of usefulness for the Bayesian.

6.5 Bayesian data augmentation approach

The equation (6.3) naturally motivates us to estimate to copula with mixed margins by

Maximum Likelihood Estimation (MLE)

logL(s,x) = log c(u) + log∆1,2,3,...,mC(v | u) +
d∑

j=m+1

log fj(xj), (6.6)

where the notation is kept the same as (6.3), (6.4) and (6.5).

However, as suggested by Smith (2011); Smith and Khaled (2012), the calculation of m

dimensional discrete features involves O(2m) evaluations of the copula function for every

data point, this becomes computationally prohibited when we encounter high dimensional

large data set. In addition, it is not easy to maximize the likelihood in such cases. They

suggest using the Bayesian data augmentation approach for parameter learning. Let (sl,xl) =

(sl1, s
l
2, ..., s

l
m, x

l
m+1, ..., x

l
d)

T , l = 1, 2, . . . n be the n data points and the first m features are

discrete. We give an augmented variables ν = (ν1, ν2, ..., νm, νm+1, ..., νd)
T such that the joint

103



density is

n∏
l=1

f(sl,xl,ν l) =
n∏

l=1

f(sl,xl | ν l)c(ν l) =
n∏

l=1

f(xl | ν l)f(sl | xl,ν l)c(ν l)

=
n∏

l=1

( m∏
j=1

I
(
Fj(s

l
j − 1) < νl

j ≤ Fj(s
l
j)
) d∏
k=m+1

δ(Fk(x
l
k) = νl

k)fk(x
l
k)
)
c(ν l),

(6.7)

n represents the total number of points available, δ(·) is the Dirac delta. In this sense,

f(s,x) =

∫
f(s,x,ν)dν =

∫
f(s,x | ν)c(ν)dν.

From the above, we can naturally use the Gibbs within Metropolis-Hasting (M-H) types of

sampling techniques for parameters learning and sample generations, which we summarize

as Algorithm 6.1.

Algorithm 6.1 Bayesian data augmentation

1: Initialize ν marginally by using F̂nj(x) =
1

n+1

∑n
i=1 I(xij ≤ x). Initialize copula parame-

ter Θ(0).
2: for t = 1, 2, . . . do
3: for l = 1, 2, . . . n do
4: for j = 1, 2, . . . ,m do
5: Sample p(νl

j | s,x,ν l
\j,Θ

t−1) ∝ p(s,x | ν l,Θt−1)c(νl
j | ν l

\j,Θ
t−1) =

( m∏
j=1

I
(
Fj(s

l
j − 1) < νj ≤ Fj(s

l
j)
) d∏
k=m+1

I(Fk(x
l
k) = νk)fk(x

l
k)
)
c(·).

This can be generated by u′ ∼ Uniform(F̂nj(x
l
j − 1), F̂nj(x

l
j)) and νl

j = C−1(u′ | ν l
\j).

6: end for
7: end for
8: Sample the parameter Θt by p(Θt | ν,x, s) = p(Θt | ν) ∝

∏n
l=1 c(ν

l;Θt)π(Θt).
More specifically, Θt ∼ p(Θ | ν) is sampled by Metropolis-Hasting methods:

We propose the parameters by a proposal Θprop ∼ pp(Θ | Θ(t−1)) where pp(· | Θt−1)
is a proposal distribution, the new proposal is accepted according to the M-H acceptance
probability.

9: Implementing the oversampling by unew ∼ c(u | Θt) and (s,x)newj = F̂−1
nj (u

new
j ) for

j = 1, 2, 3, ...., d, where unew = (unew
1 , unew

2 , ..., unew
d )T .

10: end for

The conditional copula needs to be computed when sampling νl
j for j = 1, 2, . . . ,m, l =
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1, 2, . . . , n. This can be derived from

CNormal(ui | u1, u2, ..., ui−1, ui+1, ..., ud) = F (Φ−1(ui) | Φ−1(u1),Φ
−1(u2), ...,Φ

−1(ud)),

F can be obtained from the formula of conditional normal distribution Xi | Y = y with

X ∼ N(0, 1) and Y ∼ Nd−1(0,Mii). Mii refers to the correlation matrix P with ith row and

ith columns deleted.

On the other hand, Sampling from the skew-normal distribution requires extra param-

eters of skewness δT = (δ1, δ2, ..., δd) where we can propose each δi by truncated nor-

mal distribution from −1 to 1 with the mean being δcurrenti . The conditional copula

CSN(ui | u1, u2, ..., ui−1, ui+1, ...ud) = FSN(F
−1
i (ui) | F−1

1 (u1), F
−1
2 (u2), ..., F

−1
d (ud)) is more

involved, as per Azzalini (2013)[Section 5.3], the conditional distribution FSN(· | ·) follows

the extended skew normal distribution, the density of which is denoted as

ESNd(µ,P ,α, τ) = ϕd(x− µ;P )Φ(τ(1 +αTPα)1/2 +αT (x− µ))/Φ(τ).

Let X = (X1,X2
T )T and P and α is partitioned into P11,P12,P22,P21 and α1, α2 according

to X1,X2. We have

X1 | X2 = x2 ∼ ESN1(ε1·2,P11·2, α1, τ1·2).

Where we follow the notation of Azzalini (2013)[p.130][p.151],

P11·2 = P11 − P12P
−1
22 P21

ε1·2 = P12P
−1
22 (x2)

τ1·2 =

(
α2 + P−1

22 P21α1√
1 + α

′
1P11·2α1

)T

x2.

This method works well when the analytical forms of the conditional copulas and their

corresponding inversions are available. However, for complex copula models, one often needs

to obtain the inversions numerically, this task is computationally demanding and sometimes

unstable when the discrete dimensions m and the sample size n become large. As for each

iteration, we need to sample O(nm) from conditional copulas. Gunawan et al. (2019) used

the pseudo marginal method based on unbiased estimators of likelihood functions and applied

it to learn the one-parameter Archimedean copulas, they showed that this largely improved

the computational time compared with the augmentation method. We extend their work to
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the mixture copulas of high dimensional normal and skew-normal copulas, which could be

more applicable when we analyze complex high dimensional data structures.

6.6 Methodology

Consistent with what we have discussed in the Algorithm 6.1 and previous chapters, we learn

the marginal cumulative distribution with its modified empirical counterpart

F̂nj(x) =
1

n+ 1

n∑
i=1

I(xij ≤ x). (6.8)

Where xij is the jth dimension of the ith data, i = 1, 2, . . . , n.

In the continous case, Bayesian learning would be directly applied by using p(θ | x) ∝
f(x | θ)π(θ) where MCMC is often used for sampling the posterior. Oversampling the

minority class in the data set is through

θ∗ ∼ p(θ | x)

y′ ∼ f(x | θ∗)

For the data set with discrete features, extra attention needs to be paid. Algorithm

6.1 uses Bayesian augmentation approach for modelling, we approach the problem here from

different angles. Let (s,x) = (s1, s2, ..., sm, xm+1, ..., xd)
T be the d-dimensional data with first

m features are discrete. From (6.3), if the copula distribution C(·) is absolutely continuous

with the density c(·), similar as what have been presented in Gunawan et al. (2019), we can

write (6.3) as

L(s,x) =

∫ F (s)

F (s−1)

c(v′,u)dv′
d∏

j=m+1

fj(xj). (6.9a)

Where F (s− 1) =
(
F1(s1 − 1), F2(s2 − 1), . . . , Fm(sm − 1)

)
and u follows (6.5) such that

u = (um+1, um+2, . . . , um+d)
T =

(
Fm+1(xm+1), Fm+2(xm+2), . . . , Fm+d(xm+d)

)T
.
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By change of variables of the integration,

L(s,x) =
m∏
i=1

[
Fi(si)−Fi(si−1)

] ∫ 1

0

c(v′′
⊙(

F(s)− F(s− 1)
)
+ F(s− 1),u)dv′′

d∏
j=m+1

fj(xj),

(6.9b)

where
⊙

refers to the component-wise product of vectors.

More specifically,(
v
⊙(

F(s)− F(s− 1)
)
+ F(s− 1),u

)
j

=

vj
(
Fj(sj)− Fj(sj − 1)

)
+ Fj(sj − 1), j = 1, 2, . . . ,m

uj j = m+ 1,m+ 2, . . . , d

(6.10)

This motive us to approximate the integral of (6.9b) by Monte Carlo

L(s,x) ≈
d∏

j=m+1

fj(xj)
m∏
i=1

[
Fi(si)− Fi(si − 1)

] 1

N ′

N ′∑
j=1

c
(
pj

⊙(
F(s)− F(s− 1)

)
+ F(s− 1),u

)
:= L(s,x,p)

(6.11)

Where pj ∼ Um(0, 1) is the m-dimensional uniform distribution and N ′ is predefined. The

equation (6.11) gives an unbiased estimation of (6.9b) numerically. Noticing that

p(θ | s,x) ∝ Lθ(s,x)π(θ) = π(θ)

∫ 1

0

Lθ(s,x,p)fUm(p)dp.

Sampling the posterior of θ can be realized by sampling p(θ,p | s,x) ∝ p(θ | p, s,x)fUm(p)

and take the marginal part, where fUm is denoted as the density of m-variates uniform

distribution. Gibbs-M-H types algorithm can therefore be constructed.

To realize the sampling of mixture copulas, we assign the group label kj ∈ {1, 2, 3, . . . , K},
for our observations j = 1, 2, . . . , n. The prior of the group weight is the Dirichlet distribu-

tions

π(w) ∼ Dirichlet(1/K, 1/K, . . . , 1/K).

Therefore, we present the pseudo marginal algorithm for mixture copula with discrete

and mixed margins in Algorithm 6.2, which circumvents the necessity of sampling from
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the conditional copulas of every dimension and every data point.

6.7 Algorithm validation

In order to validate our approach, we firstly use it to learn the synthetic data sampled from

mixture copulas of our own design so that the correctness of the sampler can be empir-

ically tested. Then, we solve classification problems involving real experimental data by

oversampling from mixture copulas.

6.7.1 Synthetic data

For the first synthetic test, we simulate the data from a 3-dimensional mixture normal

copula and discretize it using categorical marginal distributions. In particular, the marginal

distribution is set to be Categorical(a1, a2, . . . , a10) where a1 : a2 : a3, · · · : a10 = 1 : 2 :

3 · · · : 10. The sample data are transformed using xij = F−1(uij) where F
−1(·) is the inverse

of the categorical distribution. As for the copula, we use

cm(v) = w1c1N(v;ρ
1 = (0.6,−0.5,−0.6)T ) + w2c2N(v;ρ

2 = (0.8, 0.7, 0.8)T ), (6.13)

where the subscript “m” refers to “mixed” , v ∈ [0, 1]3 and ρ = (ρ12, ρ13, ρ23)
T determine

the corresponding correlation matrix . We generate

(n1, n2) = (200, 0), (500, 0), (1000, 0), (150, 50), (375, 125), (750, 250)

points from the first and second copulas c1N and c2N respectively and since the data points

are exchangeable, this corresponding to estimate copulas with (w1, w2) = (1, 0), (0.75, 0.25).

We set the initial number of mixture components K to be 3 and let the algorithm in

the section 6.6 to decide if it is appropriate. We generate 5000 posterior points for each

parameter. The commonly occurring label-switching problems are solved by ranking the

group number according to their weights at the end of each iteration. We calculate the

posterior mean of parameters after discarding the first 3000 points through burn-in. The

experiments stated above were repeated 30 times for each sample size and the estimations

for the posterior means were averaged over repetitions and the corresponding standard de-

viations were calculated. Table 6.1 displays the results. As we have overfitted the number

of groups K = 3, we can see that the algorithm correctly selects the number of groups even
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Algorithm 6.2 Bayesian pseudo correlated method for mixture copula with mixed margins

1: Data points are of the form {(si,xi) : i = 1, 2, . . . , n}, uij = F̂nj(si,xi)j, Initialize number
of clusters K, Monte Carlo precision N ′ as specified in (6.11), copula data with group

labels (uT
i , ki), copula parameters for K copulas Θ

(0)
c , c = 1, 2, . . . , K, group weightings

w(0), N ′ points of m dimensional (the dimension of discrete features) uniform samples

P
(0)
i = {pi1

(0),pi2
(0), . . . ,piN′ (0)} for every i = 1, 2, . . . , n.

2: for t = 1, 2, . . . Max-iteration do
3: for k = 1, 2, . . . K do
4: Propose the kth component copula parameters Θprop

k , For the skew normal cop-
ulas. These include the correlation matrix Σk and the skewness parameter δk. Sample
P ′

{i:kt−1
i =k} with high correlation (e.g. 0.99) from last sample P t−1

{i:kt−1
i =k} to ensure a good

convergence property (Deligiannidis and Doucet, 2018), which can be done by sampling
from correlated normal and do the conversion. We accept Θprop

k and P ′
{i:kt−1

i =k} with

the probability

αacceptance = min


∏

{l:k(t−1)
l

=k}
1

N′
∑N′

j=1 c
(k)
Θprop

(
p
′
lj

⊙(
F̂n(sl) − F̂n(sl − 1)

)
+ F̂n(sl − 1),ul

)
π(Θprop)pp(Θt−1|Θprop)

∏
{l:k(t−1)

l
=k}

1
N′

∑N′
j=1 c

(k)

Θt−1

(
p
(t−1)
lj

⊙(
F̂n(sl) − F̂n(sl − 1)

)
+ F̂n(sl − 1),ul

)
π(Θprop)pp(Θprop|Θt−1)

, 1

 .

(6.12)

The methods of sampling of the correlation Σ and δ has been discussed in section 6.5.
5: end for
6: Relocate each data points into groups by

p(kj = i | P t,uj,xj, sj,Θ
t) ∝ wt−1

i

1

N ′

N ′∑
r=1

c
(i)
Θt

(
p
(t)
jr

⊙(
F̂n(sj)− F̂n(sj − 1)

)
+ F̂n(sj − 1),uj

)
7: Relocate the weight

wt
i ∼ Dirichlet(1/K +

n∑
i=1

I(ki = 1), 1/K +

n∑
i=1

I(ki = 2), . . . , 1/K +

n∑
i=1

I(ki = K))

8: Sampling from the copula by first choosing the group

k∗ ∼ Categorical(wt
1, w

t
2, . . . , w

t
k)

and u∗ ∼ ck∗(· · · | Θt
k∗).

9: (s∗,x∗)j = F̂−1
j (u∗

j) for j = 1, 2, 3, ...., d, where u∗ = (u∗
1, u

∗
2, ..., u

∗
d)

T .
10: end for
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for relatively small sample sizes. Only insignificant amount of weightings are assigned to the

empty components. With the increase of the data points, the posterior means show a good

sign of convergence.

Table 6.1: Means and standard deviations of the posterior mean estimators for synthetic
discrete data from normal copulas over 30 repetitions of MCMC experiments. Mean±sd are
reported, ρ1,ρ2 are the correlations for the first and second normal copulas. The number of
uniform samplings N ′ = 30.

n1,n2 200, 0 500, 0 1000, 0 150, 50 375, 125 750, 250

w1 0.88± 0.08 0.92± 0.07 0.94± 0.05 0.68± 0.08 0.69± 0.07 0.71± 0.06
w2 0.10± 0.06 0.07± 0.06 0.05± 0.05 0.26± 0.06 0.24± 0.04 0.24± 0.03
ρ112 0.60± 0.06 0.61± 0.03 0.60± 0.02 0.60± 0.07 0.62± 0.04 0.61± 0.03
ρ113 −0.52± 0.06 −0.51± 0.04 −0.49± 0.03 −0.43± 0.15 −0.50± 0.06 −0.51± 0.04
ρ123 −0.61± 0.05 −0.61± 0.03 −0.60± 0.02 −0.53± 0.13 −0.61± 0.06 −0.60± 0.04
ρ212 0.71± 0.12 0.76± 0.05 0.78± 0.06
ρ213 0.45± 0.25 0.56± 0.18 0.63± 0.14
ρ223 0.51± 0.27 0.64± 0.17 0.72± 0.17

For the skew-normal copula, the estimation of the parameters are more difficult, especially

for the δ parameters. We sample from

cskewm(v) = w1c1SN(v;ρ
1 = (0.6, 0.6, 0.6)T , δ1 = (0.8, 0.8, 0.8)T )

+ w2c2SN(v;ρ
2 = (−0.8,−0.8, 0.8)T , δ2 = (−0.8,−0.8,−0.8)T ).

(6.14)

Data points are converted similarly but using the categorical distribution with 30 categories,

and the corresponding probability for each category is a1 : a2 : . . . a30 = 1 : 2 : · · · : 30. We

report the results with two sets of data which are

(n1, n2) = (2000, 0), (1500, 1000), (3000, 1000).

This corresponds to (w1, w2) = (1, 0), (0.6, 0.4), (0.75, 0.25). We estimate the parameters

by setting K = 2. The MCMC method is implemented for 5000 iterations, with the first

2000 points discarded for the first two experiments and 3000 points discarded for the last

experiment as burn-in. Due to the computational burden, the experiments are not repeated.

Table 6.2 shows the results. Noticeably, the first component of the skew-normal copula

when (w1, w2) = (0.6, 0.4) is not correctly estimated, although other parts of the results are

reasonably acceptable. In general, we find out through multiple experiments that the learning

of mixture skew normal copulas sometimes requires much more data than the corresponding
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mixture normal copulas, especially for the skewness parameters δ. On the other hand,

increasing the number of uniform samples N ′ as introduced in (6.11) could lead to faster

mixing of the MCMC sampler. However, this would lead to slower computational iterations.

Table 6.2: Posterior mean and standard deviation estimators of synthetic discrete data from
skew normal copula with the form Mean±sd. The number of uniform samplings N ′ = 30.

n1, n2 2000, 0 1500, 1000 3000, 1000
w1 0.98 ± 0.03 0.59 ± 0.03 0.78 ± 0.02
w2 0.02 ± 0.03 0.41 ± 0.03 0.22 ± 0.02

ρ1 (0.63 ± 0.04, 0.67 ± 0.02, 0.69 ± 0.02)T (0.75 ± 0.08, 0.77 ± 0.09, 0.74 ± 0.02)T (0.61 ± 0.04, 0.64 ± 0.03, 0.64 ± 0.03)T

δ1 (0.76 ± 0.07, 0.76 ± 0.06, 0.67 ± 0.06)T (0.03 ± 0.18,−0.01 ± 0.18,−0.3 ± 0.24)T (0.78 ± 0.07, 0.80 ± 0.06, 0.77 ± 0.05)T

ρ2 (−0.72 ± 0.10,−0.72 ± 0.10, 0.83 ± 0.02)T (−0.75 ± 0.10,−0.78 ± 0.08, 0.83 ± 0.03)T

δ2 (−0.84 ± 0.07,−0.68 ± 0.08,−0.71 ± 0.08)T (−0.82 ± 0.06,−0.66 ± 0.14,−0.64 ± 0.14)T

6.7.2 Real experimental data

To test our approach against real data, we select 3 imbalanced datasets from KEEL (Alcalá-

Fdez et al., 2009), which are abalone9-18, car-vgood and kr-vs-k-zero-one vs draw. The

abalone data set contains eight attributes of captured abalones, which are used to predict if

the abalone is an older one or a young one. Only the first measurement is categorical (so

m = 1) with three levels; the remaining seven factors are continuous (so d −m = 7). The

data is highly imbalanced: only 42 of the 731 total instances belong to the “older” class.

The car dataset includes 1728 observations, 6 categorical features are used to predict if the

car has a ”very good” quality, only 65 instances out of the total samples belong to ”very

good” class. The last mentioned data set is a chess data set. There are 2901 observations

in total with six categorical features indicating the status of the current game. We use the

features to predict the outcome of games, the dataset only contains 3.6% positive instances.

We split the data using the random hold-out method. The car dataset is separated

with 90% − 10% train-test set ratio. The chess dataset is divided according to 80% − 20%

train-test ratio and the abalone dataset is divided into 70%− 30% train-test ratio. We use

different ratios to ensure that there are enough minority samples for us to train models.

In order to keep the proportion between majority and minority classes in our training and

test sets, we use the stratified train test split. That is, the proportion between classes are

kept the same in train and test set when we conduct the splitting. Finally, the random hold

out approach is used for 5 times in each dataset. Figure 6.1 shows the scatter plot of the

minority class in the abalone dataset between (Ui, Uj) = (F̂ni(xi), F̂nj(xj)) for i, j = 1, ..., 8 ,

where F̂ni(·) is defined in (6.8). Since the first attribute is discrete, U1 is sampled uniformly

from [F̂n1(x1 − 1), F̂n1(x1)] for every instance on the plot.
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Figure 6.1: Pairs plots between the attributes for the minority class in the training set

Since our datasets are imbalanced, we oversample the minority class using the mixture

copulas to balance the training set. As before, we use MCMC techniques following the

Algorithm 6.2 to generate 2500 points. Sufficient samples up till the last are used to balance

the set and the remaining are discarded. We use this approach with our two copula methods,

random oversampling, and SMOTE.

Table 6.3: Comparison of different oversampling methods for the 3 datasets. ’Car’ refers to
car-vgood. ’Abalone’ refers to ’abalone9-18’ and ’Chess’ refers to kr-vs-k-zero-one vs draw.
Classifiers are random forest (RF), support vector machine (SVM), and logistic regression
(LR). Values shown are mean and sd estimators of ROC-AUC for 5 experiments. Bold values
are best.

Car Abalone Chess

Classifier RF SVM LR RF SVM LR RF SVM LR
Oversampling method Mean ROC-AUC ± SD

Normal copula .992 ± .005 .992 ± .005 .890 ± .059 .657 ± .063 .747 ± .053 .817 ± .063 .993 ± .003 .981 ± .012 .967 ± .006
Skew normal copula .992 ± .005 .992 ± .005 .904 ± .039 .664 ± .047 .760 ± .048 .809 ± .037 .980 ± .022 .965 ± .034 .968 ± .006
Random oversampling .995 ± .005 .995 ± .004 .896 ± .056 .537 ± .030 .733 ± .053 .857 ± .048 .993 ± .011 .994 ± .002 .962 ± .022
SMOTE .997 ± .005 .996 ± .005 .900 ± .056 .661 ± .050 .720 ± .049 .855 ± .069 .984 ± .012 .994 ± .001 .962 ± .022
Original data set .871 ± .154 .943 ± .060 .527 ± .039 .523 ± .034 .515 ± .034 .694 ± .079 .947 ± .036 .995 ± .061 .880 ± .047

We then apply the random forest, support vector machine, logistic regression classifiers

to learn the parameters from the balanced training datasets and test them in the test sets.

Every experiments are repeated 5 times as we split the data 5 times using the random hold

out approach and we calculate the mean and sd estimators from there; the results are shown

in Table 6.3. For 9 comparisons over different classifiers and datasets. The copula methods
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win 5 times. We can say that the copula oversampling methods do perform better than the

random oversampling and SMOTE under many circumstances. On the other hand, all copula

models perform significantly better in the statistical sense than the original unbalanced data.

Therefore, the approach is promising when marginals of the data display highly correlated

complex patterns, especially if the margins are mixed with continuous and discrete features

which may not be handled well with the classical SMOTE or random oversampling methods.

6.8 Concluding remarks

This chapter is an application of Bayesian copula models to the problems of imbalance

learning. To deal with the multi-modal correlation structure, we incorporated the mixture

copula model (Arakelian and Karlis, 2014), which is useful for processing the complex real

dataset. In addition, we consider the copulas with both continuous and discrete margins.

This consideration, although less frequently occurred in the copula literature, is suitable

when applied to daily data science tasks because the discreteness of features is common

in the application such as credit card approval, financial fraud detection, and spam mail

detection.

Experiments have shown that our mixture copula oversampling significantly improves the

ability of classifiers in all datasets, and shows its merits in many datasets when compared

with the classic oversampling methods.

We focused on two types of copulas: normal and skew-normal in this chapter. But any

of the wide variety of copulas in the literature can be used with our approach, which will

cause further advancement in this study of imbalanced learning and clustering. If the data

set has very few points, the one-parameter Archimedean family of the copula in Genest and

Rivest (1993) can be used. Moreover, various copula selection approaches such as Huard

et al. (2006) may be further considered when we select the best model for the data set.

These additional cases could be explored in further research.
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Chapter 7

Conclusions

This thesis studies the estimation and selection of mixture copulas from the Bayesian view-

point, Non-parametric Bayesian approach is given specific attention. Notably, the method

discussed in Chapter 2 can be viewed as a finite approximation of the later chapters us-

ing non-parametric Dirichlet priors. Therefore, the later work from Chapter 2 is indeed

a refinement by making the methodology more precise. For the application, we study the

classic copula application among major financial markets. We hope this can reflect the

latest characteristic of the dependence mode among exchanges. In addition, we study the

class imbalance problem, an essential concept in data science, from a statistical perspective.

More specifically, we discuss the properties of the evaluation metric ROC-AUC, which is

frequently used in the field. We further merge the copula tools into the field to improve the

oversampling problems.

Chapter-wisely, in Chapter 2, we discussed the method of selecting and estimating the

finite mixture copula simultaneously using the Bayesian approach. This is mainly realized

by utilizing the Dirichlet distribution as the weight prior, which is the finite approximation

of the Dirichlet process. We first overfit the model with all potential mixture components

and then estimate the parameters by Bayesian methods. The MCMC and EM methods are

proposed to learn the parameters, and we have performed numerical simulations to validate

the correctness. Furthermore, we apply the methodology to the financial markets to detect

the asymmetry dependencies among them.

Chapter 3 constructed an infinite mixture model of a t copula by using the DP pro-

cess prior along with the Gibbs-MH sampler. The model was evaluated using simulation

experiments and real data analysis. The results obtained from the simulation experiments

indicate the reliability of the approach when compared with the benchmark standard MLE
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estimation method embedded in the copula library of R. The Bayesian estimation results of

the real data analysis using the daily closing prices of the Shanghai and Shenzhen indexes

from 2018 to 2023 further confirm the quality of the model estimator when compared with

the results of the MLE.

Chapter 4 proposed an estimation method for a copula infinite hidden Markov model

using a hierarchical Dirichlet approach. The Bayesian MCMC sampler is introduced, ac-

companied by simulation studies of the 2-state t-copula hidden Markov models and 3-state

t-copula models. In the real data analysis section, the daily closing prices of SSECI-HSI and

SPX-FTSE were used to train the model. Some characteristics of market dependence could

be derived from the estimation outcomes. Introducing the copula-iHMM model could be

beneficial for high-dimensional time-series modeling, particularly for cases in which depen-

dence patterns among series must be estimated. In contrast, for the classic HMM approach,

the number of states K must be specified as a hyperparameter. This might be inconvenient

if K changes rapidly when new data are included or if K is considerably large. The iHMM

structure is a convenient tool for determining K automatically.

Chapter 5 introduced the field of imbalance learning and the implications of estimating

empirical AUCs for a highly imbalanced dataset. The theoretical results reveal that, in

many practical situations, variances of the Mann-Whitney U statistics increase monotonically

with respect to the imbalanced level of the data, which could result in a highly volatile

empirical AUC estimator if the test datasets have medium to small sample sizes and the

test sets have high-class imbalance. Numerical simulations are performed in varying cases

to confirm this finding. To show the implications for experimental design, we calculate

the sample size required for performing hypothesis tests with the required statistical power

under imbalance scenarios. Finally, we use two real datasets to demonstrate our findings

and illustrate potential problems that should receive attention when computing classifiers’

AUC using the empirical estimator. For the application with small sample sizes and high-

class imbalance, the information on the variances of metrics must be included to ensure the

validity of the findings.

When faced with imbalanced data sets, many algorithms implement a preprocessing step

to oversample the minority class in order to obtain a balanced training set. In the work of

Chapter 6, we introduced the algorithm for learning the mixture copula with mixed margins

and applied the approach for performing the oversampling. This enables us to oversample

data with both discrete and continuous features. The classical random oversampling method

replicates points from the existing distribution and hence is prone to overfitting. In contrast,
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our proposed copula methods may generate new points with the correlation between margins

already captured and hence are less prone to overfit. Another classical method, the SMOTE

algorithm, is not naturally applicable to the discrete features. This may cause problems in

cases where discrete data is an important attribute. We applied our method to both synthetic

data to validate its correctness and used real-life datasets to perform the oversampling. Our

copula approach has shown some merits over the benchmark methodologies. Although under

some circumstances random oversampling and SMOTE still performed best, our methods

were competitive as can be seen. Therefore, this new methodology can be incorporated into

the oversampling toolbox for more applications.

For future work, first of all, efficient Bayesian inference approaches can be sought, for ex-

ample, the variational inference and its variant (Kingma and Welling, 2013; Blei et al., 2017).

This is in particular very useful when we need to apply our method to high-dimensional big

data applications. Some theoretical aspects can also be studied, such as model identifiability

in terms of different types of mixture copulas. Furthermore, we only apply our approach

to the limited families of copulas. In elliptical and skew elliptical families of copulas, skew

t copulas are very useful in terms of financial modeling, a mixture extension of which can

be studied. For the high dimensional application, we can also extend our approach to the

vine copulas and its variant (Joe and Kurowicka, 2011), one of the most popular research

topics regarding copulas. Some extensions in terms of application can also be considered.

First, more application examples in different areas of science and engineering can be tested

to verify the usefulness of our proposed approaches. More specifically, there are some funda-

mental applications that are pending to be done. For example, in financial risk management

and insurance, Value-at-Risk (VaR) and condition Value-at-Risk (CVaR) are the two most

popular risk measures. The combination of our proposed methods with the VaR/CVaR risk

calculation can be trailed to test the effectiveness of our proposed copula models in terms

of capturing complex financial risks. New applications, such as option pricing and credit

modeling, can also be sought where copula methods are often considered.
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Appendix A

Proof of Propostion 5

Proposition 5. Let M be the fix sample size, x ∈ (1,M/2)∩Z+ be the number of minority

class, Q1 and Q2 be defined as (5.5), 0.5 ≤ A < 1. Then, v(x) is a decreasing function with

respect to x.

Proof. Let w(x) = log(v(x)),

w(x)− w(x− 1) = log
(
v(x)

)
− log

(
v(x− 1)

)
= log(x− 1) + log(M − x+ 1)− log(x)− log(M − x)

+ log

[
A(1− A) + (x− 1)(Q1 − A2) + (M − x− 1)(Q2 − A2)

A(1− A) + (x− 2)(Q1 − A2) + (M − x)(Q2 − A2)

]
.

Since we have

log(x− 1) + log(M − x+ 1)− log(x)− log(M − x)

= log

(
−x2 + (M + 2)x− (M + 1)

−x2 +Mx

)
,

Meanwhile, as 2x < M , we have

(
− x2 + (M + 2)x− (M + 1)

)
− (−x2 +Mx) = 2x− (M + 1) < 0.

Therefore, (
− x2 + (M + 2)x− (M + 1)

)
(−x2 +Mx)

< 1,
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and

log(
−x2 + (M + 2)x− (M + 1)

−x2 +Mx
) < 0.

Letting q(x) = A(1− A) + (x− 1)(Q1 − A2) + (M − x− 1)(Q2 − A2), we arrive at

q(x)− q(x− 1) = Q1 −Q2.

Substitute (5.5) and recall that 0.5 ≤ A < 1

Q1 −Q2 =
A

2− A
− 2A2

1 + A
=

A(A− 1)(2A− 1)

(2− A)(1 + A)
≤ 0

This completes the proof.
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