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Abstract.9

We introduce I/O-efficient certifying algorithms for the recognition of bipartite,10

split, threshold, bipartite chain, and trivially perfect graphs. When the input graph11

is a member of the respective class, the certifying algorithm returns a certificate that12

characterizes this class. Otherwise, it returns a forbidden induced subgraph as a cer-13

tificate for non-membership. On a graph with n vertices and m edges, our algorithms14

take O(sort(n+m)) I/Os in the worst case for split, threshold and trivially perfect15

graphs. In the same complexity bipartite and bipartite chain graphs can be certified16

with high probability. We provide implementations and an experimental evaluation for17

split and threshold graphs.18

1 Introduction19

Certifying algorithms [19] ensure the correctness of an algorithm’s output without having to trust20

the algorithm itself. The user of a certifying algorithm inputs x and receives the output y with a21

certificate or witness w that proves that y is a correct output for input x. In a subsequent step,22

the certificate can be inspected using an authentication algorithm that considers the input, output23

and certificate and returns whether the output is indeed correct. Certifying the bipartiteness of24

a graph is a textbook example where the returned witness w is a bipartition of the vertices (YES-25

certificate) or an odd-length cycle subgraph, i.e. a cycle of vertices with an odd number of edges26

(NO-certificate).27
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Emerging big data applications need to process large graphs efficiently. Standard models of com-28

putation in internal memory (RAM, pointer machine) do not capture the algorithmic complexity29

of processing graphs with size that exceed the main memory. The I/O-model by Aggarwal and Vit-30

ter [1] is suitable for studying large graphs stored in an external memory hierarchy, e.g. comprised31

of cache, RAM and hard disk memories. The input data elements are stored in external memory32

(EM) packed in blocks of at most B elements and computation is free in main memory for at most33

M elements. The I/O-complexity is measured in I/O-operations (I/Os) that transfer a block from34

external to main memory and vice versa. Common tasks of many algorithms include reading or35

writing n contiguous items (which is referred to as scanning) requiring scan(n) := Θ(n/B) I/Os36

and sorting n consecutive elements requiring sort(n) := Θ((n/B) logM/B(n/B)) I/Os.37

1.1 Previous Work38

Certifying bipartiteness in internal memory takes linear time in the number of edges by any traver-39

sal of the graph. In external memory, however, breadth-first search [20, 2] and depth-first search [5]40

algorithms take suboptimal ω (sort (n+m)) I/Os for an input graph with n vertices and m edges.41

Heggernes and Kratsch [14] present optimal internal memory algorithms for certifying whether42

a graph belongs to the classes of split, threshold, bipartite chain, and trivially perfect graphs. They43

return in linear time a YES-certificate characterizing the corresponding class or a forbidden induced44

subgraph of the class (NO-certificate). The YES- and NO-certificates are authenticated in linear and45

constant time, respectively. A straightforward application to the I/O-model leads to suboptimal46

certifying algorithms since graph traversal algorithms in external memory are much more involved47

and no worst-case efficient algorithms are known.48

1.2 Our Results49

We present I/O-efficient certifying algorithms for split, threshold, bipartite chain, and trivially50

perfect graphs. All algorithms return in the membership case, a YES-certificate w characterizing the51

graph class, or a O(1)-size NO-certificate in the non-membership case. The YES- and NO-certificates52

can be authenticated using O(sort(n+m)) and O(1) I/Os, respectively. As a subroutine for the53

certification of bipartite chain graphs we develop a certifying algorithm to recognize bipartite54

graphs using O(sort(n+m)) I/Os with high probability. Additionally, we perform experiments55

for split and threshold graphs showing scaling well beyond the size of main memory.56

2 Preliminaries and Notation57

For a graph G = (V,E), let n = |V | and m = |E| denote the number of vertices V and edges58

E, respectively. We assume that the vertices V = {v1, . . . , vn} are ordered by their indices. For59

a vertex v ∈ V we denote by N(v) the neighborhood of v and by N [v] = N(v) ∪ {v} the closed60

neighborhood of v. The degree deg(v) of a vertex v is given by deg(v) = |N(v)|. A vertex v is61

called simplicial if N(v) is a clique and universal if N [v] = V .62

Subgraphs and Orderings The subgraph of G that is induced by a subset A ⊆ V of vertices63

is denoted by G[A]. The substructure (subgraph) of a cycle on k vertices is denoted by Ck and64

of a path on k vertices is denoted by Pk. The 2K2 is a graph that is isomorphic to the following65

constant size graph: ({a, b, c, d}, {ab, cd}).66
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Henceforth we refer to different types of orderings of vertices: an ordering (u1, . . . , un) is a (i)67

perfect elimination ordering (peo) if ui is simplicial in G[{ui, ui+1, . . . , un}] for all i ∈ {1, . . . , n},68

and a (ii) universal-in-a-component ordering (uco) if ui is universal in its connected component in69

G[{ui, ui+1, . . . , un}] for all i ∈ {1, . . . , n}. For a subset X = {u1, . . . , uk} ⊆ V , we call (u1, . . . , uk)70

a nested neighborhood ordering (nno) if (N(u1) \X) ⊆ (N(u2) \X)) ⊆ . . . ⊆ (N(uk) \X).71

Finally for any given ordering, we partition the set of neighbors N(v) into L(v) = {x ∈ N(v) :72

v is ranked higher than x} and H(v) = {x ∈ N(v) : v is ranked lower than x} where L(v) and73

H(v) denote the lower and higher ranked neighbors, respectively.74

Graph Relabeling A relabeling of a graph G = (V,E) is defined by a bijection f : V → V75

where each edge {u, v} ∈ E is reflected by an edge {f(u), f(v)} of relabeled endpoints. For an76

ordering α = (u1, . . . , un), a relabeling of G by α corresponds to the mapping where each vi is77

mapped to its rank in α, e.g. f(vi) = vr where r is the rank of vi in α.78

Employing this subroutine can lead to a more suitable representation of the graph in memory79

and often allows for more efficient data processing. The relabeling can be done I/O-efficiently80

in a constant number of scanning and sorting steps incuring O(sort(n+m)) I/Os [4]. As all81

our algorithms perform an initial relabeling according to some ordering, we use the vertex labels82

obtained by this initial relabeling.83

Graph Representation We assume an adjacency array representation [23] where the graph84

G = (V,E) is represented by two arrays P = [ Pi ]ni=1 and E = [ ui ]mi=1. The neighbors of a vertex85

vi are then given in sorted order by the vertices at position Pi to Pi+1−1 in E. This representation86

allows for efficient straight-forward processing of G: (i) scanning k consecutive adjacency lists87

consisting of m′ edges requires O(scan(m′)) I/Os and (ii) computing and scanning the degrees of88

k consecutive vertices requires O(scan(k)) I/Os.89

Time-Forward Processing Time-forward processing (TFP) is a generic technique to manage90

data dependencies of external memory algorithms [18]. These dependencies are typically modeled91

by a directed acyclic graph G = (V,E) where every vertex vi ∈ V models the computation of zi92

and an edge (vi, vj) ∈ E indicates that zi is required for the computation of zj .93

Computing a solution then requires the algorithm to traverse G according to some topological94

order ≺T of the vertices V . The TFP technique achieves this in the following way: after zi has been95

calculated, the algorithm inserts a message 〈vj , zi〉 into a minimum priority-queue data structure96

for every successor (vi, vj) ∈ E where the items are sorted by the recipients according to ≺T . By97

construction, vj receives all required values zi of its predecessors vi ≺T vj as messages in the data98

structure. Since these predecessors already removed their messages from the data structure, items99

addressed to vj are currently the smallest elements in the data structures and thus can be dequeued100

with a delete-minimum operation. By using suitable external memory priority-queues [3], TFP101

incurs O(sort(k)) I/Os, where k is the number of messages sent.102
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3 Certifying Graph Classes in External Memory103

3.1 Split Graphs104

A split graph is a graph that can be partitioned into two sets of vertices (K, I) where K and I induce105

a clique and an independent set, respectively. The partition (K, I) is called the split partition. They106

are additionally characterized by the forbidden induced subgraphs 2K2, C4 and C5, meaning that107

any vertex subset of a split graph cannot induce these substructures [13]. Since split graphs are a108

subclass of chordal graphs, there exists a perfect elimination ordering of the vertices for every split109

graph [11]. In fact, any non-decreasing degree ordering of a split graph is a perfect elimination110

ordering [14].111

Our algorithm adapts the internal memory certifying algorithm of Heggernes and Kratsch [14]112

to external memory by adopting time-forward processing. As output it either returns the split113

partition (K, I) as a YES-certificate or one of the forbidden substructures C4, C5 or 2K2 as a NO-114

certificate. We present the certifying algorithm and its corresponding authentication algorithm115

and provide details in Proposition 1 and Proposition 2 and conclude with Theorem 1 at the end116

of the subsection.117

Algorithm Description First, we compute a non-decreasing degree ordering α = (v1, . . . , vn)118

and relabel the graph according to α. Thereafter we check whether α is a perfect elimination119

ordering in O(sort(n+m)) I/Os by Proposition 1. In the case that α is not a perfect elimination120

ordering, the algorithm returns three vertices vj , vk, vi where {vi, vj}, {vi, vk} ∈ E but {vj , vk} /∈ E121

and i < j < k, violating that vi is simplicial in G[{vi, . . . , vn}]. In order to return a forbidden122

substructure we find additional vertices that complete the induced subgraphs. Note that (vk, vi, vj)123

already forms a P3 and may extend to a C4 if N(vk) ∩N(vj) contains a vertex z 6= vi that is not124

adjacent to vi.125

Computing (N(vk)∩N(vj)) \N(vi) requires scanning the adjacencies of three vertices totaling126

to O(scan(n)) I/Os. If (N(vk)∩N(vj))\N(vi) is empty we try to extend the P3 to a C5 or output127

a 2K2 otherwise. To do so, we find vertices x 6= vi and y 6= vi for which {x, vj}, {y, vk} ∈ E but128

{x, vk}, {y, vj} /∈ E that are also not adjacent to vi, i.e. {x, vi}, {y, vi} /∈ E. Both x and y exist129

due to the ordering α [14] and are found using O(1) scanning steps requiring O(scan(n)) I/Os. If130

{x, y} ∈ E then (vj , vi, vk, y, x) is a C5, otherwise G[{vj , x, vk, y}] constitutes a 2K2. Determining131

whether {x, y} ∈ E requires scanning N(x) and N(y) using O(scan(n)) I/Os.132

In the membership case, α is a perfect elimination ordering and the algorithm proceeds to verify133

first the clique K and then the independent set I of the split partition (K, I). Note that for a split134

graph the maximum clique of size k must consist of the k-highest ranked vertices in α [14] where135

k can be computed using O(sort(n+m)) I/Os by Proposition 2. Therefore, it suffices to verify for136

each of the k candidates vi whether it is connected to {vi+1, . . . , vn} since the graph is undirected.137

For a sorted sequence of edges relabeled by α, we check this property using O(scan(m)) I/Os. If we138

find a vertex vi ∈ {vn−k+1, . . . , vn} where {vi, vj} /∈ E with i < j then G[{vi, . . . , vn}] already does139

not constitute a clique and we have to return a NO-certificate. Since the maximum clique has size k,140

there are k vertices with degree at least k−1. By these degree constraints there must exist an edge141

{vi, x} ∈ E where x ∈ {v1, . . . , vi−1} [14]. Additionally, it holds that {x, vj} /∈ E and there exists142

an edge {z, vj} ∈ E where z ∈ {v1, . . . , vi−1} that cannot be connected to x, i.e. {x, z} /∈ E [14].143

Thus, we first scan the adjacency lists of vi and vj to find x and z in O(scan(n)) I/Os and return144

G[{vi, vj , x, z}] as the 2K2 NO-certificate. Otherwise let K = {vn−k+1, . . . , vn}.145

Lastly, the algorithm verifies whether the remaining vertices form an independent set. We verify146
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Algorithm 1: Recognizing Perfect Elimination in External Memory

Data: edges E of graph G, non-decreasing degree ordering α = (v1, . . . , vn)
Output: bool whether α is a peo, three invalidating vertices {vi, vj , vk} if not a peo

1 Relabel G according to α
2 for i = 1, . . . , n do
3 Retrieve H(vi) from E
4 if H(vi) 6= ∅ then
5 Let u be the smallest successor of vi in H(vi)
6 for x ∈ H(vi) \ {u} do
7 PQ.push(〈u, x, vi〉) // inform u of x coming from vi

8 while 〈v, vk, vj〉 ← PQ.top() where v = vi do // for each message to vi
9 if vk /∈ H(vi) then // vi does not fulfill peo property

10 return false, {vi, vj , vk}
11 PQ.pop()

12 return true

that each candidate vi is not connected to {vi+1, . . . , vn−k}, since the graph is undirected. For147

this, it suffices to scan over n− k consecutive adjacency lists in O(scan(m)) I/Os. More precisely,148

we scan the adjacency lists from vn−k to v1 and in case an edge {vi, vj} where i < j ≤ n − k is149

found we find two more vertices to again complete a 2K2. For the first occurrence of such a vertex150

vi, we remark that {vi+1, . . . , vn−k} and {vn−k+1, . . . , vn} form an independent set and a clique,151

respectively. Therefore there exists a vertex y ∈ K that is adjacent to x but not to vi [14]. We152

find y by scanning N(x) and N(vi) in O(scan(n)) I/Os. To complete the 2K2 we similarly find153

z ∈ N(y) \ (N(x) ∪N(vi)) in O(scan(n)) I/Os which is guaranteed to exist [14].154

Authentication Given G and a split partition (K, I) we can verify in O(sort(n+m)) I/Os that155

G is indeed a split partition. After relabeling G by a non-decreasing degree ordering α, we verify156

that the relabeled vertices of K correspond to the k-highest ranked vertices in α. By a subsequent157

scan over the relabeled edges we check whether any edge runs between vertices of I and that the158

last k vertices form a clique.159

For a graph G and any of the forbidden substructures 2K2, C4 or C5 we not only return the160

corresponding vertex subsets but also the edge positions in the adjacency array representation161

for both edges and non-edges. To do so, we revert the relabeling in O(sort(n+m)) I/Os and162

access all corresponding adjacency lists in O(scan(n)) I/Os and return appropriate pointers to the163

adjacency array representation. For edges that are present in the substructure we directly point to164

the corresponding entry. Conversely, as non-edges are not present, we instead return pointers to165

the position the edge would have occupied if it existed using the fact that the individual adjacency166

lists are sorted. Since all NO-certificates are of constant size, authentication therefore only requires167

O(1) I/Os by direct accesses to memory.168

Proposition 1 Verifying that a non-decreasing degree ordering α = (v1, . . . , vn) of a graph G is169

a perfect elimination ordering takes O(sort(n+m)) I/Os.170

Proof: We follow the approach of [12, Theorem 4.5] and adapt it to the external memory using171

time-forward processing, see Algorithm 1.172
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Algorithm 2: Maximum Clique Size for Chordal Graphs in External Memory

Data: edges E of input graph G, perfect elimination ordering α = (v1, . . . , vn)
Output: maximum clique size χ

1 Relabel G according to α
2 χ← 0
3 for i = 1, . . . , n do
4 Retrieve H(vi) from E // scan E

5 if H(vi) 6= ∅ then
6 Let u be the smallest successor of vi in H(vi)
7 PQ.push(〈u, |H(vi)| − 1〉) // vi simplicial ⇒ G[N(vi)] is clique

8 S(vi)← −∞
9 while 〈v, S〉 ← PQ.top() where v = vi do

10 S(vi)← max{S(vi), S} // compute maximum over all

11 PQ.pop()

12 χ← max{χ, 1 + S(vi)}
13 return χ

After relabeling and sorting the edges by α, we iterate over the vertices in the order given by α.173

For a vertex vi the set of neighbors N(vi) needs to be a clique in order for vi to be simplicial. In174

order to verify this for all vertices, we iterate over α and at vertex vi retrieve H(vi) by a continuous175

scan over E. Then let u ∈ H(vi) be the smallest higher ranked neighbor. As u ∈ H(vi) ⊆ N(vi) is176

adjacent to vi, it has to be verified that it also is adjacent to the remaining neighbors. We verify177

this property partially for higher ranked neighbors in time-forward fashion. To do so, we insert a178

message 〈u,w〉 into a priority-queue where w ∈ H(vi)\{u} to inform u of every vertex it should be179

adjacent to. For any given vi it is therefore verified that N(vi) is a clique after the processing of all180

neighbors has finished. Conversely, after sending all required adjacency information, we retrieve181

for vi all messages 〈vi,−〉 directed to vi and check that all received vertices are indeed neighbors182

of vi by comparison to the existing adjacencies as seen by the scan over E.183

Relabeling and sorting the edges takes O(sort(m)) I/Os. Every vertex vi inserts at most all184

its higher ranked neighbors into the priority-queue totaling up to O(m) messages which takes185

O(sort(m)) I/Os. Checking that all received vertices are indeed neighbors only requires a concur-186

rent scan over all edges since vertices are handled in ascending order by α. �187

Proposition 2 Computing the size of a maximum clique in a split graph takes O(sort(n+m)) I/Os.188

Proof: Note that split graphs are both chordal and co-chordal [13]. For chordal graphs, computing189

the size of a maximum clique in internal memory takes linear time [12, Theorem 4.17] and can be190

adapted straight-forwardly to an external memory algorithm using O(sort(m)) I/Os.191

To do so, we simulate the data accesses of the internal memory variant using priority-queues to192

employ time-forward processing, see Algorithm 2. The algorithm proceeds similar to Algorithm 1193

but relays different information forward in time. For a vertex vi we instead inform the smallest194

successor u ∈ H(vi) of the fact it is in a clique of size |H(vi)|, namely the higher ranked neighbors195

of vi. Conversely, at each vertex vi, we collect all sent messages and compute the size of the196

maximum clique that vi is a part of and update the global maximum accordingly. �197
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By the above description and Proposition 1 and Proposition 2 it follows that split graphs can198

be recognized using O(sort(n+m)) I/Os which we summarize in Theorem 1.199

Theorem 1 A graph G can be recognized whether it is a split graph or not in O(sort(n+m))200

I/Os. In the membership case the algorithm returns the split partition (K, I) as the YES-certificate,201

and otherwise it returns an O(1)-size NO-certificate.202

3.2 Threshold Graphs203

Threshold graphs [8, 12, 17] are split graphs with the additional property that the independent204

set I of the split partition (K, I) has a nested neighborhood ordering. Its corresponding forbidden205

substructures are 2K2, P4 and C4. Alternatively, threshold graphs can be characterized by a206

graph generation process: repeatedly add universal or isolated vertices to an initially empty graph.207

Conversely, by repeatedly removing universal and isolated vertices from a threshold graph the208

resulting graph must be the empty graph. In comparison to certifying split graphs, threshold209

graphs thus require additional steps.210

Our algorithm adapts the internal memory certifying algorithm of Heggernes and Kratsch [14]211

to external memory. As output it either returns a nested neighborhood ordering β of I as a YES-212

certificate or one of the forbidden induced subgraphs C4, P4 or 2K2 as a NO-certificate. We again213

present the certifying algorithm and its corresponding authentication algorithm and provide details214

in Proposition 3 and conclude with Theorem 2 at the end of the subsection.215

Algorithm Description First, the algorithm certifies whether the input is a split graph. In216

the non-membership case, if the returned NO-certificate is a C5 we extract a P4 otherwise we217

return the substructure immediately. For the membership case, we recognize whether the input218

is a threshold graph by repeatedly removing universal and isolated vertices using the previously219

computed perfect elimination ordering α in O(sort(n+m)) I/Os by Proposition 3 (see below).220

If the remaining graph is empty, we return the independent set I with its non-decreasing degree221

ordering. Note that after removing a universal vertex vi, vertices with degree one become isolated.222

Since low-degree vertices are at the front of α, an I/O-efficient algorithm cannot determine and223

remove them on-the-fly after removing a high-degree vertex. Therefore preprocessing is required.224

For every vertex vi we compute the number of vertices S(vi) that become isolated after the225

removal of {vi, . . . , vn}. To do so, we iterate over α in ascending order and consider vertices226

vi where L(vi) = ∅. Since vi has no lower ranked neighbors, it would become isolated after227

removing all vertices in H(vi), in particular this happens when the last successor with smallest228

index vj ∈ H(vi) is removed. To capture this information, we save vj in a vector S and sort S229

in non-ascending order incuring O(sort(m)) I/Os. The number of consecutive occurrences of any230

vertex vj in S correspond to the number of isolated vertices that are created by the removal of231

the vertices {vj , . . . , vn}. Thus, the aforementioned values S(vn), . . . , S(v1) are now accessible by232

a scan over S after counting the occurrences of each vj in O(scan(m)) I/Os.233

The algorithm now proceeds to check whether removing universal and isolated vertices leads234

to an empty graph. By iterating in reverse order of α, vertices are considered in non-increasing235

degree order and verified to be universal using the values that are computed in the preprocessing236

stage without the need to actually remove them. This incurs a total of O(scan(n)) I/Os. In237

the membership case, the resulting graph would be empty and we return a non-decreasing degree238

ordering β on the vertices of the independent set I. In the non-membership case, there must exist239

a P4 since the input is a split graph and can therefore not contain a C4 or a 2K2.240
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Algorithm 3: Recognizing Threshold Graphs for Split Graphs in External Memory

Data: edges E of split graph G, peo α = (v1, . . . , vn)
Output: bool whether G is threshold

1 Relabel G according to α
2 Vector S
3 for i = 1, . . . , n do
4 if L(vi) = ∅ then
5 Let vj be the smallest successor of vi in H(vi)
6 S.push(vj) // vi would be isolated after deleting {vj , . . . , vn}

7 Sort S in non-ascending order
8 ndel ← 0 // number of deleted universal/isolated vertices

9 for i = n, . . . , 1 do
10 if L(vi) 6= ∅ then // vi not isolated in G[{v1, . . . , vn}]
11 if |L(vi)| < (n− 1)− ndel then // vi not universal

12 return false

13 ndel ← ndel + 1 + occurrences of vi // vi removed, scan S

14 return true

To find a P4, we can disregard further vertices from the remaining graph that cannot be part of241

a P4. For this, let K ′ ⊂ K and I ′ ⊂ I be the remaining vertices when the non-universal vertex is242

discovered. Any v ∈ K where N(v)∩I ′ = ∅ and any v ∈ I where N(v)∩K ′ = K ′ cannot be part of243

a P4 and can therefore be disregarded [14]. We proceed by considering and removing vertices of K244

by non-descending degree and vertices of I by non-ascending degree. After this process, we retrieve245

the highest-degree vertex v in I for which there exists {v, y} /∈ E and {y, z} ∈ E where y ∈ K and246

z ∈ I [14]. Additionally, there is a neighbor w ∈ K of v for which {w, z} /∈ E [14] and we return247

the P4 given by G[{v, w, y, z}]. Finding the P4 therefore only requires O(scan(n+m)) I/Os.248

Authentication Given G and a nested neighborhood ordering β, we authenticate that the im-249

plicitly given split partition (K, I) certifies that G is a split graph using O(sort(n+m)) I/Os, as250

detailed in subsection 3.1. It remains to verify that β = (v1, . . . , v|I|) is indeed a nested neighbor-251

hood ordering of I. To do so, we verify for increasing i that N(vi) ⊆ N(vi+1) by a concurrent scan252

over both neighborhoods requiring a total of O(scan(m)) I/Os for all i.253

Since the NO-certificates are again of constant size, authenticating in the non-membership case254

takes O(1) I/Os, as detailed in subsection 3.1.255

Proposition 3 Verifying that G emits an empty graph after repeatedly removing universal and256

isolated vertices requires O(sort(n+m)) I/Os.257

Proof: The described algorithm can be seen in Algorithm 3. Relabeling ofG by any non-decreasing258

degree ordering takes O(sort(n+m)) I/Os. Generating the values S(vn), . . . , S(v1) requires a scan259

over all adjacency lists in ascending order and sorting S which takes O(scan(m) + sort(n)) I/Os.260

After preprocessing, the algorithm only requires a reverse scan over the vertices vn, . . . , v1. While261

iterating over α we check for each vi whether L(vi) = ∅. If vi is not isolated it must be universal.262

Therefore we compare its current degree deg(vi) with the value (n − 1) − ndel where ndel =263 ∑n
j=j+1 S(vj). All operations take O(scan(m)) I/Os in total. �264
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By the above description and Proposition 3 it follows that there exists a certifying algorithm for265

the recognition of threshold graphs using O(sort(n+m)) I/Os which is summarized in Theorem 2.266

Theorem 2 A graph G can be recognized whether it is a threshold graph or not in O(sort(n+m)) I/Os.267

In the membership case the algorithm returns a nested neighborhood ordering β as the YES-certificate,268

and otherwise it returns an O(1)-size NO-certificate.269

3.3 Trivially Perfect Graphs270

Trivially perfect graphs have no vertex subset that induces a P4 or a C4 [12]. In contrast to split271

graphs, any non-increasing degree ordering of a trivially perfect graph is a universal-in-a-component272

ordering [14]. In fact, this is a one-to-one correspondence: a non-increasing sorted degree sequence273

of a graph is a universal-in-a-component ordering if and only if the graph is trivially perfect [14].274

In external memory this can be verified using time-forward processing by adapting the algorithm275

in [14]. As output it either returns a universal-in-a-component ordering γ as a YES-certificate or276

one of the two forbidden subgraphs C4, P4 as a NO-certificate. We again present the certifying277

algorithm and its corresponding authentication algorithm and provide details in Proposition 4 and278

conclude with Theorem 3 at the end of the subsection.279

Algorithm Description After computing a non-increasing degree ordering γ the algorithm280

relabels the edges of the graph according to γ and sorts them. Now we iterate over the vertices in281

ascending order of γ, process for each vertex vi its received messages and relay further messages282

forward in time. Initially all vertices are labeled with 0. Then, at step i vertex vi checks that all283

adjacent vertices N(vi) have the same label as vi. After this, vi relabels each vertex u ∈ N(vi)284

with its own index i and is then removed from the graph.285

In the external memory setting we cannot access labels of vertices and relabel them on-the-fly286

but rather postpone the comparison of the labels to the adjacent vertices instead. To do so, vi287

forwards its own label `(vi) to u ∈ H(vi) by sending two messages 〈u, vi, `(vi)〉 and 〈u, vi, i〉 to u,288

signaling that u should compare its own label to vi’s label `(vi) and then update it to i. Since the289

label of any adjacent vertex is changed after processing a vertex, when arriving at vertex vj an290

odd number of messages will be targeted to vj , where the last one corresponds to its actual label291

at step j. Then, after collecting all received labels, we compare disjoint consecutive pairs of labels292

and check whether they match. In the membership case, we do not find any mismatch and return293

γ as the YES-certificate. Otherwise, we have to return a P4 or C4.294

In the description of [14] the authors stop at the first anomaly where vi detects a mismatch295

in its own label and one of its neighbors. We simulate the same behavior by writing out every296

anomaly we find, e.g. that vj does not have the expected label of vi via an entry 〈vi, vj , k〉 where297

k denotes the label of vj . After sorting the entries, we find the earliest anomaly 〈vi, vj , k〉 with the298

largest label k of vi’s neighbors in O(sort(m)) I/Os. Since vj received the label k from vk, but vi299

did not, it is clear that vk is not universal in its connected component in G[{vk, vk+1, . . . , vn}] and300

we thus find a P4 or C4. Note that (vk, vj , vi) already constitutes a P3 where deg(vk) ≥ deg(vj),301

since vj received the label k. Since vj is adjacent to both vk and vi and deg(vk) ≥ deg(vj), there302

must exist a vertex x ∈ N(vk) where {vj , x} /∈ E. Thus, G[{vk, vj , vi, x}] is a P4 if {vi, x} /∈ E303

and a C4 otherwise. Finding x and determining whether the forbidden subgraph is a P4 or a C4304

requires scanning O(1) adjacency lists using O(scan(n)) I/Os.305
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Algorithm 4: Recognizing Universal-in-a-Component Orderings in External Memory

Data: edges E of graph G, non-increasing degree ordering γ = (v1, . . . , vn)
Output: bool whether γ is a uco

1 Relabel G according to γ
2 for i = 1, . . . , n do
3 Vector L = [0] // initialize with 0

4 while 〈v, vj , `〉 ← PQ.top() where v = vi do // vi’s received labels

5 L.push(`)
6 PQ.pop()

7 for i = 1, . . . ,L.size/2 do // L.size is even

8 if L[2i] 6= L[2i+1] and L.size > 1 then // mismatch / anomaly

9 return false

10 `(vi)← L[L.size] // assign label of vi
11 Retrieve H(vi) from E // scan E

12 for u ∈ H(vi) do
13 PQ.push(〈u, vi, `(vi)〉)
14 PQ.push(〈u, vi, i〉)

15 return true

Authentication Given G and a universal-in-a-component ordering we run Algorithm 4 using306

O(sort(n+m)) I/Os by Proposition 4. In the case of non-membership, we find the given substruc-307

ture in O(1) I/Os, as detailed in subsection 3.1.308

Proposition 4 Verifying that a non-increasing degree ordering γ = (v1, . . . , vn) of a graph G with309

n vertices and m edges is a universal-in-a-component ordering requires O(sort(m)) I/Os.310

Proof: Every vertex vi receives exactly two messages per neighbor in L(vi) and verifies that all311

consecutive pairs of labels match. Then, either the label i is sent to each higher ranked neighbor of312

H(vi) via time-forward processing or it is verified that γ is not a universal-in-a-component ordering.313

Since at most O(m) messages are forwarded, the resulting overall complexity is O(sort(m)) I/Os.314

Correctness follows from [14] since the adapted algorithm performs the same operations but only315

delays the label comparisons. �316

By the above description and Proposition 4 it follows that there exists a certifying algorithm317

for the recognition of trivially perfect graphs using O(sort(n+m)) I/Os which we summarize in318

Theorem 3.319

Theorem 3 A graph G can be recognized whether it is a trivially perfect graph or not in O(sort(n+m))320

I/Os. In the membership case the algorithm returns the universal-in-a-component ordering γ as321

the YES-certificate, and otherwise it returns an O(1)-size NO-certificate.322

3.4 Bipartite Chain Graphs323

Bipartite chain graphs are bipartite graphs where one part of the bipartition has a nested neigh-324

borhood ordering [24] similar to threshold graphs. Interestingly, for chain graphs one side of the325
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bipartition exhibits this property if and only if both partitions do [24]. Its forbidden induced sub-326

structures are 2K2, C3 and C5. By definition, bipartite chain graphs are bipartite graphs which327

therefore requires I/O-efficient bipartiteness testing.328

Our algorithm adapts the internal memory certifying algorithm of Heggernes and Kratsch [14]329

to external memory. As a byproduct, we develop a certifying algorithm to recognize whether an330

input graph is bipartite or not and use it as a subroutine, see Lemma 1. The algorithm either331

returns a bipartition (U, V \U) with two nested neighborhood orderings on U and V \U as a YES-332

certificate or one of the forbidden induced subgraphs C3, C5 or 2K2 as a NO-certificate. We present333

the full certifying algorithm first and provide details in Lemma 1, Corollary 1 and conclude with334

Theorem 4 at the end of the subsection.335

Algorithm Description We follow the linear time internal memory approach of [14] with slight336

adjustments to accommodate the external memory setting. First, we check whether the input is337

indeed a bipartite graph. Instead of using breadth-first search which is very costly in external338

memory, even for constrained settings [2], we can use a more efficient approach with spanning339

trees which is presented in Lemma 1. In case the input is not connected, we simply return two340

edges of two different components as the 2K2. If the graph is connected, we proceed to verify that341

the graph is bipartite and return a NO-certificate in the form of a C3, C5 or 2K2 in case it is not.342

In order to find a C3, C5 or 2K2 some modifications to Lemma 1 are necessary. Essentially, the343

algorithm instead returns a minimum odd cycle that is built from T and a single non-tree edge.344

Due to minimality we can then find a C3, C5 or a 2K2. The result is summarized in Corollary 1.345

Then, it remains to show that each side of the bipartition has a nested neighborhood ordering.346

Let U be the larger side of the partition. By [17] it suffices to show that the input is a bipartite347

chain graph if and only if the graph obtained by adding all possible edges with both endpoints in348

U is a threshold graph. Instead of materializing the threshold graph, we implicitly represent the349

new adjacencies of vertices in U to retain the same I/O-complexity and apply Theorem 2 using350

O(sort(n+m)) I/Os. Note that, in this threshold graph vertices of U have higher degrees than351

vertices in V \U since U is the larger side of the bipartition. If the input is bipartite but not bipartite352

chain, we repeatedly delete vertices that are connected to all other vertices of the other side and353

the resulting isolated vertices, similar to subsection 3.3 and [14]. After this, the vertex v with354

highest degree has a non-neighbor y in the other partition. By similar arguments to subsection 3.2355

y is adjacent to another vertex z that is adjacent to a vertex x where {v, x} /∈ E [14]. As such,356

G[{v, y, z, x}] is a 2K2 and can be found in O(scan(n)) I/Os and returned as the NO-certificate.357

Authentication Given G and a bipartition (U, V \U) with two nested neighborhood orderings on358

U and V \U we first confirm that U and V \U are indeed independent sets usingO(sort(n+m)) I/Os359

similar to subsection 3.1. After this, we confirm that the provided orderings are nested neighbor-360

hood orderings as detailed in subsection 3.2.361

As the NO-certificates are of constant size, authentication again only takes O(1) I/Os in the362

non-membership case similar to subsection 3.1.363

Lemma 1 A graph G can be recognized whether it is a bipartite graph or not in O(sort(n+m))364

I/Os, given a spanning forest of the input graph. In the membership case the algorithm returns365

a bipartition (U, V \U) as the YES-certificate, and otherwise it returns an odd cycle as the NO-366

certificate.367

Proof: In case there are multiple connected components, we operate on each individually and368

thus assume that the input is connected. Let T be the edges of the spanning tree and E \ T the369
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non-tree edges. Any edge e ∈ E \ T may produce an odd cycle by its addition to T . In fact,370

the input is bipartite if and only if T ∪ {e} is bipartite for all e ∈ E \ T 1. We check whether371

an edge e = {u, v} closes an odd cycle in T by computing the distance dT (u, v) of its endpoints372

in T . Since this is required for every non-tree edge E \ T , we resort to batch-processing. Note373

that T is a tree and hence after choosing a designated root r ∈ V it holds that dT (u, v) =374

dT (u,LCAT (u, v)) + dT (v,LCAT (u, v)) where LCAT (u, v) is the lowest common ancestor of u375

and v in T . Therefore for every edge E \ T we compute its lowest common ancestor in T using376

O((1 +m/n) · sort(n)) = O(sort(m)) I/Os [7].377

Additionally, for each vertex v ∈ V we compute its depth in T in O(sort(m)) I/Os using Euler378

Tours [7] and inform each incident edge of this value by a few scanning and sorting steps. Similarly,379

each edge e = {u, v} is provided of the depth of LCAT (u, v). Then, after a single scan over E \ T380

we compute dT (u, v) and check if it is even. If any value is even, we return the odd cycle as a381

NO-certificate or a bipartition in T as the YES-certificate. Both can be computed using Euler Tours382

in O(sort(m)) I/Os. �383

Corollary 1 If a connected graph G contains a C3, C5 or 2K2 then any of these subgraphs can be384

found in O(sort(n+m)) I/Os given a spanning tree of G.385

Proof: We extend the algorithm presented in Lemma 1 to either return the induced cycles C3386

and C5 or a 2K2. While iterating over the edges to find an odd cycle we save the smallest one by387

keeping a copy of the edge e ∈ E \T and the length of the minimum odd cycle. In case we find a C3388

or a C5 we are done and return the NO-certificate immediately otherwise for an odd (non-induced)389

cycle of length k with k = 2`+ 1 > 5 we return a 2K2 by finding a matching edge to the non-tree390

edge e ∈ E \ T in the cycle.391

Let C = (u1, . . . , uk, u1) be the returned cycle where {uk, u1} is the non-tree edge. In this392

case we return for the 2K2 the graph ({u`, u`+1, u1, uk}, {{u1, uk}, {u`, u`+1}}). If ` is odd,393

the non-edges of the 2K2 cannot exist since otherwise any of the following smaller odd cycles394

(u1, u2, . . . , u`+1, uk, u1), (u1, u2, . . . , u`, u1), (u`, u`+1, . . . , uk, u`) and (u1, u`+1, u`+2, . . . , uk, u1)395

would be present, contradicting the minimality of C. For the other case where ` is even, a similar396

argument can be found. The I/O-complexity therefore remains the same. �397

We summarize our findings for bipartite chain graphs in Theorem 4.398

Theorem 4 A graph G can be recognized whether it is a bipartite chain graph or not in O(sort(n+m))399

I/Os with high probability. In the membership case the algorithm returns a bipartition (U, V \U)400

and nested neighborhood orderings of both partitions as the YES-certificate, and otherwise it returns401

a O(1)-size NO-certificate.402

Proof: Computing a spanning tree T requires O(sort(n+m)) I/Os with high probability by an403

external memory variant of the Karger, Klein and Tarjan minimum spanning tree algorithm [7].404

By Corollary 1 we find a C3, C5 or 2K2 if the input is not bipartite or not connected. We proceed405

by checking the nested neighborhood orderings of both partitions in O(sort(n+m)) I/Os using406

Theorem 2. �407

1Since T is bipartite, one can think of T as a representation of a 2-coloring on T .
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Figure 1: Running times of the certifying algorithms for split (left) and threshold graphs (right)
for different random graph instances. The black vertical lines depict the number of elements that
can concurrently be held in internal memory.

4 Experimental Evaluation408

We implemented our external memory certifying algorithms for split and threshold graphs in C++409

using the STXXL library [9]. To provide a comparison of our algorithms, we also implemented410

the internal memory state-of-the-art algorithms by Heggernes and Kratsch [14]. STXXL offers411

external memory versions of fundamental algorithmic building blocks like scanning, sorting and412

several data structures. Our benchmarks are built with GNU g++-10.3 and executed on a machine413

equipped with an AMD EPYC 7302P processor and 64 GB RAM running Ubuntu 20.04 using six414

500 GB solid-state disks.415

In order to validate the predicted scaling behavior we generate our instances parameterized by416

n. For yes-instances of split graphs we generate a split partition (K, I) with |K| = n/10 and add417

each possible edge {u, v} with probability 1/4 for u ∈ I and v ∈ K. Analogously, yes-instances418

of threshold graphs are generated by repeatedly adding either isolated or universal vertices with419

probability 9/10 and 1/10, respectively. We additionally attempt to generate no-instances by420

adding O(1) many random edges to the yes-instances. In a last step, we randomize the vertex421

indices to remove any biases emerging from the generation process.422

In Figure 1 we present the running times of all algorithms on multiple yes- and no-instances.423

It is clear that the performance of both external memory algorithms is not impacted by the main424

memory barrier while the running time of their internal memory counterparts already increases425

when at least half the main memory is used. This effect is amplified immensely after exceeding426

the size of main memory for split graphs.427

Certifying the produced no-instances of split graphs seems to require less time than their428

corresponding unmodified yes-instances as the algorithm typically stops early. Furthermore, due429

to the low data locality of the internal memory variant it is apparent that the external memory430

algorithm is superior for the yes-instances. The performance on both yes- and no-instances is431

very similar in external memory. This is in part due to the fact that the common relabeling step is432

already relatively costly. For threshold graphs, however, the external memory variant outperforms433

the internal memory variant due to improved data locality.434
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5 Conclusions435

We have presented the first I/O-efficient certifying recognition algorithms for split, threshold,436

trivially perfect, bipartite and bipartite chain graphs. Our algorithms require O(sort(n+m)) I/Os437

matching common lower bounds for many algorithms in external memory. In our experiments we438

show that the algorithms perform well even for graphs exceeding the size of main memory.439

Further, it would be interesting to extend the scope of certifying recognition algorithms to more440

graph classes for the external memory regime. In internal memory, a plethora of graph classes are441

efficiently certifiable which currently have no efficient external memory pendant, e.g. circular-442

arc graphs [10], HHD-free graphs [22], interval graphs [16], normal helly circular-arc graphs [6],443

permutation graphs [16], proper interval graphs [15], proper interval bigraphs [15] and many more.444

Due to limited data locality, straight-forward applications of these algorithms are highly inefficient445

for use in external memory. In turn, new algorithmic techniques are necessary to bridge the gap446

to larger processing scales.447
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