
Porous Invariants for Linear Systems

Engel Lefaucheux1, Joël Ouaknine2, David Purser3

and James Worrell4

1Université de Lorraine, Inria, Loria, Nancy, France.
2Max Planck Institute for Software Systems, Saarland

Informatics Campus, Saarbrücken, Germany.
3University of Liverpool, Liverpool, UK.

4Department of Computer Science, University of Oxford,
Oxford, UK.

Abstract

We introduce the notion of porous invariants for multipath affine
loops over the integers. These are invariants definable in (fragments
of) Presburger arithmetic and, as such, lack certain tame geometrical
properties, such a convexity and connectedness. Nevertheless, we show
that in many cases such invariants can be automatically synthesised,
and moreover can be used to settle reachability questions for various
non-trivial classes of affine loops and target sets.

For the class of Z-linear invariants (those defined as conjunctions of linear
equations with integer coefficients), we show that a strongest such invari-
ant can be computed in polynomial time. For the more general class of
N-semi-linear invariants (those defined as Boolean combinations of linear
inequalities with integer coefficients), such a strongest invariant need not
exist. Here we show that for point targets the existence of a separating
invariant is undecidable in general. However we show that such sepa-
rating invariants can be computed either by restricting the number of
program variables or by restricting from multipath to single-path loops.
Additionally, we consider porous targets, represented as Z-semi-linear
sets (those defined as Boolean combinations of equations with integer
coefficients). We show that an invariant can be computed providing the
target spans the whole space.

We present our tool porous, which computes porous invariants.

1

2 Porous Invariants for Linear Systems

1 Introduction

We consider the reachability problem for multipath (or branching) affine loops
over the integers, or equivalently for nondeterministic integer linear dynami-
cal systems. A (deterministic) integer linear dynamical system consists of an
update matrix M ∈ Zd×d together with an initial point x(0) ∈ Zd. We asso-
ciate to such a system its infinite orbit (x(i))i∈N consisting of the sequence of
reachable points defined by the rule x(i+1) = Mx(i). The reachability question
then asks, given a target set Y , whether the orbit ever meets Y , i.e., whether
there exists some time i ∈ N such that x(i) ∈ Y . The nondeterministic reach-
ability question allows the linear update map to be chosen at each step from
a fixed finite collection of matrices.

When the orbit does eventually hit the target, one can easily sub-
stantiate this by exhibiting the relevant finite prefix. However, establishing
non-reachability is intrinsically more difficult, since the orbit consists of an
infinite sequence of points. Here one requires a finitary certificate, which must
be a relatively simple object that can be inspected and which provides a proof
that the set Y is indeed unreachable. Typically, such a certificate will consist
of an over-approximation I of the set R of reachable points, in such a manner
that one can check both that Y ∩ I = ∅ and R ⊆ I; such a set I is called an
invariant.

Formally we study the following problem for inductive invariants:

The Meta Problem. Consider a system defined by an initial vector x and a set
of updates, represented by matrices M1, . . . ,Mn. A set I is an inductive invariant
of this system if x(0) ∈ I and MiI ⊆ I for all i ∈ {1, . . . , n}. Given a target Y ,
determine whether there exists an inductive invariant I that separates the reachable
points of the system from Y , i.e., such that Y ∩ I = ∅.

The meta problem is parametrised by the type of invariants and targets
that are considered; that is, what are the classes of allowable invariant sets I
and target sets Y , or equivalently how are such sets allowed to be expressed?

Fixing particular invariant and target domains, a reachability query
encounters three possible scenarios: (1) the instance is reachable, (2) the
instance is unreachable and a separating invariant from the domain exists,
or (3) the instance is unreachable but no separating invariant exists. Ideally,
one would wish to provide a sufficiently expressive invariant domain so that
the latter case does not occur, whilst keeping the resulting invariants as sim-
ple as possible and computable. Unfortunately, it is known that distinguishing
reachability (1) from unreachability (2,3) is undecidable in general; and for
some invariant domains, within unreachable instances, determining whether a
separating invariant exists (i.e., distinguishing (2) from (3)) is undecidable.

We note that the existence of strongest inductive invariants is a desirable
property for an invariant domain. Given two invariants I and I ′, we say that
I is stronger than I ′ if and only if I ⊆ I ′; thus strongest invariants correspond

Porous Invariants for Linear Systems 3

to smallest invariant sets. When strongest invariants exist (and can be com-
puted), separating (2) from (1,3) is easy: compute the strongest invariant, and
check whether it excludes the target or not; if so, we are done, and if not, no
other invariant (from that class) can possibly work either. However, unless (3)
is excluded, computability of the strongest invariant does not necessarily imply
that reachability is decidable. Alas, strongest invariants are not always guar-
anteed to exist for a particular invariant domain, although some separating
inductive invariant may still exist for every target (or indeed may not).

In prior work from the literature, typical classes of invariants are usually
convex, or finite unions of convex sets. In this paper we consider certain classes
of invariants that can have infinitely many ‘holes’ (albeit in a structured and
regular way); we call such sets porous invariants. These invariants can be rep-
resented via Presburger arithmetic1. We shall work instead with the equivalent
formulation of semi-linear sets, generalising ultimately periodic sets to higher
dimensions, as finite unions of linear sets of the form (b+ p1N+ · · ·+ pmN) (by
which we mean {b+ a1p1 + · · ·+ ampm | a1, . . . , am ∈ N}, see Definition 3).

Let us first consider a motivating example:

Example 1 (Hofstadter’s MU Puzzle [1]). Consider the following term-rewriting puz-
zle over alphabet {M,U, I}. Start with the word MI, and by applying the following
grammar rules (where y and z stand for arbitrary words over our alphabet), we ask
whether the word MU can ever be reached.

yI → yIU | My →Myy | yIIIz → yUz | yUUz → yz

The answer is no. One way to establish this is to keep track of the number of
occurrences of the letter ‘I’ in the words that can be produced, and observe that
this number (call it x) will always be congruent to either 1 or 2 modulo 3. In other
words, it is not possible to reach the set {x | x ≡ 0 mod 3}. Indeed, Rules 2 and 3
are the only rules that affect the number of I’s, and can be described by the system
dynamics x 7→ 2x and x 7→ x − 3. Hence the MU Puzzle can be viewed as a one-
dimensional system with two affine updates,2 or a two-dimensional system with two
linear updates.3 The set (1 + 3Z) ∪ (2 + 3Z) is an inductive invariant4, and we wish
to automatically synthesise it.

The problem can be rephrased as a safety property of the following multipath
loop, verifying that the ‘bad’ state x = 0 is never reached, or equivalently that the
loop below can never halt, regardless of the nondeterministic choices made.
x := 1
while x ̸= 0

x := 2x || x := x−3 (where || represents nondeterministic branching)

1Presburger arithmetic is a decidable theory over the natural numbers, comprising Boolean
operations, first-order quantification, and addition (but not multiplication).

2One-dimensional affine updates are functions of the form f(x) = ax + b.

3

(
a b
0 1

)(
x
1

)
=

(
ax + b

1

)
models affine functions using a matrix representation, holding one of

the entries fixed to 1.
4The stability of this set under our two affine functions is easily checked: both components are

invariant under x 7→ x − 3, and (1 + 3Z) 7→ (2 + 6Z) ⊆ (2 + 3Z) under x 7→ 2x, and similarly
(2 + 3Z) 7→ (4 + 6Z) ⊆ (1 + 3Z).

4 Porous Invariants for Linear Systems

The MU Puzzle was presented as a challenge for algorithmic verification in [2];
the tools considered in that paper (and elsewhere, to the best of our knowledge) rely
upon the manual provision of an abstract invariant template. Our approach is to
find the invariant fully automatically (although one must still abstract from the MU
Puzzle the correct formulation as the program x 7→ 2x || x 7→ x− 3).

Our focus is on the automatic generation of porous invariants for multipath
affine loops over the integers, or equivalently nondeterministic integer linear
dynamical systems. When we consider affine loops as as linear dynamical sys-
tems they do not have loop guards as such. Rather we consider the loop guard
as the target of the reachability questions we consider.

• We first consider targets consisting of a single vector (or ‘point targets’),
and present the classes of invariants and systems for which invariants
can and cannot be automatically computed for the reachability question.
A summary of the results for linear and semi-linear invariants for these
targets is given in Table 1. For completeness we also consider R,R+-
(semi)-linear sets, where we enhance the picture from prior work by
showing that strongest R-semi-linear invariants are computable.
– We establish the existence of strongest Z-linear invariants, and
show that they can be found algorithmically in polynomial time
(Theorem 10).

– If a Z-linear invariant is not separating, we may instead look for an
N-semi-linear invariant (a class that generalises both Z-semi-linear
and N-linear invariants), and we show that such an invariant can
always be found for any unreachable point target when dealing with
deterministic integer linear dynamical systems (Theorem 19).

– However, for nondeterministic integer linear dynamical systems, com-
puting separating N-semi-linear invariants is an undecidable problem
in arbitrary dimension (Theorem 21). Nevertheless we show how such
invariants can be computed in a low-dimensional setting, in particular
for affine updates in one dimension (Theorem 22). As an immedi-
ate consequence, this establishes that the multipath loop associated
with the MU Puzzle belongs to a class of programs for which we can
automatically synthesise N-semi-linear invariants.

• We consider the reachability problem for porous targets. That is, where
the target is a linear or semi-linear set.
– For full-dimensional5 Z-linear targets we show that reachability is

decidable, and, in the case of unreachability that a Z-semi-linear
invariant can always be exhibited as a certificate (Theorem 37). If
the target is not full-dimensional then the reachability problem is
Skolem-hard and undecidable for deterministic and nondeterministic
systems respectively.

– Secondly, we also show that the reachability problem for low-
dimensional semi-linear sets is decidable for deterministic LDS

5The affine span covers the entire space.

Porous Invariants for Linear Systems 5

Dom D/N Linear Semi-linear (SL)
Z det Strongest computable (Thm. 10) No strongest (Sec. 4.2);

subsumed by N-SL
Z non Strongest computable (Thm. 10) No strongest (Sec. 4.2)
N det No strongest (Sec. 4.2); No strongest (Sec. 4.2),

subsumed by N-SL but sufficient computable (Thm. 19)
N non No strongest (Sec. 4.2) 1d-affine decidable (Thm. 22);

undec. in general (Thm. 21)
R det Strongest: affine relations by Karr [4] Strongest: affine closure on

Zariski closure (Thm. 8)
R non Strongest: affine relations by Karr [4] Strongest: affine closure on

Zariski closure (Thm. 8)
R+ det No strongest (Sec. 4.2); No strongest, but sufficient

subsumed by R+-SL computable [5]
R+ non No strongest (Sec. 4.2) Undecidable [5]

Table 1 Results for integer linear dynamical systems for a point target. Det/Non refers to
deterministic or nondeterministic LDS. “Subsumed by . . . ” means that sufficient invariants
can be generated, but of a more general type.

(Theorem 40). Note that the Skolem problem is decidable at low
orders, so it does not present a barrier in this setting.

• In Section 7 we present our tool porous which handles one-dimensional
affine systems for both point and Z-linear targets, solving both the reach-
ability problem and producing invariants. Inter alia, this allows one to
handle the multipath loop derived from the MU Puzzle in fully automated
manner.

The present paper extends and strengthens the results of [3]. Firstly, we
show that strongest Z-semi-linear invariants can be found in polynomial time,
whereas [3] merely established decidability. Secondly, we improve the results for
porous targets, and in particular consider low-dimensional semi-linear targets.
Finally, we present all proofs in full.

1.1 Related Work

The reachability problem (in arbitrary dimension) for loops with a single affine
update, or equivalently for deterministic linear dynamical systems, is decidable
in polynomial time for point targets (that is Y = {y}), as shown by Kan-
nan and Lipton [6]. However for nondeterministic systems (where the update
matrix is chosen nondeterministically from a finite set at each time step),
reachability was proven undecidable by reduction from the matrix semigroup
membership problem [7].

In particular this entails that for unreachable nondeterministic instances we
cannot hope to always be able to compute a separating invariant. In some cases
we may compute the strongest invariant (which may suffice if this invariant
happens to be separating for the given reachability query), or we may compute
an invariant in sub-cases for which reachability is decidable (for example in
low dimensions). For some classes of invariants, it is also undecidable whether
an invariant exists (e.g., invariants which are unions of polyhedra [5]).

6 Porous Invariants for Linear Systems

Various types of invariants have been studied for linear dynamical sys-
tems, including polyhedral [5, 8], algebraic [9], and o-minimal [10] invariants.
For certain classes of invariants (e.g., algebraic [9]), it is decidable whether
a separating invariant exists, notwithstanding the reachability problem being
undecidable. Other works (e.g., [11]) use heuristic approaches to generate
invariants, without aiming for any sort of completeness.

Kincaid, Breck, Cyphert and Reps [12] study loops with linear updates,
examining the closed forms for the variables to prove safety and termination
properties. Such closed forms, when expressible in certain arithmetic theories,
can be interpreted as another type of invariant and can be used to over-
approximate the reachable sets. The work is restricted to a single update
function (deterministic loops) and places additional constraints on the updates
to bring the closed forms into appropriate theories.

Bozga, Iosif and Konecný’s FLATA tool [13] considers affine functions in
arbitrary dimension. However, it is restricted to affine functions with finite
monoids; in our one-dimensional case this would correspond to limiting oneself
to counter-like functions of the form f(x) = x+ b.

Finkel, Göller and Haase [14], extending Fremont [15], show that reach-
ability in a single dimension is PSPACE-complete for polynomial update
functions (and allowing states which can be used to control the sequences of
updates that can be applied). The affine functions (and single-state restric-
tion) we consider are a special case, but we focus on producing invariants to
disprove reachability.

The reachability problem asks whether there exists a sequence of transitions
that reach a given condition. The termination problem asks whether a given
condition eventually holds along every possible sequence of transitions. Tools
such as AProVE [16] and Büchi Automizer [17] may (dis-)prove reachability
in the termination setting, i.e., on all branches, but are not suited to asking if
a condition can be reached on some branch (reachability). Restrictions on the
number of switches between the update function can also be considered; [18]
shows that reachability is decidable only for a small number of switches.

Inductive invariants specified in Presburger arithmetic have been used to
disprove reachability in vector addition systems [19]. A generalisation, the class
of ‘almost semi-linear sets’ [20], also features non-convexity and moreover can
capture exactly the reachable points of vector addition systems. Our nonde-
terministic linear dynamical systems can be seen as vector addition systems
over Z extended with affine updates (rather than only additive updates).

2 Preliminaries

We denote by Z the set of integers and N the set of non-negative integers. We
say that x, y ∈ Z are congruent modulo d ∈ N, denoted x ≡ y mod d, if d
divides x − y. Given an integer x and natural d we write (x mod d) for the
number y ∈ {0, . . . , d− 1} such that y ≡ x mod d.

Porous Invariants for Linear Systems 7

Definition 2 (Integer Linear Dynamical Systems) A d-dimensional integer linear

dynamical system (LDS) (x(0), {M1, . . . ,Mk}) is defined by an initial point x(0) ∈ Zd

and a set of integer matrices M1, . . . ,Mk ∈ Zd×d. An LDS is deterministic if it
comprises a single matrix (k = 1) and is otherwise nondeterministic.

A point y is reachable if there exists m ∈ N and B1, . . . , Bm such that
B1 · · ·Bmx(0) = y and Bi ∈ {M1, . . . ,Mk} for all 1 ≤ i ≤ m.

The reachability set O ⊆ Zd of an LDS is the set of reachable points.

The following definition is parameterised by a semiring K, which stands
either for N,Z,R or R+.

Definition 3 (K-semi-linear sets) A linear set L is defined by a base vector b ∈ Zd

and period vectors p1, . . . , pk ∈ Zd such that

L = {b+ a1p1 + · · ·+ akpk | a1, . . . , ak ∈ K} .
For convenience we often write (b+ p1K+ · · ·+ pkK) for L. A set is semi-linear if
it is a finite union of linear sets.

N-semi-linear sets are precisely those definable in Presburger arithmetic
(FO(Z,+,≤)) [21]. Likewise, Z-semi-linear sets are those definable in
FO(Z,+). We also consider their real counterparts, in which the coefficient
semiring is either R or R+. Note that regardless of the semiring K, the period
vectors pi all lie in Zd. We say a vector v ∈ Zd is an admissible direction of
a linear set L if adding any K-multiple of v to a point in L is also in L, in
particular L = (b+ p1K+ · · ·+ pkK) = (b+ p1K+ · · ·+ pkK+ vK).

An invariant is simply an overapproximation of the reachability set (O ⊆
I). Typically, we are interested in finding an invariant I that is disjoint from
a target, i.e., I ∩ Y = ∅, to show that the orbit O does not meet Y . We
moreover require that the property of being an invariant set be easy to verify.
The principal way to do this is to consider inductive invariants:

Definition 4 Given an integer linear dynamical system (x(0), {M1, . . . ,Mk}), a set
I is an inductive invariant if

• x(0) ∈ I, and

• {Mix | x ∈ I} ⊆ I for all i ∈ {1, . . . , k}.

We are interested in the following problem:

Definition 5 (Invariant Synthesis Problem) Given an invariant domain D, an inte-

ger linear dynamical system (x(0), {M1, . . . ,Mk}), and a target Y , does there exist
an inductive invariant I in D disjoint from Y ?

We foucs on classes D of inductive invariants that are linear, or semi-linear.
When a separating inductive invariant I exists, we also wish to compute it.

8 Porous Invariants for Linear Systems

Since (semi)-linear invariants are enumerable, the computation of invariants
can in theory be reduced to the question of their existence; however all of our
proofs are constructive.

We also consider the notion of strongest invariants, where a strongest invari-
ant is the smallest invariant set I in the prescribed domain that contains O.
Such invariants are compelling because they can be used to analyse reacha-
bility of any target set in the following sense—either the strongest invariant
is separating from the given target, or no invariant in the given domain is
separating. Note that strongest invariants do not always exist.

We only consider inductive invariants in the remainder of this paper, and
we note when the inductive invariant we compute is also a strongest invariant.

3 R Invariants: R-linear and R-semi-linear

Before delving into porous invariants, let us consider invariants over the real
numbers, i.e., R-(semi)-linear sets.

We observe that a strongest R-linear invariant is nothing but the affine
hull of the reachability set, which can be computed using Karr’s algorithm [4].
Furthermore we show that strongest R-semi-linear invariants also exist and can
be computed by combining techniques for computing algebraic invariants [9]
and R-linear invariants.

3.1 R-linear invariants

Recall that a set L is R-linear if L = (v0 + v1R+ · · ·+ vtR) for some
v0, . . . , vt ∈ Zd that can be assumed to be linearly independent6 without loss
of generality (and thus t ≤ d). Given two distinct points of L, every point on
the infinite line connecting them must also be in L. Generalising this idea to
higher dimensions, given a set S ⊆ Rd, let the affine hull be

Aff(S) =

{
k∑

i=1

λixi | k ∈ N, xi ∈ S, λi ∈ R,
k∑

i=1

λi = 1

}
.

We say the vectors v0, . . . , vm are Q-affinely independent if v1−v0, . . . , vm−v0
are Q-linearly independent.

Fix an LDS (x(0), {M1, . . . ,Mk}) and consider its reachability set O ={
Mim · · ·Mi1x

(0) | m ∈ N, i1, . . . , im ∈ {1, . . . , k}
}
. Then Aff(O) is precisely

the strongest R-linear invariant. Karr’s algorithm [4, 22] can be used to com-
pute this strongest invariant in polynomial time. The next lemma follows from
Theorem 3.1 of [22].

Lemma 6. Given an LDS (x(0), {M1, . . . ,Mk}) of dimension d, we can compute in
time polynomial in d, k, and logµ (where µ > 0 is an upper bound on the absolute

6v0, . . . , vm are Q-linearly independent if there does not exist a0, . . . , am ∈ Q, not all 0, such
that a0v0 + · · · + amvm = 0.

Porous Invariants for Linear Systems 9

values of the integers appearing in x(0) and M1, . . . ,Mk), a Q-affinely independent
set of integer vectors R0 ⊆ O such that:

1. x(0) ∈ R0,

2. the affine span of R0 and the affine span of O are the same (Aff(R0) = Aff(O)),

3. the entries of the vectors in R0 have absolute value at most µ0 := µ(dµ)d.

We highlight that Lemma 6 shows computability of the set R0 which is a
subset of the reachability set (in particular the elements are integer points).
This fact will prove useful later in our development of strongest Z-linear
invariants in Section 4.

Before proving Lemma 6, let us first state a small technical proposition on
the growth of matrix powers required in the proof.

Proposition 7. Let M be a d-dimensional square matrix and x be a vector. Let the
maximum entry of M,x have absolute value at most µ. Then the maximal absolute
value of an entry of Mkx is at most dkµk+1.

Proof Without loss of generality, assume that the matrix M and vector x consists
only of µ. We proceed by induction on k. The base case holds by the assumption
that entries of x have absolute value at most µ. The inductive case is as follows:µ . . . µ

. . .

µ . . . µ

dk−1µk

...

dk−1µk

 =

dµ(dk−1µk)

...

dµ(dk−1µk)

 =

dkµ(k+1)

...

dkµ(k+1)

□

Proof of Lemma 6 The result of [22, Theorem 3.1] proceeds by finding new points
in the reachability set and adding them to a set of points if the new point is linearly
independent from the other points of the set. Whilst the result of [22] refers to
linear independence, this can be converted to affine independence by increasing the
dimension by one.

The procedure works via a pruned version breadth-first search, with nodes only
expanded if their children are linearly independent from the current set. Hence, the
first point found in the tree is the initial point x(0), and therefore this point is
included. The maximum depth of the tree that needs to be explored is d, and so every
point included is reached with at most d applications of matrices to x(0). Hence, by
Proposition 7, if the largest absolute value of a point or matrix entry is µ, after d
iterations, the largest absolute value is µ(dµ)d.

The algorithm of [22] runs in polynomial time in the number of arithmetic
operations, and we observe that this is also polynomial time in the bit size. The inde-
pendence checking in the algorithm involves verifying linear independence of at most
d vectors all having bit size at most log(µ(dµ)d) = d log(d) + (d + 1) log(µ), which
can be done in polynomial time in the bit size (for example by the Bareiss algorithm
for calculating the determinant). □

10 Porous Invariants for Linear Systems

Let R0 =
{
x(0), r1, . . . , rd′

}
be obtained as per Lemma 6, with d′ ≤ d. The

R-linear invariant of the LDS is the affine span Aff(R0), which can be written
as the R-linear set L0 =

(
x(0) + (r1 − x(0))R+ · · ·+ (rd′ − x(0))R

)
.

3.2 R-semi-linear invariants

Let us now generalise this approach to R-semi-linear sets, an invari-
ant domain first introduced in [23]. The collection of R-semi-linear sets,{⋃m

i=1 Li | m ∈ N, L1, . . . , Lm are R-linear sets
}
, is closed under finite unions

and arbitrary intersections7. Thus for any given set X, the smallest R-semi-
linear set containing X is simply the intersection of all R-semi-linear sets
containing X. Let us denote by SLin(X) the smallest R-semi-linear set that
contains X. We are interested in computing SLin(O):

Theorem 8. The strongest R-semi-linear invariant SLin(O) of O is computable and
is inductive.

First, let us consider the richer class of algebraic sets. Algebraic sets are
those that are definable as finite unions and intersections of the zero sets of
polynomials. For example, {(x, y) | xy = 0} describes the union of the lines
x = 0 and y = 0. The (real) Zariski closure Zar(X) of a set X ⊆ Rd is the
smallest algebraic subset of Rd containing X. The Zariski closure of the set
of reachable points, Zar(O), can be computed algorithmically and yields an
inductive invariant [9].

An algebraic set A is irreducible if whenever A ⊆ B ∪ C, where B and C
are algebraic sets, then we have A ⊆ B or A ⊆ C. Any algebraic set can be
written effectively as a finite union of irreducible algebraic sets [24].

Proposition 9. Suppose Zar(X) = A1 ∪ · · · ∪ Ak, with Ai’s irreducible algebraic
sets. Then SLin(X) = Aff(A1) ∪ · · · ∪Aff(Ak).

Proof Since semi-linear sets are algebraic we have that X ⊆ Zar(X) ⊆ SLin(X) and
hence SLin(X) ⊆ SLin(Zar(X)) ⊆ SLin(SLin(X)) = SLin(X). We conclude that
SLin(X) = SLin(Zar(X)).

Now we have SLin(X) ⊆ Aff(A1) ∪ · · · ∪Aff(Ak) since the latter is a semi-linear
set that contains X. It remains to prove that Aff(A1)∪· · ·∪Aff(Ak) ⊆ SLin(X). For
this, write SLin(X) = L1 ∪ · · · ∪ Ls, with the Lj being linear sets. Since each Ai is
irreducible and each Lj is algebraic we have that for all i there exists j with Ai ⊆ Lj

and hence Aff(Ai) ⊆ Lj . This immediately yields the required inclusion. □

7When intersecting a linear set with a semi-linear set, either the latter does not change, or one
obtains a finite union of elements of smaller dimension. Thus, in an infinite intersection, only a
finite number of intersections affect the original set.

Porous Invariants for Linear Systems 11

From Proposition 9 we see that SLin(O) can be obtained by computing
Aff(Ai) for each set Ai arising from the decomposition Zar(O) = A1∪ · · ·∪Ak

of the Zariski closure of the orbit into irreducible components.8

Moreover, the set SLin(O) is inductive. Indeed, given a matrix M of the
LDS and i ≤ k, for all j, we define the consider set Aj

i = {x ∈ Ai |Mx ∈ Aj},
which is clearly algebraic. We have by inductiveness of Zar(O) that Ai =⋃

j A
j
i . As Ai is irreducible, one of those sets cannot be a proper subset of

Ai. Thus there exists j such that Ai = Aj
i and thus MAi ⊆ Aj . There-

fore M(SLin(Ai)) = MAff(Ai) = Aff(MAi) ⊆ Aff(Aj) ⊆ SLin(O), proving
inductiveness.

To complete the proof of Theorem 8 it remains to confirm that affine hulls
of algebraic sets can be computed algorithmically. Let us fix an algebraic set A,
and let W denote a set variable. Proceed as follows. Start with W ← {x} for
some point x ∈ A, and repeatedly make the assignment W ← Aff(W ∪ {y}),
where y ∈ A\W . Such a point y can always be found using quantifier elimina-
tion in the theory of the reals. Each step necessarily increases the dimension,
which can occur at most d times, ensuring termination, at which point one has
Aff(A) = W .

4 Strongest Z-linear Invariants

Recall that a Z-linear set (q + p1Z+ · · ·+ pnZ) is defined by a base vector q ∈
Zd and period vectors p1, . . . , pn ∈ Zd. Equivalently, a Z-linear set describes a
lattice, i.e., (p1Z+ · · ·+ pnZ), in d-dimensional space, translated to start from
q rather than 0⃗.

We start by showing that the strongest Z-linear invariant can be computed.

4.1 Computing the strongest Z-linear Invariants

Theorem 10. Given a d-dimensional dynamical system (x(0), {M1, . . . ,Mk}), the
strongest Z-linear inductive invariant containing the reachability set O exists and can
be computed algorithmically in time polynomial in d, k, and logµ (where µ > 0 is an

upper bound on the absolute values of the integers appearing in x(0) and M1, . . . ,Mk).

We claim that Algorithm 1 computes the requisite invariant according
to Theorem 10. Let us first establish some technical results before proving
termination and correctness of the algorithm.

The following proposition asserts that when two points are in a Z-linear
set, the direction between these two points can be applied from any point of
the set, and hence this direction can be included as a period without altering
the set.

8While it is convenient to rely on the results of [9], we believe that it is possible and would be
more computationally efficient to a give a direct computation of the semi-linear closure that does
not go via the Zariski closure.

12 Porous Invariants for Linear Systems

Algorithm 1 Strongest Z-linear invariant for LDS (x(0),M1, . . . ,Mk)

Input x(0),M1, . . . ,Mk

Compute R0 =
{
x(0), r1, . . . , rd′

}
⊆ O according to Lemma 6

L0 =
(
x(0) + (r1 − x(0))Z+ · · ·+ (rd′ − x(0))Z

)
Updated = True

While(Updated):

Updated = False

for each M ∈ {M1, . . . ,Mk}:
for each x ∈ Ri:

x′ = Mx
if x′ ̸∈ Li:

Ri+1 = Ri ∪ {x′}
Li+1 =

(
x(0) +

∑
r∈Ri+1

(r − x(0))Z
)

i = i+ 1
Updated = True

return Li

Proposition 11. Let L = (q + p1Z+ · · ·+ pnZ) be a Z-linear set. If x, y ∈ L then
for all z ∈ L and all a′ ∈ Z we have z + (y − x)a′ ∈ L. In particular, we have
L = (q + p1Z+ · · ·+ pnZ+ (y − x)Z).

Proof If x = q + a1p1 + · · · + anpn and y = q + b1p1 + · · · + bnpn then y − x =
q + b1p1 + · · ·+ bnpn − (q + a1p1 + · · ·+ anpn) = (b1 − a1)p1 + · · ·+ (bn − an)pn.

Then for any z = q+c1p1+· · ·+cnpn, we have z+a′(y−x) = q+c1p1+· · ·+cnpn+
a′((b1−a1)p1+· · ·+(bn−an)pn) = q+(c1+a′(b1−a1))p1+· · ·+(cn+a′(bn−an))pn)
where (ci + a′(bi − ai)) ∈ Z, so z + a′(y − x) ∈ L. □

As a sub-procedure, Algorithm 1 must efficiently decide whether a given
point lies in the current candidate invariant Li.

Proposition 12. Let x ∈ Zd and L =
(
x(0) + p1Z+ · · ·+ pnZ

)
. Suppose µ is an

upper bound for the largest absolute value appearing in x and the largest absolute
value appearing in all pi. Then deciding if x ∈ Li is in polynomial time in µ, n, d.

A d-dimensional lattice can always be defined by at most d period vectors.
However, our procedure may return a representation containing more than d
period vectors.

Example 13. Consider the lattice ((2, 2)Z+ (0, 6)Z+ (2, 6)Z), specified with three
vectors, which is equivalent to the lattice ((2, 0)Z+ (0, 2)Z). Note that one may

Porous Invariants for Linear Systems 13

not simply pick an independent subset of the periods, as none of the follow-
ing sets are equal: ((2, 2)Z+ (0, 6)Z), ((2, 2)Z+ (2, 6)Z), ((0, 6)Z+ (2, 6)Z), and
((2, 2)Z+ (0, 6)Z+ (2, 6)Z).

The Hermite normal form can be used to obtain a basis of the vectors
that define the lattice. Consider a lattice Li = (p1Z+ · · ·+ pdZ). The lattice
remains the same if pi is swapped with pj , if pi is replaced by −pi, or if pi is
replaced by pi + αpj where α is any fixed integer.9

The above are the unimodular operations. The Hermite normal form of a
matrix M is a matrix H such that M = UH, where U is a unimodular matrix
(formed by unimodular column operations) and H is lower triangular, non-
negative and each row has a unique maximum entry which is on the main
diagonal. Such a matrix H always exists and its columns form a basis of the
lattice spanned by the columns of M , because they differ up to unimodular
(lattice-preserving) operations. There are many texts on the subject; we refer
the reader to the lecture notes of Shmonin [25] for more detailed explanations.

The non-zero columns of a matrix in Hermite normal form constitute a basis
of the lattice generated by the columns of the original matrix. Hence a basis of
the lattice spanned by a collection of vectors can be obtained by computing the
Hermite normal form of the matrix formed by placing the vectors as columns.
The Hermite normal form can be computed in polynomial time [26], which we
now use to prove Proposition 12.

Proof of Proposition 12 It is equivalent to ask whether x−x(0) ∈ (p1Z+ · · ·+ pnZ).
Recall that we can place the lattice into Hermite normal form in polynomial time.
That is, determine d′ ≤ d, p1, . . . , pd′ such that p′1Z+ · · ·+ p′d′Z = p1Z+ · · ·+ pnZ.

As the lattice is in Hermite normal form, there exists a unique choice of

α1, . . . , αd′ such that
∑d′

i=1 αipi = x − x(0), which can be determined by Gaussian
elimination. Then we have x ∈ Li if and only if the choices of α1, . . . , αd′ are inte-
ger. □

We now prove the main theorem of this section:

Proof of Theorem 10 We claim that Algorithm 1 returns the strongest Z-linear
invariant I in polynomial time. Let us first explain the idea of the algorithm, which
proceeds in two phases:

• First compute a subset L0 ⊆ I of the invariant that has the same dimension
as I.

Recall the set R0 =
{
x(0), r1, . . . , rd′

}
⊆ O, with d′ ≤ d, from Lemma 6. The

resulting Z-linear set L0 =
(
x(0) + (r1 − x(0))Z+ · · ·+ (rd′ − x(0))Z

)
is then

a d′-dimensional porous subset of the d′-dimensional affine hull of the orbit
(L0 ⊆ Aff(O)). Applying M1, . . . ,Mk can only increase the density, but not

the dimension. As each ri and x(0) are in O, by Proposition 11 we can assume
that each of the directions (ri − x(0)) must be represented in any Z-linear set
containing O, and we therefore have that L0 ⊆ I.

9The last replacement is valid, since if x = y + βpi ∈ L then x = y + β(pi + αpj) − βαpj is in
the new lattice.

14 Porous Invariants for Linear Systems

• In the second phase, we ‘fill in’ the lattice as required to cover the whole of O.
We compute a growing sequence L0 ⊊ L1 ⊊ · · · ⊊ Lm−1 = Lm = I, where at
each step the algorithm merely increases the density of the attendant sets in
order to ‘fill in’ missing points of the invariant.

To do this we repeatedly find new points which are not yet covered by Li.
Supposing we find x′ ∈ O \ I, we then use Proposition 11 to argue that we can

add the vector x′ − x(0).

Claim 14 (Termination). Algorithm 1 terminates.

Proof of claim: The vectors p1 = (r1 − x(0)), . . . , pd′ = (rd′ − x(0)) form a paral-
lelepiped (hyper-parallelogram) that repeats regularly. There are a finite number of
integral points inside this parallelepiped. If new points are added in some step, they
are added to every parallelepiped. Thus we can add new points finitely many times
before saturating or Li becomes fixed. ■

Claim 15 (I is an inductive invariant). Let M ∈ {M1, . . . ,Mk} and let x ∈ I. Then
Mx ∈ I.

Proof of claim: It is clear that x(0) ∈ I as x(0) ∈ R0.
Let R = {r0, . . . , rm} be as in the last iteration of the algorithm, with r0 =

x(0) ∈ R, and so I =
(
r0 +

∑m
i=1(ri − r0)Z

)
.

Given a vector y ∈ Zd, we denote by

(
y
1

)
the vector in Zd+1 formed by y in the

first d dimensions and 1 in the final dimension. We first show that for any y ∈ Zd:

y ∈ I ⇐⇒
(
y
1

)
∈
∑
r∈R

(
r
1

)
Z. (1)

Let y =
(
r0 +

∑m
i=1(ri − r0)ai

)
∈ I, then y =

(
r0(1−

∑
ri
ai) +

∑m
i=1 riai

)
. Then

we have

(
y
1

)
=

(
r0
1

)
(1 −

∑
ri
ai) +

∑m
i=1

(
ri
1

)
ai ∈

∑
r∈R

(
r
1

)
Z. Conversely, let(

y
1

)
∈
∑m

i=0

(
ri
1

)
ai, since

∑m
i=0 ai = 1 then a0 = 1−

∑m
i=1 ai and we have

(
y
1

)
=(

r0
1

)
+
∑m

i=1

((
ri
1

)
−
(
r0
1

))
ai, thus in particular, y = r0 +

∑m
i=1(ri − r0)ai ∈ I.

By termination of the algorithm we have Mri ∈ I for all ri ∈ R (otherwise

Algorithm 1 would add Mri to R) and thus

(
Mri
1

)
∈
∑

rj∈R

(
rj
1

)
Z for all ri ∈ R.

Let a0,i, . . . , an,i ∈ Z be such that

(
Mri
1

)
=
∑

rj∈R

(
rj
1

)
aj,i.

By x ∈ I and Eq. (1) we have

(
x
1

)
=
∑

ri∈R

(
ri
1

)
bi for some b0, . . . , bn ∈ Z.

Porous Invariants for Linear Systems 15

Let us now establish that Mx ∈ I. We have

(
Mx
1

)
=
∑

ri∈R

(
Mri
1

)
bi. There-

fore we have

(
Mx
1

)
=
∑

ri∈R

∑
rj∈R

(
rj
1

)
aj,ibi. Thus

(
Mx
1

)
∈
∑

ri∈R

(
ri
1

)
Z,

entailing Mx ∈ I (again by Eq. (1)). ■

Claim 16 (I is the strongest invariant). For every invariant J , we have I ⊆ J .

Proof of claim: By induction, let us prove that every invariant J must contain Li.
Clearly this is the case for L0 because all points of R0 ⊆ O must be in J and every
period vector in L0 can be present, without loss of generality, thanks to Proposi-
tion 11. Assume Li ⊆ J . Then it must be the case that J contains every Mj(x) for
x ∈ Li, as otherwise it would not be an invariant. It therefore follows that J must
contain Li+1, since the latter is the minimal Z-linear set containing Li and Mj(x)
for some j ≤ k. Finally, since I is itself one of the Li’s, we have I ⊆ J as required. ■

Claim 17 (Polynomial time). The algorithm runs in polynomial time in d, k and
log(µ).

Proof of claim:
Let x ∈ Zd. We denote by ∥x∥∞ the largest absolute value of an entry of x, and

by ∥x∥2 the Euclidean norm of the vector.
Recall the parallelepiped from the claim of termination. The volume of the paral-

lelepiped is bounded above by ∥p1∥2 · · · ∥pd′∥2. The volume of the parallelepiped must
at least halve at every step in which a vector is added to the invariant; a new vector
either leaves the parallelepiped unchanged, or partitions it into at least two pieces, in
which case, one of the two pieces has volume at most half of the original. The volume
at step t is therefore volt ≤ ∥p1∥2 · · · ∥pd′∥2 /2

t. The procedure must saturate at, or
before, the volume becomes 1, which occurs after at most log(∥p1∥2 · · · ∥pd′∥2) steps.

Using Lemma 6 we obtain that each ri ∈ R0 is the result of at most d matrix
multiplication operations; thus using Proposition 7 we have ∥ri∥∞ ≤ ddµd+1. Using

the triangle inequality, we have pi = ri−x(0) we have ∥pi∥∞ ≤ ddµd+1+µ ≤ (dµ)d+1

(for d ≥ 2).
Using ∥pi∥2 ≤

√
d ∥pi∥∞, we obtain ∥pi∥2 ≤

√
d(dµ)d+1. Taking liberal sim-

plifications we obtain ∥pi∥2 ≤ (dµ)2d. Hence ∥p1∥2 · · · ∥pd′∥2 ≤ ((dµ)2d)d. Hence

the number of update steps where a vector is added is at most log((dµ)2d
2

) =
(2d2) log(dµ).

Since the number of vectors is at most (2d2) log(dµ), the number of steps between
adding a vector is at most k(2d2) log(dµ) (a new vector is added at least once across
all iterations in the inner for loops, otherwise the procedure terminates). Hence, the
total number of steps (counting a matrix multiplication, and verifying x ∈ Li as a
single step) is at most O(k((2d2) log(dµ))2).

It remains to verify that the bit size of the vectors is polynomial. This will imply
that the running time of the matrix multiplications is polynomial as well.

16 Porous Invariants for Linear Systems

Let (Ri) be the increasing sequence of sets built in Algorithm 1. As there are at
most (2d2) log(dµ) vectors added in those sets and at least one vector is added at
each step, this sequence becomes stationary after at most (2d2) log(dµ) steps. Given
i ≤ (2d2) log(dµ), we have that each vector x′ ∈ Ri is the result of Mℓx for some
x ∈ Ri−1 and ℓ ∈ {1, . . . , k}. Hence, each element x ∈ Ri is the result of at most i
matrix multiplications. By Proposition 7, after v matrix applications, the size of the

number is at most dvµv+1. Hence ∥x∥∞ ≤ µ(dµ)(2d
2) log(dµ), thus the bit size of such

numbers are at most (2d2) log2(dµ)+ log(µ), which is polynomial in d and log(µ). ■

Claims 14 to 17 conclude that Algorithm 1 computes the strongest inductive invariant
I, terminating in polynomial time, as required. □

Remark 18. Considering again the MU puzzle, we note that both 1 and 2 are in
the reachability set, hence (1 + 1Z) = Z is the strongest Z-linear invariant. Thus the
class of Z-linear sets is not useful for certifying non-reachability in this case.

4.2 Extensions of Z-linear sets without strongest
invariants

In this section we show that several generalisations of the class of Z-linear sets
fail to admit strongest invariants.

Z-semi-linear sets are unions of Z-linear sets, and therefore all finite sets
are Z-semi-linear. Consider the deterministic dynamical system starting from
point 1 and doubling at each stepM = (1, (x 7→ 2x)). This system has reach-
ability set O =

{
2k | k ∈ N

}
. For this LDS we can construct the invariant{

2, 4, 8, ..., 2k
}
∪
{
2k+1p1 | p1 ∈ Z

}
for each k. For any proposed strongest Z-

semi-linear invariant, one can find a k for which the corresponding invariant
is strictly smaller.

N-linear sets generalise Z-linear sets (observe that Z-linear sets are a
proper subclass, since (x+ piZ) can be expressed as (x+ (−pi)N+ piN), but
(x+ piN) is clearly not Z-linear). Consider the LDS ((x1, x2), (0 1

1 0)), with a
reachability set consisting of just two points x = (x1, x2) and y = (x2, x1).
There are two incomparable candidates for the minimal N-linear invariant:
(x+ (y − x)N) and (y + (x− y)N). Similarly for R+-linear invariants, the sets
(y + (x− y)R+) and (x+ (y − x)R+) are incomparable half-lines.

5 N-semi-linear Invariants

We turn now to N-semi-linear invariants, the most general class of invari-
ants that we consider. N-semi-linear invariants gain expressivity thanks to the
‘directions’ provided by the period vectors. For example, the only possible Z-
semi-linear invariant for the LDS (0, (x 7→ x + 1)) is Z, yet the reachability
set, namely N, is N-linear.

In Section 5.1 we show that a separating N-semi-linear inductive invariant
can always be found for unreachable instances of deterministic integer LDS,

Porous Invariants for Linear Systems 17

although the computed invariant will depend on the target (strongest invari-
ants do not always exist here). However, in Section 5.2 we show that finding
invariants is undecidable for nondeterministic systems, at least in high dimen-
sion. Nevertheless, we show in Section 5.3 decidability for the low-dimensional
setting of the MU Puzzle—one dimension with affine updates.

5.1 Existence of sufficient (but non-minimal)
N-semi-linear invariants for point reachability in
deterministic LDS

Kannan and Lipton showed decidability of reachability of a point target for
deterministic LDS [6]. In this subsection, we establish the following result to
provide a separating invariant in unreachable instances.

Theorem 19. Given a deterministic LDS (x(0),M) together with a point target y,
if the target is unreachable then a separating N-semi-linear inductive invariant can
be provided effectively.

To do so, we will invoke the results from [5] to compute an R+-semi-linear
inductive invariant, and then extract from it an N-semi-linear inductive invari-
ant. More precisely, the authors of [5] show how to build polytopic inductive
invariants for certain deterministic LDS. Such polytopes are either bounded
or are R+-semi-linear sets. In the first case, the polytope contains only finitely
many integral points, which can directly be represented via an N-semi-linear
set. In the second case, we build an N-semi-linear set containing exactly the
set of integral points included in the R+-semi-linear invariant, thanks to the
following lemma.

Lemma 20. Given an R+-linear set S =
(
x+

∑
i piR+

)
, where the vectors pi have

rational coefficients and x is an integer vector, one can build an N-semi-linear set N
comprising precisely all of the integral points of S.

Proof Let S =
(
x+

∑
i piR+

)
be a R+-linear set where the vectors pi have rational

coefficients and x is an integer vector. Let k ∈ N be an integer so that the vectors kpi
have integer coefficients. We denote by vj the integer vectors of the form

∑
i µikpi

where 0 ≤ µi ≤ 1. Then the set T =
(
x+

∑
j vjN

)
contains exactly the integer

vectors contained in S.
Indeed, first T only contains integer vectors since both x and the vectors vj are

integer vectors. Secondly, all the vectors in T are included in S as the period vectors
of T lie in the cone defined by the vectors of S. Finally, given an integer vector y in
S, y can be rewritten as y = x+ v+

∑
i mikpi where for all i,mi ∈ N and v is of the

form
∑

i µikpi with 0 ≤ µi ≤ 1 Therefore there exists j such that vj = v and as for
all i, kpi is a period vector of T , y ∈ T . □

18 Porous Invariants for Linear Systems

Proof of Theorem 19 We note that every inductive invariant produced in [5] has
rational period vectors, as the vectors are given by the difference of successive points
in the orbit of the system, and thus Lemma 20 can be applied. This produces an
inductive invariant as their invariant is inductive, the LDS only reaches integer vec-
tors and the invariant produced through Lemma 20 contains all the integer points
appearing within their invariant.

The authors of [5] build an inductive invariant in all cases except those for which
every eigenvalue of the matrix governing the evolution of the LDS is either 0 or of
absolute value 1 and at least one of the latter is not a root of unity. This situation
however cannot occur in our setting. Indeed, the eigenvalues of an integer matrix are
algebraic integers, and an old result of Kronecker [27] asserts that unless all of the
eigenvalues are roots of unity, one of them must have absolute value strictly greater
than 1 (the case in which all eigenvalues are 0 being of course trivial). □

5.2 Undecidability of N-semi-linear invariants for
nondeterministic LDS

If the enhanced expressivity of N-semi-linear sets allows us to always find an
invariant for deterministic LDS, it contributes in turn to making the invariant-
synthesis problem undecidable when the LDS is not deterministic.

We establish this through a reduction from the infinite Post correspon-
dence problem (ω-PCP), which can be defined in the following way: given m
pairs of non-empty words {(u1, v1), . . . , (um, vm)} over a binary alphabet, does
there exist an infinite word w = w1w2 . . . over alphabet {1, . . . ,m} such that
uw1uw2 . . . = vw1vw2 This problem is known to be undecidable when m is
at least 8 [28, 29].

Theorem 21. The invariant synthesis problem for N-semi-linear sets and linear
dynamical systems with 13 matrices of dimension 7, or two matrices of dimension
91, is undecidable.

Proof This proof follows in part the structure of the argument showing the unde-
cidability of the invariant synthesis problem for R+-semi-linear invariants presented
in [5]. Some non-trivial changes and new ideas have to be added here due to the
restriction to integer values.

We will transform an instance of ω-PCP with m tiles to an instance of the
invariant synthesis problem for m+5 matrices of size 7. This can then be converted
in routine fashion to an instance of two matrices of size 7m + 35 (see Theorem 9
of [5] for instance).

The main idea of this proof is to encode a pair of words on alphabet {1, 2}
corresponding to each sequence of tiles as an integer in base 4. An important property
of our encoding is that the operation of appending a new tile to an existing pair of
words can be achieved by matrix multiplication.

Recall that if the instance of ω-PCP is negative, then every generated pair of
words will differ at some point. Our reduction is such that a difference of letters
creates a difference in their numerical encodings that can be identified through an
N-semi-linear invariant. Conversely, when the ω-PCP instance has a positive answer,

Porous Invariants for Linear Systems 19

there can be no N-semi-linear invariant.

Short simplifying lemma

In order to simplify the main part of the proof, let us first show that one can enforce
an order between the matrices using affine transformations on one dimension. Let
us denote by p this dimension; it is initially equal to 1 and its target value is 0. Con-
sider the three following affine transformations: f1(p) = 2p − 1, f2(p) = 2p − 2 and
f3(p) = 2p. The only sequences of transformations allowing to reach the target are of
the form f∗3 f2f

∗
1 . Indeed, let I = {p | p ≥ 2∨ p ≤ −1}, we have (1) if p ∈ I, then for

all i ∈ {1, 2, 3}, fi(p) ∈ I, (2) f1(1) = 1 and f1(0) ∈ I, (3) f2(1) = 0 and f2(0) ∈ I
and (4) f3(1) ∈ I and f3(0) = 0. As a consequence, the inductive invariant I ensures
that any sequence of transformations that do not have the desired order cannot
reach the target. In the following, we will call type 1, 2 or 3 the transformations we
define, depending on whether they implicitly contain the function f1, f2 or f3.

Description of the reduction

We reduce an instance {(u1, v1), . . . , (um, vm)} of the ω-PCP problem over binary
alphabet {1, 2} to the invariant synthesis problem. Given a finite or infinite word w,
we denote by |w| the length of the word w and given an integer i ≤ |w|, we write wi for
the i-th letter of w. Given a finite or infinite word w on alphabet {1, . . . ,m} we denote
by uw and vw the words on alphabet {1, 2} such that uw = uw1uw2 . . . and vw =

vw1vw2 Given a finite word w on alphabet {1, 2}, denote by [w] =
∑|w|

i=1 wi4
|w|−i

the quaternary encoding of w. It is clear that it satisfies [ww′] = 4|w
′|[w] + [w′]. For

all i ≤ m, we denote by ni = 4|u
i|, mi = 4|v

i| and maxi = max(ni,mi).
We work with five dimensions, (s, c, d, n, k), and define the following transforma-

tions:

• For i ≤ m, the type 1 transformation Simulatei on (s, c, d, n, k) encodes the
action of reading the pair (ui, vi) and increases the counters n and k: it simul-
taneously applies s ← maxis + c[ui]maxi

ni
− d[vi]maxi

mi
, c ← maxi

ni
c, d ← maxi

mi
d,

n← n+ k and k ← k + 1.

• The type 2 transformation Transfer on (s, c, d, n, k) gathers some of the values
in order to compare them and resets d: s← s−c−d, c← −s−c−d and d← 0.

• The type 3 transformation Incs increments s: s← s+ 1.

• The type 3 transformation Incc increments c: c← c+ 1.

• The type 3 transformation Dec decreases k and n: n← n− k, k ← k − 1.

• The type 3 transformation Deck decrements k: k ← k − 1.

These m+ 5 transformations operate over seven dimensions in total: the five above
(namely (s, c, d, n, k)), one (namely p) for ordering the transformations, and one last
dimension constantly equal to 1, required to implement affine transformations.

We will show that there is a solution to the given instance of the ω-PCP problem
iff there does not exist an N-semi-linear invariant for the system with initial point
x = (0, 1, 1, 0, 0, 1, 1), target y = (0, 0, 0, 1, 0, 0, 1), and using the matrices inducing
the transformations defined above.

20 Porous Invariants for Linear Systems

Evolution of the system

Let w = w1 . . . wj be a finite word over {1, . . . ,m}∗. Consider
(s, c, d, n, k, p, a) = Simulatewx where Simulatew represents the transformation
Simulatewj . . .Simulatew2Simulatew1 . We have

• s = c[uw]− d[vw],

• n =
j(j−1)

2 and k = j,

• p = a = 1.

Indeed, let us prove the first item (the only non-trivial one) by induction on the length
of w. If |w| = 0, then [uw] = [vw] = 0 which is compatible as the first component of x
is 0. Otherwise, w is of the form zi with i ∈ {1, . . . ,m}. By the induction hypothesis,
denoting (s, c, d, n, k, p, a) = Simulatewx and (s′, c′, d′, n′, k′, p′, a′) = Simulatezx, we
have that s′ = c′[uz] − d′[vz]. Applying Simulatei, we obtain that s = maxis

′ +
c′[ui]maxi

ni
− d′[vi]maxi

ni
, c = maxi

ni
c′ and d = maxi

mi
d′. Thus

s =maxi(c
′[uz]− d′[vz]) + c′[ui]

maxi
ni
− d′[vi]

maxi
mi

=c′(maxi[u
z] + [ui]

maxi
ni

)− d′(maxi[v
z] + [vi]

maxi
mi

)

=c(ni[u
z] + [ui])− d(mi[v

z] + [vi])

=c[uw]− d[vw]

which concludes the induction.

Only if case: ω-PCP solution implies no invariant

Assume that there is a solution w to the ω-PCP instance. Consider the sequence of
points (xn) obtained as follows: for all j ∈ N, denoting w≤j the prefix of w of length
j, xj = (sj , cj , 0, nj , kj , 0, 1) = Transfer Simulatew≤jx.

Let (s, c, d) be the three first components of Simulatew≤jx. Assuming without
loss of generality that |uw≤j | ≤ |vw≤j | we have that

|s| = |c[uw≤j]− d[vw≤j]|

=

|uw≤j |∑
i=1

|uw≤j

i − v
w≤j

i |c4|u
w≤j |−i +

|vw≤j |∑
i=|uw≤j |+1

v
w≤j

i c4|u
w≤j |−i

=

|vw≤j |∑
i=|uw≤j |+1

v
w≤j

i c4|u
w≤j |−i

< c .

The first equality was proven in the previous paragraph. The second equality is
obtained by grouping the terms corresponding to the same power of 4 and noting

that, by construction, c4|u
w≤j | = d4|v

w≤j |. The third equality comes from the fact
that w≤j is a prefix of a solution to the ω-PCP instance and thus that letters on the
same level are the same. Finally, the last inequality is obtained by bounding every
v
w≤j

i by 2 and extending the sum to infinity.
From this inequality, we immediately have that |s| − c− d is negative, and thus

both sj = s− c− d and cj = −s− c− d are negative.

Porous Invariants for Linear Systems 21

Due to the above, by applying to the points xj a number of times the trans-
formations Incs and Incc, we obtain the sequence of points (yj)j∈N where yj =
(0, 0, 0, nj , kj , 0, 1). We claim that any semi-linear invariant containing all the points
yj also contains a point of the form (0, 0, 0, nj + d, kj , 0, 1), where d is a positive
integer. This will imply the result as from such a point, one can reach the target by
d−1 applications of Deck and kj applications of Dec and thus there is no semi-linear
invariant of the system that does not intersect the target.

Let us now prove the above claim. Let I be a semi-linear set containing every
vector yj (which we will see as two-dimensional objects by projecting on the 4th
and 5th dimension). Then there exists a linear set I′ ⊆ I that contains infinitely
many vectors of (yj)j∈N. This set I′ is defined by an initial vector, and a set of
period vectors. As I′ contains infinitely many vectors of (yj)j∈N where the ratios
between the first and second component is increasing, one of the period vectors is of
the form (d, 0) where d is a strictly positive integer. Let j be such that yj ∈ I′, then
(nj + d, kj) ∈ I′ which implies the claim.

As a consequence, every inductive N-semi-linear invariant of the LDS intersects
with the target.

If case: no ω-PCP solution implies an invariant

Assume that there is no solution to the ω-PCP instance. There exists n0 ∈ N such
that for every infinite word w on alphabet {0, . . . ,m} there exists n ≤ n0 such that
uwn ̸= vwn . Indeed, consider the tree whose root is labelled by (ε, ε) and, given a node
(u, v) of the tree, if for all n ≤ min(|u| , |v|) we have un = vn, then this node has
m children: the nodes (uui, vvi) for i ∈ {1, . . . ,m}. This tree is finitely branching
and does not contain any infinite path (which would induce a solution to the ω-PCP
instance). Thus, according to König’s lemma, it is finite. We can therefore choose
the height of this tree as our n0.

We define the invariant I = I1 ∪ I2 ∪ I3 where

I1 =
{
Simulatew(x) | w ∈ {1, . . . ,m}∗ ∧ |w| ≤ n0 + 1

}
,

I2 =
{
z = (s, c, 0, n, k, 0, 1) | z = (Incs)

∗(Incc)
∗(Dec)∗(Deck)

∗Transfer Simulatew(x)

∧ w ∈ {1, . . . ,m}∗ ∧ |w| ≤ n0 + 1 ∧ s, t, n, k ∈ N
}

and

I3 =
{
(s, c, d, n, k, p, 1) | (|s| − c− d ≥ 1 ∧ c ≥ 0 ∧ d ≥ 0 ∧ p = 1)

∨ ((s ≥ 1 ∨ c ≥ 1 ∨ n ≤ −1 ∨ k ≤ −1) ∧ p = 0) ∨ p ≤ −1 ∨ p ≥ 2}.
}

By definition, I is an N-semi-linear set, contains x and does not contain y. The
difficulty is to show stability under the transformations.

⋄ Let z = Simulatew(x) ∈ I1, for some w ∈ {1, . . . ,m}∗ with |w| ≤ n0 + 1. By
ordering if we apply a transformation outside Transfer or a Simulatei for some i,
we reach I3.
• For i ∈ {1, . . . ,m}, if |w| ≤ n0, then Simulateiz ∈ I1.

Else, Simulateiz = Simulatewix = (s, c, d, n, k, p, 1) with |w| = n0 + 1. But
then, there exists n1 ⩽ n0 such that uwi

n1
̸= vwi

n1
. Let n2 be the smallest such

number, then assume without loss of generality that c ≥ d, we have

s = c[uwi]− d[vwi]

22 Porous Invariants for Linear Systems

= (uwi
n2
− vwi

n2
)c4|u

wi|−n2 +

max(|uwi|,|vwi|)∑
j=n2+1

(uwi
j − vwi

j)c4|u
wi|−j

since uwi
j = vwi

j for j < n2. Thus,

|s| ⩾ c4|u
wi|−n2 − 2c

3
4|u

wi|−n2 since |uwi
n2
− vwi

n2
| = 1

and for n ≥ n2, |uwi
n − vwi

n | ≤ 2

⩾
1

3
c4|u

wi|−n2

⩾ 2c+ 1 since n2 ⩽ n0 and |uwi| ⩾ n0 + 2.

As c ≥ d, this shows that Simulateiz ∈ I3.
• Transferz ∈ I2.

⋄ Let z ∈ I2 and f be one of the transformations, then f(z) ∈ I2 if f increased
(resp. decreased) a negative (resp. positive) component. Otherwise f(z) ∈ I3.

⋄ Let z = (s, c, d, n, k, p, 1) ∈ I3, f be one of the transformations and f(z) =
(s′, c′, d′, n′, k′, p′, 1).

• if p = 0, then either p′ ≤ −1 and f(z) ∈ I3 or z satisfies (s ≥ 1 ∨ c ≥ 1 ∨ n ≤
−1 ∨ k ≤ −1) and then f(z) satisfies (s′ ≥ 1 ∨ c′ ≥ 1 ∨ n′ ≤ −1 ∨ k′ ≤ −1),
thus f(z) ∈ I3.

• if p = 1, then |s| − c− d ≥ 1, c ≥ 0 and d ≥ 0. There are three possibilities (1)
p′ = 2 and thus f(z) ∈ I3, (2) f = Transfer then p′ = 0 and either s′ ≥ 1 or
c′ ≥ 1 and thus f(z) ∈ I3 or (3) f = Simulatei for i ≤ m. In the latter case
without loss of generality, assume that d′ ⩾ c′. We have that∣∣s′∣∣ = |maxis+ c′[ui]− d′[vi]| by applying Simulatei

⩾ maxi|s| − d′ max([ui], [vi])

⩾ maxi(c+ d+ 1)− d′ max([ui], [vi]) by assumption on |s|

⩾ maxi(c+ d+ 1)− 2
3dmaxi since [ui] ∈ [0, 2ni

3]

= maxi(c+ d/3) +maxi

⩾ c′ + d′ + 1

since maxic ≥ c′, maxid/3 ≥ d′ (as mi ≥ 4) and maxi ⩾ 4. This shows that
f(z) ∈ I3.

Therefore I is inductive and thus a N-semi-linear invariant of the system. This con-
cludes the reduction. □

5.3 Nondeterministic one-dimensional affine updates

The previous section shows that point reachability for nondeterministic LDS is
undecidable once there are sufficiently many dimensions, motivating an analy-
sis at lower dimensions. The MU Puzzle requires a single dimension with affine
updates (or equivalently two dimensions in matrix representation, with the
coordinate along the second dimension kept constant). We consider this one-
dimensional affine-update case, and therefore, rather than taking matrices as
input, we directly work with affine functions of the form fi(x) = aix+ bi.

Porous Invariants for Linear Systems 23

Theorem 22. Given x(0), y ∈ Z, along with a finite set of functions {f1, . . . , fk}
where fi(x) = aix+ bi, ai, bi ∈ Z for 1 ≤ i ≤ k, it is decidable whether y is reachable

from x(0). Moreover, when y is unreachable, an N-semi-linear separating inductive
invariant can be algorithmically computed in pseudo-polynomial time.

We note that decidability of reachability is already known [14, 15]. We
refine this result by exhibiting an inductive invariant which can be used to
certify non-reachability. In fact our procedure will produce an N-semi-linear
set which can be used to decide reachability, and which, in instances of non-
reachability, will be a separating inductive invariant. We have implemented
this algorithm into our tool porous, enabling us to efficiently tackle the MU
Puzzle as well as its generalisation to arbitrary collections of one-dimensional
affine functions. We report on our experiments in Section 7.

We build a case distinction depending on the type of functions that appear:

Definition 23 Consider an affine function f(x) = ax+ b. We say:

• f is redundant if f(x) = b, (including possibly b = 0), or if f(x) = x.

• f is a counter if f(x) = x+b, b ̸= 0. Two counters f(x) = x+b and g(x) = x+c
are opposing if bc < 0. Otherwise they are called codirectional.

• f is growing if f(x) = ax+b and |a| ≥ 2. We say a growing function is inverting
if a ≤ −2.

• f is pure inverting if f(x) = −x+ b (including possibly b = 0).

5.3.1 Simplifying assumptions

Lemma 24. We can reduce the computation of an invariant for a system having
redundant functions to finitely many invariant computations for systems having no
such functions.

Proof Clearly the identity function has no impact on the reachability set, and so can
be removed outright. For any other redundant function, its impact on the reachability
set does not depend on when the function is used, and we may therefore assume that
it was used in the first step, or equivalently, using an alternative starting point. Hence
the invariant-computation problem can be reduced to finitely many instances of the
problem over different starting points, with redundant functions removed. Finally,
taking the union of the resulting invariants yields an invariant for the original system.

□

Lemma 25. Without loss of generality, x(0) ≥ 0.

Proof Suppose x(0) < 0, we construct a new system, where each transition f(x) =

ax+ b is replaced by f(x) = ax− b. Then x(0) reaches y in the original system if and

24 Porous Invariants for Linear Systems

only if −x(0) reaches −y in the new system. To see this, observe that if f(x) = ax+b,
then f(−x) = −ax− b = −f(x). □

Lemma 26. Suppose there are at least two distinct pure inverting functions (and pos-
sibly other types of functions). Then without loss of generality there are two opposing
counters.

Proof Consider f(x) = −x+ b, and g(x) = −x+ c. Then f(g(x)) = −(−x+ c) + b =
x+ b− c and g(f(x)) = −(−x+ b) + c = x+ c− b. Since b− c = −(c− b) and b ̸= c
(as f ̸= g) these two functions are opposing. □

5.3.2 Two opposing counters

Let us first observe that when there are two opposing counters, we can
essentially move in either direction by some fixed amount. This will entail
that only Z-(semi)-linear invariants need be produced, rather than proper
N-(semi)-linear invariants.

Lemma 27. Suppose there are two opposing counters, f(x) = x+b, and g(x) = x−c.
Then for any reachable x we have (x+ dZ) ⊆ I for d = gcd(b, c).

Lemma 28. For ℓ, k coprime, the sequence an = (nℓ mod k) for n ∈ N cycles
through every residue class {0, . . . , k − 1}.

Proof Any path longer than k visits some class twice, and if the shortest cycle is k,
then it visits every class.

Suppose there is a cycle of length less than k; then nℓ = c+mk and (n+ i)ℓ =
c+m′k and hence iℓ = (m′−m)k, with i < k. Since ℓ is an integer i divides (m′−m)k

then i = pr for p, r ∈ N such that m′−m
p is integer and k

r is integer. Observe that

since r ≤ i < k we have k
r > 1. But this implies that k

r divides k and ℓ, contradicting
gcd(k, ℓ) = 1. □

Proof of Lemma 27 Let b = kd, c = ℓd, where k, ℓ are co-prime.
We show there exists m,n ≥ 0 such that mb−cn = d. We have mb−cn = d ⇐⇒

mkd − nℓd = d ⇐⇒ mk − nℓ = 1. Then choose m = 1+nℓ
k . By Lemma 28 n can

be chosen such that nℓ ≡ k mod d for any k ∈ {0, . . . , d− 1}. Then n can be chosen
such that 1 + nℓ ≡ 0 mod d and so k divides 1 + nℓ for some n.

Hence for x ∈ O, the set (x+ dN) is included in the reachability set: we obtain
x+ jd, j > 0 by gnj ◦ fmj(x), hence x+ jd ∈ O and thus x+ dN ⊆ I. Similarly, we
can find m′, n′ ≥ 0 such that m′b − cn′ = −d and thus (x+ dZ) is also within the
reachability set. □

Therefore, starting with
(
x(0) + dZ

)
⊆ I we can ‘saturate’ the invariant

under construction using the following lemma:

Porous Invariants for Linear Systems 25

Lemma 29. Let h(x) = x+d be chosen as a reference counter amongst the counters.
If (x+ dZ) ⊆ I, then (f(x) + dZ) ⊆ I for every function f .

Proof of Lemma 29 Consider the function f(x) = ax + b. If x + dk ∈ I for k ∈ Z,
then f(x+ dk) = a(x+ dk) + b = ax+ adk + b = f(x) + adk ∈ I.

Now applying the counter h(x) = x+d an arbitrary number m of times, we have
hm ◦ f(x+ dk) = f(x) + adk+ dm ∈ I for k ∈ Z and m ∈ N. Thus f(x) + dn ∈ I for
any choice of n ∈ Z by suitable choice of k (possibly negative) and m (non-negative).

□

Without loss of generality if (x+ dZ) is in the invariant, then 0 ≤ x < d. We
then repeatedly use Lemma 29 to find the required elements of the invariant.
Since there are only finitely many residue classes (modulo d), every reachable
residue class (c1, . . . , cn) can be found by saturation (in at most d steps),
yielding invariant (c1 + dZ) ∪ · · · ∪ (cn + dZ).

Thanks to Lemma 26, in all remaining cases there is without loss of
generality at most one pure inverter.

5.3.3 Only pure inverters

If there is exactly one pure inverter f(x) = −x+ b (and no other functions of
any type), then f(x(0)) = −x(0) + b and f(−x(0) + b) = x(0) − b + b = x(0),
thus the reachability set is {x(0),−x(0) + b}, which is itself a finite inductive
invariant.

5.3.4 No Counters

If we are not in the preceding case and there are no counters, then there must
be growing functions and by Lemma 26, without loss of generality at most one
pure inverter. We show that all growing functions increase the absolute value
outside of some bounded region.

Lemma 30. For every M ≥ 0 and every growing function f(x) = ax + b, |a| ≥ 2,
there exists CM

f ≥ 0 such that if |x| ≥ CM
f then |f(x)| ≥ |x|+M .

Proof By the triangle inequality we have: |f(x)| = |ax+ b| ≥ |a| |x| − |b|. Thus

|x| ≥ |b|+|M |
|a|−1

=⇒ |a| |x| − |b| ≥ |x|+ |M | =⇒ |f(x)| ≥ |x|+M . □

This is the only situation in which the invariant is not exactly the
reachability set, and requires us to take an overapproximation.

Let C = max
{
C0

f1
, . . . , C0

fk
, |y|+ 1

}
, for f1, . . . , fk growing functions and

y the target point. If there are no pure inverters then (−C − N) ∪ (C + N)
is inductive. However, as it may not yet contain x(0), it does not yet contain
the whole of O. From this we can build the inductive invariant (−C − N) ∪
(C + N) ∪ (O ∩ (−C,C)). The set O ∩ (−C,C) is finite and can be elicited by

26 Porous Invariants for Linear Systems

exhaustive search, noting that once an element of the orbit reaches absolute
value at least C, the remainder of the corresponding trajectory remains forever
outside of (−C,C).

If there is one pure inverter g(x) = −x+d then observe that −C is mapped
to C + d and C + d is mapped to −C. Thus intuitively we want to use the
interval (−C,C + d). However two problems may occur: (a) since d could be
less than 0 then C+d may no longer be growing (under the application of the
growing functions), and (b) an inverting growing function only ensures that
−C is mapped to a value greater than or equal to C, rather than C+d. Hence,
we choose C ′ to ensure that C ′ ± d is still growing by at least |d| (under the

application of our growing functions). Let C ′ = max
{
C

|d|
f1

, . . . , C
|d|
fk

, |y|+ 1
}
+

|d|. Then the invariant is (−C ′ − N) ∪ (C ′ + d+ N) ∪ (O ∩ (−C ′, C ′ + d)).

5.3.5 Codirectional counters

The only remaining possibility (if there do not exist two opposing counters,
and not all functions are growing or pure inverters), is that there are counter
functions, but they are all codirectional. There may also be a single pure
inverter, and any number of growing functions. Throughout this section we
assume the growing functions are growing outside of the interval [−B,C].

We pick a counter h(x) = x + d amongst the codirectional counters to be
the reference counter; the choice is arbitrary, but it is convenient to pick a
counter with minimal |d|. For each residue r modulo d, we will have either a set
(r + dZ), a set (xr + dN) for xr ≡ r mod d, or ∅. We will define a saturation
procedure on these sets. To start, clearly we have

(
x(0) + dN

)
⊆ I.

As in the case of two opposing counters, by Lemma 29, Z-linear sets will
induce new Z-linear sets. We now observe that using inverters N-linear sets
may induce Z-linear sets:

Lemma 31. If there is an inverter g(x) = −ax+ b, with a > 0, b ∈ Z, and we have
(x+ dN) ⊆ I then (g(x) + dZ) ⊆ I.

Proof Let r = g(x)+ dm for m ∈ Z. We show r ∈ I. Consider x+ dn for n ∈ N, then
g(x+ dn) = −a(x+ dn) + b = −ax+ b− adn = g(x)− adn. Hence g(x)− adn+ dk,
n, k ∈ N, is reachable by applying k times the function h(x). Then we have for any
m ∈ Z there exists k, n ∈ N such that k−na = m, so that r is indeed reachable. □

Lemma 32. Let f be a non-inverting function and suppose h(x) = x+d is a counter.
If the N-linear set {xr + dN} is in the invariant, then the set {f(xr) + dN} is in the
invariant.

There are finitely many Z-linear sets, thus a saturation procedure applied to
these sets will terminate. However, repeated application of Lemma 32 will not
necessarily saturate. If the application of f to xr ‘moves’ in the same direction

Porous Invariants for Linear Systems 27

as the counters then saturation will occur. However, when the function f moves
in the opposite direction, we may generate infinitely many such classes. Note
that all the counters are assumed to move in same direction as the reference
counter (as we do not have opposing counters). However, the direction of a
growing function depends on the sign of the input.

Example 33. Consider the reference counter h(x) = x + 4, with initial point 5.
This yields an initial set (5 + 4N) ⊆ O, where 5 is the initial point and 4N is
derived from the counter increment. Now when applying x 7→ 2x + 6 to (5 + 4N)
we obtain (10 + 6 + 8N+ 4N) = (16 + 4N), then (38 + 4N), and then (82 + 4N).
However (82 + 4N) ⊆ (38 + 4N) and we can therefore stop with the invariant
(5 + 4N) ∪ (16 + 4N) ∪ (38 + 4N).

However, if the initial sequence is not moving in the direction of the reference
counter, this saturation does not occur. Consider (5 + 4N) with the function x 7→ 2x−
6. Then (5 + 4N) maps to (10− 6 + 8N+ 4N) = (4 + 4N), which maps to (2 + 4N),
(−2 + 4N), (−10 + 4N), (−26 + 4N), and so on. However −2 and −10 are both 2
modulo 4 (and so is −26 as well). This means in the negative direction we can obtain
arbitrarily large negative values congruent to 2 modulo 4 and then use the reference
counter h(x) = x+ 4 to obtain any value of (2 + 4Z).

Finally, we will use the following lemma to induce a Z-linear set when an
infinite sequence of N-linear sets occur. Since inverting induces Z-linear sets,
in the following lemma we can assume all functions are non-inverting.

Lemma 34. Assume the reference counter has the form h(x) = x + d. Suppose all
growing functions are growing outside of [−B,C].

If d ≥ 0 and there exist xr < −B and a sequence of functions h1, h2, . . . , hm ∈
{f1, . . . , fk} such that

hj ◦ · · · ◦ h1(xr) < xr ≤ −B for all j ≤ m and hm ◦ · · · ◦ h1(xr) ≡ xr mod d,

then for all M ≤ xr, there exist h′1, h
′
2, . . . , h

′
m′ such that

xM = h′m′ ◦ · · · ◦ h′1(xr) ≤M and xM ≡ xr mod d. (2)

Furthermore, if xr ∈ I, then (xr + dZ) ⊆ I.
Symmetrically, if d < 0 and there exist xr > C and h1, h2, . . . , hm ∈ {f1, . . . , fk}
such that

hj ◦ · · · ◦ h1(xr) > xr ≥ C for all j ≤ m and hm ◦ · · · ◦ h1(xr) ≡ xr mod d,

then for all M ≥ xr, there exist h′1, h
′
2, . . . , h

′
m′

xM = h′m′ ◦ · · · ◦ h′1(xr) ≥M and xM ≡ xr mod d.

Furthermore, if xr ∈ I, then (xr + dZ) ⊆ I.

Proof We show that (hm ◦ · · · ◦ h1)
n satisfies Eq. (2) for some n. Firstly,

observe that the re-application of hm ◦ · · · ◦ h1 results in the same residue
class by modulo arithmetic. Now to show that xM ≤ M , consider ∆j(xr) =∣∣hj ◦ · · · ◦ h1(xr)− hj−1 ◦ · · · ◦ h1(xr)

∣∣.

28 Porous Invariants for Linear Systems

• If hj is a counter, ∆j is constant, regardless of xr.

• If hj is a growing function outside of [−B,C], then ∆j(x
′
r) ≥ ∆j(xr) if x′r <

xr < −B.

Thus, by induction, since hj ◦ · · · ◦ h1(xr) < xr, we have

hj ◦ · · · ◦ h1 ◦ (hm ◦ · · · ◦ h1)n(xr) < hj ◦ · · · ◦ h1 ◦ (hm ◦ · · · ◦ h1)n−1(xr).

Since xr induces x′r ≤M for any M , repeated application of h induce
(
x′r + dN

)
,

for arbitrarily small x′r ≡ xr. Hence if xr ∈ I then (xr + dZ) ⊆ I.
The second part, when d < 0, holds by symmetry: inequalities are reversed and

C is used in place of −B. □

We now show how to detect whether such sequences exist:

Lemma 35. Let f1, . . . , fκ be non-inverting growing functions and g1, . . . , gκ′ be
codirectional counters with κ+ κ′ = k, and let h(x) = x+ d be the reference counter
amongst the gi. Given xr ̸∈ [−B,C] it can be decided in time O(d(d + k)) whether
there exists a sequence of functions h1, h2, . . . , hm such that x′r ≡ xr mod d, where
x′r = hm ◦ · · · ◦ h1(xr), and

• hj ◦ · · · ◦ h1(xr) < xr ≤ −B for all j ∈ {1, . . . , n} if d > 0, or

• hj ◦ · · · ◦ h1(xr) > xr ≥ C for all j ∈ {1, . . . , n} if d < 0.

Proof First, we restrict the form of the sequence we must search for. Suppose there
exists a sequence in which there exists i < j such that hi is growing and hj is
a counter, we first show that there exists another sequence satisfying the property
without this occurring. That is there is a sequence h1, . . . , hm′ where h1, . . . , hℓ ∈
{f1, . . . , fκ} and hℓ+1, . . . , hm ∈ {g1, . . . , gκ′} for some ℓ.

To see this, consider a growing function f(x) = ax+b applied on top of a counter

g(x) = x+c; we have f(g(x)) = a(x+c)+b = ax+ac+b > g(a mod d)(f(x)) = ax+

(a mod d)c+ b, as (a mod d) ≤ d. Observe that f(g(x)) ≡ g(a mod d)(f(x)) mod d.
As a consequence, each of the counters need only be applied at the end and each

at most d times as this is sufficient to access all attainable residue classes.
We now consider the graph on nodes {|0| , . . . , |d− 1| , |0|′ , . . . , |d− 1|′}, such

that:

• i→ j if f(i) ≡ j mod d for some non-inverting growing function f .

• i→ j′ if i+ a1b1 + · · ·+ aκ′bκ′ ≡ j mod d, for some ai ∈ {0, . . . , d− 1}, where
the counting functions are gi(x) = x+ bi for 1 ≤ i ≤ κ′.

• i→ i′ for all i ∈ {0, . . . , d− 1}.
In this graph we ask if there exists an infinite family of sequences from i to i′, such
that (x+ dN) ⊆ I with x ≤ −B and i ≡ x mod d. That is a sequence from i to i′ in
which a cycle is accessible. Note that there are only cycles over nodes in {0, . . . , d−1},
not in the primed variants. Let i

∗−→ j denote that there exists a path from i to j.
This can be decided in polynomial time, using, for example depth-first search; we

ask for every j whether i
∗−→ j, j

∗−→ j and j
∗−→ i′.

The graph is of size O(d2) and can be built in O(d(d + k)). Indeed, the most
costly operation in constructing this graph is the second test. Moreover, given a state

Porous Invariants for Linear Systems 29

i1, one can compute an array of size d representing the set of j′ such that i1 → j′

following this second test in O(dk). To build this set for another state i2, one only
needs to shift the values by i2 − i1, which can be done in O(d). We thus need O(dk)
to build the first array and O(d2) to build all the others.

As the graph is of size O(d2), precomputing each j such that i
∗−→ j for each i

simultaneously takes linear time in the size of the graph O(d2). The same is true for

precomputing j such that j
∗−→ i′ for i ≡ xr mod d. After precomputation, we can

answer for every j in constant time whether i
∗−→ j, j

∗−→ j, j
∗−→ i′ and there exists

(xr + dZ) ⊆ I with xr ≡ i mod d and xr ̸∈ [−C,C + d]. The total time spent is
dominated by the graph construction, thus giving an algorithm in O(d(d+k)). □

We now summarise the procedure in the case that all counters have the
same direction, and that h(x) = x+ d is a chosen reference counter.

The procedure continues by applying Lemma 29, Lemma 31, and Lemma 32
using the available functions. We continue until either:
1. no set is updated, or
2. the only updates induced are N-linear sets of the form (x+ dN) with

x ≤ −B (or x > C if d < 0).
In the first case, the invariant is inductive and nothing further is required.

In the second case, we must decide if we have a sequence of the type described
in Lemma 34, using Lemma 35 for each most general xr ̸∈ [−B,C] such that
(xr + dN) ⊆ I.

Whenever such a sequence exists, then a new Z-linear set is induced, and
that can take place at most d times. Further applications of Lemma 29 must
then occur on the new Z-linear sets until saturation amongst the Z-linear sets
occurs.

Once no such sequence exists (possibly immediately), then we continue
inducing new N-linear sets using Lemma 32. This is now guaranteed to ter-
minate, as otherwise there would exist a sequence of the type described in
Lemma 34.

5.3.6 Reachability

The above procedure is sufficient to decide reachability. In all cases apart from
those in which there are no counters, the invariants produced coincide precisely
with the reachability sets. A reachability query therefore reduces to asking
whether the target belongs to the invariant.

In the remaining cases, the invariant obtained is parametrised by the target
via the bound C ′. The target lies within the region (−C ′, C ′+d), within which
we can compute all reachable points. Thus once again, the target is reachable
precisely if it belongs to the invariant. However, for a new target of larger
absolute value, a different invariant would need to be built.

5.3.7 Complexity

Finally we show that the invariant of Theorem 22 can be computed in pseudo-
polynomial time. More precisely, we prove the following lemma:

30 Porous Invariants for Linear Systems

Lemma 36. Let k be the number of functions, and let µ bound the largest absolute
value occurring in the input. Then the invariant can be computed in time O(µ3 · k2),
that is polynomial in µ and k.

Proof Recall that the input comprises the starting point x, target point y and func-
tions fi(x) = aix + bi for i ∈ {1, . . . , k}. We have |x| ≤ µ, |y| ≤ µ, |ai| ≤ µ and
|bi| ≤ µ for all i ∈ {1, . . . , k}.

In the no-counter case, by Lemma 30, we compute the interval [−C,C+d], where

C ≥ |y|+1 and C ≥ |b|+|M |
|a|−1

, for |M | ≤ |bi| for some i ∈ {1, . . . , k}. We have C ≤ 2µ

and d ≤ µ, therefore the size of the interval [−C,C + d] is at most 5µ. It remains to
compute the reachability set in [−C,C + d], which is found by breadth-first search
over [−C,C + d] with k outgoing edges for each element, thus taking time O(µ · k).

In the case of two opposing counters, we have that all components of the invariant
are of the form x + dZ for d ≤ 2µ. Thus there are at most 2µ rounds, each round
taking time at most O(µ · k). The procedure runs in time at most O(µ2 · k).

Finally, we consider the case of codirectional counters. There are three main
phases:

• Firstly we saturate using Lemma 29, Lemma 31, and Lemma 32; here counters
take the form x+dZ or x+dN, where d ≤ µ and x ∈ [−B,C] for B ≤ 2µ,C ≤ 3µ.
Observe that there are at most 5µ sets of the form (x + dN) and µ sets of the
form (x + dZ). Thus there are at most 6µ sets that can be considered in this
process. Hence, using breadth-first search, this phase takes time O(µ · k).

• Secondly, checking for a sequence of the form in Lemma 34 requires at most
µ applications of Lemma 35, each taking O(µ(µ + k)) time. The newly found
Z-linear sets are saturated using Lemma 29, taking time at most O(µ · k).

• Thirdly, the final saturation of N-linear sets can be done in time O(µ2 · k2).
Specifically, we proceed in rounds: in each round we consider each set of the
form (x+dN), and add the sets (f(x)+dN) whenever this is more general than
a set already in I. In each round, up to d · k new N-linear sets are considered;
however, at the end of the round, there are only d most general sets to expand
into the next round. In Lemma 34 we note that the length of any cycle-free
path outside of [−B,C] is bounded by at most d(k + 1), thus at most d(k + 1)
rounds of exploration are required.

Summing the time spent in the three phases, we require time O(µ2(µ+ k) + µ · k +
µ2 · k2), which is bounded by O(µ3 · k2). □

Lemma 36 essentially asserts that the procedure is in polynomial time
assuming that descriptions of the starting point, target point and the functions
are given in unary. Without the unary assumption, the invariant could have
exponential size, and hence require at least exponential time to compute. That
is because the invariant we construct could include every value in an interval
[−C,C + d], where C is of size polynomial in the largest absolute value.

As shown in [15], the reachability problem is at least NP-hard in binary,
because one can encode the integer Knapsack problem (which allows an object
to be picked multiple times rather at most once). Moreover the Knapsack

Porous Invariants for Linear Systems 31

problem is efficiently solvable in pseudo-polynomial time via dynamic pro-
gramming; that is, polynomial time assuming the input is in unary, matching
the complexity of our procedure.

6 Porous Targets

So far we have only considered invariants for point targets. We now study the
reachability question for porous (or ‘lattice-like’) targets. First, we consider
targets that are full dimensional, that is, targets that span the whole space.
Here we show decidability of the reachability problem and synthesise suitable
invariants.

Lower-dimensional targets are problematic. For nondeterministic systems
reachability is undecidable for non-full-dimensional targets (in particular point
targets) [7]. However, even for deterministic systems, when Z-linear targets are
not full-dimensional the reachability problem becomes as hard as the Skolem
problem (see, e.g. [30]). Denote by ei the i-th standard basis vector where ei ∈
{0, 1}d with (ei)i = 1 and (ei)j = 0 for j ̸= i. Then the Skolem problem corre-

sponds to having {(0, x2, . . . , xd) | x2, . . . , xd ∈ Z} =
(
0⃗ + e2Z+ · · ·+ edZ

)
as

the target set. Similarly full-dimensional N-linear targets encode the Positivity
problem, that is, reaching (−e1N+ e2Z+ · · ·+ edZ).

However, for low-dimensional hyperplanes the Skolem problem is decidable,
lifting this barrier. Thus, in cases where the Skolem problem is decidable, we
show decidability of hitting an N-semi-linear set in Section 6.2.

6.1 Z-linear targets

First, let us consider targets specified as full-dimensional Z-linear sets.

Theorem 37. It is decidable whether a given LDS (x(0), {M1, . . . ,Mk}) reaches
a full-dimensional Z-linear target Y = (x+ p1Z+ · · ·+ pdZ), with x, pi ∈ Zd.
Furthermore, for unreachable instances, a Z-semi-linear inductive invariant can be
provided.

Towards proving Theorem 37, we first show that full-dimensional linear
sets can be expressed as ‘square’ hybrid-linear sets. Hybrid-linear sets are
semi-linear sets in which all the components share the same period vectors,
and thus differ only in starting position (whereas semi-linear sets allow each
component to have distinct period vectors). Given a set of base vectors B and
a lattice L = p1Z + · · · + pdZ, we write B + L to denote the semi-linear set⋃

b∈B (b+ p1Z+ · · ·+ pdZ). By square, we mean that all period vectors are
the same multiple of standard basis vectors (recall from page 31 that these are
denoted e1, . . . , ed).

32 Porous Invariants for Linear Systems

Lemma 38. Let Y = (x+ p1Z+ · · ·+ pdZ) be a full-dimensional Z-linear set.
Then there exist m ∈ N and a finite set B ⊆ [0,m − 1]d such that Y = B +
(me1Z+ · · ·+medZ).

Proof Let p1, . . . , pd span a d-dimensional vector space and write P =

(p1

...
pd

)
for the

matrix with rows p1, . . . , pd. Since P has full row rank it is invertible, hence there
exists a rational matrix P−1 such that ei = p1P

−1
i,1 + · · ·+ pdP

−1
i,d . In particular let

mi be such that P−1
i,j mi is integral for all j. Then there is an integral combination

of p1, . . . , pd such that miei is an admissible direction in Y .
Let m = lcm {m1, . . . ,md}. Then mei is an admissible direction in Y . Hence by

Proposition 11, Y is equivalent to (x+ p1Z+ · · ·+ pdZ+me1Z+ · · ·+medZ). By
the presence of me1Z + · · · + medZ we have that x ∈ Y if and only x′ ∈ Y where
x′i = (xi mod m).

We conclude that Y can be rewritten as B + (me1Z+ · · ·+medZ), where B =
[0,m− 1]d ∩ Y .

□

We now prove Theorem 37.

Proof of Theorem 37 Choose m and B as in Lemma 38, so that Y is of
the form

⋃
b∈B (b+me1Z+ · · ·+medZ). We build an invariant I of the form⋃

b∈B′ (b+me1Z+ · · ·+medZ) for some B′ ⊆ [0,m− 1]d.

We initialise the set I0 = (x+me1Z+ · · ·+medZ), where x ∈ [0,m − 1]d is

such that xj = (x
(0)
j mod m). We then build the set I1 by adding to I0 the sets

(y +me1Z+ · · ·+medZ) where for each choice of Mi, y ∈ [0,m − 1]d is formed by
yj = ((Mix)j mod m) for some x ∈ I0. We iterate this construction until it stabilises

in an inductive invariant I. Termination follows from the finiteness of [0,m − 1]d

(noting in particular that if termination occurs with B′ = [0,m − 1]d, then I = Zd

which is indeed an inductive invariant).
If there exists y ∈ B ∩ I then we return Reachable. This is because the same

sequence of matrices applied to x(0) to produce y ∈ I would, thanks to the modulo
step, end up inside the set (y +me1Z+ · · ·+medZ), which is a part of the target.

Otherwise, we return Unreachable and I as invariant. By construction, I is
indeed an inductive invariant disjoint from the target set. □

Remark 39. By the same argument, Theorem 37 extends to a restricted class of
Z-semi-linear targets: the finite union of full-dimensional Z-linear sets.

6.2 Deterministic LDS and low dimension N-semi-linear
targets

While reachability of a point is well known to be decidable, extending this
result to higher dimensional targets is difficult. In particular, reaching a hyper-
plane is equivalent to the Skolem problem, a longstanding open question.

Porous Invariants for Linear Systems 33

Some results have however been achieved for low-dimensional systems (see
e.g. [31–33]).

In this subsection, we rely on those results to establish decidability of the
reachability problem for low-dimensional N-semi-linear targets.

Theorem 40. Given a deterministic LDS together with an N-semi-linear target, the
reachability problem is decidable if either the target has dimension at most 2 or both
the target and ambient space have dimension 3.

Proof This result is achieved through a succession of refinements of the target we
consider: (1) we first identify the subspace in which the target lies and detect when
this subspace is hit by the LDS, (2) then, when restricted to the times where the
subspace of the target is hit, we detect when the modulo constraints of the target
are hit as well, (3) finally, we only have to detect when the ‘direction’ provided by
the period vectors is hit as well.

Given an LDS (x(0),M) and an N-semi-linear target Y which is either of
dimension 2 or of dimension 3 if the ambient dimension is 3, note first that Y
can be decomposed into several N-linear targets and reachability of Y is directly
deduced from the reachability of each new target. As such, we assume the target
Y =

(
y +

∑
i piN

)
is N-linear in the following.

We denote by RY =
(
y +

∑
i piR

)
the R-linear extension of Y . The subspace

RY is either of dimension 2 or of dimension 3 if the ambient dimension is 3 as well
by definition of Y . By the Skolem-Mahler-Lech theorem [34], the set SY = {n ∈
N | Mnx(0) ∈ RY } has the form SY = F ∪ A for a finite set F and semi-linear set
A =

⋃
i (ai + bN) where ai ∈ {0, . . . , b − 1} for all i. Moreover, thanks to RY being

of low dimension the sets F and A can be computed [31, 32].
We now focus on the times where RY is hit by the LDS. Letting Nmax be the

greatest occurrence within F , one can preprocess the first Nmax steps of the system
before considering the LDS (MNmax+1x(0),M). As such, we can assume without loss
of generality that F is empty.

Similarly, by considering the family of LDS (M ix(0),Mb) for i < b, we can assume
that A is either empty, or it is N. In the first case, Y cannot be reached by the LDS.

In the second case, we refine the target by considering the Z-linear extension
of Y , ZY =

(
y +

∑
i piZ

)
. As the orbit of the LDS is included in RY , ZY is full-

dimensional. Thus, reachability of ZY (and invariant synthesis in the negative case)
can be obtained with Theorem 37. Since Theorem 37 shows the behaviour is eventu-
ally periodic, one can find a period c ∈ N such that, potentially after an initial shift
d, the family of LDS (M i+dx(0),Mc) for i ∈ {0, . . . , c− 1}, either never hit ZY (and
thus never hit Y), or hits ZY in every step.

Let us assume we are in the latter case. Then reachability of Y is equivalent
to reachability of the R+-linear extension of the target LY =

(
y +

∑
i piR+

)
as

Y = LY ∩ZY . Moreover, reachability of LY can be tested through the results of [33]
thanks to the low dimension of the target, which concludes the proof. □

Remark 41. Theorem 40 is focused on reachability. It is possible to synthesise an
invariant for negative instances, but in some cases the kind of certificates that can be

34 Porous Invariants for Linear Systems

generated go beyond the scope of this paper. In particular, the authors of [32] provide
a form of certificate, but it is not a porous invariant, and can be expensive to verify.

Remark 42. Progress to extend decidability of the Skolem problem to cover broader
classes would immediately extend the scope of Theorem 40 to the same classes. For
example [35] recently shows that the Skolem problem is conditionally decidable for
simple linear recurrence sequences, corresponding to linear dynamical systems whose
matrix is diagonalisable. Thus reachability of Z-semi-linear targets on such system
is decidable subject to number-theoretic conjectures discussed in [35].

7 The POROUS Tool

Our invariant-synthesis tool porous10 computes N-semi-linear invariants for
point and Z-linear targets on systems defined by one-dimensional affine func-
tions. porous includes implementations of the procedures of Theorem 37
restricted to one-dimensional affine systems and Theorem 22. The tool is built
in Python and can be used either by command-line file input, a web interface,
or by directly invoking the Python packages.

porous takes as input an instance (a starting point, a target, and a collec-
tion of functions) and returns the generated invariant. Additionally it provides
a proof that this set is indeed an inductive invariant: the invariant is a union of
N-linear sets, so for each linear set and each function, porous illustrates the
application of that function to the linear set and shows for which other linear
set in the invariant this is a subset. Using this invariant, porous can decide
reachability; if the specific target is reachable the invariant is not in itself a
proof of reachability (since the invariant will often be an overapproximation of
the global reachability set). Rather, equipped with the guarantee of reachabil-
ity, porous searches for a direct proof of reachability: a sequence of functions
from start to target (a process which would not otherwise be guaranteed to
terminate).

Example 43. The tool’s output, when, applied to the MU Puzzle is the invariant
(1 + 3Z) ∪ (2 + 3Z) of Example 1:

Interpretation of input

start: 1 target: {0} functions: [f(x) = x - 3, f(x) = 2x]

invariant: (2 +3Z) ∪ (1 +3Z)

reachability: unreachable

target {0} disjoint from invariant

Proof of invariance

Set under gives within

10Tool: porous.mpi-sws.org. Code: github.com/davidjpurser/porous-tool. Artifact: [36].

http://porous.mpi-sws.org
https://github.com/davidjpurser/porous-tool

Porous Invariants for Linear Systems 35

Size Invariant
Build Time

Unreachable
Instances

Invariant
Proof Time

Reachable
Instances

Reachable
with proofs

Reachability
Proof time

avg max avg max within ≈60s avg
8 0.001 0.009 156 (10.2%) 0.004 0.143 1368 (89.8%) 1362 (99.6%) 0.001
16 0.001 0.009 195 (12.8%) 0.006 0.121 1329 (87.2%) 1313 (98.8%) 0.129
32 0.001 0.021 201 (13.2%) 0.010 0.267 1323 (86.8%) 1261 (95.3%) 0.130
64 0.002 0.038 250 (16.4%) 0.019 0.980 1274 (83.6%) 1137 (89.2%) 0.355
128 0.006 0.485 234 (15.4%) 0.041 1.567 1290 (84.6%) 1087 (84.3%) 0.464
256 0.025 13.445 243 (15.9%) 0.102 2.874 1281 (84.1%) 989 (77.2%) 0.895
512 0.073 2.708 232 (15.2%) 0.299 6.951 1292 (84.8%) 875 (67.7%) 1.272
1024 0.562 224.729 232 (15.2%) 0.916 23.836 1292 (84.8%) 789 (61.1%) 1.452
2048 2.846 2151.266 248 (16.3%) 2.934 109.219 1276 (83.7%) 666 (52.2%) 2.127
All 0.390 2151.266 1991 (14.5%) 0.481 109.219 11725 (85.5%) 9479 (80.8%) 0.612

Table 2 Results varying by size parameter (last row includes all instances tested). Times
are given in seconds, with the average and maximum shown (except reachability proof time,
which are all approximately 60s due to instances that terminate just before the timeout).

------- ------------ ------- -- --------

(2 +3Z) f(x) = x - 3 (2 +3Z) ⊆ (2 +3Z)

(2 +3Z) f(x) = 2x (4 +6Z) ⊆ (1 +3Z)

(1 +3Z) f(x) = x - 3 (1 +3Z) ⊆ (1 +3Z)

(1 +3Z) f(x) = 2x (2 +6Z) ⊆ (2 +3Z)

7.1 Experimentation

porous was tested on all 27−1 possible combinations of the following function
types, with a ≥ 2, b ≥ 1: positive counters (x 7→ x + b), negative counters
(x 7→ x − b), growing (x 7→ ax ± b), inverting and growing (x 7→ −ax ± b),
inverters with positive counters (x 7→ −x+b), inverters with negative counters
(x 7→ −x − b) and the pure inverter (x 7→ −x). For each such combination a
random instance was generated, with a size parameter to control the maximum
absolute value of a and b, ranging between 8 and 2048. The starting point was
between 1 and the size parameter and the target was between 1 and 4 times
the size parameter. Twelve instances were tested for each size parameter and
each of the 27 − 1 combinations, with between 1 and 9 functions of each type
(with a bias for one of each function type). Both the code and the datasets
generated and analysed during the current study are available in the Zenodo
repository [36].

Our analysis, summarised in Table 2, illustrates the effect of the size param-
eter. The time to produce the proof of invariant is separated from the process
of building the invariant I, since producing the proof of invariant can become
slower as |I| becomes larger; it requires finding Lk ∈ I such that fi(Lj) ⊆ Lk

for every linear set Lj ∈ I and every affine function fi. In every case porous
successfully built the invariant, and hence decided reachability very quickly
(on average well below 1 second) and also produced the proof of invariance in
around half a second on average. To demonstrate correctness in instances for
which the target is reachable porous also attempts to produce a proof of reach-
ability (a sequence of functions from start to target). Since our paper is focused

36 Porous Invariants for Linear Systems

on invariants as certificates of non-reachability, our proof-of-reachability pro-
cedure was implemented crudely as a simple breadth-first search without any
heuristics, and hence a timeout of 60 seconds was used for this part of the
experiment only.

Our experimental methodology was partially limited due to the high preva-
lence of reachable instances. A random instance will likely exhibit a large
(often universal) reachability set. When two random counters are included,
the chance that gcd(b1, b2) = 1 (whence the whole space is covered) is around
60.8% and higher if more counters are chosen.

Overall around 86% of instances were reachable (of which 81% produced a
proof within 60 seconds). Of the 14% of unreachable instances, all produced a
proof, with the invariant taking around 0.4 seconds to build and 0.5 seconds
to produce the proof. The 60-second timeout when demonstrating reachability
directly is several orders of magnitudes longer than answering the reachability
query via our invariant-building method.

The timing and analysis was conducted using a Dell PowerEdge M620 with
2x Intel Xeon E5-2667 v2 CPUs and 256GB RAM.

8 Conclusions and Open Directions

We have introduced the notion of porous invariants, which are not necessarily
convex and can in fact exhibit infinitely many ‘holes’, and studied these in
the context of multipath (or branching/nondeterministic) affine loops over the
integers, or equivalently nondeterministic integer linear dynamical systems. We
have focused on reachability questions. The potential applicability of porous
invariants to larger classes of systems (such as programs involving nested loops)
or more complex specifications remains largely unexplored.

Our focus is on the boundary between decidability and undecidability, leav-
ing precise complexity questions open. Indeed, the complexity of synthesising
invariants could conceivably be quite high, except where we have highlighted
polynomial-time (or pseudo-polynomial-time) results. On the other hand, the
invariants produced should be easy to understand and manipulate, from both
a human and machine perspective.

On a more technical level, in our setting the most general class of invari-
ants that we consider are N-semi-linear. There remains at present a large gap
between decidability for one-dimensional affine functions, and undecidability
for linear updates in dimension 91 and above. It would be interesting to inves-
tigate whether decidability can be extended further, for example to dimensions
2 and 3.

Acknowledgments. This work was funded by DFG grant 389792660 as part
of TRR 248 (see perspicuous-computing.science). Joël Ouaknine was supported
by ERC grant AVS-ISS (648701), and is also affiliated with Keble College,
Oxford as emmy.network Fellow. James Worrell was supported by EPSRC
Fellowships EP/N008197/1 and EP/X033813/1.

https://perspicuous-computing.science
http://emmy.network/

Porous Invariants for Linear Systems 37

References

[1] Douglas, R.H.: Gödel, Escher, Bach: An eternal golden braid. Basic Books,
New York (1979)

[2] Clarke, E.M., Fehnker, A., Han, Z., Krogh, B.H., Ouaknine, J., Stursberg,
O., Theobald, M.: Abstraction and counterexample-guided refinement in
model checking of hybrid systems. Int. J. Found. Comput. Sci. 14(4),
583–604 (2003). https://doi.org/10.1142/S012905410300190X

[3] Lefaucheux, E., Ouaknine, J., Purser, D., Worrell, J.: Porous invari-
ants. In: Silva, A., Leino, K.R.M. (eds.) Computer Aided Verification
- 33rd International Conference, CAV 2021, Virtual Event, July 20-23,
2021, Proceedings, Part II. Lecture Notes in Computer Science, vol.
12760, pp. 172–194. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81688-9 8

[4] Karr, M.: Affine relationships among variables of a program. Acta
Informatica 6, 133–151 (1976). https://doi.org/10.1007/BF00268497

[5] Fijalkow, N., Lefaucheux, E., Ohlmann, P., Ouaknine, J., Pouly, A.,
Worrell, J.: On the Monniaux Problem in Abstract Interpretation. In:
Chang, B.E. (ed.) Static Analysis - 26th International Symposium, SAS
2019, Porto, Portugal, October 8-11, 2019, Proceedings. Lecture Notes
in Computer Science, vol. 11822, pp. 162–180. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-32304-2 9

[6] Kannan, R., Lipton, R.J.: Polynomial-time algorithm for the orbit prob-
lem. J. ACM 33(4), 808–821 (1986). https://doi.org/10.1145/6490.6496

[7] Markov, A.: On certain insoluble problems concerning matrices. Doklady
Akad. Nauk SSSR 57(6), 539–542 (1947)

[8] Monniaux, D.: On the decidability of the existence of polyhedral invariants
in transition systems. Acta Informatica 56(4), 385–389 (2019). https://
doi.org/10.1007/s00236-018-0324-y

[9] Hrushovski, E., Ouaknine, J., Pouly, A., Worrell, J.: Polynomial invariants
for affine programs. In: Dawar, A., Grädel, E. (eds.) Proceedings of the
33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2018, Oxford, UK, July 09-12, 2018, pp. 530–539. ACM, New York, NY,
USA (2018). https://doi.org/10.1145/3209108.3209142

[10] Almagor, S., Chistikov, D., Ouaknine, J., Worrell, J.: O-minimal invari-
ants for discrete-time dynamical systems. ACM Trans. Comput. Logic
23(2) (2022). https://doi.org/10.1145/3501299

https://doi.org/10.1142/S012905410300190X
https://doi.org/10.1007/978-3-030-81688-9_8
https://doi.org/10.1007/978-3-030-81688-9_8
https://doi.org/10.1007/BF00268497
https://doi.org/10.1007/978-3-030-32304-2_9
https://doi.org/10.1145/6490.6496
https://doi.org/10.1007/s00236-018-0324-y
https://doi.org/10.1007/s00236-018-0324-y
https://doi.org/10.1145/3209108.3209142
https://doi.org/10.1145/3501299

38 Porous Invariants for Linear Systems

[11] Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among
variables of a program. In: Aho, A.V., Zilles, S.N., Szymanski, T.G. (eds.)
Conference Record of the Fifth Annual ACM Symposium on Principles of
Programming Languages, Tucson, Arizona, USA, January 1978, pp. 84–
96. ACM, New York, NY, USA (1978). https://doi.org/10.1145/512760.
512770

[12] Kincaid, Z., Breck, J., Cyphert, J., Reps, T.W.: Closed forms for numeri-
cal loops. Proc. ACM Program. Lang. 3(POPL), 55–15529 (2019). https:
//doi.org/10.1145/3290368

[13] Bozga, M., Iosif, R., Konecný, F.: Fast acceleration of ultimately periodic
relations. In: Touili, T., Cook, B., Jackson, P.B. (eds.) Computer Aided
Verification, 22nd International Conference, CAV 2010, Edinburgh, UK,
July 15-19, 2010. Proceedings. Lecture Notes in Computer Science, vol.
6174, pp. 227–242. Springer, Berlin, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14295-6 23. Extended VERIMAG technical report,
TR-2012-10, 2012: http://www-verimag.imag.fr/TR/TR-2012-10.pdf

[14] Finkel, A., Göller, S., Haase, C.: Reachability in register machines with
polynomial updates. In: Chatterjee, K., Sgall, J. (eds.) Mathematical
Foundations of Computer Science 2013 - 38th International Symposium,
MFCS 2013, Klosterneuburg, Austria, August 26-30, 2013. Proceedings.
Lecture Notes in Computer Science, vol. 8087, pp. 409–420. Springer,
Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40313-2 37

[15] Fremont, D.: The reachability problem for affine functions on the integers.
CoRR abs/1304.2639 (2013) arXiv:1304.2639

[16] Giesl, J., Aschermann, C., Brockschmidt, M., Emmes, F., Frohn, F.,
Fuhs, C., Hensel, J., Otto, C., Plücker, M., Schneider-Kamp, P., Ströder,
T., Swiderski, S., Thiemann, R.: Analyzing program termination and
complexity automatically with AProVE. J. Autom. Reason. 58(1), 3–31
(2017). https://doi.org/10.1007/s10817-016-9388-y

[17] Heizmann, M., Hoenicke, J., Podelski, A.: Termination analysis by learn-
ing terminating programs. In: Biere, A., Bloem, R. (eds.) Computer Aided
Verification - 26th International Conference, CAV 2014, Held as Part of
the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22,
2014. Proceedings. Lecture Notes in Computer Science, vol. 8559, pp. 797–
813. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9
53

[18] Cortier, V.: About the decision of reachability for register machines.
RAIRO Theor. Informatics Appl. 36(4), 341–358 (2002). https://doi.org/
10.1051/ita:2003001

https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/3290368
https://doi.org/10.1145/3290368
https://doi.org/10.1007/978-3-642-14295-6_23
https://doi.org/10.1007/978-3-642-14295-6_23
http://www-verimag.imag.fr/TR/TR-2012-10.pdf
https://doi.org/10.1007/978-3-642-40313-2_37
https://arxiv.org/abs/1304.2639
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-319-08867-9_53
https://doi.org/10.1007/978-3-319-08867-9_53
https://doi.org/10.1051/ita:2003001
https://doi.org/10.1051/ita:2003001

Porous Invariants for Linear Systems 39

[19] Leroux, J.: The general vector addition system reachability problem by
presburger inductive invariants. Log. Methods Comput. Sci. 6(3) (2010).
https://doi.org/10.2168/LMCS-6(3:22)2010

[20] Leroux, J.: Vector addition system reachability problem: a short self-
contained proof. In: Ball, T., Sagiv, M. (eds.) Proceedings of the 38th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, pp. 307–
316. ACM, New York, NY, USA (2011). https://doi.org/10.1145/1926385.
1926421

[21] Ginsburg, S., Spanier, E.H.: Bounded algol-like languages. Transactions
of the American Mathematical Society 113(2), 333–368 (1964). https:
//doi.org/10.1090/S0002-9947-1964-0181500-1

[22] Tzeng, W.: A polynomial-time algorithm for the equivalence of proba-
bilistic automata. SIAM J. Comput. 21(2), 216–227 (1992). https://doi.
org/10.1137/0221017

[23] Leroux, J.: Disjunctive invariants for numerical systems. In: Wang,
F. (ed.) Automated Technology for Verification and Analysis: Second
International Conference, ATVA 2004, Taipei, Taiwan, ROC, October 31-
November 3, 2004. Proceedings. Lecture Notes in Computer Science, vol.
3299, pp. 93–107. Springer, Berlin, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-30476-0 12

[24] Chistov, A.: Algorithm of polynomial complexity for factoring polyno-
mials and finding the components of varieties in subexponential time.
Journal of Soviet Mathematics 34(4), 1838–1882 (1986)

[25] Shmonin, G.: Lattices and Hermite normal form. Swiss Federal Institute
of Technology Lausanne (EPFL). Lecture notes for the course Integer
Points in Polyhedra at the Swiss Federal Institute of Technology Lausanne
(EPFL) (2009)

[26] Kannan, R., Bachem, A.: Polynomial algorithms for computing the smith
and hermite normal forms of an integer matrix. SIAM J. Comput. 8(4),
499–507 (1979). https://doi.org/10.1137/0208040

[27] Kronecker, L.: Zwei Sätze über Gleichungen mit ganzzahligen Coefficien-
ten. Journal für die reine und angewandte Mathematik 57(53), 173–175
(1857)

[28] Halava, V., Harju, T.: Undecidability of Infinite Post Correspondence
Problem for instances of Size 9. RAIRO Theor. Informatics Appl. 40(4),
551–557 (2006). https://doi.org/10.1051/ita:2006039

https://doi.org/10.2168/LMCS-6(3:22)2010
https://doi.org/10.1145/1926385.1926421
https://doi.org/10.1145/1926385.1926421
https://doi.org/10.1090/S0002-9947-1964-0181500-1
https://doi.org/10.1090/S0002-9947-1964-0181500-1
https://doi.org/10.1137/0221017
https://doi.org/10.1137/0221017
https://doi.org/10.1007/978-3-540-30476-0_12
https://doi.org/10.1007/978-3-540-30476-0_12
https://doi.org/10.1137/0208040
https://doi.org/10.1051/ita:2006039

40 Porous Invariants for Linear Systems

[29] Dong, J., Liu, Q.: Undecidability of Infinite Post Correspondence Problem
for instances of size 8. RAIRO Theor. Informatics Appl. 46(3), 451–457
(2012). https://doi.org/10.1051/ita/2012015

[30] Ouaknine, J., Worrell, J.: Decision problems for linear recurrence
sequences. In: Finkel, A., Leroux, J., Potapov, I. (eds.) Reachability
Problems - 6th International Workshop, RP 2012, Bordeaux, France,
September 17-19, 2012. Proceedings. Lecture Notes in Computer Sci-
ence, vol. 7550, pp. 21–28. Springer, Berlin, Heidelberg (2012). https:
//doi.org/10.1007/978-3-642-33512-9 3

[31] Chonev, V., Ouaknine, J., Worrell, J.: The polyhedron-hitting problem.
In: Indyk, P. (ed.) Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,
January 4-6, 2015, pp. 940–956. SIAM, USA (2015). https://doi.org/10.
1137/1.9781611973730.64

[32] Chonev, V., Ouaknine, J., Worrell, J.: On the complexity of the orbit
problem. J. ACM 63(3), 23–12318 (2016)

[33] Karimov, T., Lefaucheux, E., Ouaknine, J., Purser, D., Varonka, A.,
Whiteland, M.A., Worrell, J.: What’s decidable about linear loops? Proc.
ACM Program. Lang. 6(POPL) (2022)

[34] Skolem, T.: Ein Verfahren zur Behandlung gewisser exponentialer Gle-
ichungen und diophantischer Gleichungen. C. r 8, 163–188 (1934)

[35] Bilu, Y., Luca, F., Nieuwveld, J., Ouaknine, J., Purser, D., Worrell, J.:
Skolem meets Schanuel. In: Szeider, S., Ganian, R., Silva, A. (eds.) 47th
International Symposium on Mathematical Foundations of Computer Sci-
ence, MFCS 2022, August 22-26, 2022, Vienna, Austria. LIPIcs, vol.
241, pp. 20–12015. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
Germany (2022). https://doi.org/10.4230/LIPIcs.MFCS.2022.20

[36] Lefaucheux, E., Ouaknine, J., Purser, D., Worrell, J.: Porous Invariants
for Linear Systems: POROUS Tool and experimental data. Zenodo (2023).
https://doi.org/10.5281/zenodo.7920425

https://doi.org/10.1051/ita/2012015
https://doi.org/10.1007/978-3-642-33512-9_3
https://doi.org/10.1007/978-3-642-33512-9_3
https://doi.org/10.1137/1.9781611973730.64
https://doi.org/10.1137/1.9781611973730.64
https://doi.org/10.4230/LIPIcs.MFCS.2022.20
https://doi.org/10.5281/zenodo.7920425

	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 R Invariants: R-linear and R-semi-linear
	3.1 R-linear invariants
	3.2 R-semi-linear invariants

	4 Strongest Z-linear Invariants
	4.1 Computing the strongest Z-linear Invariants
	4.2 Extensions of Z-linear sets without strongest invariants

	5 N-semi-linear Invariants
	5.1 Existence of sufficient (but non-minimal) N-semi-linear invariants for point reachability in deterministic LDS
	5.2 Undecidability of N-semi-linear invariants for nondeterministic LDS
	5.3 Nondeterministic one-dimensional affine updates
	5.3.1 Simplifying assumptions
	5.3.2 Two opposing counters
	5.3.3 Only pure inverters
	5.3.4 No Counters
	5.3.5 Codirectional counters
	5.3.6 Reachability
	5.3.7 Complexity

	6 Porous Targets
	6.1 Z-linear targets
	6.2 Deterministic LDS and low dimension N-semi-linear targets

	7 The POROUS Tool
	7.1 Experimentation

	8 Conclusions and Open Directions
	Acknowledgments

