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Abstract. In this paper, we consider a Markov decision process (MDP) with a Borel
state space X ∪ {∆}, where ∆ is an absorbing state (cemetery), and a Borel action space
A. We consider the space of finite occupation measures restricted on X × A, and the
extreme points in it. It is possible that some strategies have infinite occupation mea-
sures. Nevertheless, we prove that every finite extreme occupation measure is generated
by a deterministic stationary strategy. Then, for this MDP, we consider a constrained
problem with total undiscounted criteria and J constraints, where the cost functions are
nonnegative. By assumption, the strategies inducing infinite occupation measures are not
optimal. Then, our second main result is that, under mild conditions, the solution to
this constrained MDP is given by a mixture of no more than J + 1 occupation measures
generated by deterministic stationary strategies.
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1 Introduction

Perhaps the first paper, where the discounted Markov decision process (MDP) was re-
formulated as a linear program, is [7]. The modern so called ‘convex analytic approach’
originates from the works by V.Borkar [4, 5]. It is applied to the models with total cost
(discounted or not) as well as with the long-run average cost: let us only mention the book
treatments [1, 28, 31] and the survey [6]. This approach proved to be especially fruitful in
dealing with problems with constraints, see the survey [32] and the authoritative mono-
graph [29] on finite MDPs, i.e., MDPs with finite state and action spaces. For convex
analytic approach to continuous-time MDPs, see e.g., [24, 25, 33] and the monograph [34].

The convex analytic approach is based on the reformulation of the constrained MDP
problem as a convex optimization problem in the space of occupation measures with affine
objective functions and inequality constraints, where the occupation measures are defined
in accordance with the performance criteria of the MDP problem. The space of occupation
measures is a convex space (i.e., a convex subset of a cone, not necessarily of a vector
space). Thus, here, the relevant notions, such as convex optimization problem, affine
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functions and extreme points, are understood with respect to (wrt) the underlying convex
space, see [37]. An important target to show is the existence of an optimal strategy for
the MDP problem, whose occupation measure is the convex combination of finitely many
extreme points in the space of occupation measures, which we call extreme occupation
measures. If the number of constraints in the MDP problem is J , the mixture is over
at most J + 1 extreme occupation measures. Such a strategy is called a (J + 1)-mixed
optimal strategy. Then a key ingredient in the convex analytic approach to MDPs is the
characterization of such extreme occupation measures. This task is easier when the state
is discrete (finite or countable), as considered in [1, 4, 5, 29], but our consideration in this
paper is a Borel MDP model, by which we mean an MDP with Borel state and action
spaces.

Let us concentrate on the literature for Borel MDP models. For discounted MDPs,
the most relevant recent works include [12, 16, 21], where by using the convex analytic
approach, optimal stationary strategies were proved. While mixed strategies were not con-
sidered in [12, 21], in establishing the existence of a so called optimal chattering strategy
in [16] (see also [22, 23]), the existence of an optimal (J + 1)-mixed strategy was observed,
see the proof of [16, Theorem 2]. For discounted MDPs but under more restrictive condi-
tions, this result appeared in [31, 42]. In an absorbing MDP, there is a costless absorbing
state, called ‘cemetery’ for brevity, and, given the initial state, under each strategy, the
expected time until the state process reaches the cemetery is finite. In fact this is equiv-
alent to the expected absorbing time say T being bounded in the set of all strategies, see
[18, p.132]. The expected absorbing time can be written as the series of the tail proba-
bilities of T > m over m ≥ 0. If this series converges uniformly over all strategies, then
the MDP is called uniformly absorbing. This definition appeared in [17]. It was observed
in [17] that discounted MDPs are special cases of uniformly absorbing MDPs, by viewing
the discount factor as the parameter of a geometrically distributed external killing time.
For uniformly absorbing MDPs, the existence of a (J + 1)-mixed optimal strategy was
obtained by Feinberg and Rothblum, see [18, Theorem 9.2], as well as that each extreme
occupation measure is generated by a deterministic stationary strategy, see [18, Lemma
4.6]; see also [38]. The convex analytic approach was also developed for optimal stopping
problems in discrete time, see [10] and the references therein.

In the present paper, we consider an MDP with a Borel state space X ∪ {∆} and a
Borel action space A. The point ∆ is a single absorbing state. We call such a model an
MDP with an absorbing state or with a cemetery, though it is also known under other
names such as the stochastic shortest path problem, see [2], where unconstrained MDP
problems were considered and the main interest was the characterization of the optimal
value function out of the class of so called proper strategies in terms of the solution to
the optimality equation. It is without loss of generality that we consider a fixed initial
state rather than a fixed initial distribution. We also assume that the cemetery ∆ is
costless. For this reason, we consider occupation measures as the total expected state-
action frequencies restricted on X×A. If a strategy has a finite occupation measure, we
call it an absorbing strategy with the given initial state. Proper strategies as considered
in [2] can be viewed as special types of absorbing strategies. If the occupation measure of
each strategy is finite, our model becomes the absorbing model. Nevertheless, similarly to
[9], here we do allow that some strategies have infinite occupation measures. This is the
main novelty compared with the aforementioned works [12, 16, 18, 21], see more comments
on this below.

Our contributions are as follows. First, we show that every extreme point of the space
of finite occupation measures is generated by a deterministic stationary strategy. Then, we
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consider a constrained problem with total undiscounted criteria and J constraints, where
the cost functions are nonnegative. We formulate the problem as a convex program in the
space of occupation measures (see (5)). Under mild conditions, we show that there exists
an optimal strategy whose occupation measure is in the form of a mixture of no more than
J + 1 occupation measures of deterministic stationary strategies.

For the latter result, we make the assumption, which in particular, implies that strate-
gies inducing infinite occupation measures are not optimal. Under this assumption, for
the MDP problem, instead of dealing with the whole space of occupation measures, it is
sufficient to work with the space of finite occupation measures. However, restricting an
MDP to absorbing strategies is not the same as considering an absorbing MDP. Firstly,
in an absorbing MDP, the total values of all occupation measures are bounded above,
whereas if the MDP is not absorbing, then the total values of all finite occupation mea-
sures can be unbounded. This can be seen by considering an optimal stopping problem as
in [10]: for the set of strategies, stopping at step n = 1, 2, . . . , the values of their (finite)
occupation measures are unbounded. In this connection, we mention that, for discounted
MDPs, see e.g., [31], it is convenient to endow the space of occupation measures with the
weak topology generated by bounded continuous functions. The same was done in [18]
for absorbing MDPs. To deal with infinite occupation measures, we endow that space
with the final topology generated by the projection mapping from the space of strategic
measures to occupation measures. These features require new proofs of the key theorems
on the characterization of the extreme finite occupation measures (see Theorem 1) and
on the sufficiency of mixtures of (occupation measures of) deterministic strategies (see
Theorem 2).

In terms of other relevant works, we mention the following. First, constrained total
undiscounted Borel MDPs with non-negative cost functions were also studied in [9]. Al-
though it was not assumed a priori in [9] that there is a costless cemetery in the state space,
it was shown under some conditions that one can always construct a costless cemetery set,
after modifying the admissible action spaces on that set. By merging this set as a costless
cemetery, we may view the model in [9] in the framework of the present paper, and can
apply to it our first result on the characterization of extreme finite occupation measures.
Except for special cases, our second result concerning the optimal mixed strategies are not
applicable to the model in [9] because no assumption was made in [9] that strategies with
infinite occupation measures were suboptimal or infeasible. On the other hand, neither the
extreme occupation measures nor the mixed strategies were considered in [9]. The paper
here can be viewed as a complement to it. Second, we note that the results in this paper
are also relevant to the studies in continuous-time MDPs, see [26, 35, 36], because the
problems considered therein were eventually reduced to an MDP model, see more details
in the book [34].

Allowing the cost functions to be negative leads to a more complicated theory. The
convex analytic approach to such constrained MDPs was developed in [8, 11], but mixtures
of occupation measures were not considered there.

The rest of this paper is organized as follows. The MDP model under study is described
in Section 2. Several necessary auxiliary statements are given in Section 3, including the
known results on the solvability of the formulated problem. Sections 4 and 5 present the
main results: characterization of the extreme occupation measures and sufficiency of the
finite mixtures of deterministic stationary strategies. The paper ends with a conclusion in
Section 6. The proofs of the main statements are postponed to the appendix.
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2 Description of the model

The primitives of an MDP are the following.

• The state space is X∆ = X ∪ {∆}, where X is a nonempty topological Borel space,
endowed with the σ-algebra B(X), and ∆ is the isolated absorbing state (cemetery).

• The action space A is a nonempty topological Borel space, endowed with the σ-
algebra B(A).

• The transition probability p(dy|x, a) is a stochastic kernel from X∆ ×A to B(X∆);
p({∆}|∆, a) ≡ 1.

• The [−∞,+∞]-valued one-step cost functions rj(·, ·) on X∆ × A, j = 0, 1, . . . , J ,
where J ∈ {0, 1, . . . } is a fixed integer; rj(∆, a) ≡ 0.

Usually, the initial state x0 ∈ X is fixed, but sometimes we consider other arbitrarily
fixed initial states x ∈ X. (See, e.g., Lemma 3.)

Regarding terminology, we often refer to {X∆,A, p, {rj}Jj=0} as a MDP model or sim-
ply a MDP. We may also consider the ‘cost-free’ MDP model {X∆,A, p} because several
definitions and properties presented below do not involve the properties of the cost func-
tions.

Definition 1 (Strategy) Consider the MDP {X∆,A, p}.

(a) A strategy σ = {σn}∞n=1 is a sequence of stochastic kernels such that for each n =
1, 2, . . . , σn(da|x0, a1, . . . , xn−1) is a stochastic kernel from (X∆ × A)n−1 × X∆ to
B(A), where (X∆ ×A)0 ×X∆ := X∆.

(b) A strategy σ = {σn}∞n=1 is Markov if for each n = 1, 2, . . . , there is a stochastic
kernel σMn (da|xn−1) from X∆ to B(A) such that

σMn (da|xn−1) = σn(da|x0, a1, . . . , xn−1)

for each (x0, a1, . . . , xn−1) ∈ (X∆ ×A)n−1 ×X∆.

(c) A strategy σ = {σn}∞n=1 is called stationary if there is a stochastic kernel σs(da|x)
from X∆ to B(A) such that

σs(da|xn−1) = σn(da|x0, a1, . . . , xn−1)

for each n = 1, 2, . . . , and (x0, a1, . . . , xn−1) ∈ (X∆ × A)n−1 × X∆. Below, a sta-
tionary strategy is usually identified with σs.

(d) If σs(da|x) is concentrated on {ϕ(xn−1)}, where ϕ is an A-valued measurable map-
ping, then the stationary strategy is called deterministic stationary. With conven-
tional abuse of notations, we often signify a deterministic stationary strategy by ϕ.

(e) We always assume that σn({â}|x0, a1, . . . ,∆) = 1 whenever xn−1 = ∆. Here â ∈ A
is an arbitrarily fixed action.
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As is well known, for each control strategy σ and initial state x0 ∈ X, there is a unique
strategic measure on the sample space Ω := (X∆×A)∞, denoted as Pσx0 , which is specified
by the following conditions:

Pσx0(X0 ∈ dy) = δx0(dy); (1)

and for each n = 1, 2, . . . , ΓX
i ∈ B(X∆) (i = 0, 1, . . . , n) and ΓA

i ∈ B(A) (i = 1, 2, . . . , n),

Pσx0(X0 ∈ ΓX
0 , A1 ∈ ΓA

1 , . . . , Xn−1 ∈ ΓX
n−1, An ∈ ΓA

n ) (2)

=

∫
ΓX
0 ×ΓA

1 ×···×ΓX
n−1

σn(ΓA
n |x0, a1, . . . , xn−1)Pσx0(X0 ∈ dx0, A1 ∈ da1, . . . , Xn−1 ∈ dxn−1);

and

Pσx0(X0 ∈ ΓX
0 , A1 ∈ ΓA

1 , . . . , Xn ∈ ΓX
n ) (3)

=

∫
ΓX
0 ×ΓA

1 ×···×ΓX
n−1×ΓA

n

p(ΓX
n |xn−1, an)

×Pσx0(X0 ∈ dx0, A1 ∈ da1, . . . , Xn−1 ∈ dxn−1, An ∈ dan).

For details, see [14, 27, 31]. Denote by Σ the set of all strategies, and by P := {Pσx0 : σ ∈ Σ}
the set of all strategic measures (with the initial state x0 ∈ X). The expectation taken
with respect to Pσx0 is denoted by Eσx0 . We equip the space of probability measures on B(Ω),
denoted as P(Ω), with the weak topology generated by bounded continuous functions on
Ω, and fix its trace τ on the space P of all strategic measures. Then P(Ω) is a Borel space,
see [3, Corollary 7.25.1], and we endow P(Ω) with its Borel σ-algebra.

The constrained optimal control problem for the MDP model {X∆,A, p, {rj}Jj=0} is

Minimize over all strategies σ: Eσx0

[ ∞∑
n=0

r0(Xn, An+1)

]
(4)

subject to Eσx0

[ ∞∑
n=0

rj(Xn, An+1)

]
≤ dj , j = 1, 2, . . . , J,

where, for j ∈ {0, 1, . . . , J},

Eσx0

[ ∞∑
n=0

rj(Xn, An+1)

]
:= Eσx0

[ ∞∑
n=0

r+
j (Xn, An+1)

]
− Eσx0

[ ∞∑
n=0

r−j (Xn, An+1)

]

with r+
j (·, ·) and r−j (·, ·) being the positive part and the negative part of the function rj(·, ·)

so that rj(·, ·) = r+
j (·, ·)− r−j (·, ·). We accept that ∞−∞ :=∞ concerning the definition

of Eσx0 [
∑∞

n=0 rj(Xn, An+1)].
If J = 0, then the problem is called unconstrained.

Definition 2 (Feasible and optimal strategies) A strategy is called feasible if all the
constraints in (4) are satisfied; it is called feasible with a finite value if, additionally,
Eσx0 [

∑∞
n=0 r0(Xn, An+1)] ∈ R := (−∞,∞); it is called optimal if it solves problem (4).

Definition 3 (Semicontinuous MDP) An MDP {X∆,A, p, {rj}Jj=0} is called semi-
continuous if
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(a) The action space A is compact.

(b) For each bounded continuous function f(·) on X,
∫
X f(y)p(dy|x, a) is continuous in

(x, a) ∈ X×A.

(c) For each j = 0, 1, . . . , J, the function rj(·, ·) is lower semicontinuous on X×A.

3 Preliminaries

In this section, we collect some preliminary results, which will be needed in proving the
main results of this paper. Several of them are known, or follow from well known results.
They will be called propositions. We thus skip the proofs of most of them but always refer
to relevant literature.

Proposition 1 (a) The set P of all strategic measures, for a fixed initial state x0 ∈ X,
is a measurable and convex subset of P(Ω). (Recall the notations introduced below
(3).)

(b) Suppose conditions (a) and (b) in Definition 3 are satisfied. Then the space P,
endowed with the weak topology, is compact.

Proof. For the first statement, see Theorem 8 of [31] and Chapter 5,§5 of [14]. For the
second statement, see e.g., [39]. 2

Unless stated otherwise, we always endow the space of strategic measures with the
weak topology.

The next result is known as the Derman-Strauch Lemma. It asserts that the marginal
distributions of each strategy can be replicated by a Markov strategy.

Proposition 2 For each strategy σ, there is a Markov strategy σM = {σMn }∞n=1 such that

Pσx0(Xn−1 ∈ dx,An ∈ da) = Pσ
M

x0 (Xn−1 ∈ dx,An ∈ da)

for each n = 1, 2, . . . . Here σMn is the stochastic kernel from X to A such that

Pσx0(Xn−1 ∈ dx,An ∈ da) = Pσx0(Xn−1 ∈ dx)σMn (da|x).

One can take an arbitrarily fixed version of the stochastic kernel σMn .

Proof. See Lemma 2 of [31]. 2

Now it is clear that one can restrict to Markov strategies when investigating problem
(4).

Next we introduce occupation measures of strategies.

Definition 4 (Occupation measures) The occupation measure Mσ
x0 of a strategy σ in

the MDP {X∆,A, p} with the initial state x0 ∈ X is defined by

Mσ
x0(ΓX × ΓA) := Eσx0

[ ∞∑
n=1

I{Xn−1 ∈ ΓX , An ∈ ΓA}

]

=

∞∑
n=1

Eσx0 [I{Xn−1 ∈ ΓX , An ∈ ΓA}]

for each ΓX ∈ B(X) and ΓA ∈ B(A). The set of all occupation measures is denoted as D;
Df := {Mσ

x0 : Mσ
x0(X×A) <∞} is the set of all finite occupation measures on B(X×A).
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Now for all j = 0, 1, . . . , J ,

Eσx0

[ ∞∑
n=0

rj(Xn, An+1)

]
=

∫
X×A

rj(x, a)Mσ
x0(dx× da).

Accordingly, one can reformulate problem (4) as follows:

Minimize over D : R0(M) :=

∫
X×A

r0(x, a)M(dx× da) (5)

subject to Rj(M) :=

∫
X×A

rj(x, a)M(dx× da) ≤ dj j = 1, 2, . . . , J.

Proposition 3 The set of all occupation measures D with the initial state x0 is a convex
set in the cone of [0,∞]-valued measures on B(X ×A). The set Df of finite occupation
measures is a convex subset of the linear space of finite signed measures on B(X×A). It
is a (convex) face of D.

Proof. It follows from Proposition 1 that the convex combination of two measures in D
is still in D. This justifies the first assertion. The second assertion follows from the first
assertion and the observation that if M1,M2 are in Df , then so is their convex combination.
For the last assertion, note that if, for some α ∈ (0, 1) and M1,M2 ∈ D, M = αM1 + (1−
α)M2 is in Df ⊆ D, then it is necessary that M1(X × A) < ∞ and M2(X × A) < ∞,
meaning that M1,M2 ∈ Df . Hence, Df is a face in D. 2

The next two results provide some relations satisfied by occupation measures of a
strategy (respectively, a stationary strategy).

Proposition 4 The occupation measure Mσ
x0 of a strategy σ satisfies the following equa-

tion:

µ(Γ×A) = δx0(Γ) +

∫
X×A

p(Γ|y, a)µ(dy × da), ∀ Γ ∈ B(X). (6)

Proof. See Lemma 9.4.3 of [28]. 2

Proposition 5 Suppose σs is a stationary strategy. Then

Mσs

x0(ΓX × ΓA) =

∫
ΓX

σs(ΓA|x)Mσs

x0(dx×A), ΓX ∈ B(X), ΓA ∈ B(A) (7)

and Mσs
x0(dx×A) is the (setwise) minimal measure on B(X) satisfying the equation

µ(Γ) = δx0(Γ) +

∫
X

∫
A
p(Γ|y, a)σs(da|y)µ(dy), Γ ∈ B(X). (8)

Proof. See [34, pp.563-564]. 2

As was mentioned in Section 1, for discounted MDPs as well as absorbing MDPs, see
e.g., [18, 31], the space of occupation measures was often endowed with the weak topology
generated by bounded continuous functions. To deal with infinite occupation measures, it
is more convenient to endowD with the final topology generated by the projection mapping
from the space of strategic measures to occupation measures. See the next definition.
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Definition 5 ρ is the final topology on D associated with the mapping O : P → D defined
by

M(dx× da) =
∞∑
n=1

P(Xn−1 ∈ dx,An ∈ da).

That is the finest topology for which the mapping O is continuous. A subset Γ ⊆ D is
open (wrt ρ) if and only if O−1(Γ) is open in P. Recall that P was endowed with the weak
topology.

Lemma 1 Consider the MDP model {X∆,A, p}.

(a) Under conditions (a) and (b) of Definition 3 the topological space (D, ρ) is compact.

(b) For each non-negative lower semicontinuous function r(·, ·) : X ×A → [0,∞], the
mapping R(·) : D → [0,∞] defined by

R(M) :=

∫
X×A

r(x, a)M(dx× da)

is lower semicontinuous.

The proofs of all the lemmas and theorems can be found in the appendix.

Corollary 1 If the MDP {X∆,A, p, {rj}Jj=0} is semicontinuous and rj(·, ·) ≥ 0, j =
0, 1, . . . , J , then the constrained problem (4) has an optimal solution, provided that there
exists a feasible solution.

Proof. Since the equivalent problems (4) and (5) have feasible solutions, the space (D, ρ)
is compact, and the functions Rj(·) are lower semicontinuous, we see that the set

{M ∈ D : Rj(M) ≤ dj , j = 1, 2, . . . , J}

is nonempty and compact. Thus, the lower semicontinuous function R0(·) attains its
minimum thereon. 2

Alternatively, the above corollary also follows from Proposition 1, see also [39], but its
proof was given here in the hope of improving readability.

4 Extreme finite occupation measures

In this section we present our first main result concerning the characterization of extreme
finite occupation measures. We emphasize that this result does not require any extra
conditions on the MDP model; in particular, the MDP does not need to be semicontinuous.

Definition 6 (Induced strategy) For M ∈ Df , the stationary strategy σs, coming form
the decomposition

M(dx× da) = σs(da|x)M(dx×A)

on B(X×A), is called induced (by M). Here one can take an arbitrarily fixed version of
the stochastic kernel σs, as the following lemma is valid.

The next result asserts that any finite occupation measure is generated by a stationary
strategy.
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Lemma 2 Suppose M ∈ Df and σs is the stationary strategy induced by M. (One can
take an arbitrary version of the stochastic kernel σs.) Then M = Mσs

x0 .

Lemma 2 is known for countable-state MDPs [1, Theorem 8.1]. See also [20], which
also provided examples showing that Lemma 2 does not hold for M ∈ D in general.

The next result plays an important role in Step 1 in the proof of Theorem 1.

Lemma 3 Let a stationary strategy σs be such that Mσs
x0 ∈ D

f . (E.g., σs is the strategy,
induced by M ∈ Df .) Then the following assertions hold.

(a)

Mσs

x (X×A) = Eσ
s

x

[ ∞∑
n=1

I{Xn−1 ∈ X}

]
<∞

for Mσs
x0(dx×A)-almost all x ∈ X.

(b) For a bounded R-valued function f(·) on X with f(∆) = 0, the function

v(x) := Eσ
s

x

[ ∞∑
n=1

f(Xn−1)

]
:= Eσ

s

x

[ ∞∑
n=1

f+(Xn−1)

]
−Eσsx

[ ∞∑
n=1

f−(Xn−1)

]
, x ∈ X

is measurable and with finite values for Mσs
x0(dx × A)-almost all x ∈ X. Here the

convention of ∞−∞ :=∞ is in use.

(c) The function v(·) in (b) satisfies equation

v(x) = f(x) +

∫
A

∫
X
v(y)p(dy|x, a)σs(da|x) Mσs

x0(dx×A)-a.s. (9)

If a measurable bounded function w(·) : X→ R satisfies equation (9), then w(x) =
v(x) for Mσs

x0(dx×A)-almost all x ∈ X.

We note that the function v(·) in parts (b,c) of the previous lemma may be not finite
everywhere, even though the function f(·) was bounded.

Theorem 1 An occupation measure M ∈ Df is extreme in Df if and only if M = Mϕ
x0 for

some deterministic stationary strategy ϕ.

5 Form of the optimal control strategy

In this section, we present our second main result, concerning the existence of an optimal
(J + 1)-mixed strategy to the constrained MDP problem. For this, we will impose further
conditions, which, in particular, guarantee that strategies whose occupation measures are
infinite are not optimal or feasible, see Theorem 2.

Definition 7 ((J + 1)-mixed strategy) According to Propositions 1 and 3, if σ1, σ2,
. . . , σL is a finite collection of strategies, then, for a set α1, α2, . . . , αL of non-negative
numbers with

∑L
l=1 αl = 1,

∑L
l=1 αlP

σl
x0 is a strategic measure and

∑L
l=1 αlM

σl
x0 is an

occupation measure for some strategy σ. We call it a mixture of strategies σ1, σ2, . . . , σL,
or for brevity, a (J + 1)-mixed strategy.

9



Theorem 2 Suppose the MDP {X∆,A, p, {rj}Jj=0} with initial state x0 ∈ X is semicon-
tinuous, rj(·, ·) ≥ 0, j = 0, 1, . . . , J , and there exists a feasible strategy σ with a finite
value. Furthermore, assume that, for each strategy σ such that Mσ

x0 /∈ D
f , there is some

j̃ ∈ {0, 1, . . . , J}, possibly depending on σ, satisfying
∫
X×A rj̃(x, a)Mσ

x0(dx× da) =∞.
Then there exists an optimal strategy in problem (4) in the form of a mixture of J + 1

deterministic stationary strategies.

The above theorem asserts the existence of an optimal strategy in the form of a mixture
of J + 1 deterministic stationary strategies. It does not claim that every optimal strategy
can be represented as a mixture of finitely many deterministic stationary strategies. For
completeness, we adapt [29, Example 3.3.3] to demonstrate this.

Example 1 Consider the MDP with X = {0, 1, 2}, A = {0, 1}, p({1}|1, 0) = 1, p({2}|1, 1)
= 1, p({2}|2, 0) = 1, p({2}|2, 1) = p({∆}|2, 1) = 1

2 , and p({1}|0, a) = p({2}|0, a) = 1
2 for

a ∈ A. The state ∆ is a costless cemetery. The state and action spaces are endowed with
their discrete topologies.

Let x0 = 0. Let r0(x, a) ≡ 0, and r1(x, a) = 1 for x = 1, 2 and r1(0, a) ≡ 0. Let J = 1
and d1 = 3. So any feasible strategy will be optimal, and any non-absorbing strategy σ
will be infeasible with Eσx0 [

∑∞
n=0 r1(Xn, An+1)] =∞. All the conditions in Theorem 2 are

satisfied.
The class Φ of absorbing deterministic stationary strategies is specified by ϕ(1) =

ϕ(2) = 1: the state 0 is essentially uncontrolled, and ϕ(0) is immaterial. We put â = 0.
Clearly, Df is a proper subset of D, and any strategy that selects 0 at state 1 with probability
1 will be non-absorbing.

Consider a stationary strategy defined by σs({0}|1) = σs({1}|1) = 1
2 . Then

Eϕ0

[ ∞∑
n=0

r1(Xn, An+1)

]
=: W1(0, ϕ) =

1

2
(1 + 2) +

1

2
2 =

5

2
, ∀ϕ ∈ Φ;

Eσ
s

0

[ ∞∑
n=0

r1(Xn, An+1)

]
=: W1(0, σs) =

1

2
(2 + 2) +

1

2
2 = 3.

Therefore, σs and all strategies ϕ ∈ Φ are feasible and thus optimal.
On the other hand, W1(0, σs) > W1(0, ϕ) for all ϕ ∈ Φ, so that the occupation measure

of σs cannot be represented as the convex combination of the occupation measures of strate-
gies from Φ. Of course, the occupation measure of σs cannot be represented as a mixture
of occcupation measures of non-absorbing deterministic stationary strategies together with
the ones from Φ.

It is well known that, if the MDP is semicontinuous and the cost functions r(·, ·) are
non-negative, then there exists an optimal solution to the unconstrained problem (4) (i.e.,
with J = 0), which is deterministic stationary: see Corollary 9.17.2 of [3] or Theorems
15.2 and 16.2 of [40]. Therefore, we will assume that J ≥ 1.

If there are feasible strategies in problem (4), but for all of them R0(Mσ
x0) = +∞, then

all feasible strategies are equally optimal. In this case, the only problem is to find a feasible
strategy. To do so, we choose an arbitrary positive index, e.g., j = 1, and investigate the

10



problem

Minimize over all strategies σ: Eσx0

[ ∞∑
n=0

r1(Xn, An+1)

]

subject to Eσx0

[ ∞∑
n=0

rj(Xn, An+1)

]
≤ dj , j = 2, 3, . . . , J.

Clearly, after re-enumerating the indices j, we obtain the standard problem (4) with the
reduced number of constraints (or just the unconstrained problem in case J was equal to
1). In such situations there is no need to require that the cost function r0(·, ·) exhibits any
further properties (semicontinuity etc) except for measurability. After solving the modified
problem, we obtain the desired feasible strategy. Clearly, the modified problem has a
feasible strategy with a finite value (because the original problem had a feasible strategy).
If all the other requirements of Theorem 2 are satisfied for the modified problem, then
Theorem 2 remains valid for it. As the result, in such a case, there exists an optimal
strategy in the original problem (4) in the form of a mixture of J deterministic stationary
strategies.

Let us consider the special case of optimal stopping like in [10]: the action space is
A∆ := A ∪ {∆}, where the isolated action ∆ means stopping the process: for all x ∈ X,
p({∆}|x,∆) = 1 and p(X|x, a) = 1 for all a ∈ A. If this MDP {X∆,A∆, p, {rj}Jj=0} is
semicontinuous, rj(·, ·) ≥ 0, j = 0, 1, . . . , J , there exists a feasible strategy with a finite
value, and, for some j̃ ∈ {0, 1, . . . , J}, rj̃(a, x) ≥ δ > 0 for all x ∈ X, a ∈ A, then all the

conditions of Theorem 2 are satisfied. Mσ
x0 /∈ D

f means that the process is never stopped,
hence

∫
X×A rj̃(x, a)Mσ

x0(dx× da) =∞. According to the above paragraph, one can omit
the requirement that the feasible strategy has a finite value.

6 Conclusion

The main results of the current work are Theorems 1 and 2, where we prove that every
extreme finite occupation measure is generated by a deterministic stationary strategy, and,
under mild conditions, show that the solution to the constrained problem is given by a
finite mixture of such strategies. All the similar statements in [1, 4, 5, 18, 16, 22, 31],
where the discounted or absorbing models were studied, follow from Theorems 1 and 2.

Appendix

Proof of Lemma 1. Some of the enlisted statements were presented in [9, Lemma 4.1].
(a) The mapping O is continuous, since D is endowed with the final topology ρ. Thus,

D = O(P) is compact as the continuous image of the compact P, see [13, Chapter I, §5,
Lemma 7].

(b) According to Lemma 7.14(a) of [3] , r(·, ·) = limi→∞ ri(·, ·), where ri(·, ·) are point-
wise increasing bounded continuous functions on X×A. For each i = 1, 2, . . . the mapping

Pσx0 →
∫
X×A

ri(x, a)Pσx0((X∆ ×A)t × dx× da× (X∆ ×A)∞)

is continuous for each t = 0, 1, . . . because τ is the weak topology in P. Therefore, the

11



mapping

Pσx0 →
n∑
t=0

∫
X×A

r(x, a)Pσx0((X∆ ×A)t × dx× da× (X∆ ×A)∞)

= lim
i→∞

n∑
t=0

∫
X×A

ri(x, a)Pσx0((X∆ ×A)t × dx× da× (X∆ ×A)∞)

is non-negative and lower semicontinuous again due to Lemma 7.14(a) of [3]. The mono-
tone convergence theorem was in use here. Since r(·, ·) ≥ 0, Lemma B.1.1 and Proposition
B.1.17 of [34] imply that the mapping

Pσx0 →
∞∑
t=0

∫
X×A

r(x, a)Pσx0((X∆ ×A)t × dx× da× (X∆ ×A)∞)

= sup
n=1,2,...

n∑
t=0

∫
X×A

r(x, a)Pσx0((X∆ ×A)t × dx× da× (X∆ ×A)∞)

=

∫
X×A

r(x, a)Mσ
x0(dx× da) = R(Mσ

x0) = R(O(Pσx0))

is lower semicontinuous. Now, for an arbitrarily fixed c ∈ R

O−1

({
M ∈ D : R(M) =

∫
X×A

r(x, a)M(dx× da) > c

})

=

P ∈ P :

∞∑
t=0

∫
X×A

r(x, a)Pσx0((X∆ ×A)t × dx× da× (X∆ ×A)∞) > c

 .

The set on the right-hand side is open in the topology τ . Hence the set {M ∈ D : R(M) >
c} is open in the topology ρ. 2

Proof of Lemma 2. The both measures M(dx×A) and Mσs
x0(dx×A) are finite and satisfy

equation

µ(ΓX) = δx0(ΓX) +

∫
X

∫
A
p(ΓX |y, a)σs(da|y)µ(dy), ∀ΓX ∈ B(X) : (10)

see Proposition 4 and Proposition 5.
Let us show that the measure M(dx ×A) is absolutely continuous wrt Mσs

x0(dx ×A)
on B(X).

Suppose for contradiction that M(Γ×A) > 0 and Mσs
x0(Γ×A) = 0 for some Γ ∈ B(X).

Denote Γ0 := Γ and, for n = 0, 1, . . ., put

Γ̃n+1 :=

{
y ∈ X :

∫
A
p(Γn|y, a)σs(da|y) > 0

}
;

Γn+1 := Γn ∪ Γ̃n+1.

Intuitively, Γn+1 is the set of states, starting from which, the state process under σs visits
Γ with positive probability within n + 1 steps. We will prove by induction that, for all
n = 0, 1, . . .,

M(Γn ×A) > 0;∫
X\Γn+1

∫
A
p(Γn|y, a)σs(da|y)M(dy ×A) = 0;

Mσs

x0(Γn ×A) = 0.

12



When n = 0, these assertions obviously hold because
∫
A p(Γ0|y, a)σs(da|y) = 0 for all

y ∈ X \ Γ̃1. Suppose they hold for some n ≥ 0 and consider the case of n+ 1.
Since Γn+1 ⊇ Γn, M(Γn+1 ×A) > 0. Suppose Mσs

x0(Γ̃n+1 ×A) > 0. Then, by (10),

Mσs

x0(Γn ×A) ≥
∫

Γ̃n+1

∫
A
p(Γn|y, a)σs(da|y)Mσs

x0(dy ×A) > 0,

which contradicts the inductive supposition. Thus, Mσs
x0(Γ̃n+1×A) = Mσs

x0(Γn+1×A) = 0.
Finally, ∫

X\Γn+2

∫
A
p(Γn+1|y, a)σs(da|y)M(dy ×A) = 0

because
∫
A p(Γn+1|y, a)σs(da|y) = 0 for all y ∈ X \ Γ̃n+2 ⊇ X \ Γn+2.

Therefore, for the increasing sequence {Γn}∞n=0, after we denote Γ̂ :=
⋃∞
n=0 Γn, we have

M(Γ̂×A) > 0 and, by the monotone convergence theorem,∫
(X\Γ̂)×A

p(Γ̂|y, a)M(dy × da) =

∫
X\Γ̂

∫
A
p(Γ̂|y, a)σs(da|y)M(dy ×A)

= lim
n→∞

∫
X\Γ̂

∫
A
p(Γn|y, a)σs(da|y)M(dy ×A)

≤ lim
n→∞

∫
X\Γn+1

∫
A
p(Γn|y, a)σs(da|y)M(dy ×A) = 0. (11)

Note also that x0 /∈ Γ̂ because Mσs
x0(Γ̂×A) = limn→∞Mσs

x0(Γn ×A) = 0.

Recall that M ∈ Df . According to Proposition 2, M = MσM
x0 for some Markov strategy

σM . Since M(Γ̂×A) > 0 and x0 /∈ Γ̂, there exists the minimal n > 0 such that Pσ
M

x0 (Xn ∈
Γ̂) > 0, for which we have the following equalities:

0 < Pσ
M

x0 (Xn ∈ Γ̂) = Pσ
M

x0 (Pσ
M

x0 (Xn ∈ Γ̂|Xn−1))

=

∫
X

∫
A
p(Γ̂|y, a)σMn (da|y)Pσ

M

x0 (Xn−1 ∈ dy)

=

∫
X\Γ̂

∫
A
p(Γ̂|y, a)σMn (da|y)Pσ

M

x0 (Xn−1 ∈ dy)

=

∫
(X\Γ̂)×A

p(Γ̂|y, a)Pσ
M

x0 (Xn−1 ∈ dy,An ∈ da),

where the third equality holds by the definition of the integer n. Hence,∫
(X\Γ̂)×A

p(Γ̂|y, a)MσM

x0 (dy × da) =

∫
(X\Γ̂)×A

p(Γ̂|y, a)M(dy × da) > 0,

which contradicts (11). We have proved that M(dx×A)� Mσs
x0(dx×A).

Let us define the following substochastc kernels on B(X) given x ∈ X:

P0(Γ|x) := δx(Γ);

Pn+1(Γ|x) :=

∫
X

∫
A
p(Γ|y, a)σs(da|y)Pn(dy|x), n = 0, 1, . . .

Γ ∈ B(X).
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Then Pi(Γ|x0) = Pσ
s

x0(Xi ∈ Γ), i = 0, 1, 2, . . . . Now, for any finite measure µ on B(X),
satisfying equation (10), we have the following iterations of this equation:

µ(Γ) = δx0(Γ) +

∫
X

∫
A
p(Γ|x0)σs(da|x0)

+

∫
X

∫
A
p(Γ|y, a)σs(da|y)

(∫
X

∫
A
p(dy|x, a)σs(da|x)µ(dx)

)
= P0(Γ|x0) + P1(Γ|x0) +

∫
X
P2(Γ|x)µ(dx)

= P0(Γ|x0) + P1(Γ|x0) + P2(Γ|x0) +

∫
X
P3(Γ|x)µ(dx)

= . . . = Eσ
s

x0

[
n∑
i=1

I{xi−1 ∈ Γ}

]
+

∫
X
Pn(Γ|x)µ(dx), (12)

n = 1, 2, . . . .

Here the Fubini Theorem was in use, and the last equality holds because

Pi(Γ|x0) = Pσ
s

x0(Xi ∈ Γ), i = 0, 1, 2, . . . .

Since p(X|y, a) ≤ 1, for each x ∈ X the sequence {Pi(X|x)}∞i=0 is monotonically non-
increasing, so that there exists the limit P∞(X|x) := limi→∞ Pi(X|x), and the function
P∞(X|·) : X→ [0, 1] is obviously measurable. By the dominated convergence theorem,

lim
n→∞

∫
X
Pn(X|x)µ(dx) =

∫
X
P∞(X|x)µ(dx).

Therefore, if we substitute Mσs
x0(dx×A) for µ(dx) in (12), we obtain

Mσs

x0(X×A) = lim
n→∞

Eσ
s

x0

[
n∑
i=1

I{Xi−1 ∈ X}

]
+

∫
X
P∞(X|x)Mσs

x0(dx×A),

leading to the equation
∫
X P∞(X|x)Mσs

x0(dx × A) = 0, because Mσs
x0(X × A)

= Eσ
s

x0 [
∑∞

i=1 I{Xi−1 ∈ X}] < ∞: the both measures Mσs
x0(dx × A) and M(dx × A) sat-

isfy equation (8), and Mσs
x0(dx×A) ≤ M(dx×A) by Proposition 5. Recall that M ∈ Df .

Since P∞(X|x) ≥ 0, we conclude that P∞(X|x) = 0 Mσs
x0(dx ×A)-a.s. and P∞(X|x) = 0

M(dx×A)-a.s. because M(dx×A)� Mσs
x0(dx×A). Hence, for each Γ ∈ B(X),

0 ≤ lim sup
n→∞

∫
X
Pn(Γ|x)M(dx×A) ≤ lim

n→∞

∫
X
Pn(X|x)M(dx×A)

=

∫
X
P∞(X|x)M(dx×A) = 0,

and thus limn→∞
∫
X Pn(Γ|x)M(dx×A) = 0. After we substitute M(dx×A) for µ(dx) in

(12), we obtain

M(Γ×A) = lim
n→∞

Eσ
s

x0

[
n∑
i=1

I{Xi−1 ∈ Γ}

]

+ lim
n→∞

∫
X
Pn(Γ|x)M(dx×A) = Mσs

x0(Γ×A).
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Finally,

M(ΓX × ΓA) =

∫
X
σs(ΓA|x)M(dx×A)

=

∫
X
σs(ΓA|x)Mσs

x0(dx×A) = Mσs

x0(ΓX × ΓA),

∀ΓX ∈ B(X), ΓA ∈ B(A).

2

Proof of Lemma 3. Note that, if a statement S(Xm) is valid Pσ
s

x0 -a.s. for all m = 0, 1, 2, . . .,
then the statement S(x) is valid for Mσs

x0(dx×A)-almost all x ∈ X and vice versa.
(a) If the formulated statement does not hold, then there is a set Γ ∈ B(X) such that,

for some m ≥ 0, Pσ
s

x0(Xm ∈ Γ) > 0 and

Eσ
s

x

[ ∞∑
n=1

I{Xn−1 ∈ X}

]
=∞ ∀x ∈ Γ.

Now

Mσs

x0(X×A) ≥ Eσ
s

x0

[ ∞∑
n=m+1

I{Xn−1 ∈ X}

]

= Eσ
s

x0

[
Eσ

s

x0

[ ∞∑
n=m+1

I{Xn−1 ∈ X}

∣∣∣∣∣Xm

]]

≥
∫

Γ
Eσ

s

x

[ ∞∑
n=1

I{Xn−1 ∈ X}

]
Pσ

s

x0(Xm ∈ dx) = +∞.

Here

Eσ
s

x0

[ ∞∑
n=m+1

I{Xn−1 ∈ X}

∣∣∣∣∣Xm

]
= Eσ

s

Xm

[ ∞∑
n=1

I{Xn−1 ∈ X}

]
because the controlled process {Xn}∞n=0, under the strategy σs, is Markov and time-
homogeneous.

The obtained contradiction with the assumption Mσs
x0 ∈ D

f proves the statement.
(b) Let {Fn}∞n=0 be the natural filtration Fn := σ{X0, X1, . . . , Xn} of the Markov

time-homogeneous process {Xn}∞n=0 under the control strategy σs and with the initial
state x0 ∈ X. For the positive and negative parts of f(·), we have the following relations
for each fixed m ≥ 0:

0 ≤ Eσ
s

x0

[ ∞∑
n=m+1

f±(Xn−1)

∣∣∣∣∣Fm
]

= Eσ
s

Xm

[ ∞∑
n=1

f±(Xn−1)

]
<∞ Pσ

s

x0 -a.s.

The very last inequality holds by (a) and the boundedness of the function f(·). Therefore,
the function v(·) is with finite values for Mσs

x0(dx×A)-almost all x ∈ X.
The measurability of v(·) follows from [15, Theorem 3.1]. Statement (b) is proved.

15



(c) Let {Fn}∞n=0 be the natural filtration Fn := σ{X0, X1, . . . , Xn} of the Markov
time-homogeneous process {Xn}∞n=0 under the control strategy σs and with the initial
state x ∈ X. According to (b),

v(x) = f(x) + Eσ
s

x

[
Eσ

s

x

[ ∞∑
n=2

f(Xn−1)

∣∣∣∣∣F1

]]
= f(x) + Eσ

s

x [v(X1)]

= f(x) +

∫
A

∫
X
v(y)p(dy|x, a)σs(da|x) Mσs

x0(dx×A)-a.s.

Here, all the terms are finite Mσs
x0(dx×A)-a.s. by (b). Equation (9) is proved.

Let us fix an arbitrary i ∈ {0, 1, . . .} and the filtration {Fn}∞n=0 corresponding to the
initial state x0 ∈ X. For the function w(·), we have the following obvious equation

Eσ
s

x0 [w(Xi+1)|Fi] =

∫
A

∫
X
w(y)p(dy|Xi, a)σs(da|Xi) Pσ

s

x0 -a.s. (13)

We are going to prove by induction the following equality

w(Xi) = Eσ
s

x0

 k∑
j=0

f(Xi+j)

∣∣∣∣∣∣Fi
+ Eσ

s

x0 [w(Xi+k+1)|Fi] Pσ
s

x0 -a.s. (14)

for k = 0, 1, . . ..
When k = 0, equality (14) follows from equation (9) for w(·) and (13). Suppose it

holds for some k ≥ 0. Then

w(Xi) = Eσ
s

x0

 k∑
j=0

f(Xi+j)

∣∣∣∣∣∣Fi
+ Eσ

s

x0 [f(Xi+k+1)|Fi]

+Eσ
s

x0

[∫
A

∫
X
w(y)p(dy|Xi+k+1, a)σs(da|Xi+k+1)

∣∣∣∣Fi]

= Eσ
s

x0

 k+1∑
j=0

f(Xi+j)

∣∣∣∣∣∣Fi
+ Eσ

s

x0 [Eσ
s

x0 [w(Xi+k+2)|Fi+k+1]|Fi]

= Eσ
s

x0

 k+1∑
j=0

f(Xi+j)

∣∣∣∣∣∣Fi
+ Eσ

s

x0 [w(Xi+k+2)|Fi] Pσ
s

x0 -a.s.

Here, the first equality is by (9), and the second equality is by (13). Equality (14) is
proved.

When k →∞, since the process {Xn}∞n=0 is Markov and time-homogeneous,

Eσ
s

x0

 k∑
j=0

f(Xi+j)

∣∣∣∣∣∣Fi
 = Eσ

s

Xi

[
k+1∑
n=1

f(Xn−1)

]
→ v(Xi) Pσ

s

x0 -a.s.

by the definition of the function v(·). According to (a),

Eσ
s

x0 [I{Xi+k+1 ∈ X}|Fi] = Eσ
s

Xi [I{Xk+1 ∈ X}]→ 0 as k →∞ Pσ
s

x0 -a.s.

Therefore, since the function w(·) is bounded, w(Xi) = v(Xi) Pσ
s

x0 -a.s., as required. 2
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Proof of Theorem 1. We assume that Df 6= ∅ and, according to Lemma 2, consider only
the occupation measures M = Mσs

x0 ∈ D
f coming from stationary strategies σs.

(a) The ‘if’ part. We will prove a little more general statement: if Mϕ
x0 ∈ Df is

the occupation measure generated by a deterministic stationary strategy ϕ, then Mϕ
x0 is

extreme in D (and certainly in Df , too).
Suppose Mϕ

x0 = αM1 + (1 − α)M2 with α ∈ (0, 1) and M1,2 ∈ D. Then M1,2 ∈ Df

because Mϕ
x0 ∈ Df and, according to Lemma 2, M1,2 = M

σs1,2
x0 for the induced stationary

strategies σs1,2. Therefore,

M = Mϕ
x0 = αM

σs1
x0 + (1− α)M

σs2
x0 . (15)

The goal is to show that M
σs1
x0 = M

σs2
x0 = Mϕ

x0 .

The both marginal measures M
σs1
x0(dx × A) and M

σs2
x0(dx × A) are absolutely contin-

uous wrt Mϕ
x0(dx × A); the Radon-Nikodym derivatives are denoted as h1(·) and h2(·)

correspondingly. From (15) we have

αh1(x) + (1− α)h2(x) = 1 for Mϕ
x0(dx×A)-almost all x ∈ X. (16)

Now, using (7), we have equalities

Mϕ
x0(dx× da) = Mϕ

x0(dx×A)δϕ(x)(da)

= αMϕ
x0(dx×A)h1(x)σs1(da|x)

+(1− α)Mϕ
x0(dx×A)h2(x)σs2(da|x)

= Mϕ
x0(dx×A)[αh1(x)σs1(da|x) + (1− α)h2(x)σs2(da|x)].

The expression in the square brackets is the Dirac measure δϕ(x)(da) for Mϕ
x0(dx × A)-

almost all x ∈ X. Note that any Dirac measure on B(A) is extreme in P(A). Therefore,
using (16), we conclude that

• on the set I0 := {x ∈ X : αh1(x) ∈ (0, 1)}, σs1(da|x) = σs2(da|x) = δϕ(x)(da) for
Mϕ
x0(dx×A)-almost all x ∈ I0;

• on the set I1 := {x ∈ X : αh1(x) = 1}, σs1(da|x) = δϕ(x)(da) for Mϕ
x0(dx×A)-almost

all x ∈ I1, and the stochastic kernel σs2(da|x) may be arbitrary, but on the set I1,

since (1−α) > 0, h2(x) = 0 for Mϕ
x0(dx×A)-almost all x ∈ I1, i.e., M

σs2
x0(I1×A) = 0,

and the values of σs2(da|x) are of no importance for the measure M
σs2
x0(dx × da) on

B(I1 ×A);

• symmetrically, on the set I2 := {x ∈ X : (1 − α)h2(x) = 1}, σs2(da|x) = δϕ(x)(da)

for Mϕ
x0(dx×A)-almost all x ∈ {I2 and M

σs1
x0(I2 ×A) = 0.

Recall that the measures M
σs1
x0(dx × A) and M

σs2
x0(dx × A) are absolutely continuous wrt

Mϕ
x0(dx×A). Thus, σs1(da|x) = δϕ(x)(da) for M

σs1
x0(dx×A)-almost all x ∈ X and σs2(da|x) =

δϕ(x)(da) for M
σs2
x0(dx×A)-almost all x ∈ X. Hence, ϕ is the stationary strategy induced

by M
σs1,2
x0 . and

M
σs1
x0 = M

σs2
x0 = Mϕ

x0 .

by Lemma 2.
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(b) The ‘only if’ part. According to Lemma 2, an extreme point M in Df satisfies
the equalities M(dx × da) = Mσs

x0(dx × da) = σs(da|x)Mσs
x0(dx ×A) on B(X ×A) for the

induced stationary strategy σs.
Step 1. Suppose that

σs(da|x) = ασs1(da|x) + (1− α)σs2(da|x),

where α ∈ (0, 1) and σs1 and σs2 are two essentially different stochastic kernels on A given
X. To be precise, we assume that, for some Γ̂A ∈ B(A) and Γ̂X ∈ B(X),

Mσs

x0(Γ̂X ×A) > 0 and σs2(Γ̂A|x) > σs1(Γ̂A|x) for all x ∈ Γ̂X .

The stochastic kernels σs1,2 define the corresponding stationary strategies, again denoted

as σs1,2. We will show that, in this case, the measure Mσs
x0 is not extreme in Df .

If M
σs1
x0(dx×A) = M

σs2
x0(dx×A) = Mσs

x0(dx×A), then, by Lemma 5,

Mσs

x0(dx× da) = Mσs

x0(dx×A)σs(da|x)

= αM
σs1
x0(dx×A)σs1(da|x) + (1− α)M

σs2
x0(dx×A)σ2(da|x)

= αM
σs1
x0(dx× da) + (1− α)M

σs2
x0(dx× da).

Therefore, the measure Mσs
x0 is not extreme in Df , as M

σs1
x0 6= M

σs2
x0 and M

σs1
x0 ,M

σs2
x0 ∈ Df .

(Recall that Df is a face of D.)

Suppose now that M
σs1
x0(dx × A) 6= Mσs

x0(dx × A) or M
σs2
x0(dx × A) 6= Mσs

x0(dx × A) .
There exists the first moment τ > 0 such that

either P
σs1
x0(Xτ ∈ dx) 6= Pσ

s

x0(Xτ ∈ dx) or P
σs2
x0(Xτ ∈ dx) 6= Pσ

s

x0(Xτ ∈ dx).

Without loss of generality we assume that the first inequality holds. What actually hap-
pens is that the both inequalities hold simultaneously at the moment τ : see (19).

Since
P
σs1
x0(Xτ−1 ∈ dx) = P

σs2
x0(Xτ−1 ∈ dx) = Pσ

s

x0(Xτ−1 ∈ dx),

we have equality

Pσ
s

x0(Xτ ∈ dx) = αP
σs1
x0(Xτ ∈ dx) + (1− α)P

σs2
x0(Xτ ∈ dx) (17)

because
σs(da|x) = ασs1(da|x) + (1− α)σs2(da|x).

Note, the controlled process {Xn}∞n=0 is Markov and time-homogeneous under all strategies
σs and σs1,2, with the transition probabilities∫

A
p(dy|x, a)σs(da|x) and

∫
A
p(dy|x, a)σs1,2(da|x)

correspondingly.
Let us introduce the Markov (non-stationary) strategies σM1 and σM2 by the formulae

σ
M1,2
n (da|x) = I{n 6= τ}σs(da|x) + I{n = τ}σs1,2(da|x).

The combination of strategic measures αPσ
M1

x0 +(1−α)Pσ
M2

x0 satisfies the key properties
of the strategic measure Pσ

s

x0 : see (1),(2),(3), or formula (1.7) in [31], or [27, §2.2.3]. Thus,

Pσ
s

x0 = αPσ
M1

x0 + (1− α)Pσ
M2

x0 =⇒ Mσs

x0 = αMσM1

x0 + (1− α)MσM2

x0 (18)
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and, like previously, MσM1

x0 ,MσM2

x0 ∈ Df because Mσs
x0 ∈ D

f . We aim to show that

MσM1

x0 (dx × A) 6= MσM2

x0 (dx × A) on B(X), leading to the desired assertion that Mσs
x0

is not extreme in Df .
Since the strategies σs, σs1,2 and σM1,2 are Markov and σs = ασs1 + (1− α)σs2, we have

the following relations:

Pσ
s

x0(Xτ ∈ dx) = αPσ
M1

x0 (Xτ ∈ dx) + (1− α)Pσ
M2

x0 (Xτ ∈ dx)

= αP
σs1
x0(Xτ ∈ dx) + (1− α)P

σs2
x0(Xτ ∈ dx);

Pσ
M1

x0 (Xτ ∈ dx) = P
σs1
x0(Xτ ∈ dx) 6= Pσ

s

x0(Xτ ∈ dx);

Pσ
M2

x0 (Xτ ∈ dx) = P
σs2
x0(Xτ ∈ dx) 6= Pσ

M1

x0 (Xτ ∈ dx), Pσ
s

x0(Xτ ∈ dx).

(19)

The first three lines here are according to the definitions of τ and of the strategies σM1,2

(see also (17)), and inequalities (19) follow from them.

Let Γ ∈ B(X) be such that Pσ
M1

x0 (Xτ ∈ Γ) 6= Pσ
M2

x0 (Xτ ∈ Γ). We fix the following
bounded functions on X∆, equal to zero on ∆:

h(x) := I{x ∈ Γ};

f(x) := h(x)−
∫
A

∫
X
h(y)p(dy|x, a)σs(da|x).

According to Lemma 3(b,c), the function

v(x) := Eσ
s

x

[ ∞∑
n=1

f(Xn−1)

]
, x ∈ X

is measurable and equals h(x) for Mσs
x0(dx × A)-almost all x ∈ X because h(·) satisfies

equation (9).
Let {F}∞t=0 be the natural filtration of the process {Xn}∞n=0, i.e., Ft := σ{X0, X1, . . . ,

Xt}. According to the definition of the strategies σM1,2 , σ
M1,2
n = σs for n > τ , so

Eσ
M1,2

x0

[ ∞∑
n=τ+1

f(Xn−1)

∣∣∣∣∣Fτ
]

= Eσ
s

x0

[ ∞∑
n=τ+1

f(Xn−1)

∣∣∣∣∣Fτ
]

= Eσ
s

Xτ

[ ∞∑
n=1

f(Xn−1)

]
= h(Xτ ) Pσ

s

x0 -a.s., and thus Pσ
M1,2

x0 -a.s.

The second equality holds because the controlled process {Xn}∞n=0 under the stationary

strategy σs is Markov and time-homogeneous. Note also that Pσ
M1,2

x0 � Pσ
s

x0 by (18). Now,

since σ
M1,2
n = σs for n < τ ,∫

X
f(x)MσM1,2

x0 (dx×A) = Eσ
s

x0

[
τ∑

n=1

f(Xn−1)

]

+Eσ
M1,2

x0

[
Eσ

M1,2

x0

[ ∞∑
n=τ+1

f(Xn−1)

∣∣∣∣∣Fτ
]]

= Eσ
s

x0

[
τ∑

n=1

f(Xn−1)

]
+ Eσ

M1,2

x0 [h(Xτ )]

= Eσ
s

x0

[
τ∑

n=1

f(Xn−1)

]
+ Pσ

M1,2

x0 (Xτ ∈ Γ).
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As the result, by the definition of the subset Γ,∫
X
f(x)MσM1

x0 (dx×A) 6=
∫
X
f(x)MσM2

x0 (dx×A)

=⇒ MσM1

x0 (dx×A) 6= MσM2

x0 (dx×A) on B(X).

Hence, the measure Mσs
x0 is not extreme in Df .

The further steps in fact repeat the arguments in the proof of Theorem 10 of [31], but
we provide the details for completeness.

Step 2. We will show that, if Mσs
x0 is an extreme point in Df , then, for each ΓA ∈ B(A),

ΓX ∈ B(X), α ∈ (0, 1), in case Mσs
x0(ΓX × A) > 0, there is x ∈ ΓX such that either

σs(ΓA|x) < α or σs(ΓA|x) > 1− α.
This statement is trivial for α > 1/2: if σs(ΓA|x) ≥ α > 1/2, then 1 − σs(ΓA|x) <

1/2 < α. Thus, below we assume that α ∈ (0, 1/2].
The proof is by contradiction. Namely, suppose there exist Γ̂A ∈ B(A), Γ̂X ∈ B(X)

and α ∈ (0, 1/2] such that Mσs
x0(Γ̂X ×A) > 0 and σs(Γ̂A|x) ∈ [α, 1 − α] for all x ∈ Γ̂X .

Consider the following stochastic kernels:

σs1(ΓA|x) =

{
σs(ΓA|x), if x /∈ Γ̂X ;
σs(ΓA∩(Γ̂A)c|x)

σs((Γ̂A)c|x)
, if x ∈ Γ̂X ;

σs2(ΓA|x) =


σs(ΓA|x), if x /∈ Γ̂X ;
σs(ΓA∩Γ̂A|x)

1−α + σs(ΓA ∩ (Γ̂A)c|x) σs((Γ̂A)c|x)−α
(1−α)σs((Γ̂A)c|x)

,

if x ∈ Γ̂X ;

ΓA ∈ B(A),

which are well defined because σs((Γ̂A)c|x) ≥ α > 0.
Clearly, ασs1(ΓA|x) + (1 − α)σs2(ΓA|x) = σs(ΓA|x) for all ΓA ∈ B(A) and x ∈ X;

Mσs
x0(Γ̂X ×A) > 0, and, for all x ∈ Γ̂X ,

σs2(Γ̂A|x)− σs1(Γ̂A|x) =
σs(Γ̂A|x)

1− α
− 0 ≥ α

1− α
> 0.

Therefore, the measure Mσs
x0 is not extreme in Df according to the statement in Step 1.

Step 3. We will show that, if Mσs
x0 is an extreme point in Df , then, for each ΓA ∈ B(A),

σs(ΓA|x) ∈ {0, 1} for Mσs

x0(dx×A)-almost all x ∈ X.

Let ΓA ∈ B(A) be arbitrarily fixed and introduce the sets

ΓXΓA(i) :=

{
x ∈ X : σs(ΓA|x) ∈

[(
1

2

)i
, 1−

(
1

2

)i]}
∈ B(X), i = 1, 2, . . . .

For eah i = 1, 2, . . ., Mσs
x0(ΓX

ΓA
(i) ×A) = 0 because, otherwise, for ΓA,ΓX := ΓX

ΓA
(i), and

α := (1
2)i, we would have Mσs

x0(ΓX ×A) > 0 and, for all x ∈ ΓX , σs(ΓA|x) ∈ [α, 1 − α],
which contradicts the statement proved at Step 2.

Note that ΓX
ΓA

(i) ⊂ ΓX
ΓA

(i+ 1) for all i = 1, 2, . . .. Now, for

ΓXΓA :=
∞⋃
i=1

ΓXΓA(i) = {x ∈ X : σs(ΓA|x) ∈ (0, 1)},
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we have Mσs
x0(ΓX

ΓA
× A) = limi→∞Mσs

x0(ΓX
ΓA

(i) × A) = 0, and the desired statement is
proved.

Step 4. Finally, we proceed to construct the measurable mapping ϕ : X → A such
that

σs(da|x) = δϕ(x)(da) for Mσs

x0(dx×A)-almost all x ∈ X.

As a separable metrizable space, A has a totally bounded metrization κ [3, Corollary
7.6.1]:

∀ε > 0 ∃{a1, a2, . . . , an} ⊂ A : A =

n⋃
i=1

O(ai, ε),

where O(ai, ε) := {a ∈ A : κ(a, ai) < ε}.
Let εk := 1

2k
(k = 1, 2, . . .) and let {ak1, ak2, . . . , aknk} be the corresponding εk-net in A.

Denote
Ski := {x ∈ X : σs(O(aki , εk)|x) /∈ {0, 1}}

and S :=
⋃
k,i S

k
i . These sets are obviously measurable, and, for all k = 1, 2, . . . , i =

1, 2, . . . , nk, M
σs
x0(Ski ×A) = 0 according to the statement proved on Step 3; Mσs

x0(S×A) = 0,
too.

We are going to construct the desired mapping ϕ on X \ S and then put ϕ(x) ≡ â for
all x ∈ S, for an arbitrarily fixed â ∈ A.

Let x ∈ X \ S be fixed. Since A =
⋃n1
i=1O(a1

i , ε1) and, for each i ∈ {1, 2, . . . , n1},
σs(O(a1

i , ε1)|x) ∈ {0, 1}, there is the minimal index i1 ∈ {1, 2, . . . , n1} such that
σs(O(a1

i1
, ε1)|x) = 1. We denote Ō1 := O(a1

i1
, ε1). Suppose that we have constructed

a set Ōk ∈ B(A) for k = 1, 2, . . . such that σs(Ōk|x) = 1. Then we put

Ōk+1 := Ōk ∩ Ôk+1,

where Ôk+1 = O(ak+1
ik+1

, εk+1) is the first one among the neighbourhoods

{O(ak+1
i , εk+1)}nk+1

i=1 on which σs(·|x) takes the value 1; thus σs(Ôk+1|x) = 1. Note,
σs(Ōk+1|x) = 1 because

1 = σs(Ōk ∪ Ôk+1|x) = σs(Ōk|x) + σs(Ôk+1|x)− σs(Ōk ∩ Ôk+1|x)

= 2− σs(Ōk+1|x).

For the sequence {Ōk}∞k=1, we have the following assertions.

• σs(Ōk|x) = 1 for all k = 1, 2, . . . and Ō1 ⊇ Ō2 ⊇ . . .. Thus σs
(⋂∞

k=1 Ō
k|x
)

= 1, and
hence

⋂∞
k=1 Ō

k 6= ∅.

•
⋂∞
k=1 Ō

k = {b} is a singleton because, if b1, b2 ∈
⋂∞
k=1 Ō

k, then, for each k ≥ 1,
b1, b2 ∈ O(akik , εk) for some ik ∈ {1, 2, . . . , nk} leading to the inequalities

κ(b1, b2) ≤ κ(b1, a
k
ik

) + κ(akik , b2) ≤ 2εk.

As the result, κ(b1, b2) ≤ limk→∞ 2εk = 0.

We put ϕ(x) := b for that preliminarily fixed x ∈ X \ S and for b ∈ A such that⋂∞
k=1 Ō

k = {b}. As was shown above, σs({ϕ(x)}|x) = σs(
⋂∞
k=1 Ō

k|x) = 1; so σs(da|x) =
δϕ(x)(da) for all x ∈ X\S, that is, for Mσs

x0(dx×A)-almost all x ∈ X because Mσs
x0(S×A) =

0. The mapping ϕ : X→ A is measurable because, for all ΓA ∈ B(A),

{x ∈ A : ϕ(x) ∈ ΓA} =

{
{x : σs(ΓA|x) = 1} \ S, if â /∈ ΓA;
{x : σs(ΓA|x) = 1} ∪ S, if â ∈ ΓA.
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(Recall that the stochastic kernel σs is measurable and S ∈ B(X).)
As the result,

M(dx× da) = Mσs

x0(dx× da) = σs(da|x)Mσs

x0(dx×A) = δϕ(x)(da)Mσs

x0(dx×A)

on B(X ×A), and M = Mϕ
x0 according to Lemma 2 because the deterministic stationary

strategy ϕ is induced by M ∈ Df . 2

Before proving Theorem 2, we present several statements on mathematical programs.
Suppose X is a convex compact space and Ĉ is the space of (−∞,+∞]-valued bounded

from below lower semicontinuous affine functions on X . Let R0(·), R1(·), . . . , RJ(·) ∈ Ĉ
and consider the following constrained problem

Minimize over x ∈ X : R0(x) subject to Rj(x) ≤ dj , j = 1, 2, . . . , J, (20)

where dj ∈ R are fixed constants and J ≥ 1. Here by a convex space we mean a convex
subset of a cone. This definition does not involve a linear space to embed the given space
in. The terms of affine functions and extreme points are understood wrt convex spaces,
or say convex sets in a cone. See the definitions in [37], where further relevant literature
can be found. For all our applications here, it is sufficient to remember that the space
of occupation measures is a convex subset of the cone of [0,∞]-valued measures. When
some occupation measures can take infinite values, it is difficult to embed the space of
occupation measures into a convex subset of any linear space, given that we use the usual
notions of addition and scalar multiplication for measures.

Proposition 6 Consider problem (20) as was described in the above paragraph. Suppose
problem (20) is non-degenerate, i.e., there is at least one point x̂ ∈ X satisfying all the
inequalities in (20). Assume also that Ĉ separates points in X . Then there exists a solution
to problem (20) in the form

∑J+1
k=1 αkxk, where αk ∈ [0, 1],

∑J+1
k=1 αk = 1, and xk is extreme

in X for each k = 1, 2, . . . , J + 1.

Proof. See [37, Theorem 2.1]. 2

If E is a nonempty convex subset of Rn and u ∈ E, then G(u) denotes the minimal face
of E containing the point u. A point u ∈ E is called Pareto optimal if, for each v ∈ E, the
componentwise inequality v ≤ u implies that v = u. The collection of all Pareto optimal
points is denoted by Par(E). The following result taken from [19] reveals the structure of
G(u).

Proposition 7 Suppose E is a fixed nonempty convex subset of Rn, and u ∈ Par(E).
Then the following assertions are valid.

(a) G(u) ⊆ Par(E).

(b) For some 1 ≤ k ≤ n, there exist hyperplanes

Hi = {x ∈ Rn : 〈x, bi〉 = βi}, i = 1, 2, . . . , k

with the following properties:

(i) bi ≥ 0 for i = 1, 2, . . . , k − 1 and bk > 0. Here all the inequalities are compo-
nentwise.

(ii) H1 is supporting to E0 := E at u; for i = 1, 2, . . . , k − 1, Ei := Ei−1 ∩ Hi and
Hi+1 is supporting to Ei at u;
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(iii) G(u) = Ek := Ek−1 ∩Hk.

Proof. See Lemmas 3.1 and 3.2 of [19]. 2

Now we are ready to present the proof of Theorem 2.
Proof of Theorem 2. The idea is to make use of Proposition 6 and Theorem 1.

In the space D of occupation measures, we fix the topology ρ as in Definition 5.
According to Corollary 1, there is a solution M∗ ∈ D to problem (5), equivalent to (4),
which has the form of problem (20):

• the space X = D is convex compact due to Proposition 3 and Lemma 1(a);

• the mappings Rj(·), j = 0, 1, . . . , J , are non-negative, affine and lower semicontinu-
ous by Lemma 1(b).

According to Step 1 in the proof of [37, Theorem 2.1], one can accept that the point

~R∗ := (R0(M∗), R1(M∗), . . . , RJ(M∗)) ∈ RJ+1

belongs to Par(O ∩ RJ+1), where

O := {~R(M) = (R0(M), R1(M), . . . , RJ(M)), M ∈ D}

is the (convex) objective space.
We denote E0 = E := O ∩ RJ+1 and emphasize that

~R(M) ∈ E0 ⇐⇒ M ∈ F0 := {M ∈ D : ~R(M) ∈ RJ+1}
= {M ∈ Df : ~R(M) ∈ RJ+1}.

The equality holds because, due to the imposed conditions, the component Rj̃(M) cannot

be finite if M(X × A) = +∞. The set F0, the full pre-image of E0 wrt the mapping
~R(·) : D → (R ∪ {∞})J+1, is a face of Df : recall that the mapping ~R(·) is affine.

Consider the sets Ei, i = 0, 1, . . . , k ≤ J + 1 and the hyperplanes Hi = {x ∈
RJ+1 : 〈x, bi〉 = βi}, i = 1, 2, . . . , k, as in Proposition 7 applied to n = J + 1, E and
u = ~R∗. Let Fi be the full pre-image of Ei wrt the mapping ~R(·). Note that M∗ ∈ Fi for
all i = 0, 1, . . . , k because ~R∗ = ~R(M∗) ∈ Ei for all i = 0, 1, . . . , k.

Firstly, let us prove that, for each i = 0, 1, . . . , k, Fi, is a (nonempty) face of Df .
Roughly speaking, Fi+1 is a face of Fi because Ei+1 is the exposed face of Ei. The
statement to be proved is valid for i = 0. Suppose it holds for some i = 0, 1, . . . , k − 1.
Then

Fi+1 = Fi ∩ {M ∈ Df : ~R(M) ∈ RJ+1, 〈~R(M), bi+1〉 = βi+1}
= {M ∈ Fi : 〈~R(M), bi+1〉 = βi+1}

because Ei+1 = Ei ∩ Hi+1. For each M ∈ Fi, ~R(M) ∈ Ei, so 〈~R(M), bi+1〉 ≥ βi+1 because
the hyperplane Hi+1 supports Ei at ~R∗. Therefore, if M = αM1 + (1 − α)M2 ∈ Fi+1 for
α ∈ (0, 1) and M1,M2 ∈ F i, then

〈~R(M1,2), bi+1〉 = βi+1, and hence M1,M2 ∈ Fi+1.

Thus, Fi+1 is a face of Fi and, consequently, a face of Df because Fi is a face of Df by the
induction supposition.
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We have proved that Fk is a nonempty face of Df and M∗ ∈ Fk. In fact, Fk is the
full pre-image of G(~R∗) = Ek, the minimal face of E = O ∩ RJ+1 containing ~R∗: see
Proposition 7.

Secondly, let us show that the face Fk is closed and hence compact. Since the hy-
perplanes Hi+1 = {x ∈ RJ+1 : 〈x, bi+1〉 = βi+1} are supporting Ei at u = ~R∗ (i =
0, 1, . . . , k − 1), one can also write

Fi+1 = {M ∈ Fi : 〈~R(M), bi+1〉 ≤ βi+1} = Fi ∩ {M ∈ D : 〈~R(M), bi+1〉 ≤ βi+1},

so that

Fk = F0 ∩

(
k−1⋂
i=0

{M ∈ D : 〈~R(M), bi+1〉 ≤ βi+1}

)

= F̄0 ∩

(
k−2⋂
i=0

{M ∈ D : 〈~R(M), bi+1〉 ≤ βi+1}

)
, (21)

where

F̄0 := F0 ∩ {M ∈ D : 〈~R(M), bk〉 ≤ βk} = {M ∈ D : 〈~R(M), bk〉 ≤ βk}.

The second equality holds because ~R(M) ≥ 0 and bk > 0: if 〈~R(M), bk〉 ≤ βk, then
~R(M) ∈ RJ+1; so that M ∈ F0. Note, F̄0 is not necessarily a face of D. The space (D, ρ)
is compact and all the mappings 〈~R(·), bi+1〉 : D → [0,∞], i = 0, 1, . . . , k − 1, are lower
semicontinuous by Lemma 1. Therefore, the set F̄0 is closed, and the face Fk of Df is
closed by (21), hence, compact, as the closed subset of the compact D.

The space Ĉ of (−∞,+∞]-valued bounded from below lower semicontinuous affine
functions on Df separates points in Df . Indeed, if M1 6= M2 are two measures from Df ,
then

C(M1) :=

∫
X×A

c(x, a)M1(dx× da) 6=
∫
X×A

c(x, a)M2(dx× da) =: C(M2)

for some non-negative bounded continuous function c(·, ·) : X×A→ R. (See Lemma 2.3
of [41], Theorem 5.9 of [30] and Proposition 7.18 of [3].) The mapping C(·) is non-negative,
lower semicontinuous and affine by Lemma 1(b), so that the desired assertion follows.

Since the compact face Fk ⊆ Df contains M∗, one can consider problem (5), on Fk,
not on D. This problem

R0(M) :=

∫
X×A

r0(x, a)M(dx× da)→ min
M∈Fk

(22)

s.t. Rj(M) :=

∫
X×A

rj(x, a)M(dx× da) ≤ dj , j = 1, 2, . . . , J,

satisfies all the conditions of Proposition 6:

• the space Fk is convex compact;

• the mappings Rj(·) : Fk → [0,∞], j = 0, 1, . . . , J , are non-negative, lower semicon-
tinuous by Lemma 1(b), and affine;

• problem (22) is non-degenerate, as the measure M∗ ∈ Fk satisfies all the constraints;
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• The space Ĉ separates points in Fk ⊆ Df .

According to Proposition 6, there exists a solution to problem (22) (hence, to problem
(5)) in the form

∑J+1
l=1 αlMl, where αl ∈ [0, 1],

∑J+1
l=1 αl = 1, and Ml is extreme in Fk

for each l = 1, 2, . . . , J + 1. Since Fk is a face of Df , Ml is extreme also in Df for
each l = 1, 2, . . . , J + 1 and equals Mϕl

x0 for some deterministic stationary strategy ϕl in
accordance with Theorem 1. Therefore, the mixture M̂ :=

∑J+1
l=1 αlM

ϕl
x0 solves problem

(5), and the corresponding strategic measure P̂ :=
∑J+1

l=1 αlP
ϕl
x0 solves problem (4). 2
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