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Information Exchange track-before-detect
Multi-Bernoulli filter for superpositional sensors

Elinor S. Davies, Ángel F. García-Fernández

Abstract—In this paper we derive the Information Exchange
track-before-detect Multi-Bernoulli (IEMB) filter for multi-target
filtering with superpositional sensors. The IEMB filter propagates
a multi-Bernoulli density through the filtering recursion and each
Bernoulli is propagated with its own prediction and update step.
At each update step, each Bernoulli filter exchanges the predicted
mean and covariance matrix of its measurement contribution
with the other Bernoulli filters. The exchanged information is
then used by the filters to perform the update step. Additionally,
we propose the Iterated Posterior Linearisation Filter (IPLF)
implementation of the IEMB filter (IEMB-IPLF). We compare
the IEMB-IPLF filter to a number of other non-linear filtering
methods showing the benefits of the proposed filter.

Index Terms—Multi-target tracking, track-before-detect,
multi-Bernoulli filtering, iterated posterior linearisation filter.

I. INTRODUCTION

There are many areas of research in which multiple tar-
get tracking [1] is an important component. These include
autonomous vehicles [2], space situational awareness [3],
positioning and mapping in communication networks [4] and
defence [1]. Most target tracking methods are detection based,
i.e. measurements which exceed a certain threshold result in a
detection being generated, which is then fed into the multiple
target tracking algorithm [1], [5], [6].

In this paper we focus on the track-before-detect approach
to multiple target tracking [7]–[11]. In track-before-detect, we
do not threshold the received signal, and we directly feed the
raw signal to the multiple target tracking algorithm. This is
especially beneficial in situations where there is a low signal-
to-noise ratio, as a detection-based tracker is more likely to
miss the targets.

In a Bayesian setting, the information of interest about
the current targets is encapsulated in the posterior density,
which is the density of the current targets given all past
measurements [12]. Computing the posterior in a track-before-
detect scenario is challenging due to the non-linear track-
before-detect measurement models. There are three situations
of interest in which this challenge has been addressed: 1)
single-target tracking, 2) multiple target tracking with fixed
and known number of targets, and 3) multiple target tracking
with an unknown and time-varying number of targets. We
proceed to review previous work in these cases.
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Single-target tracking with non-linear and non-Gaussian
measurement models can be addressed using particle filter-
ing [13]–[15], which is an asymptotitally optimal method
to approximate the posterior, or Gaussian filtering, which
is suitable for unimodal posteriors [12]. Standard Gaussian
filtering approaches to deal with non-linear measurements are
the Extended Kalman filter (EKF) [12], and the sigma-point
Kalman filters, such as the Unscented Kalman Filter (UKF)
[16], the Cubature Kalman Filter [17], [18] and the Quadrature
Kalman Filter [19]. All these non-linear Kalman filters perform
a linearisation of the non-linear measurement in the update
step, either by analytical linearisation, as in the EKF or by
statistical linear regression (SLR) [19], as in the sigma-point
Kalman filters. These methods generally work well unless
the non-linearities are significant enough in relation to the
covariance matrix of the measurement noise [20].

The optimal linearisation of the measurement function in a
mean square error sense is given by its SLR with respect to
the posterior [21]. This insight leads to a filter in which we
refine the selection of the linearisation via iterations such that
we can achieve a more accurate posterior approximation than
non-iterated Kalman filters: the iterated posterior linearization
filter (IPLF) [21], [22]. Specifically, the IPLF performs iterated
SLRs, approximated via sigma points, based on the current
approximation of the posterior, which enables an iterated
improvement of the posterior approximation.

To deal with track-before-detect with a fixed and known
number of targets, a challenge is to deal with the high-
dimensional state space. In the context of particle filtering, a
common approach is to use independent target approximations,
which have been used in a variety of filters [7], [8], [23]–
[26]. Of special relevance to this paper is the multiple particle
filtering approach [23], [27] in which a particle filter is
applied to each target independently, whilst an exchange of
information between different targets is performed at each time
step, thus providing, for example, the predicted mean, [23], or
the predicted mean and its covariance matrix [27], [28].

The concept of multiple particle filtering can be extended
to non-linear Gaussian filters. In multiple filtering, the state
is partitioned, such that each partition corresponds to a target,
and a separate filter is run for each partition. Again, the filters
exchange information; the predicted mean in [29], and the
predicted mean and its covariance matrix in [28], [30].

To deal with an unknown and variable number of targets,
a conventional approach is the use of random finite sets
(RFS) [5], where the multi-object state is a set of targets.
Of particular relevance in the design of track-before-detect
filters for an unknown and variable number of targets is the



type of measurement model. There are three main types of
measurement models: a general measurement model [7], [8],
[31], [32], a superpositional sensor model, in which each target
contribution is additive [33]–[36], and a measurement model
with non-overlapping target contributions to the measurement
[37], [38]. This last option implies that targets are assumed to
be sufficiently far away from each other at all times, which is
less challenging.

For these measurement models, there are different track-
before-detect RFS filters in the literature. For a superpositional
measurement model and a Poisson point process (PPP) birth
model, a probability hypothesis density (PHD) filter with
a particle filter implementation was proposed in [33]. For
a superpositional measurement model and an independent
identically distributed cluster process birth model, cardinality
probability hypothesis density (CPHD) filters with particle
filtering implementations were proposed in [33], [35]. Also,
for superpositional sensors and a PPP birth model, a filter
based on marked PPPs and a particle filter implementation
was proposed in [34].

A track-before-detect Bernoulli filter, which considers at
most one alive target, with a general measurement model
and a particle filter implementation was proposed in [39]. A
multi-Bernoulli filter, with a multi-Bernoulli birth model, non-
overlapping target measurement contributions and a particle
filter implementation was proposed in [37]. An improved
multi-Bernoulli particle filter with a general measurement
model and iterated Kullback-Leibler divergence (KLD) min-
imisations to improve the posterior density approximation
was proposed in [32]. A Poisson multi-Bernoulli filter, with
Poisson birth model, and non-overlapping target contributions
to the measurement is proposed in [38]. A multi-target particle
filter with a general measurement model and PPP birth,
implemented with a two-layer particle filter was proposed in
[31]. Two multi-target particle filters with target births sampled
from an existence grid were proposed in [7], [8]. In addition,
in parallel to this paper, a multi-Bernoulli filter with a more
general superpositional sensor model that includes a state-
dependent covariance matrix, and an implementation based on
belief propagation and particle filtering was proposed in [40].

In this paper, we propose a track-before-detect multi-
Bernoulli filter for superpositional sensors, which we refer to
as the Information Exchange Multi-Bernoulli (IEMB) filter.
The IEMB filter can be considered an extension of the multiple
filtering approach to deal with an unknown and time-varying
number of targets. The IEMB filter is derived by applying
KLD minimisation, augmenting the target states with auxiliary
variables [41], after each update step, to optimally approximate
the posterior as multi-Bernoulli, see Figure 1. In the IEMB
filter, every potential Bernoulli target has an independent
prediction step. In the update step, each Bernoulli target
shares its predicted measurement information consisting of its
predicted mean and covariance matrix. Each potential target
then performs its own update using the means and covariance
matrices shared by the other potential targets.

The second contribution of the paper is a Gaussian imple-
mentation of the IEMB filtering recursion via the IPLF that
aims to make an optimal use of the information provided

Figure 1: Diagram of the IEMB filter for track-before-detect. The filter
propagates a multi-Bernoulli (MB) density on the set of potential targets
for the current time step. After the update step, the IEMB filter performs
a KLD minimisation on the posterior by introducing auxiliary variables
to obtain the marginal multi-Bernoulli distributions for each potential
target.

by the measurements in each update. This implementation of
the IEMB is referred to as the IEMB-IPLF. The IEMB-IPLF
filter is compared to other track-before-detect filters based on
independent multi-Bernoulli filtering [37], and other Gaussian
filters. A preliminary conference version of this paper is [42].
Compared to the conference version, the journal extension
contains a more detailed presentation, the derivation of the
IEMB via KLD minimisation with auxiliary variables, the
IPLF implementation, and more thorough simulation results.

The rest of the paper is organised as follows. Section
II presents the problem formulation. Section III derives the
IEMB filter. The IPLF implementation is described in Section
IV. Simulation results are analysed in Section V. Finally,
conclusions are drawn in Section VI.

II. PROBLEM FORMULATION

We aim to approximate the posterior density of the set
of targets at the current time step given the sequence of
measurements up to the current time step. In particular, we
propose a new method to perform the update step for multi-
Bernoulli densities. We present the measurement model in
Section II-A, the dynamic model in Section II-B, the prediction
step in Section II-C and the update step in Section II-D.

A. Measurement model with superpositional sensors

A set of targets Xk at time step k is observed by way
of a vector of measurements zk =

[
z1k, ..., z

M
k

]T
, where

zjk ∈ Rnz is the measurement from the jth cell, nz is the
dimensionality of zjk, and M is the number of cells. The vector
of measurements zk has a likelihood

p (zk|Xk) =

M∏

j=1

p
(
zjk|Xk

)
(1)

which is the product of the likelihood from each cell, given
by p

(
zjk|Xk

)
. This means that, given the set of targets, the

measurement in each cell is independent of the rest.
We are interested in the case where there are superpositional

sensors for example, radar sensors [5, Chapter 19]. Given
that the measurements are superpositional, the measurement
in the j th cell is the sum of each target contribution to the
measurement and is given by

zjk =
∑

xk∈Xk

hj (xk) + ηj (2)



where xk is a target with state xk ∈ Rnx , where nx is the
dimensionality of xk, and hj (·) is the measurement function
for the j th cell. The set of targets Xk therefore belongs to
F (Rnx), which denotes the set of finite subsets of Rnx .
Also, ηj is an independent zero-mean Gaussian noise with
a covariance matrix Rj .

From (2), we can see that the set of targets Xk only affects
the measurements through the sum of terms in (2). Therefore,
the likelihood of the jth cell can be written as

p
(
zjk|Xk

)
= l

(
zjk|

∑

xk∈Xk

hj (xk)

)
(3)

where

l

(
zjk|

∑

xk∈Xk

hj (xk)

)
= N

(
zjk;

∑

xk∈Xk

hj (xk) , R
j

)
(4)

where N
(
zjk; ẑ

j , Rj
)

is a Gaussian density with mean ẑj ,

covariance matrix Rj , evaluated at zjk. It should be noted that
(4) is a function of the sum of each target contribution to the
measurement. The mean and the covariance for the jth cell
measurement given Xk are

E
[
zjk|Xk

]
=

∑

xk∈Xk

hj (xk) (5)

C
[
zjk|Xk

]
= Rj . (6)

B. Dynamic model

Each target is considered to move independently of all other
targets present. New targets can be born, independently of
other targets, at each time step. The set Xk+1 is the union of
any surviving targets and any potential targets that are born
independently.

1) Multi-Bernoulli birth: To model target birth, a multi-
Bernoulli birth model with nb Bernoulli components is used
[5] [43, Example 2]. Each Bernoulli component represents a
potential target that may be born. When considering the case
where the lth Bernoulli component is empty at time step k−1
for a target to exist in time step k it must be born into that
time step. The density of the lth Bernoulli component at birth
is given by [39]

plk|k−1 (Xk) =





1− plb Xk = ∅
plbb

l
k (x) Xk = {x}

0 otherwise

(7)

where, plb is the probability of birth and blk (·) its single-target
density at birth.

It should be noted that, in detection-based multi-target
tracking, it is more convenient to model target birth as a
PPP, instead of multi-Bernoulli due to these reasons: there is a
more compact representation of the information on undetected
targets via a PPP intensity (lowering the number of global
hypotheses), the birth model does not cap the maximum num-
ber of new born targets, and the initiation of each Bernoulli
potential target is driven by the measurements [44], [45].
However, in track-before-detect with PPP birth model, it is

not clear how to initiate each Bernoulli potential target taking
into account the measurements. Thus, in this work, we adopt
a multi-Bernoulli birth model.

2) Bernoulli thinning: When considering the case where
the lth Bernoulli component exists at time step k − 1, for the
target to exist in time step k, it must survive to that time step.
The density of the surviving lth Bernoulli component given
that it existed at the previous time step is [39]

plk|k−1 (Xk| {x′}) =





1− ps(x
′) Xk = ∅

ps(x
′)πk|k−1 (x|x′) Xk = {x}

0 otherwise

(8)

where ps(x
′) is the probability that the target survives to the

next time step and transitions to a new state with transition
density πk|k−1 (x|x′).

C. Multi-Bernoulli prediction

The predicted density fk|k−1(·) is assumed to be multi-
Bernoulli with nk|k−1 potential targets. This multi-Bernoulli
density can then be expressed using the convolution formula
for independent RFSs [5]

fk|k−1 (Xk) =
∑

⊎
n
k|k−1

l=1
Xl=Xk

nk|k−1∏

i=1

f i
k|k−1

(
Xi
)

(9)

where ⊎ represents the disjoint union, and each Bernoulli
component is summed over (X1, . . . , Xnk|k−1 ) where each lth

Bernoulli set X l is a mutually disjoint (and possibly empty)
subset of Xk, and the predicted Bernoulli density of the lth

Bernoulli component is [39]

f l
k|k−1 (Xk) =





1− rlk|k−1 Xk = ∅
rlk|k−1p

l
k|k−1 (x) Xk = {x}

0 otherwise

(10)

where rlk|k−1represents the predicted probability of existence
for the lth Bernoulli component and plk|k−1 (·) is its single-
target predicted density. The Bernoulli density has a non-zero
value for sets with no more than one target.

It should also be noted that the multi-Bernoulli density
integrates to one by using the set integral [5]

ˆ

fk|k−1 (X) δX

=
∞∑

n=0

1

n!

ˆ

fk|k−1 ({x1, ..., xn}) dx1:n (11)

= 1 (12)

where x1:n = (x1, ..., xn).
For a potentially new born target, the lth Bernoulli predicted

density is given by (7). For the surviving lth potential target,
the predicted probability of existence rlk|k−1 and single-target
density plk|k−1 (·) [45]

rlk|k−1 = rlk−1|k−1

〈
ps, p

l
k−1|k−1

〉
(13)

plk|k−1 (x) =

´

πl
k|k−1 (x|x′) ps (x

′) plk−1|k−1 (x
′) dx′

〈
ps, plk−1|k−1

〉 (14)



where 〈h, g〉 is the notation for the inner product 〈h, g〉 =
´

h (x) g (x) dx.

D. Multi-Bernoulli update

Through the application of Bayes’ law on the likelihood (3)
and the predicted density (9), the posterior density is

fk|k (Xk) =

(
M∏
j=1

p
(
zjk|Xk

))
fk|k−1 (Xk)

´

[(
M∏
j=1

p
(
zjk|Xk

))
fk|k−1 (Xk)

]
δXk

. (15)

Equation (15) is not a multi-Bernoulli density. Therefore,
in order to develop a multi-Bernoulli filter for track-before-
detect, we need to approximate this density as multi-Bernoulli,
which is done in the next section.

III. INFORMATION EXCHANGE MULTI-BERNOULLI FILTER

In this section we present a multi-Bernoulli approximation
to the posterior density (15) and hence we provide a track-
before-detect multi-Bernoulli update. In Section III-A we
introduce auxiliary variables in the predicted and posterior
densities. With these auxiliary variables, in Section III-B,
we derive an optimal multi-Bernoulli approximation to the
posterior via KLD minimisation.

A. Auxiliary variables

In this section, we introduce auxiliary variables in the
predicted multi-Bernoulli density (9) to mark each Bernoulli
component with an index [41]. We use these auxiliary variables
to remove the convolution sum in (9) and then obtain the
updated marginal distributions for each potential target min-
imising the KLD (see Section III-B). It should be noted that
the use of auxiliary variables is common in Bayesian inference
to remove sums over latent/hidden variables by making them
explicit in the density under consideration, see for example,
auxiliary particle filtering [46], expectation maximisation [47]
and the concept of opening in factor graphs [48].

For a multi-Bernoulli prior, the use of auxiliary variables
is equivalent to target labelling [31], [49] but without adding
these variables to the dynamic/measurement models. In addi-
tion, in the case where the prior is a Poisson multi-Bernoulli
mixture [44], [50], the use of auxiliary variables has the benefit
of being able to handle multiple targets with the same auxiliary
variable to represent undetected targets [41]. We proceed to
explain how auxiliary variables are introduced in this setting.

Given (9), we augment the single-target space with an
auxiliary variable u such that the single-target state is (u, x).
The space of auxiliary variables is Uk =

{
1, ..., nk|k−1

}
, and

the augmented single-target state space is Uk×Rnx [41]. The
set of targets with the corresponding auxiliary variables is
denoted as X̃k. Then, the predicted multi-Bernoulli density
with auxiliary variables is defined as follows.

Definition 1. Given the predicted multi-Bernoulli density
fk|k−1 (·) in (9), we define the multi-Bernoulli density
f̃k|k−1 (·) with auxiliary variables as [41]

f̃k|k−1

(
X̃k

)
=

nk|k−1∏

i=1

f̃ i
k|k−1

(
X̃i

k

)
(16)

where

X̃i
k =

{
(u, x) ∈ X̃k : u = i

}
(17)

and the predicted density of the ith Bernoulli component (10)
with auxiliary variable is

f̃ i
k|k−1

(
X̃k

)
=





1− rik|k−1 X̃k = ∅
rik|k−1p

i
k|k−1 (x) δi [u] X̃k = {(u, x)}

0 otherwise
(18)

where δi [u] is the Kronecker delta, which meets δi [u] = 1 if
u = i, and δi [u] = 0 if u 6= i.

It should be noted that the use of the Kronecker delta term
δi [u] ensures that the ith Bernoulli component f̃ i

k|k−1(·) is
non-zero only if evaluated on a set with auxiliary variable i.
This implies that the convolution sum, which appears in (9),
disappears when auxiliary variables are introduced, see (16),
as there is only one term in the convolution sum that provides
a non-zero density, resulting in (18). Note that the Bernoulli
RFSs with auxiliary variable in (18) are independent, as the
Bernoulli RFSs without auxiliary variables in (9). In addition,
it holds that X̃k = X̃1

k ⊎ ... ⊎ X̃
nk|k−1

k .
As shown in [41, App. A] in a more general setting, if we

integrate the auxiliary variables in (16), we recover the density
without auxiliary variables (9). That is,

fk|k−1 ({x1, ..., xn})
=

∑

u1:n∈Un

k

f̃k|k−1 ({(u1, x1) , ..., (un, xn)}) (19)

where Un
k = Uk × ...× Uk (with n factors).

In addition, the density f̃k|k−1 (·) in (16) defines a multi-
target density on F (Uk × Rnx) that integrates to one such
that
ˆ

f̃k|k−1

(
X̃
)
δX̃

=

∞∑

n=0

1

n!

∑

u1:n∈Un

k

ˆ

f̃k|k−1 ({(u1, x1) , ..., (un, xn)}) dx1:n

(20)

=
∞∑

n=0

1

n!

ˆ

fk|k−1 ({x1, ..., xn}) dx1:n (21)

= 1 (22)

where we have used (19) and the fact that the set integral of
fk|k−1(·) is one.



B. Update step via KLD minimisation

We obtain the update step by minimising the KLD using
the auxiliary variables. Introducing auxiliary variables, the
posterior (15) becomes

f̃k|k

(
X̃k

)
∝

M∏

j=1

l


zjk|

∑

(u,x)∈X̃k

hj (x)




nk|k−1∏

i=1

f̃ i
k|k−1

(
X̃i

k

)
.

(23)

It should be noted that, if we integrate the auxiliary variables
in the updated density (23), we obtain the updated density
without auxiliary variables (15). That is,

fk|k ({x1, ..., xn}) =
∑

u1:n∈Un

k

f̃k|k ({(u1, x1) , ..., (un, xn)}) .

(24)

This property is a direct consequence of (19) and the fact that
the likelihood does not depend on the auxiliary variables.

We aim to approximate f̃k|k (·) as a multi-Bernoulli density
q̃ (·) (with auxiliary variables) of the form

q̃
(
X̃k

)
=

nk|k−1∏

i=1

q̃i
(
X̃i

k

)
(25)

where q̃i (·) is a Bernoulli density of the form (18). The
sequence of sets for all potential targets excluding the uth

potential target is denoted by

X̃
(−u)
k =

(
X̃1

k , . . . , X̃
u−1
k , X̃u+1

k , . . . , X̃
nk|k−1

k

)
. (26)

Lemma 2. Given f̃k|k(·) in (23), the multi-Bernoulli density

q̃ (·) of the form (25) that minimises the KLD

D
(
f̃k|k||q̃

)
=

ˆ

f̃k|k

(
X̃k

)
log

f̃k|k

(
X̃k

)

q̃
(
X̃k

) δX̃k (27)

has the Bernoulli density q̃u (·) given by

q̃u
(
X̃u

k

)
= f̃u

k|k

(
X̃u

k

)
(28)

=

ˆ

f̃k|k

(
X̃1

k ⊎ ... ⊎ X̃
nk|k−1

k

)
δX̃

(−u)
k (29)

,

ˆ

...

ˆ ˆ

...

ˆ

f̃k|k

(
X̃1

k ⊎ ... ⊎ X̃
nk|k−1

k

)

× δX̃1
k ...δX̃

u−1
k δX̃u+1

k ...δX̃
nk|k−1

k (30)

where f̃u
k|k (·) is the marginal posterior of the uth potential

target and (29) integrates out all potential targets except the

one with auxiliary variable u. In terms of the likelihood and

predicted density, f̃u
k|k (·) has the expression

f̃u
k|k

(
X̃u

k

)
=

pu
(
zk|X̃u

k

)
f̃u
k|k−1

(
X̃u

k

)

´

pu
(
zk|X̃u

k

)
f̃u
k|k−1

(
X̃u

k

)
δX̃u

k

(31)

where

pu
(
zk|X̃u

k

)
=

ˆ M∏

j=1

l


zjk|

∑

(u,x)∈X̃1

k
⊎...⊎X̃

n
k|k−1

k

hj (x)




nk|k−1∏

i=1:i6=u

f̃ i
k|k−1

(
X̃i

k

)
δX̃

(−u)
k . (32)

The proof is provided in Appendix A.
This lemma indicates that, in order to minimise the KLD,

qu (·) is given by the marginal distributions for the uth potential
target. As indicated by (31), this can be achieved by perform-
ing an update using a modified likelihood for each potential
target. The modified likelihood for the uth potential target is
(32) which is found by integrating out the contribution of the
other potential targets.

Equation (31) can be used to perform a Bernoulli update for
the uth potential target separately from the rest of the targets.
The updated probability of existence and single-target density
of the u-th potential target, from (31), are given by [39]

ruk|k =
ruk|k−1p

u
(
zk|
∣∣∣X̃u

k

∣∣∣ = 1
)

luk|k
(33)

luk|k =
(
1− ruk|k−1

)
pu (zk|∅)

+ ruk|k−1p
u
(
zk|
∣∣∣X̃u

k

∣∣∣ = 1
)

puk|k (x) =
puk|k−1 (x) p

u (zk| {x})
´

puk|k−1 (x) p
u (zk| {x}) dx

(34)

pu
(
zk|
∣∣∣X̃u

k

∣∣∣ = 1
)
=

ˆ

puk|k−1 (x) p
u (zk| {x}) dx (35)

where pu (zk| {x}) is the likelihood given that the uth potential

target has state {x}, pu
(
zk|
∣∣∣X̃u

k

∣∣∣ = 1
)

is the likelihood

given that the uth potential target exists, and pu (zk|∅) is the
likelihood given that the uth potential target does not exist.

We would like to remark that, as proved in [41], the KLD
with auxiliary variables is an upper bound of the KLD without
auxiliary variables, which is the one we would be mainly
interested in. That is,

D
(
fk|k ‖q

)
≤ D

(
f̃k|k ‖q̃

)
(36)

where density q(·) is obtained by integrating out the auxiliary
variables in q̃(·), see (19).

IV. GAUSSIAN IPLF IMPLEMENTATION

In this section, we propose a Gaussian implementation of
the IEMB filter based on the IPLF. In Section IV-A, we
present the prediction step. In Section IV-B, we calculate the
conditional moments of the measurements given the set of
targets. In Section IV-C, we provide the updated Bernoulli
when we perform a Gaussian update. Section IV-D presents the
concept of statistical linear regression, Section IV-E, the IPLF
update, and Section IV-F, the sigma-point implementation.

A. Prediction

The IEMB filter described in Section III is implemented
by using Gaussian approximations. We assume target birth is
a multi-Bernoulli where the single-target density for the ith

target is Gaussian with mean x̄i
b and covariance matrix P i

b .



Therefore, for new born targets, rik|k−1, x̄i
k|k−1 and P i

k|k−1

are

rik|k−1 =pib, x̄i
k|k−1 =x̄i

b, P i
k|k−1 =P i

b .

The transition density for a single target is linear and Gaussian

πi
k|k−1

(
x|xi

k−1

)
= N

(
x;Fxi

k−1, Q
)

(37)

where F is the transition matrix and Q the covariance matrix
of the measurement noise. The predicted mean and covariance
are found by using Kalman filter equations [12]

x̄u
k|k−1 = F x̄u

k−1|k−1 (38)

Pu
k|k−1 = FPu

k−1|k−1F
T +Q. (39)

Assuming that the probability of survival is a constant ps, the
probability of existence is predicted using [5]

ruk|k−1 = psr
u
k−1|k−1. (40)

B. Conditional moments

To perform the update of the IEMB filter using the IPLF, as
explained in the following two Sections (Subsection IV-C and
Section IV-D), we require the calculation of the conditional
mean and covariance of the measurement [22], which we
provide in this section.

The conditional mean and covariance of (32) given X̃u
k =

{(u, xu)} for the measurement model in (1) are provided by
the following proposition.

Proposition 3. Assuming the predicted density is multi-

Bernoulli of the form f̃k|k−1 (·) in (16), the conditional mean

and covariance matrix of zjk given X̃u
k = {(u, xu)} are

E
[
zjk|X̃u

k = {(u, xu)}
]
=hj (xu) +

nk|k−1∑

i=1:i6=u

riEi

[
hj (x)

]

(41)

C
[
zjk|X̃u

k = {(u, xu)}
]
=Rj +

nk|k−1∑

i=1:i6=u

C̃i

[
hj
(
xi
)]

, (42)

where

Ei

[
hj (x)

]
=

ˆ

hj (x) pik|k−1 (x) dx (43)

C̃i

[
hj
(
xi
)]

=riEi

[
hj
(
xi
) (

hj
(
xi
))T ]

−
(
ri
)2

Ei

[
hj
(
xi
)] (

Ei

[
hj
(
xi
)])T

(44)

Ei

[
hj (x)

(
hj (x)

)T ]
=

ˆ

hj (x)
(
hj (x)

)T
pik|k−1 (x) dx.

(45)

and the sums in (41) and (42) go through all i ∈
{1, ..., nk|k−1} except i = u.

In addition, the conditional mean and and covariance

matrix of zjk given X̃u
k = ∅ are

E
[
zjk|X̃u

k = ∅
]
=

nk|k−1∑

i=1:i6=u

riEi

[
hj (x)

]
(46)

C
[
zjk|X̃u

k = ∅
]
=Rj +

nk|k−1∑

i=1:i6=u

C̃i

[
hj
(
xi
)]

. (47)

The proof of Proposition 3 is provided in Appendix B. It
should be noted that the conditional covariance of zjk is the
same for the cases X̃u

k = {(u, xu)} and X̃u
k = ∅. For the

conditional mean of zjk, the case X̃u
k = {(u, xu)} has the

additional term hj (xu).

C. Gaussian update

We now proceed to explain how to perform a Gaussian
update based on the conditional moments (41) and (42). The
measurement function and noise covariance for all sensors is
written as

h (x) =
[
h1 (x) , ..., hM (x)

]T
(48)

R = diag
(
R1, ..., RM

)
(49)

where diag (·) is used to represent a block diagonal matrix
with the indicated matrices in the block diagonal. To perform
a Gaussian update in closed form, we make the approximation
[21]

h (xu) ≈ Axu + b+ e (50)

where A ∈ RMnz×nx , b ∈ RMnz and e ∈ RMnz is a zero-
mean Gaussian distributed random variable with covariance
matrix Ω. The variable e is uncorrelated with x and η.
Then, the density of the measurement given the state can be
approximated as Gaussian

p
(
zk|
{
X̃u

k = {(u, xu)}
})

≈ N (zk;Ax
u + b+ ẑucorr, R+ Su

corr +Ω) , (51)

where

ẑucorr =

nk|k−1∑

i=1:i6=u

riEi [h (x)] (52)

Su
corr =

nk|k−1∑

i=1:i6=u

[
riEi

[
h (x) (h (x))

T
]

−
(
ri
)2

Ei [h (x)] (Ei [h (x)])
T
]

(53)

as required by (41) and (42).
Given (51), the single-target updated mean and covariance

matrix are

xu
k|k =xu

k|k−1 +Ku
(
zk − ẑuk|k−1

)
(54)

Pu
k|k =Pu

k|k−1 −KuSu (Ku)
T (55)

ẑuk|k−1 =Axu
k|k−1 + b+ ẑucorr (56)

Ku =Pu
k|k−1A

T (Su)
−1 (57)

Su =APu
k|k−1A

T +R+ Su
corr +Ω. (58)

The likelihoods for the existence and non-existence of each
potential target, which are required to obtain the updated
probability of existence, see (33), are

pu
(
zk|
∣∣∣X̃u

k

∣∣∣ = 1
)
=N

(
zk; ẑ

u
k|k−1, S

u
)

(59)



pu (zk|∅) =N (zk; ẑ
u
corr, R+ Su

corr) . (60)

Therefore, once we make approximation (51), the accuracy
of the posterior moments xu

k|k and Pu
k|k, and the updated

probability of existence ruk|k only depend on how we choose
the parameters (A, b,Ω) . In the following sections, we explain
the proposed approach to the selection of these parameters.

D. Statistical linear regression

In this section, we explain the key concept of statistical
linear regression to optimally select the parameters (A, b,Ω)
[19]. With SLR, we obtain an optimal linearisation of a func-
tion h (·) that minimises the mean square error with respect to
a probability density p (·), with mean x and covariance matrix
P . That is, with SLR, we obtain the linearisation

(
A+, b+

)
= argmin

(A,b)

E
[
‖h (x)−Ax− b‖2

]
(61)

where the expected value is taken w.r.t. density p (·). That
is, the best (affine) approximation of the function h(·) in the
sense of minimising the mean square error w.r.t. density p (·)
is A+x+ b+.

We can solve the optimisation problem (61) by setting

A+ = ΨTP−1 (62)

b+ = z −A+x (63)

where

z = E [h (x)]

Ψ = E
[
(x− x) (h (x)− z)

T
]
.

The resulting mean square error matrix gives us the noise
covariance parameter

Ω+ = E
[(
h (x)−A+x− b+

) (
h (x)−A+x− b+

)T ]

= C [h (x)]−A+P
(
A+
)T

(64)

where C [h (x)] is the covariance of h (x) w.r.t. density p (·).
The moments E [h(x)], E

[
(x− x) (h (x)− z)

T
]

and

C [h (x)] required to compute the SLR can be approximated
using first order Taylor series [22], sigma-point methods (such
as unscented and cubature transform) [16], [17] and quadrature
methods [19]. It should be noted that, if the measurement
function is linear h(x) = Hx, then, A+ = H , b+ = 0 and
Ω+ = 0, which indicates that there are no linearisation errors.

E. IPLF

A standard approach to the use of SLR in Gaussian non-
linear filtering is to obtain (A, b,Ω) w.r.t. the predicted density
and then to apply the resulting (affine) Kalman filter update
[12]. This is the approach followed by non-iterated sigma-
point Kalman filtering methods such as the UKF and the
CKF [15], [16], [18], [30]. This approach works well for
mild non-linearities or sufficiently high measurement noise,
as can be proved by a KLD analysis [20]. One reason for its
lower performance in high nonlinearities is that this selection
of (A, b,Ω) is sub-optimal, as it is not using all available

information. In particular, it does not use the value of the
current measurement z.

Once we know z, the SLR, should be done w.r.t. the updated
density so that we take the value of the measurement into
account. We cannot perform the SLR w.r.t. the posterior as
it is the density we would like to approximate. Nevertheless,
this gives rise to the IPLF that performs iterated SLRs w.r.t.
our best approximation of the posterior. In the IEMB setting,
this implies that we will carry out iterated SLR for each
potential target, also taking into account ẑucorr and Su

corr, which
are computed beforehand. That is, we start with the predicted
mean and covariance xu,0

k|k = xu
k|k−1 and Pu,0

k|k = Pu
k|k−1.

Then, we perform SLR of h(·) w.r.t. xu,0
k|k and Pu,0

k|k using
(62)-(64) to obtain

(
A1, b1,Ω1

)
. We plug these parameters

into (54) and (55) to obtain the updated mean and covariance
at the first iteration xu,1

k|k and Pu,1
k|k . Now, we calculate the SLR

of of h(·) w.r.t. xu,1
k|k and Pu,1

k|k to obtain
(
A2, b2,Ω2

)
and we

continue the iteration for a fixed number of steps, or until a
certain stopping criterion is met.

It should be noted that, when we apply (54) and (55), the
only parameters that change with the iterations are (A, b,Ω),
the predicted mean xu

k|k−1, covariance Pu
k|k−1, and the ex-

changed parameters ẑucorr and Su
corr remain unaltered with

iterations. That is, with each iteration we are refining the
choice of the parameters (A, b,Ω), but it is still the same
update.

F. Sigma point implementation

To implement the IEMB update, we use sigma points to
calculate zucorr and Su

corr and also to select the SLR parameters
A, b, Ω. The sigma points are selected using the unscented
transform [16].

To approximate an integral w.r.t. a density with mean x̄ and
covariance matrix Σx, we select a total 2nx +1 sigma points.
Given the weight ω0 of the sigma point located at the origin,
the weighting of each sigma point s, for s > 0, is given by
[16]

ωs =
1− ω0

2nx
(65)

where ω0 is a parameter that must be equal or greater than
zero for numerical stability. Using x̄ and the corresponding
covariance Σx, the sigma points are determined using [16]

X 0 = x̄ (66)

X i = x̄+

(√
nx

1− ω0
Σx

)

i

(67)

X i+nx = x̄−
(√

nx

1− ω0
Σx

)

i

(68)

where
(√

Σx

)
i

is the ith column of the matrix square root of
Σx (see [16, page 6]) and the matrix square root is calculated
using the Cholesky decomposition. We can use these sigma-
points to approximate the following moments

ĥ = E [h (x)] ≈
2nx∑

s=0

ωsh (X s) (69)



E

[
(x− x)

(
h (x)− ĥ

)T]
≈

2nx∑

s=0

ωs (X s − x̄)
(
h (X s)− ĥ

)T

(70)

ĥ hT = E
[
h (x)h (x)

T
]
≈

2nx∑

s=0

ωsh (X s) (h (X s))
T (71)

C [h (x)] ≈
2nx∑

s=0

ωs

(
ĥ hT − ĥi

(
ĥ
)T)

(72)

1) Sigma-points to compute ẑucorr and Su
corr: We use equa-

tions (52) and (53) to compute ẑucorr and Su
corr. This requires

the computation of the moments (69) and (70) w.r.t. the
predicted density. Therefore, we select sigma-points using
(65)-(68) that match the mean xu

k|k−1 and covariance matrix
Pu
k|k−1.
2) Sigma-points to compute (A, b, Ω): Once we have

approximated ẑucorr and Su
corr, we use the sigma points to

compute (A, b, Ω) in an iterated fashion using the IPLF. For
the ith iteration, we select the sigma-points using (65)-(68)
that match the mean xu,i

k|k and covariance matrix Pu,i
k|k . We

then compute the moments (69)-(72). A pseudocode of the
IEMB for a general choice of (A, b, Ω) is given in Algorithm
1. The choice of these parameters using the IPLF is provided
in Algorithm 2.

Algorithm 1 IEMB update for the uth potential target

Input: The predicted means x
1:nk|k−1

k|k−1 , covariance

P
1:nk|k−1

k|k−1 and probabilities r
1:nk|k−1

k|k−1 .
Output: The updated mean xu

k|k, covariance Pu
k|kand probab-

ility ruk|k.
For i = 1 : nk|k−1

• Calculate Ei [h (x)] using (69) with xi
k|k−1 and P i

k|k−1.

• Calculate Ei

[
h (x) (h (x))

T
]

using (71) with xi
k|k−1 and

P i
k|k−1.

End

For u = 1 : nk|k−1

• Calculate ẑucorr and Su
corr using (52) and (53).

End

For u = 1 : nk|k−1

• Calculate the updated mean xu
k|k and covariance Pu

k|k,
and the values of A, b and Ω using Algorithm 2.

• Find pu
(
zk|
∣∣∣X̃u

k

∣∣∣ = 1
)

and pu (zk|∅) using (59) and
(60).

• Calculate ruk|k using (33).

End

V. SIMULATION RESULTS

In this section we test the performance of the proposed
IEMB-IPLF filter1 in two track-before-detect multi-target
scenarios. In Section V-A we describe the other algorithms

1Matlab code will be shared at https://github.com/ESDavies/IPLF-IEMB-
filter.

Algorithm 2 IPLF update for the uth potential target
Input: ẑucorr, S

u
corr, and the predicted mean xu

k|k−1 and covari-
ance Pu

k|k−1.
Output: Updated mean xu

k|k and covariance Pu
k|k, and linear-

isation parameters (A, b, Ω).
Set x̄ = xu

k|k−1 and Σx = Pu
k|k−1.

Repeat:

• Select sigma-points X̃s matching mean x̄ and covariance
Σx.

• Calculate ĥ, E

[
(x− x)

(
h (x)− ĥ

)T ]
and C [h (x)] us-

ing (69) to (72).
• Find A, b and Ω using (62) to (64) using Σx for the

covariance and x̄ for the mean.
• Calculate xu

k|k and Pu
k|k using using (54) to (58) using

predicted mean x̄ and covariance Σx.

Until: Convergence [21] or after a given number of iterations.

the IEMB-IPLF was compared to and the two scenarios
considered. In Section V-B we describe the measurement and
dynamic models, In Section V-C and V-D we describe and
provide the results for each scenario respectively.

A. Algorithms

In our implementation of the IEMB filter we used various
linearisation methods to compute the required single-target
updates. Specifically, two sigma-point methods, the IPLF and
a UKF (as in [42]), and two analytical linearisation methods,
the EKF and the iterated EKF (IEKF) [12]. We have compared
these results with the independent multi-Bernoulli (IMB) filter
[37] using an IPLF and a UKF for the single-target updates.
The unscented transforms for both the UKF and IPLF have
been implemented with ω0 = 1

3 [16].
We tested the convergence of the IPLF by calculating

the KLD between the current iteration and the iteration that
immediately preceded it with a threshold of 0.1 [21]. Here,
we set the maximum number of iterations to be 20. This is
a high limit which could be reduced in order to improve the
computational speed.

In addition, we have also implemented the generalised paral-
lel partition multi-Bernoulli (GPP-MB) particle filter proposed
in [32], which was shown to outperform other particle filters
for track-before-detect. The GPP-MB particle filter has been
implemented with 104 particles. The considered implement-
ation does not make use of the Markov Chain Monte Carlo
steps to improve the multi-Bernoulli approximation in [32].

We examine the performance of the filters in two different
situations:

1) An uninformative birth scenario: In this scenario, at most
one target may be born anywhere in the surveillance
area.

2) An informative birth scenario: In this scenario, targets
may be born at certain known locations with low posi-
tional uncertainty.



B. Measurement and dynamic model

The surveillance region used was a 120m × 120m area.
This surveillance region is divided into 12 × 12 pixels with
a sensor at each midpoint. Each sensor generates intensity
measurements from a single target by using the measurement
function [28]

hj (xk) =
φ

(dj (xk))
β
+ ǫ

(73)

where dj (xk) is the distance from a target with state xk to
the jth sensor and φ = 500, ǫ = 25 and β = 2. Each sensors’
intensity measurement is found by summing the single-target
measurements (73) from each target, see (5) [28]. The vector
of measurements consists of 144 elements with each element
corresponding to a multi-target measurement from each sensor.
Each jth measurement also has additional measurement noise
ηj , see (2), which is a zero mean Gaussian noise covariance
with covariance Rj = 1. This type of measurement function
represents a received signal strength indicator [28].

Each target has a state vector consisting of a 2D position
and velocity vector [px, vx, py, vy]

T . The matrices F and Q
which characterise the dynamics of the targets (37) are given
by the nearly constant velocity model [51] such that

F =




1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1


 Q = σ2

q




T 3

3
T 2

2 0 0
T 2

2 T 0 0

0 0 T 3

3
T 2

2

0 0 T 2

2 T




(74)

where σq = 0.5m/s3/2 and the length between each time step
is T = 1 s. The probability of each target’s birth was set to
be pb = 10−4 and the probability of survival to be ps = 0.99.
This means that it is considered to be unlikely for new targets
to be born, and, once born, targets survive across many time
steps.

C. Scenario 1: Uninformative Bernoulli birth model

In this section, we describe the target trajectories in Section
V-C1, the birth model in Section V-C2 and the results in
Section V-C3.

1) The Trajectory: To test the performance of the proposed
filter we simulated the trajectories of 5 different targets which
come into close proximity and then separate. This setting is
more complex because of the interactions between the different
targets in the received measurements.

Each target’s trajectory was created using a similar approach
to the one seen in [52]. The simulation ran for 81 time
steps. At the midpoint of the simulation all targets were
found to be at, approximately, the center of the surveillance
region. From here, the trajectories are found by using forwards
and backwards dynamics, as in [44]. The resulting set of
trajectories is shown in Figure 2.

2) The birth model: The birth model is designed to allow
for a maximum of one target to be born in each time step.
The single-target density for new born targets blk(·) (see (7))
is Gaussian with mean mb and covariance matrix Pb. The
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Figure 2: A figure showing the target trajectories. The target births for
each target were t

1

birth
= 18, t

2

birth
= 2, t

3

birth
= 3, t

4

birth
= 16

and t
5

birth
= 9. The target death for each target was t

1

death
= 64,

t
2

death
= 79, t3

death
= 78, t4

death
= 77 and t

5

death
= 71. All targets

are roughly at the same location at around time step 40.

vector mb and the matrix Pb contain prior information about
the target’s birth. The covariance matrix is

Pb =




σ2
x 0 0 0
0 10 0 0
0 0 σ2

y 0
0 0 0 10


 (75)

where σ2
x is the x-position variance and σ2

y is the y-position
variance.

In this scenario, mb is set to [cx, 0, cy, 0]
T , where (cx, cy) =

(60m, 60m) are the coordinates for the centre of the surveil-
lance region. The variances of the position along the x-axis
and y-axis are set to σ2

x = 1000m2 and σ2
y = 1000m2. This

implies that the birth model covers a large area.
3) Results: The performance of the filter was assessed us-

ing the generalised optimal sub-pattern assignment (GOSPA)
metric [53]. The GOSPA metric has the parameters: c as
the cutoff distance, α as the cardinality factor and p as the
exponent. The values assigned were as follows, c = W

2 , where
W is the cell width, in meters, α = 2 and p = 2.

The root mean square GOSPA (RMS GOSPA) error per
time step was calculated using 100 Monte Carlo runs. Also
found, were the decomposition of the RMS GOSPA error into
its three components: localisation error, missed target error
and false target error. The RMS GOSPA per time step, for the
uninformative birth scenario, is seen in Figure 3a. We omit
showing the results of the IMB with the EKF and IEKF as
these methods have a worse performance.

In Figure 3a the IEMB-IPLF is shown to have the best
performance across all time steps with the two IMB methods
having the worst performance. The GPP-MB is the second
best performing filter, performing better than the IEMB-UKF
but worse than the IEMB-IPLF. In Figure 3b we see that all
the filters have a comparable localisation error, which, for
the majority of filters, peaks when the targets are in close
proximity, towards the midpoint of the simulation. However,
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Figure 3: RMS GOSPA errors and their decompositions across time for
the different filters (Scenario 1). The IEMB-IPLF is the best performing
filter.

Table I: Average RMS GOSPA errors (Scenario 1)

Filter Error tot. Error Loc. Error Fal. Error Mis.
IEMB-IPLF 3.39 3.00 0.909 1.27
IEMB-UKF 7.81 2.21 4.50 6.00
IEMB-IEKF 8.31 2.25 4.46 6.64
IEMB-EKF 8.47 2.18 4.74 6.68
GPP-MB 5.91 3.78 2.43 3.83

IMB-IPLF 17.0 3.71 16.2 3.77
IMB-UKF 9.64 2.46 6.93 6.24

the IMB methods have a reduced localisation error at the mid-
point.

In Figure 3c we see the missed target GOSPA error where
the IEMB-IPLF filter performs better than all the other filtering
methods. The IMB-IPLF has no missed target error when the
targets are in close proximity, towards the midpoint of the
simulation. This is because the point of crossing is the mean
of the birth location. The IMB-IPLF estimates many targets in
this area, most of them false, as can be seen in Figure 3d. The
GPP-MB has the third lowest missed target error. The missed
target error increases with each additional target born into the
surveillance region, reaching a peak at approximately time-
step 20, before decreasing. There is a smaller peak around

Table II: Average runtime (Scenario 1)

Filter Mean Runtime (s)
IEMB-IPLF 1.9
IEMB-UKF 0.5
IEMB-IEKF 2.3
IEMB-EKF 0.3
GPP-MB 24.9

IMB-IPLF 24.5
IMB-UKF 0.6

time-step 40 after which the missed target error continues to
decrease.

In Figure 3d the IEMB-IPLF has the lowest false target error
for the majority of time steps and the GPP-MB has the second
lowest. The IMB-IPLF has the greatest false target error with
false targets being generated at each time step.

The RMS GOSPA errors averaged across all time steps are
given in Table I. It can be seen that the IEMB-IPLF has the
lowest total RMS GOSPA error. It also has the lowest false
target and missed target errors. While it does have a higher
localisation error than other filters with only the IMB-IPLF and
the GPP-MB having a higher localisation error, this, we can
assume, to be a consequence of having more targets accurately
estimated within the cut-off region.

The GPP-MB has the second lowest total RMS GOSPA
error performing better than the IEMB-UKF. The IEMB-UKF
has the third lowest total RMS GOSPA error, lower than
the two IEMB filters which use the analytical approach to
linearisation. This suggests that the sigma point approach
performs better than the analytical linearisation approach.

The IMB-IPLF has the second lowest missed target error.
This suggests that the IPLF method is the best at reducing the
number of targets missed. However, the low number of missed
targets could also be explained by the high number of false
targets. Considering the number of targets being tracked, it is
likely that some would fall within the cut-off region.

The GPP-MB’s missed and false target GOSPA errors fall
approximately midway between the IEMB filters which use
a sigma point approach and the IEMB filters which use an
analytical approach to linearisation.

As found in [42] the IMB approach results in high numbers
of false targets. Apart from the IEMB-IPLF the IEMB filters
show similar performances overall. The IEMB-IEKF shows
little improvement on the IEMB-EKF only having a 0.28
reduction in the false target error, a 0.04 reduction in missed
target error and a small increase in the localisation error.
Again, this could possibly be because of reduced missed target
error.

The higher GOSPA error for the IEMB-UKF, as opposed
to the IEMB-IPLF, is mostly because of higher missed and
false target errors. This is probably due to a lower accuracy,
resulting in targets being predicted outside the cut-off region
as well as more targets being missed entirely. Excluding the
two IMB filters, the IEMB-EKF has the highest missed target
and false target errors and performed worse than the other
IEMB filters overall.

It can be seen in Figure 3 and in Table I that the IEMB-IPLF
performs better than all the other methods for the uninformat-
ive birth scenario. The main advantage of the IEMB-IPLF is
that it generates a lower number of missed and false targets.

Table II shows the average runtime of each filter for the
uninformative scenario. Here, the fastest performing filter is
the IEMB-EKF, followed by the IEMB-UKF and then the
IMB-UKF. The three filters do no perform iterated SLRs
resulting in them having faster runtimes than those which do.
The IEMB-EKF which uses an analytical linearisation method
is shown to be faster than the IEMB-UKF which uses the
sigma-point linearisation method. This is because the sigma-



Table III: Average RMS GOSPA errors (Scenario 2)

Filter Error tot. Error Loc. Error Fal. Error Mis.
IEMB-IPLF 3.14 2.98 0.695 0.697
IEMB-UKF 3.46 3.19 0.958 0.956
IEMB-IEKF 8.42 2.34 4.70 6.59
IEMB-EKF 8.14 2.31 4.15 6.61
GPP-MB 4.62 3.48 1.99 2.30

IMB-IPLF 32.1 3.07 31.8 2.93
IMB-UKF 35.1 3.48 34.9 1.91

Table IV: Average runtime (Scenario 2)

Filter Mean Runtime (s)
IEMB-IPLF 3.7
IEMB-UKF 1.2
IEMB-IEKF 4.2
IEMB-EKF 0.6
GPP-MB 11.7

IMB-IPLF 92.4
IMB-UKF 11.6

point linearisation method iterates over the sigma-points when
approximating the sensor measurements. The IEMB-IPLF is
the fastest of all the filters which perform iterated SLRs this
is likely because of the smaller number of false targets. The
GPP-MB filter has the slowest runtime in Scenario 1.

D. Scenario 2: Informative birth model

In this section, we describe the birth model in Section V-D1
and the results in Section V-D2.

1) The birth model: In this scenario, we have a multi-
Bernoulli birth where each Bernoulli has a probability of
existence ri = pb at birth and Gaussian single-target dens-
ity with means m1

b =
[
75m 0 100m 0

]T
, m2

b =[
20m 0 105m 0

]T
, m3

b =
[
110m 0 50m 0

]T

and m4
b =

[
110m 0 85m 0

]T
, and covariances P i

b are
in the form of (75) with σ2

x = 10m2 and σ2
y = 10m2.

The single-target densities contain prior knowledge of the
approximate birth locations for the targets and the low cov-
ariance implies there is little uncertainty. In this scenario, we
had a multi-Bernoulli birth which allows for a maximum of
four targets to potentially be born in a single time step. These
four Bernoulli densities represent the birth locations of the five
targets, see Figure 2.

2) Results: The RMS GOSPA error per time step was
calculated in the same way as it was in Section V-C3. The
RMS GOSPA per time step and its decomposition into the
localisation error, missed target error and false target error
is seen in Figure 4. We omit showing the results of the
IMB with the EKF and IEKF as these methods have a worse
performance.

In Figure 4a the IEMB-IPLF and the IEMB-UKF are the
best performing filters, with a comparable performance. This is
because there is little uncertainty in our prior and therefore less
of an improvement to be made through iterative SLRs [20].
The IMB filters have the worst performance. The GPP-MB
filter is the third best performing filter with its performance
closely following that of the IEMB-IPLF and the IEMB-UKF
up until around time-step 25. After this time step, as the
scenario increases in complexity, the RMS GOSPA error for
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Figure 4: RMS GOSPA errors and their decompositions across time for
the different filters (Scenario 2). The IEMB-IPLF and IEMB-UKF are
the best performing filters. The IMB errors are considerably higher due
to false targets.

the GPP-MB filter becomes significantly larger than the RMS
GOSPA error of the IEMB-UKF and the IEMB-IPLF.

In Figure 4b, all the examined filters had a similar local-
isation error. For the GPP-MB filter and for all the IEMB
filters the localisation error increases as the targets come into
close proximity, whereas, the IMB methods have a reduced
localisation error when the targets are in close proximity.
This is because many false targets, once generated, are not
removed by the IMB filters. These false targets continue to
be tracked across many time steps and tend to follow the
approximate trajectories of the true targets. This results in a
situation, when the targets are in close proximity, where the
IMB filters estimate a high number of targets concentrated
around the point of crossing. This is the cause of the IMB
filters having a lower localisation error around the midpoint
of the simulation.

In Figure 4c it can be seen that the analytical linearisation
approach misses a fairly consistent number of targets over the
course of the simulation. This results in the IEMB-EKF and
the IEMB-IEKF having the highest missed target error while
the IEMB-IPLF and IEMB-UKF have the lowest missed target
error. The GPP-MB filter, which uses particle filtering, results
in a greater number of missed targets than those using sigma
points but fewer than those using an analytical linearisation
approach.

The IEMB-UKF and IEMB-IPLF have the lowest false
target errors in Figure 4d. The IEMB-IEKF and the IEMB-
EKF have a fairly consistent false target error over the course
of the simulation. The IEMB-IPLF and IEMB-UKF false
target errors increase slightly at midpoint. The two IMB
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Figure 5: A figure showing, for the IEMB-IPLF, the average number of
IPLF iterations per potential target at each time-step. The figure presents
the results obtained from both the uninformative birth model (Scenario
1) and the informative birth model (Scenario 2).

methods have the worst false target error with increasing
numbers of false targets being generated at each time step. The
GPP-MB produces fewer false targets than the IEMB-IEKF
and the IEMB-EKF which both use an analytical approach to
linearisation. However, it produces a greater number of false
targets than the IEMB-UKF and the IEMB-IPLF, which use
sigma points.

The RMS GOSPA errors averaged across all time steps are
given in Table III. The IEMB-IPLF has the lowest total RMS
GOSPA error, the lowest false target error and the lowest
missed target error. In the informative birth scenario, the
difference in the error between the IEMB-IPLF and the IEMB-
UKF is small. The GPP-MB filter resulted in a total GOSPA
error which was, on average, lower than the IEMB-IEKF and
the IEMB-EKF but not as low as the IEMB-UKF or the IEMB-
IPLF. The GPP-MB filter GOSPA error fell approximately
halfway between the IEMB filters which use sigma points and
those which use an analytical approach to linearisation.

The IEMB-IEKF and the IEMB-EKF have a comparable
performance. Both of these filters use analytical linearisation
methods which results in increased numbers of false targets
and missed targets. They also have a lower localisation error
than the two IEMB filters which use sigma points. The higher
false and missed target errors suggest that more targets are
being predicted to be outside the cut-off region. The GPP-MB
had significantly higher numbers of false and missed targets
than both the IEMB-UKF and the IEMB-IPLF and approx-
imately half the number produced by the IEMB-EKF and the
IEMB-IEKF. The GPP-MB also had the greatest localisation
error. However, this is only significant when compared to the
IEMB filters.

The two IMB filters have high numbers of false targets.
Additionally, they also have high localisation errors. The IMB
filters have a lower missed target than the IEMB-IEKF and
the IEMB-UKF.

In the informative birth scenario (Scenario 2) more targets
could potentially be born in a single time step than in the unin-

formative birth scenario (Scenario 1). This is a consequence of
the multi-Bernoulli birth model used in Scenario 2, see Section
V-D. Because of this, both IMB filters show an increased false
target error in the informative birth scenario.

Table IV shows the average runtime of each filter for the
informative scenario. Here, the fastest performing filter is the
IEMB-EKF, followed by the IEMB-UKF. Both the IEMB-
EKF and IEMB-UKF do no perform iterated SLRs resulting in
them having faster runtimes but higher GOSPA errors than the
IEMB-IPLF and the IEMB-IEKF which do perform iterated
SLRs. The IEMB-EKF which uses an analytical linearisation
method is shown to be faster than the IEMB-UKF, which
uses the sigma-point linearisation method. This is because the
sigma-point linearisation method iterates over the sigma-points
when approximating the sensor measurements. The IEMB-
IPLF is the fastest of all the filters which perform iterated
SLRs. This is likely because of the smaller number of false
targets while the IMB-IPLF has the slowest runtime likely
because of the combination of iterated SLRs and the high
numbers of false targets produced by the IMB method in
Scenario 2. The GPP-MB filter has a similar runtime to the
IMB-UKF and they are both the slowest filters after the IMB-
IPLF. The slow runtime of the IMB-UKF is likely because
of high number of false targets whereas the GPP-MB’s slow
runtime is probably because of the computational demand of
the particle linearisation method.

Finally, to conclude the analysis of experimental results,
Figure 5 shows the average number of IPLF iterations in the
IEMB-IPLF at each time-step, for Scenario 1 and Scenario 2.
For the majority of time-steps, the average number of IPLF
iterations is higher for Scenario 2. This is because Scenario
2 considers a higher number of potential new born targets
that do not really exist, which increases the number of IPLF
iterations.

VI. CONCLUSIONS

In this paper, we have proposed the information exchange
multi-Bernoulli filter for track-before-detect of multiple targets
using superpositional sensors. The filter update has been
derived by minimising the KLD with the use of auxiliary
variables. We have also proposed an IPLF implementation of
the filter to be able to accommodate for a broad birth model
with a non-linear measurement function.

In conclusion the IEMB-IPLF performed better than the
other filters in both of the two scenarios we tested. The
results show that the filters which used sigma points (IEMB-
IPLF and IEMB-UKF) performed better than non sigma point
methods (IEMB-EKF and IEMB-IEKF). It was also seen that
the exchange of information significantly improved results, via
a thorough numerical comparison with the IMB filters and a
state-of-the-art track-before-detect particle filter.

Future work includes the implementation of the IEMB using
particle filtering, its implementation using parallel computing
and the application of the filter to real data. It is also relevant
to carry out future research in exploiting the flexibility of
being able to change the auxiliary variables to improve the
multi-Bernoulli approximation, as is done in the set joint



probabilistic data association filter [54], the track-before-detect
filter in [32] and in the variational Poisson multi-Bernoulli
filters in [55]. Another line of future work is to extend the in-
formation exchange multi-Bernoulli filter to sets of trajectories
to keep full target trajectory information and estimate the set
of trajectories directly from the posterior [56].

APPENDIX A

In this appendix, we prove Lemma 2. We separate the proof
into two parts. We first prove (29) and then we prove (31).
Prior to presenting the proof, we review a preliminary result
on set integrals on joint spaces.

A. Set integrals on joint spaces

Let us consider a multi-target function f̃ (·) on the single-
target space with auxiliary variables Uk × Rnx . The single-
target state space augmented with auxiliary variables can also
be written as the disjoint union of the spaces for each auxiliary
variables. That is, Uk × Rnx = ⊎nk|k−1

u=1 ({u} × Rnx).
For a given X̃k ⊂ Uk × Rnx , we can then write X̃k =

X̃1
k ⊎ ...⊎ X̃

nk|k−1

k with X̃u
k ⊂ {u}×Rnx . We can now apply

the formula for the set integral on joint spaces [5, Eq. (3.53)]
such that the set integral becomes
ˆ

f̃
(
X̃k

)
δX̃k

=

ˆ

...

ˆ

f̃
(
X̃1

k ⊎ ... ⊎ X̃
nk|k−1

k

)
δX̃1

k ...δX̃
nk|k−1

k (76)

which is a multiple set integral, with each of the set integrals
over a single-target space {u} × Rnx . That is, for a given
multi-target function g̃ (·), the set integral with single-target
space {u} × Rnx is

ˆ

g̃
(
X̃u

k

)
δX̃u

k

=

∞∑

n=0

1

n!

ˆ

g̃ ({(u, x1) , ..., (u, xn)}) dx1:n. (77)

B. Proof of (29)

The KLD D
(
f̃k|k||q̃

)
is given by (27), which is a set

integral with a single-target space Uk × Rnx . We can now
apply the formula for the set integral on joint spaces (76),
such that (27) becomes

D
(
f̃k|k||q̃

)
=

ˆ

...

ˆ

f̃k|k

(
X̃1

k ⊎ ... ⊎ X̃
nk|k−1

k

)

× log
f̃k|k

(
X̃1

k ⊎ ... ⊎ X̃
nk|k−1

k

)

q̃
(
X̃1

k ⊎ ... ⊎ X̃
nk|k−1

k

) δX̃1
k ...δX̃

nk|k−1

k .

(78)

Substituting (25) into (78), we obtain

D
(
f̃k|k||q̃

)
=

ˆ

...

ˆ

f̃k|k

(
X̃1

k ⊎ ... ⊎ X̃
nk|k−1

k

)

× log
f̃k|k

(
X̃1

k ⊎ ... ⊎ X̃
nk|k−1

k

)

∏nk|k−1

i=1 q̃i
(
X̃i

k

) δX̃1
k ...δX̃

nk|k−1

k .

(79)

We seek to minimise D
(
f̃k|k||q̃

)
with respect to q̃ (·).

We use z to denote arbitrary constants that do not affect the
minimisation. Then, we can write

D
(
f̃k|k||q̃

)
=z−

ˆ

...

ˆ

f̃k|k

(
X̃1

k ⊎ ... ⊎ X̃
nk|k−1

k

)

× log

nk|k−1∏

i=1

q̃i
(
X̃i

k

)
δX̃1

k ...δX̃
nk|k−1

k

=z−
nk|k−1∑

u=1

ˆ

...

ˆ

f̃k|k

(
X̃1

k ⊎ ... ⊎ X̃
nk|k−1

k

)

log q̃u
(
X̃u

k

)
δX̃1

k ...δX̃
nk|k−1

k

=z−
nk|k−1∑

u=1

ˆ

log q̃u
(
X̃i

k

)

[
ˆ

f̃k|k

(
X̃1

k ⊎ ... ⊎ X̃
nk|k−1

k

)

δX̃
(−u)
k

]
δX̃u

k .

where the set integral over X̃(−u)
k is defined in Lemma 2. By

standard KLD minimisation applied to each term in the above
sum, we can see that the q̃u (·) that minimises D

(
f̃k|k||q̃

)
are

given by its marginal distribution

q̃u
(
X̃u

k

)
=

ˆ

f̃k|k

(
X̃1

k ⊎ ... ⊎ X̃
nk|k−1

k

)
δX̃

(−u)
k . (80)

This result proves (29).

C. Proof of (31)

We now substitute (23) into (80) to obtain

q̃u
(
X̃u

k

)
∝
ˆ M∏

j=1

l


zjk|

∑

(u,x)∈X̃k

hj (x)




nk|k−1∏

i=1

f̃ i
k|k−1

(
X̃i

k

)
δX̃

(−u)
k

=f̃u
k|k−1

(
X̃u

k

) ˆ M∏

j=1

l


zjk|

∑

(u,x)∈X̃k

hj (x)




nk|k−1∏

i=1:i6=u

f̃ i
k|k−1

(
X̃i

k

)
δX̃

(−u)
k .

Substituting (32) into the above equation yields

q̃u
(
X̃u

k

)
∝ pu

(
zk|X̃u

k

)
f̃u
k|k−1

(
X̃u

k

)
. (81)

To finish the proof of (31), we just need to normalise the
density such that it integrates to one, and substitute X̃k =
X̃1

k ⊎ ... ⊎ X̃
nk|k−1

k .



APPENDIX B

In this appendix, the proof for Proposition 3 is provided.
Firstly, the result for the mean is proved considering X̃u

k =
{(u, xu)}.

The conditional mean is given by

E
[
zjk|X̃u

k = {(u, xu)}
]

=

ˆ

E
[
zjk| {(u, xu)} ∪ X̃

(−u)
k

]

nk|k−1∏

i=1:i6=u

f̃ i
k|k−1

(
X̃i

k

)
δX̃

(−u)
k . (82)

Using (5), Equation (82) can be simplified to

E
[
zjk|X̃u

k = {(u, xu)}
]

(83)

= hj (xu) +

nk|k−1∑

i=1:i6=u

riEi

[
hj (x)

]
, (84)

which completes the proof of the conditional mean.
Now, the proof for the conditional covariance is shown.

Using the law of total covariance, it follows that

C
[
zjk|X̃u

k = {(u, xu)}
]

=

ˆ

C
[
zjk| {(u, xu)} ∪ X̃

(−u)
k

]

nk|k−1∏

i=1:i6=u

f̃ i
k|k−1

(
X̃i

k

)
δX̃

(−u)
k

+C
[
E
[
zjk| {(u, xu)} ∪ X̃

(−u)
k

]
|X̃u

k = {(u, xu)}
]

.

Then, using (6), we obtain

C
[
zjk| {(u, xu)} ∪ X̃

(−u)
k

]
= Rj

Using (5), we obtain

C
[
E
[
zjk| {(u, xu)} ∪ X̃

(−u)
k

]
|X̃u

k = {(u, xu)}
]

= C


hj (xu) +

∑

x∈X̃k\X̃u

k

hj(x)|X̃u
k = {(u, xu)}




= C




∑

x∈X̃k\X̃u

k

hj(x)




=

nk|k−1∑

i=1:i6=u

C̃i

[
hj
(
xi
)]

.

In the above expression hj (xu) is a constant, given X̃u
k =

{(u, xu)}, so it can be removed when computing the condi-
tional covariance. Then, as the distribution of each target in
X̃k is independent, the covariance of zjk can be obtained from
the sum of the covariances of the potential targets.

The proof for the case X̃u
k = ∅ is analogous, with the

only difference that the term hj (xu) is removed from the
conditional mean, and the rest of the results remain unchanged.

REFERENCES

[1] S. S. Blackman, “Multiple hypothesis tracking for multiple target
tracking,” IEEE Aerospace and Electronic Systems Magazine, vol. 19,
no. 1, pp. 5–18, Jan. 2004.

[2] J. Choi, S. Ulbrich, B. Lichte, and M. Maurer, “Multi-target tracking
using a 3D-lidar sensor for autonomous vehicles,” in 16th International

IEEE Conference on Intelligent Transportation Systems, 2013, pp. 881–
886.

[3] E. Delande, J. Houssineau, J. Franco, C. Frueh, D. Clark, and M. Jah,
“A new multi-target tracking algorithm for a large number of orbiting
objects,” Advances in Space Research, vol. 64, pp. 645–667, 2019.

[4] H. Kim, K. Granström, L. Gao, G. Battistelli, S. Kim, and H. Wymeer-
sch, “5G mmWave Cooperative Positioning and Mapping Using Multi-
Model PHD Filter and Map Fusion,” IEEE Transactions on Wireless

Communications, vol. 19, no. 6, pp. 3782–3795, 2020.
[5] R. P. S. Mahler, Advances in Statistical Multisource-Multitarget Inform-

ation Fusion. Artech House, 2014.
[6] S. Challa, M. R. Morelande, D. Musicki, and R. J. Evans, Fundamentals

of Object Tracking. Cambridge University Press, 2011.
[7] C. Kreucher, K. Kastella, and A. O. Hero III, “Multitarget tracking

using the joint multitarget probability density,” IEEE Transactions on

Aerospace and Electronic Systems, vol. 41, no. 4, pp. 1396–1414, Oct.
2005.

[8] M. R. Morelande, C. M. Kreucher, and K. Kastella, “A Bayesian
approach to multiple target detection and tracking,” IEEE Transactions

on Signal Processing, vol. 55, no. 5, pp. 1589–1604, May. 2007.
[9] S. Davey, M. Wieneke, and H. Vu, “Histogram-PMHT unfettered,” IEEE

Journal of Selected Topics in Signal Processing, vol. 7, no. 3, pp. 435–
447, June 2013.

[10] A.-A. Saucan, C. Sintes, T. Chonavel, and J.-M. Le Caillec, “Robust,
track before detect particle filter for bathymetric sonar application,” in
17th International Conference on Information Fusion, 2014.

[11] W. Yi, Z. Fang, W. Li, R. Hoseinnezhad, and L. Kong, “Multi-frame
track-before-detect algorithm for maneuvering target tracking,” IEEE

Transactions on Vehicular Technology, vol. 69, no. 4, pp. 4104–4118,
2020.

[12] S. Särkkä and L. Svensson, Bayesian Filtering and Smoothing, 2nd ed.
Cambridge University Press, 2023.

[13] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,
Feb. 2002.

[14] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter:

Particle Filters for Tracking Applications. Artech House, 2004.
[15] F. Daum, “Nonlinear filters: beyond the Kalman filter,” IEEE Aerospace

and Electronic Systems Magazine, vol. 20, no. 8, pp. 57–69, Aug. 2005.
[16] S. J. Julier and J. K. Uhlmann, “Unscented Filtering and Nonlinear

Estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, Mar.
2004.

[17] I. Arasaratnam and S. Haykin, “Cubature Kalman filters,” IEEE Trans-

actions on Automatic Control, vol. 54, no. 6, pp. 1254–1269, June 2009.
[18] I. Arasaratnam, S. Haykin, and T. Hurd, “Cubature Kalman Filtering for

Continuous-Discrete Systems: Theory and Simulations,” IEEE Transac-

tions on Signal Processing, vol. 58, no. 10, pp. 4977–4993, Oct. 2010.
[19] I. Arasaratnam, S. Haykin, and R. Elliott, “Discrete-time nonlinear

filtering algorithms using Gauss-Hermite quadrature,” Proceedings of

the IEEE, vol. 95, no. 5, pp. 953–977, May 2007.
[20] M. R. Morelande and A. F. García-Fernández, “Analysis of Kalman

filter approximations for nonlinear measurements,” IEEE Transactions

on Signal Processing, vol. 61, no. 22, pp. 5477–5484, Nov. 2013.
[21] Á. F. García-Fernández, L. Svensson, M. R. Morelande, and S. Särkkä,

“Posterior Linearization Filter: Principles and Implementation Using
Sigma Points,” IEEE Transactions on Signal Processing, vol. 63, no. 20,
pp. 5561–5573, Oct. 2015.

[22] F. Tronarp, Á. F. García-Fernández, and S. Särkkä, “Iterative Filtering
and Smoothing In Non-Linear and Non-Gaussian Systems Using Con-
ditional Moments,” IEEE Signal Processing Letters, vol. 25, no. 3, pp.
408–412, Mar. 2018.

[23] P. M. Djuric, T. Lu, and M. F. Bugallo, “Multiple Particle Filtering,” in
2007 IEEE International Conference on Acoustics, Speech and Signal

Processing - ICASSP '07. IEEE, Apr. 2007.
[24] W. Yi, M. R. Morelande, L. Kong, and J. Yang, “A computationally

efficient particle filter for multitarget tracking using an independence
approximation,” IEEE Transactions on Signal Processing, vol. 61, no. 4,
pp. 843–856, Feb. 2013.



[25] L. Úbeda-Medina, Á. F. García-Fernández, and J. Grajal, “Adaptive
Auxiliary Particle Filter for Track-Before-Detect With Multiple Targets,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 53, no. 5,
pp. 2317–2330, Oct. 2017.

[26] R. Min, C. Garnier, F. Septier, and J. Klein, “State space partitioning
based on constrained spectral clustering for block particle filtering,”
Signal Processing, vol. 201, p. 108727, 2022.

[27] L. Úbeda-Medina, Á. F. García-Fernández, and J. Grajal, “Sigma-point
multiple particle filtering,” Signal Processing, vol. 160, pp. 271–283,
Jul. 2019.

[28] J. P. Beaudeau, M. F. Bugallo, and P. M. Djuric, “RSSI-Based Multi-
Target Tracking by Cooperative Agents Using Fusion of Cross-Target
Information,” IEEE Transactions on Signal Processing, vol. 63, no. 19,
pp. 5033–5044, Oct. 2015.

[29] P. Closas, C. Fernández-Prades, and J. Vilà-Valls, “Multiple Quadrature
Kalman Filtering,” IEEE Transactions on Signal Processing, vol. 12, pp.
6125–6137, Dec. 2012.

[30] J. Vila-Valls, P. Closas, and Á. F. García-Fernández, “Uncertainty
Exchange Through Multiple Quadrature Kalman Filtering,” IEEE Signal

Processing Letters, vol. 23, no. 12, pp. 1825–1829, Dec. 2016.
[31] Á. F. García-Fernández, J. Grajal, and M. R. Morelande, “Two-layer

particle filter for multiple target detection and tracking,” IEEE Transac-

tions on Aerospace and Electronic Systems, vol. 49, no. 3, pp. 1569–
1588, Jul. 2013.

[32] Á. F. García-Fernández, “A track-before-detect labelled multi-Bernoulli
particle filter with label switching,” IEEE Transactions on Aerospace

and Electronic Systems, vol. 52, no. 5, pp. 2123–2138, Oct. 2016.
[33] S. Nannuru, M. Coates, and R. Mahler, “Computationally-tractable

approximate PHD and CPHD filters for superpositional sensors,” IEEE

Journal of Selected Topics in Signal Processing, vol. 7, no. 3, pp. 410–
420, June 2013.

[34] A.-A. Saucan, T. Chonavel, C. Sintes, and J.-M. Le Caillec, “Track
before detect DOA tracking of extended targets with marked Poisson
point processes,” in 18th International Conference on Information Fu-

sion, 2015, pp. 754–760.
[35] A. Masnadi-Shirazi and B. D. Rao, “A Covariance-Based Superposi-

tional CPHD Filter for Multisource DOA Tracking,” IEEE Transactions

on Signal Processing, vol. 66, no. 2, pp. 309–323, Jan. 2018.
[36] I. A. Bol’shakov and V. G. Latysh, “Separating an unknown number

of fluctuating signals from noise on the basis of the theory of random
points,” Radio Engineering and Electronic Physics, vol. 3, pp. 326–334,
1964.

[37] B.-N. Vo, B.-T. Vo, N.-T. Pham, and D. Suter, “Joint Detection and
Estimation of Multiple Objects From Image Observations,” IEEE Trans-

actions on Signal Processing, vol. 58, no. 10, pp. 5129–5141, Oct. 2010.
[38] T. Kropfreiter, J. L. Williams, and F. Meyer, “A Scalable Track-Before-

Detect Method With Poisson/Multi-Bernoulli Model,” 2021 IEEE 24th

International Conference on Information Fusion (FUSION), Sep. 2021.
[39] B. Ristic, B.-T. Vo, B.-N. Vo, and A. Farina, “A Tutorial on Bernoulli

Filters: Theory, Implementation and Applications,” IEEE Transactions

on Signal Processing, vol. 61, no. 13, pp. 3406–3430, Jul. 2013.
[40] M. Liang, T. Kropfreiter, and F. Meyer, “A BP method for track-before-

detect,” IEEE Signal Processing Letters, vol. 30, pp. 1137–1141, 2023.
[41] Á. F. García-Fernández, L. Svensson, J. L. Williams, Y. Xia, and

K. Granström, “Trajectory Poisson multi-Bernoulli filters,” in IEEE

Transactions on Signal Processing, vol. 68, pp. 4933-4945, Mar. 2020.
[42] E. S. Davies and Á. F. García-Fernández, “A multi-Bernoulli Gaussian

filter for track-before-detect with superpositional sensors,” in 2022 25th

International Conference on Information Fusion (FUSION). IEEE, jul
2022.

[43] P. A. Bakut and N. A. Ivanchuk, “Calculation of the a
posteriori characteristics of flow of resolved objects,” Engineering

Cybernetics, vol. 14, no. 6, pp. 148–156, 1976. [Online]. Available:
www.stochasticflows.com

[44] J. L. Williams, “Marginal multi-Bernoulli filters: RFS derivation of
MHT, JIPDA and association-based MeMBer,” IEEE Transactions on

Aerospace and Electronic Systems, vol. 51, no. 3, pp. 1664–1687, July
2015.

[45] Á. F. García-Fernández, Y. Xia, K. Granström, L. Svensson, and J. L.
Williams, “Gaussian implementation of the multi-Bernoulli mixture
filter,” Proceedings of the 22nd International Conference on Information

Fusion, 2019, Aug. 2019.
[46] M. K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle

filters,” Journal of the American Statistical Association, vol. 94, no. 446,
pp. 590–599, Jun. 1999.

[47] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[48] H. Wymeersch, Iterative receiver design. Cambridge University Press,
2007.

[49] B. T. Vo and B. N. Vo, “Labeled Random Finite Sets and Multi-Object
Conjugate Priors,” IEEE Transactions on Signal Processing, vol. 61,
no. 13, pp. 3460–3475, Jul. 2013.

[50] Ã. F. García-Fernández, J. L. Williams, K. Granström, and L. Svensson,
“Poisson multi-bernoulli mixture filter: Direct derivation and implement-
ation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 54,
no. 4, pp. 1883–1901, 2018.

[51] Y. Bar-Shalom, T. Kirubarajan, and X. R. Li, Estimation with Applica-

tions to Tracking and Navigation. John Wiley & Sons, Inc., 2001.
[52] Á. F. García-Fernández, J. L. Williams, K. Granström, and L. Svensson,

“Poisson multi-Bernoulli mixture filter: direct derivation and implement-
ation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 54,

no. 4, pp. 1883-1901, Aug. 2018, Mar. 2017.
[53] A. S. Rahmathullah, A. F. García-Fernández, and L. Svensson, “Gen-

eralized optimal sub-pattern assignment metric,” in 20th International

Conference on Information Fusion, 2017, pp. 1–8.
[54] L. Svensson, D. Svensson, M. Guerriero, and P. Willett, “Set JPDA Filter

for Multitarget Tracking,” IEEE Transactions on Signal Processing,
vol. 59, no. 10, pp. 4677–4691, Oct. 2011.

[55] J. L. Williams, “An efficient, variational approximation of the best fitting
multi-Bernoulli filter,” IEEE Transactions on Signal Processing, vol. 63,
no. 1, pp. 258–273, Jan. 2015.

[56] A. F. García-Fernández, L. Svensson, and M. R. Morelande, “Multiple
target tracking based on sets of trajectories,” IEEE Transactions on

Aerospace and Electronic Systems, vol. 56, no. 3, pp. 1685–1707, Jun.
2020.


