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Abstract

Aldous, Evans and Pitman (1998) studied the behavior of the fragmentation process derived from

deleting the edges of a uniform random tree on n labelled vertices. In particular, they showed that,

after proper rescaling, the above fragmentation process converges as n → ∞ to the fragmentation

process of the Brownian CRT obtained by cutting-down the Brownian CRT along its skeleton in a

Poisson manner.
In this work, we continue the above investigation and study the fragmentation process obtained

by deleting randomly chosen edges from a critical Galton-Watson tree tn conditioned on having n

vertices, whose offspring distribution belongs to the domain of attraction of a stable law of index

α ∈ (1, 2]. Our main results establish that, after rescaling, the fragmentation process of tn converges

as n → ∞ to the fragmentation process obtained by cutting-down proportional to the length on

the skeleton of an α-stable Lévy tree of index α ∈ (1, 2]. We further show that the latter can be

constructed by considering the partitions of the unit interval induced by the normalized α-stable
Lévy excursion with a deterministic drift studied by Miermont (2001). This extends the result of

Bertoin (2000) on the fragmentation process of the Brownian CRT.

Key words and phrases: Additive coalescent, fragmentation, Galton-Watson trees, spectrally posi-

tive stable Lévy processes, stable Lévy tree, Prim’s algorithm.

Subject Classes: 60J25, 60J90, 60F05, 60G52, 60C05.

1 Introduction and main results

Aldous, Evans and Pitman [5, 22, 38] (see also [15, 30]) considered a fragmentation process of a uniform

random tree tn on n ∈ N labelled vertices (or Cayley tree with n vertices) by deleting the edges of

tn one by one in uniform random order. More precisely, as time passes, the deletion of edges creates

more and more subtrees of tn (connected components) such that the evolution of the ranked vector of

sizes (number of vertices) of these subtrees (in decreasing order) evolves as a fragmentation process.
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It turns out that the asymptotic behavior of this fragmentation process, in reverse time, is related to

the so-called standard additive coalescent [5, 22]. Moreover, this leads to a continuous representation

of the standard additive coalescent in terms of the time-reversal of an analogue fragmentation process

of the Brownian continuum random tree (Brownian CRT); see [5]. Evans and Pitman [22, Theorem 2]

showed that an additive coalescent is a Feller Markov process with values in the infinite ordered set

S :=
{

x = (x1, x2, . . . ) : x1 ≥ x2 ≥ · · · ≥ 0 and
∞
∑

i=1

xi < ∞
}

, (1)

endowed with the ℓ1-norm, ‖x‖1 =
∑∞

i=1 |xi| for x ∈ S, whose evolution is described formally by: given

that the current state is x, two terms xi and xj, i < j, of x are chosen and merged into a single term

xi + xj (which implies some reordering of the resulting sequence) at rate equal to xi + xj . A version of

this process defined for times describing the whole real axis is called eternal. This model is also closely

related to the so-called Marcus-Lushnikov process [31, 29], and in particular, the version studied in [5]

is referred to as the standard additive coalescent.

In this work, we shall extend the investigation, that was begun in [5, 22, 38], to the more general

situation where one wants to cut-down critical Galton–Watson trees conditioned on having a fixed

number of vertices, but whose offspring distribution belongs to the domain of attraction of a stable

law. More precisely, consider a critical offspring distribution µ = (µ(k), k ≥ 0), i.e., a probability

distribution on the nonnegative integers satisfying
∑∞

k=0 kµ(k) = 1. In addition, we always implicitly

assume that µ(0) > 0 and µ(0) + µ(1) < 1 to avoid degenerate cases, and that µ is aperiodic. We say

that µ belongs to domains of attraction of a stable law of index α ∈ (1, 2] if either the variance of µ is

finite, or if µ([k, ∞)) = k−αL(k) as k → ∞, where L : R+ → R+ is a function such that L(x) > 0 for

x ∈ R+ large enough and limx→∞ L(tx)/L(x) = 1 for all t > 0 (such function is called slowly varying

function). In other terms, if (Yi)i≥1 is a sequence of i.i.d. random variables with distribution µ, then

there exists a sequence of positive real numbers (Bn)n≥1 such that

Bn → ∞ and
Y1 + Y2 + · · · + Yn − n

Bn

d
−→ Yα, in distribution as n → ∞ (2)

to a random variable Yα with Laplace exponent given by E[exp(−λYα)] = exp(−λα) whenever α ∈ (1, 2),

and E[exp(−λY2)] = exp(−λ2/2) if α = 2, for every λ > 0 ([23, Section XVII.5] guarantees its existence).

In particular, for α = 2, we have that Y2 is distributed as a standard Gaussian random variable. The

factor Bn is of order n1/α (more precisely, Bn/n1/α is a slowly varying function), and one may take

Bn = σn1/2 when µ has finite variance σ2.

We henceforth let tn denote a critical Galton-Watson tree whose offspring distribution µ belongs to

the domain of attraction of a stable law of index α ∈ (1, 2] and refer to it as an α-stable GW-tree, for

simplicity. Following Aldous, Evans and Pitman [5, 22], we are interested in the evolution of the ranked

vector of sizes (in decreasing order) of the subtrees created by deleting randomly chosen edges from tn.

Indeed, we will consider a continuous-time version of this cutting-down process. Let edge(tn) be the

set of edges of tn and equip each of the edges of tn with i.i.d. uniform random variables (or weights)
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w = (we : e ∈ edge(tn)) on [0, 1] and independently of the tree tn. For u ∈ [0, 1], we then keep the edges

of tn with weight smaller than u and discard the others. Therefore, one obtains a (fragmentation) forest

fn(u) conformed by the connected components (or subtrees of tn) created by the above procedure; see

Figure 3. In particular, the forest fn(u) has the same set of vertices as tn but clearly it has a different

set of edges given by edge(fn(u)) = {e ∈ edge(tn) : we ≤ u}. Let Fn = (Fn(u), u ∈ [0, 1]) be the

process given by

Fn(u) = (Fn,1(1 − u), Fn,2(1 − u), . . . ), for u ∈ [0, 1],

the sequence of sizes (number of vertices) of the connected components of the forest fn(1 − u), ranked

in decreasing order. We have strategically viewed the sequence of sizes of the components of fn(1 − u)

as an infinite sequence, by completing with an infinite number of zero terms. Plainly as time passes

more and more subtrees are created, and thus, the process Fn evolves as a fragmentation process. Note

also that Fn(0) = (n, 0, 0, . . . ) and that Fn(1) = (1, 1, . . . , 1, 0, 0, . . . ) are infinite sequences where the

first n terms are ones in Fn(1). Since we are interested in studying the asymptotic behaviour of Fn,

we consider the (rescaled in time and space) fragmentation process F
(α)
n = (F(α)

n (t), t ≥ 0) given by

F(α)
n (t) =

1
n

Fn

(

Bn

n
t

)

, for 0 ≤ t ≤ n/Bn, and F(α)
n (t) =

1
n

Fn(1) for t > n/Bn, (3)

where (Bn)n≥1 is a sequence satisfying (2). The process F
(α)
n takes values on the set S. The aim of this

paper is to establish a convergence limit result for the fragmentation process F
(α)
n . To state the precise

statement (Theorem 1), it will be convenient to introduce first the limiting object.

Bertoin [8] showed that the fragmentation process of the Brownian CRT in [5] can be constructed

by considering the partitions of the unit interval induced by a standard Brownian excursion with drift.

This latter is sometimes called the Brownian fragmentation. In a similar vein, Miermont [32] built

other fragmentation processes from Lévy processes with no positive jumps (or equivalently, negative

of spectrally positive Lévy processes). Specifically, let Xexc
α = (Xexc

α (s), s ∈ [0, 1]) be the normalized

excursion (with unit length) of an α-stable spectrally positive Lévy process of index α ∈ (1, 2]; see

Section 3 for a formal definition. In particular, Xexc
2 is the normalized standard Brownian excursion.

For every t ≥ 0, define the processes Y
(t)

α = (Y (t)
α (s), s ∈ [0, 1]) and I

(t)
α = (I(t)

α (s), s ∈ [0, 1]) by letting

Y (t)
α (s) = Xexc

α (s) − ts and I(t)
α (s) = inf

u∈[0,s]
Y (t)

α (u), for s ∈ [0, 1]. (4)

For t ≥ 0, we introduce

F(α)(t) = (F (α)
1 (t), F

(α)
2 (t), . . . ) (5)

as the random element of S defined by the ranked sequence (in decreasing order) of the lengths of the

intervals components of the complement of the support of the Stieltjes measure d(−I
(t)
α ); note that

s 7→ −I
(t)
α (s) = supu∈[0,s] −Y

(t)
α (u) is an increasing process. More precisely, the support of d(−I

(t)
α ) is
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defined as the set of times when the process Y
(t)

α reaches a new infimum. On the other hand, it can be

shown that the support of d(−I
(t)
α ) coincides with the so-called ladder time set of −Y

(t)
α which is given

by the closure of the set of times when Y
(t)

α is equal to its infimum, i.e.,

L
α(t) :=

{

s ∈ [0, 1] : Y
(t)

α (s) = I
(t)
α (s)

}

;

see for example [7, Proposition 1, Chapter VI] and the discussion after that. Then F(α)(t) is the

lengths of the open intervals in the canonical decomposition of [0, 1] \L α(t) arranged in the decreasing

order. The intervals components of the complement of the support of the measure d(−I
(t)
α ) are also

called constancy intervals of −I
(t)
α , and in fact, those intervals corresponds to excursion intervals of Y

(t)
α

above its infimum (or equivalently, excursion intervals of the reflected process Y
(t)

α − I
(t)
α above 0). It

is well-known that L α(t) is a.s. a random closed set with zero Lebesgue measure which implies that

F(α)(t) ∈ S1 a.s., where S1 ⊂ S is the space of the elements of S with sum 1; see [7, Corollary 5, Chapter

VII]. Observe that for every fixed 0 ≤ t < t′, the process s → Y
(t)

α (s) − Y
(t′)

α (s) = (t′ − t)s is monotone

increasing which entails that L α(t) ⊆ L α(t′). Then the partition of [0, 1] induced by L α(t′) is finer

than that induced by L α(t). As a consequence, it has been shown by Miermont [32, Proposition 2]

(see also [8, Theorem 1] for α = 2) that F(α) = (F(α)(t), t ≥ 0) is a fragmentation process issued from

F(α)(0) = (1, 0, 0, . . . ). A precise description of its transition kernel is given in [32, Definition 4]; see

Corollary 1 below for some insights. From now on, we will refer to F(α) as the α-stable fragmentation

of index α ∈ (1, 2].

We are now able to state our first main result. Let D(I,M) be the space of càdlàg functions from

an interval I ⊆ R to the separable, complete metric space (M, d) equipped with the Skorohod topology;

(see e.g. [14, Chapter 3] or [25, Chapter VI] for details on this space). We write d
−→ to denote convergence

in distribution.

Theorem 1. Let tn be an α-stable GW-tree of index α ∈ (1, 2]. Then, we have that

(F(α)
n (t), t ≥ 0) d

−→ (F(α)(t), t ≥ 0), as n → ∞, in the space D(R+,S).

As mentioned earlier, F(2) is exactly the Brownian fragmentation studied by Bertoin [8], that is

to say, it corresponds to the fragmentation process derived from the Brownian CRT of Aldous and

Pitman [5]; see also [2]. In view of this, the second goal of this paper is to show that indeed F(α) is the

fragmentation process obtained by cutting-down the “edges” of the α-stable Lévy tree.

The α-stable Lévy tree of index α ∈ (1, 2] is the continuum random tree analogue of (discrete)

α-stable GW-trees. They were introduced by Duquesne and Le Gall [20], and in particular, they also

appear as scaling limits of α-stable GW-trees. In brief, the α-stable Lévy tree Tα = (Tα, dα, ρα) is a

random compact metric space (Tα, dα) with one distinguished element ρ ∈ Tα called the root such that

(Tα, dα) is a tree-like space in that for v, w ∈ Tα, there is a unique non-self-crossing path [v, w] from v

to w in Tα, whose length equals dα(v, w). The leaves Lf(Tα) of Tα are those points that do not belong

to the interior of any path leading from one point to another, and the skeleton of the tree is the set

Sk(Tα) = Tα \Lf(Tα) of non-leaf points. The α-stable Lévy tree Tα is naturally endowed with a uniform
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probability measure µα (the mass measure) that is supported on Lf(Tα), and a unique σ-finite measure

λα (the length measure) carried by Sk(Tα) that assigns measure d(v, w) to the geodesic path between

v and w in Tα.

Following Aldous-Pitman’s fragmentation [5] of the Brownian CRT, the analogue of deleting ran-

domly chosen edges in tn is to cut the skeleton of Tα by a Poisson point process of cuts with intensity

dt ⊗ λα(dv) on [0, ∞) × Tα. For all t ≥ 0, define an equivalence relation ∼t on Tα by saying that

v ∼t w, for v, w ∈ Tα, if and only if, no atom of the Poisson process that has appeared before time

t belongs to the path [v, w]. These cuts split the α-stable Lévy tree into a (continuum) forest, that

is a countably infinite set of smaller subtrees (connected components) of Tα. Let T
(t)

α,1, T
(t)

α,2 , . . . be the

distinct equivalence classes for ∼t (connected components of Tα), ranked according to the decreasing

order of their µα-masses. The subtrees (T (t)
α,i , i ≥ 1) are nested as t varies, that is, for every 0 ≤ t < t′

and i ≥ 1, there exits j ≥ 1 such that T
(t′)

α,i ⊂ T
(t)

α,j . Let FTα = (FTα(t), t ≥ 0) be the process given by

FTα(t) = (µα(T (t)
α,1), µα(T (t)

α,2), . . . ), t ≥ 0,

where FTα(0) = (1, 0, 0, . . . ). Indeed, FTα is a fragmentation process in the sense that FTα(t′) is

obtained by splitting at random the elements of FTα(t), for 0 ≤ t < t′. We call FTα the fragmentation

process of the α-stable Lévy tree. In particular, FT2 is the fragmentation process of the Brownian CRT

introduced in [5, Section 2.2]. Note that FTα takes values in S, and that Lemma 7 below shows that

FTα(t) ∈ S1 a.s., for every t ≥ 0. We can now state our second main result.

Proposition 1. We have that

(F(α)(t), t ≥ 0) d= (FTα(t), t ≥ 0),

where
d= means equal in distribution (in the sense of finite-dimensional distributions).

Theorem 3 in [5] shows that the time-reversed fragmentation process of the Brownian CRT, i.e.

(FT2(e−t), t ∈ R), is a version of the standard additive coalescent providing an explicit construction

of this last process. In general, Miermont [32, Section 6] has shown that the time-reversed α-stable

fragmentation process, i.e. (F(α)(e−t), t ∈ R), is an eternal additive coalescent as described by Evans

and Pitman [22]. More precisely, it is a mixing of so-called extremal coalescents of Aldous and Pitman

[6] (see also [9]) which exact law is given in [32, Proposition 3]. Thus, Proposition 1 implies that this

eternal additive coalescent can also be constructed from the α-stable Lévy tree by Poisson splitting

along its skeleton. On the other hand, Theorem 1 and Proposition 1 clearly generalize Bertoin’s work

[8] and moreover, complete Miermont’s [32] one by identifying the distribution of the α-stable frag-

mentation with that of the fragmentation process of the α-stable Lévy tree. In particular, Bertoin [10]

proved that F(2) (or equivalently, FT2) is a so-called self-simlar fragmentation process of index 1/2.

However, Miermont [33] has already pointed out that F(α) (and therefore FTα), for α ∈ (1, 2), is not a

self-similar fragmentation due to the existence of points in Tα with infinite degree.
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The proof of Theorem 1 uses some of the ideas developed in [15] where only the case of Cayley

tree was treated. However, in our more general framework, there are technical challenges that do not

appear in [15], mostly due to the lack of some properties that only the Cayley tree satisfies. To prove

Theorem 1, we use the so-called Prim’s algorithm [40] to obtain a consistent ordering on the vertices

of the forest created by deleting randomly chosen edges from tn that we refer to as the Prim order.

Informally, given tn whose edges are equipped with non-negative and distinct weights, and a starting

vertex, say v of tn, the Prim’s algorithm explores a connected component from v, each time visiting

a neighbouring vertex which connecting edge possesses the smallest weight; see Section 4. Then every

time an edge is removed and a new connected component is created, the Prim order of the vertices

in the new forest always remains the same. This will allow us to precisely encode this forest (and in

particular, the sizes of connected components) using a discrete analogue of the process Y
(t)

α defined in

(4) that we refer to as the Prim path. We then show that this (properly rescaled) Prim path indeed

converges to its continuous version. Finally, we use the results in [9] to develop a general approach for

the convergence of fragmentation processes encoded by functions in D([0, 1],R) to conclude our proof.

There are some of the key differences with the proof for Cayley trees in [15]. For example, the

convergence of the encoding processes in [15] uses a bound (see in (10) in [15]) that is only known to

hold for Cayley trees (or Galton-Watson trees where µ has some exponential finite moment). In [15],

the authors mostly work with convergence of continuous processes. This is no longer possible in our

framework, since our encoding processes are discontinuous due to the nature of the α-stable GW-trees.

The above makes an important difference at the technical level.

The proof of Proposition 1 follows along the lines of that of Theorem 3 in [5] for the Brownian CRT

(see also the proof of Proposition 13 in [6]). Informally, we use the convergence of rescaled α-stable

GW-trees toward the α-stable Lévy tree Tα in order to approximate the fragmentation process of Tα.

The rest of the paper is organized as follows. In Section 2, we discuss some connections with

some combinatorial and probabilistic models: additive coalescents, parking schemes, laminations and

Bernoulli bond-percolation. In Section 3, we recall some facts about stable Lévy processes, bridges and

excursions that will be important for our proofs. Section 4 is devoted to the introduction of Galton-

Watson trees as well as the formal definition of the exploration process (the Prim path) associated with

the fragmentation forest. The asymptotic behavior of the Prim path is studied in Section 5. Finally,

the proofs of Theorem 1 and Proposition 1 are given in Section 6 and Section 7, respectively.

2 Further remarks

In this section, we comment on our main results and highlight some connections with previous works.

Additive coalescents. A Cayley tree of size n can be viewed as a Galton-Watson tree with Poissonian

offspring distribution of parameter 1 and conditioned to have n vertices, where the labels are assigned

to the vertices uniformly at random. In particular, Aldous, Evans and Pitman fragmentation process

[5, 22, 38], say F+
n = (F+

n (t), t ≥ 0), corresponds precisely to F
(α)
n in (3), with α = 2 and Bn = n1/2.

The fragmentation process F+
n leads to a representation of an additive coalescent by an appropriate
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time reversal, that is, the exponential time-change t → e−t. Specifically, (F+
n (e−t), t ≥ −(1/2) ln n) is

an additive coalescent starting at time −(1/2) ln n from the state (1/n, 1/n, . . . , 1/n, 0, 0, . . . ) ∈ S (or

equivalently, from the component sizes in Marcus-Lushnikov model with n initial masses 1/n). Evans

and Pitman [22] (see also [5, Proposition 2]) showed that this time-reversed version of F+
n converges in

distribution to the standard additive coalescent, i.e., (FT2(e−t), t ∈ R).

Aldous and Pitman [6] (see also [22, Construction 5]) also studied the fragmentation process derived

by cutting-down birthday trees. They are a family of trees that generalizes the Cayley tree in allowing

“weights” on the vertices. Aldous and Pitman showed that this fragmentation process, suitable rescaled,

converges to the fragmentation process associated of the continuum counterpart of birthday trees, the

inhomogeneous continuum random trees (ICRT). Moreover, the time-reversed version of the fragmen-

tation process of the ICRT can be viewed as version of an eternal additive coalescent. On the other

hand, Bertoin [9] has proved that the fragmentation process of the ICRT can also be constructed by

considering the partitions of the unit interval induced by certain bridges with exchangeable increments.

Parking schemes. Chassaing and Louchard [16] have provided yet another representation of the

standard additive coalescent as parking schemes related to the Knuth’s parking problem; see also

[17, 30]. Bertoin and Miermont [13] extended the work [16] and relate the Knuth’s parking problem for

caravans to different versions of eternal additive coalescent. On the other hand, the Knuth’s parking

problem bear some similarities with the dynamics of an aggregating server studied by Bertoin [9] that

also relate to the additive coalescent.

Lamination process. In a recent work, Thévenin [42] has provided a geometric representation of

the fragmentation process FTα by a new lamination-valued process. In particular, Theorem 1.1 in

[42] combined with Proposition 1 allows to deduce the exact distribution of the ranked sequence (in

decreasing order) of the masses of the faces of this lamination-valued process.

Bernoulli bond-percolation. Bernoulli bond-percolation on finite connected graphs is perhaps the

simplest example of a percolation model. In this model, each edge in the connected graph is removed

with probability 1 − p ∈ (0, 1), and it is kept with probability p, independently of the other edges. This

induces a partition of the set of vertices of the graph into connected components usually referred to

as clusters. It should be intuitively clear that there is a link between Bernoulli bond-percolation on

α-stable GW-trees and their associated fragmentation processes. More precisely, let tn be an α-stable

GW-tree. For u ∈ [0, 1], recall that continuous-time cutting-down procedure of tn described in the

introduction results in a random forest of connected components. Indeed, the probability that a given

edge of tn has not yet been removed at time u is exactly u. Thus, the configuration of the connected

components at time u is precisely that resulting from Bernoulli bond-percolation on tn with parameter

u. A natural problem in this setting is then to investigate the asymptotic behavior of the sizes (number

of vertices) of the largest clusters for appropriate percolation regimes. In this direction, let (Bn)n≥1

be a sequence of positive real numbers satisfying (2). An application of Theorem 1 shows that for the

percolation parameter 1 − (Bn/n)t with a fixed t ≥ 0, the sequence of sizes of the clusters ranked in
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decreasing order and renormalized by a factor of 1/n (i.e. F
(α)
n (t)) converges in distribution, as n → ∞,

to F(α)(t). In particular, Theorem 2 in [32] allows us to describe explicitly the distribution of F(α) at

fixed times. Let (ps(z), z ∈ R, s ≥ 0) be the family of densities of the distribution of a strictly stable

spectrally positive Lévy process with index α ∈ (1, 2]; see Section 3.

Corollary 1. For t > 0, let a(α)
1 (t) > a(α)

2 (t) > · · · be the atoms of a Poisson measure on (0, ∞) with

intensity Λ(t)
α (dz) := z−1pz(−tz)1{z>0}dz, ranked in decreasing order. Then

F(α)(t) d=
(

(a(α)
1 (t), a(α)

2 (t), . . . )
∣

∣

∣

∣

∞
∑

i=1

a(α)
i (t) = 1

)

.

Following Bertoin’s [12] work about Bernoulli bond-percolation on random trees. The percolation

regime 1 − (Bn/n)t on tn corresponds to the so-called supercritical regime. Indeed, the result in

Corollary 1 has already been proved by Pitman [38] for Cayley trees. Furthermore, it has been shown

in [5, 8] that the distribution of F(2)(t) is equal to that of the ranked jump sizes (in decreasing order) of

a stable subordinator of index 1/2 over the interval [0, t], conditionally on being 1 at time t. In general,

for t > 0, Λ(t)
α (dz) := z−1pz(−tz)1{z>0}dz is the Lévy measure of a not killed pure jump subordinator

and a(α)
1 (t) > a(α)

2 (t) > · · · is the ranked jump sizes of this subordinator before time t; see [32]. We refer

to [37] and [39, Section 8.1] for more information about the distribution of the jumps of a subordinator.

3 Stable Lévy processes, bridges and excursions

In this section, we recall several results about stable Lévy processes without negative jumps and refer

the interesting reader to [7, Chapter VIII] or the work of Chaumont [18] for further details.

Spectrally positive stable Lévy processes. Let (Ω, F ,P) be the underlying probability space.

A strictly stable spectrally positive Lévy process with index α ∈ (1, 2] is a random process Xα =

(Xα(s), s ≥ 0) with paths in D(R+,R), which has independent and stationary increments, no negative

jumps and such that E[exp(−λXα(s))] = exp(csλα) for every s, λ ≥ 0, and some constant c > 0. An

important feature of Xα is the so-called scaling property: for every real constant k > 0, the process

(k−1/αXα(ks), s ≥ 0) has the same distribution as Xα. Then, in this work, we can and we will take

c = 1 if α = (1, 2), and c = 1/2 if α = 2, without loss of generality. In particular, for α = 2, the process

X2 is the standard Brownian motion on the positive real line.

Stable bridge and stable normalized excursion. The stable Lévy bridge Xbr
α = (Xbr

α (s), s ∈

[0, 1]) is a random process with paths in D([0, 1],R) that can informally be defined as the process

Xα conditioned to be at level 0 at time 1. This conditioning can be made rigorous and we refer

to [18] for details. The normalized excursion Xexc
α = (Xexc

α (s), s ∈ [0, 1]) of a spectrally positive α-

stable Lévy process with unit lifetime (or α-stable excursion for simplicity) is a random process with

paths in D([0, 1],R) that can be thought as the process Xbr
α conditioned to stay nonnegative between

times 0 and 1. Let us make this more precise and formally define the process Xexc
α . We consider
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the so-called Vervaat transform (or Vervaat excursion) introduced by Takács [41] and used by Vervaat

[43] to change a bridge type function in D([0, 1],R) into an excursion. More precisely, a bridge is

a function g ∈ D([0, 1],R) such that g(0) = g(1) = g(1−) = 0. For any g ∈ D([0, 1],R), we set

µ̄(g) := inf{s ∈ [0, 1] : g(s−) ∧ g(s) = infu∈[0,1] g(u)}, i.e., the smallest location of the infimum of g.

Then, we define the Vervaat transform V of a bridge g ∈ D([0, 1],R) by

V(g)(s) :=

{

g(s + µ̄(g)) − infu∈[0,1] g(u) if s ≤ 1 − µ̄(g),

g(s + µ̄(g) − 1) − infu∈[0,1] g(u) if s ≥ 1 − µ̄(g).

Clearly, V(g) is a path in D([0, 1],R) which only takes nonnegative values and V(g)(0) = V(g)(1) = 0.

It is well-known that a stable bridge Xbr
α satisfies Xbr

α (0) = Xbr
α (1) = Xbr

α (1−) = 0. Moreover, Xbr
α

reaches its infimum at a unique random time that µ̄α := µ̄(Xbr
α ); see [18]. Thus, we formally define the

α-stable excursion as the Vervaat transform of the stable bridge Xbr
α , i.e., Xexc

α := V(Xbr
α ). We refer to

the work of Chaumont [18] (see also [7, Chapter VIII]) for other constructions of the process Xexc
α via

path transformations, or alternatively, using arguments from excursion theory of Markov processes. A

useful property (see [18, Theorem 4]) that one can deduce from the above construction is that

µ̄α and Xexc
α are independent and µ̄α is uniformly distributed on [0, 1]. (6)

4 The coding of Galton-Watson trees and their fragmentation

In this section, we formally introduce the family of critical Galton-Watson trees and explain how they

can be coded by different functions, namely the so-called Łukasiewicz path and a similar path derived

by the Prim’s algorithm. The latter provides an alternative order on the vertices of the tree, which we

refer to as the Prim order. Following [15], we will see how the Prim’s order of the vertices can be used

to define a consistent exploration process of the fragmentation forest that stores all the information of

the sizes of its connected components. Finally, we prove a distributional property for this exploration

process that will be a crucial ingredient in the proof of Theorem 1.

Plane trees. We follow the formalism of Neveu [35]. Let N = {1, 2, . . . } be the set of positive

integers, set N
0 = {∅} and consider the set of labels U =

⋃

n≥0 N
n. For u = (u1, . . . , un) ∈ U,

we denote by |u| = n the length (or generation, or height) of u; if v = (v1, . . . , vm) ∈ U, we let

uv = (u1, . . . , un, v1, . . . , vm) ∈ U be the concatenation of u and v. A plane tree is a nonempty, finite

subset τ ⊂ U such that: (i) ∅ ∈ τ ; (ii) if v ∈ τ and v = uj for some j ∈ N, then u ∈ τ ; (iii) if u ∈ τ ,

then there exists an integer c(u) ≥ 0 such that ui ∈ τ if and only if 1 ≤ i ≤ c(u). We will view each

vertex u of a tree τ as an individual of a population whose τ is the genealogical tree. The vertex ∅ is

called the root of the tree and for every u ∈ τ , c(u) is the number of children of u (if c(u) = 0, then u is

called a leaf, otherwise, u is called an internal vertex). The total progeny (or size) of τ will be denoted

by ζ(τ) = Card(τ) (i.e., the number of vertices of τ). We denote by T the set of plane trees and for

each n ∈ N, by Tn the set of plane trees with n vertices, or equivalently n − 1 edges.

9



Galton-Watson trees. Let µ be a probability measure on Z+ which satisfies µ(0) > 0, expectation
∑∞

k=0 kµ(k) = 1 and such that µ(0) + µ(1) < 1. The law of a critical Galton–Watson tree with

offspring distribution µ is the unique probability measure Pµ on T satisfying: (i) Pµ(c(∅) = k) = µ(k)

for every k ≥ 0; (ii) For every k ≥ 1 such that µ(k) > 0, conditioned on the event {c(∅) = k},

the subtrees that stem from the children of the root {u ∈ U : 1u ∈ τ}, . . . , {u ∈ U : ku ∈ τ} are

independent and distributed as Pµ. Otter [36] shows that the law Pµ is given by the explicit formula

Pµ(τ) =
∏

u∈τ µ(c(u)). A random tree whose distribution is Pµ will be called a Galton–Watson tree

with offspring distribution µ. We also denote by P
(n)
µ the law on Tn of a Galton-Watson tree with

offspring distribution µ conditioned to have n vertices, providing that this conditioning makes sense.

Coding planar trees by discrete paths. In this work, we will use two different orderings of the

vertices of a tree τ ∈ T:

(i) Lexicographical ordering. Given v, w ∈ τ , we write v ≺lex w if there exits z ∈ τ such that

v = z(v1, . . . , vn), w = z(w1, . . . , wm) and v1 < w1.

(ii) Prim ordering. Let edge(τ) be the set of edges of τ and consider a sequence of distinct and

positive weights w = (we : e ∈ edge(τ)) (i.e., each edge e of τ is marked with a different

and positive weight we). Given two distinct vertices u, v ∈ τ , we write {u, v} for the edge

connecting u and v in τ . Let us describe the Prim order ≺prim of the vertices in τ , that is,

∅ = u(0) ≺prim u(1) ≺prim · · · ≺prim u(ζ(τ) − 1). We will use the notation Vi for the set

{u(0), . . . , u(i − 1)}, for 0 ≤ i ≤ ζ(τ). First set u(0) = ∅ and V0 = {u(0)}. Suppose that for

some 0 ≤ i ≤ ζ(τ) − 1, the vertices u(0), . . . , u(i − 1) have been defined. Consider the weights

{w{u,v} : u ∈ Vi, v 6∈ Vi} of edges between a vertex of Vi and another outside of Vi. Since all the

weights are distinct, the minimum weight in {w{u,v} : u ∈ Vi, v 6∈ Vi} is reached at an edge {ũ, ṽ}

where ũ ∈ Vi and ṽ 6∈ Vi. Then set u(i) = ṽ. This iterative procedure completely determines the

Prim order ≺prim.

For ∗ ∈ {lex, prim}, we associate to every ordering ∅ = u(0) ≺∗ u(1) ≺∗ · · · ≺∗ u(ζ(τ) − 1) of the

vertices of τ a path W ∗ = (W ∗(k), 0 ≤ k ≤ ζ(τ)), by letting W ∗(0) = 0 and for 0 ≤ k ≤ ζ(τ) − 1,

W ∗(k + 1) = W ∗(k) + c(u(k)) − 1, where we recall that c(u(k)) denotes the number of children of the

vertex u(k) ∈ τ . Observe that W ∗(k + 1) − W ∗(k) = c(u(k)) − 1 ≥ −1 for every 0 ≤ k ≤ ζ(τ) − 1, with

equality if and only if u(k) is a leaf of τ . Note also that W ∗(k) ≥ 0, for every 0 ≤ k ≤ ζ(τ) − 1, but

W ∗(ζ(τ)) = −1. We shall think of such a path as the step function on [0, ζ(τ)] given s 7→ W ∗(⌊s⌋).

The path W lex is commonly called Łukasiewicz path of τ , and from now on we refer to W prim as the

Prim path; see Figure 2. See [28] for more details and properties on the Łukasiewicz path.

The procedure just described to obtain the Prim ordering is known as Prim’s algorithm (or Prim-

Jarník algorithm); see [40]. This algorithm associates to any properly weighted graph its unique

minimum spanning tree. In practice, one could also consider that w is a sequence of i.i.d. positive

random variables such that they are all distinct a.s. and independent of the tree. See Figure 1 for an

illustration of the previous orderings of the vertices in a tree.

10



0

9

161511

12

1413

10

7

8

1

3

654

2

0

5

9

.55

11
.81

6

7

8

.17

10

.62

.31

.29

12

.88

.93

3

4

.43

.77

1

13

15

.25

14
.12

16

.38

.98

2

.59

.70

Figure 1: From left to right, a plane tree with vertices labeled in lexicographical order and a weighted
plane tree with vertices labeled in Prim order.

Define the probability measure µ̂ on {−1, 0, 1, . . . } by µ̂(k) = µ(k + 1) for every k ≥ −1. Let

X = (X(k), k ≥ 0) be a random walk which starts at 0 with jump distribution µ̂ and define also the

time ζ1 = inf{k ≥ 0 : X(k) = −1}. In the Prim ordering, consider that the weights w is a sequence of

i.i.d. positive random variables such that they are distinct a.s. and independent of the tree.
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W
prim

Figure 2: In the left, the Łukasiewicz path of the plane tree in Figure 1. In the right, the Prim path
of the plane tree in Figure 1

Proposition 2. For every ∗ ∈ {lex, prim}, if we sample a plane tree according to Pµ, then W ∗ is

distributed as (X(0), X(1), . . . , X(ζ1)). In particular, the total progeny of the sample plane tree has the

same distribution as ζ1.

Proof. The proof for the Łukasiewicz path can be found in [28, Proposition 1.5]. For the Prim path

the proof follows from a simple adaptation of that of [28, Proposition 1.5]; see also [15, Lemmas 15 and

16] for an alternative approach.

Fragmentation of a plane tree. Consider τ ∈ T and let edge(τ) denote its set of edges. Equip

the edges of τ with i.i.d. uniform random variables (or weights) w = (we : e ∈ edge(τ)) on [0, 1]

and independently of the tree τ . In particular, for a vertex v ∈ τ with c(v) ≥ 1 children, we write
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(wv,k, 1 ≤ k ≤ c(v)) for the weights of the edges connecting v with its children. For t ∈ [0, 1], we then

keep the edges of τ with weight smaller than t and discard the others. This gives rise to a forest fτ (t)

with the same set of vertices as τ but with set of edges given by edge(fτ (t)) = {e ∈ edge(τ) : we ≤ t}.

Furthermore, each vertex v ∈ fτ (t) has ct(v) =
∑c(v)

k=1 1{wv,k≤t} children if c(v) ≥ 1; otherwise, ct(v) = 0

whenever c(v) = 0. In what follows, we refer to the forest fτ (t) associated to a plane tree τ and uniform

weights w as the fragmented forest at time t ∈ [0, 1], or simply, fragmentation forest; see Figure 3. In

this work we restrict ourselves to the case uniform i.i.d. weights, but certainly some of the forthcoming

results can be extended for more general sequences of weights.
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Figure 3: A plane tree with uniform random weights in the left side. In the right side, the forest
created by keeping the edges with weight at most t = .92. The vertices are labelled according to the
Prim ordering.

Prim exploration of the fragmentation forest. For a plane tree τ ∈ T and sequence of i.i.d.

uniform random weights w on [0, 1], let fτ (t) be the fragmentation forest of τ at time t ∈ [0, 1].

Let us now explain how to explore the subtree components of the forest fτ (t) by using the approach

outlined in [15, page 532] (see also [4]). For t ∈ [0, 1], denote by Neight(v) := {u ∈ fτ (t) : {u, v} ∈

edge(fτ (t))} the set of neighbours of v ∈ fτ (t). For a set of vertices V of fτ (t), let also Neight(V ) :=

(
⋃

v∈V Neight(v)) \ V , the set of neighbours of vertices in V but not in V . We associate to the prim

ordering ∅ = u(0) ≺prim u(1) ≺prim · · · ≺prim u(ζ(τ) − 1) of the vertices of τ the following exploration

process of fτ (t) (recall that fτ (t) and τ have the same set of vertices). The first visited vertex is

vt(0) = u(0). Suppose that we have explored the vertices Vk = {vt(0), . . . , vt(k − 1)} at some time

1 ≤ k ≤ ζ(τ). If k = ζ(τ), we have finished the exploration, and otherwise, one has two possibilities:

(i) if Neight(Vk) 6= ∅, then vt(k) is the next vertex according to the order ≺prim that belongs to

Neight(Vk), or

(ii) if Neight(Vk) = ∅, then vt(k) is the next vertex according to the order ≺prim that belongs to

τ \ Vk.

This exploration process results in an order for the vertices of fτ (t) (equivalently, to the vertices of

τ) that we denote by <prim (i.e. ∅ = vt(0) <prim vt(1) <prim · · · <prim vt(ζ(τ) − 1)) and call Prim
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exploration. An important feature of the Prim exploration of fτ (t) is that the Prim ordering <prim of

its vertices is preserved for all values of t ∈ [0, 1]. More precisely, for t1, t2 ∈ [0, 1], vt1(k) = vt2(k), for

all 0 ≤ k ≤ ζ(τ)−1; see Figure 3 for an example when t1 = 1 and t2 = .92. This is a consequence of the

algorithm to obtain the Prim ordering of the vertices in τ which associates to any properly weighted

graph its unique minimum spanning tree. We henceforth write ≺prim instead of <prim and remove the

subindex t from our notation, i.e., we write ∅ = v(0) ≺prim v(1) ≺prim · · · ≺prim v(ζ(τ) − 1) for the

vertices of fτ (t) in Prim order, which is the same as the Prim ordering of the vertices of the tree τ ,

∅ = u(0) ≺prim u(1) ≺prim · · · ≺prim u(ζ(τ) − 1) presented earlier.

Following the presentation of [15, pages 532-533], one can associate to the Prim ordering of the

vertices of fτ (t), an exploration path Zt = (Zt(k), 0 ≤ k ≤ ζ(τ) + 1) by letting Zt(0) = Z(ζ(τ) + 1) = 0,

and for 1 ≤ k ≤ ζ(τ), Zt(k) = Card(Neight(Vk−1)). Furthermore, let CC(fτ (t)) be the set of connected

components of fτ (t). Then [15, Lemma 14] shows that

Card({k ∈ {1, . . . , ζ(τ)} : Zt(k) = 0}) = Card(CC(fτ (t))),

and that the successive sizes of the connected components ordered by the exploration coincide with the

distances between successive 0’s in the sequence Zt = (Zt(k), 0 ≤ k ≤ ζ(τ) + 1); see Figure 4.
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Figure 4: In the left side, the forest of Figure 3. In the right side, its exploration path Zt. The vertices
are labelled according to the Prim ordering.

In this work, and in analogy with the coding paths of τ introduced earlier, we will consider a slight

modification of the exploration path Zt. More precisely, define the Prim path W prim
t = (W prim

t (k), 0 ≤

k ≤ ζ(τ)) by letting W prim
t (0) = 0, and for 0 ≤ k ≤ ζ(τ) − 1, W prim

t (k + 1) = W prim
t (k) + ct(vt(k)) − 1,

where ct(v) denotes the number of children of v ∈ fτ (t). We shall also think of such a path as the step

function on [0, ζ(τ)] given by s 7→ W prim
t (⌊s⌋).

Lemma 1. Let τ ∈ T and w be a sequence of i.i.d. uniform random weights on [0, 1] which is also

independent of τ . For any time t ∈ [0, 1],

Card
({

k ∈ {1, . . . , ζ(τ)} : W prim
t (k) = min

0≤m≤k
W prim

t (m)
})

= Card(CC(fτ (t))),
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Moreover, the successive sizes of the connected components of fτ (t) ordered by the exploration process

coincide with the distances between successive new minimums in the sequence (W prim
t (k), 0 ≤ k ≤ ζ(τ)).

Proof. The result is an immediate consequence of the previous discussion.

Indeed, the sizes of the connected components of fτ (t) coincides with the length of the excursions

of the walk W prim
t above its minimum; see Figure 5.

0

5

9116

7

810

12

3

4

1

13

151416

2

2 4 6 8 10 12 14 16

−3

−2

−1

0

1

2

3

W
prim
t

Figure 5: In the left side, the forest of Figure 3 with vertices labelled according to the Prime ordering.
In the right side, its Prim path W prim

t .

Following Proposition 2, the Prim path of the fragmentation forest associated to a critical Galton-

Watson tree with offspring distribution µ can also be related to a random walk. Recall that X =

(X(k), k ≥ 0) denotes a random walk that starts at 0 and has jump distribution µ̂ on {−1, 0, 1, . . . }.

Recall also that we write ζ1 = inf{k ≥ 0 : X(k) = −1}. Denote by ξ = (ξ(k), k ≥ 1) the increments

of X, i.e. ξ(k) = X(k) − X(k − 1), for k ≥ 1. Let (Uk(j))k,j≥1 be a sequence of i.i.d. uniform random

variables on [0, 1]. For t ∈ [0, 1], define ξt = (ξt(k), k ≥ 1) by letting

ξt(k) =
ξ(k)+1
∑

j=1

1{Uk(j)≤t}, for t ∈ [0, 1], k ≥ 1,

with the convention
∑0

j=1 1{Uk(j)≤t} = 0. Hence, ξ0(k) = 0, ξ1(k) = ξ(k) + 1 and for any k ≥ 1, the

mapping t 7→ ξt(k) is non-decreasing. Let Xt = (Xt(k), k ≥ 0) be the process defined by

Xt(0) = 0 and Xt(k) =
k
∑

i=1

(ξt(i) − 1), for t ∈ [0, 1], k ≥ 1. (7)

Proposition 3. Sample a plane tree t according to Pµ, i.e., consider a critical Galton-Watson tree t

with offspring µ. Let w = (we : e ∈ edge(t)) be a sequence of i.i.d. uniform random weights on [0, 1]

which is also independent of t. Then, the Prim path W prim
t satisfies

(W prim
t (0), W prim

t (1), . . . , W prim
t (ζ(t)))t∈[0,1]

d= (Xt(0), Xt(1), . . . , Xt(ζ1))t∈[0,1],

where
d= means equal in distribution (in the sense of finite-dimensional distributions).
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Proof. For t ∈ [0, 1], we write V (0) = ∅, V (1), . . . , V (ζ(t) − 1) for the vertices of ft(t) listed in Prim

order. To simplify the notation, for t ∈ [0, 1] and k = 0, . . . , ζ(τ) − 1, we will write ct(V (k)) = ct(k) for

the number of children of the vertex V (k) in ft(t). Recall that ft(1) = t and c1(V (k)) = c(V (k)). In

particular, we will write c(k) = c(V (k)). To prove our claim, it is enough to check that

(ct(0), ct(1), . . . , ct(ζ(τ) − 1))t∈[0,1]
d= (ξt(1), . . . , ξt(ζ1))t∈[0,1],

in the sense of finite-dimensional distributions.

Consider the infinite tree U and denote by edge(U) its set of edges. Denote by Neigh(v0) :=

{u ∈ U : {u, v0} ∈ edge(U)} the set of neighbours of v0 ∈ U. For r ∈ N and a set of vertices

Sr := {v0, v1, . . . , vr−1} of U, we also write Neigh(Sr) := (
⋃

v∈Sr
Neigh(v))\Sr for the set of neighbours

of vertices in Sr but not in Sr. For v0 = ∅, v1 ∈ Neigh(v0), . . . , vr ∈ Neigh({v0, v1, . . . , vr−1}), define

the event

N(v0, v1, . . . , vr−1) := {V (0) = v0, V (1) = v1, . . . , V (ζ(t) − 1) = vr} ∩ {ζ(t) = r}.

For r ∈ N and k0, k1, . . . , kr−1 ∈ N ∪ {0}, we also define the event

C(k0, k1, . . . , kr−1) := {c(0) = k0, c(1) = k1, . . . , c(ζ(t) − 1) = kr} ∩ {ζ(t) = r}.

For simplicity, given a measurable set A, we write E[·; A] = E[·1A], and given a finite collection of

measurable sets A1, . . . , Ai, we shall write E[·; A1, . . . , Ai] = E[·1Ai∩···∩Ai
], for i ∈ N. For fixed n ∈ N,

we set 0 ≤ t1 ≤ · · · ≤ tn ≤ 1, and for i = 1, 2, . . . , n and r ∈ N, consider gi
0, gi

1, . . . gi
r−1 nonnegative

functions on {0, 1, . . . }. Hence,

E

[

n
∏

i=1

gi
0(cti

(0))gi
1(cti

(1)) · · · gi
r−1(cti

(ζ(t) − 1)); N(v0, v1, . . . , vr−1), C(k0, k1, . . . , kr−1), ζ(t) = r

]

= E

[

n
∏

i=1

gi
0(cti

(v0))gi
1(cti

(v1)) · · · gi
r−1(cti

(vr−1)); N(v0, v1, . . . , vr−1), C(k0, k1, . . . , kr−1), ζ(t) = r

]

.

For t ∈ [0, 1] and p = 0, . . . , ζ(τ) − 1, recall that if c(p) ≥ 1, then ct(p) =
∑c(p)

i=1 1{wV (p),i≤t}. Otherwise,

ct(p) = 0 whenever c(p) = 0. Then, in the event N(v0, v1, . . . , vr−1) ∩ C(k0, k1, . . . , kr−1) ∩ {ζ(t) = r},

we have that ct(vp) =
∑kp

i=1 1{wvp,i≤t}; with the convention that the sum is equal to zero if it is empty.

Define the random variables, κt(p) =
∑kp

j=1 1{Up+1(j)≤t}; with the convention that the sum is equal to

zero whenever it is empty. Since the weights w are independent of the tree, we see that

E

[

n
∏

i=1

gi
0(cti

(0))gi
1(cti

(1)) · · · gi
r−1(cti

(ζ(t) − 1)); N(v0, v1, . . . , vr−1), C(k0, k1, . . . , kr−1), ζ(t) = r

]

=
r−1
∏

p=0

E

[

g1
p(κt1(p)) · · · gn

p (κtn(p))
]

P(N(v0, v1, . . . , vr−1) ∩ C(k0, k1, . . . , kr−1) ∩ ζ(t) = r).
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Therefore, by summing over all possible, kp’s and vp’s, Proposition 2 implies that

E

[

n
∏

i=1

gi
0(cti

(0))gi
1(cti

(1)) · · · gi
r−1(cti

(r − 1)); ζ(t) = r

]

=
r−1
∏

k=0

E

[

g1
k(ξt1(k + 1)) · · · gn

k (ξtn(k + 1)); ζ1 = r
]

,

which concludes our proof.

5 Convergence of the exploration processes

Recall that P
(n)
µ denotes the law of a critical Galton-Watson tree with offspring distribution µ condi-

tioned to have n ∈ N vertices. For every n ∈ N, for which P
(n)
µ is well-defined, sample a plane tree on

Tn, say tn, according to P
(n)
µ , i.e., tn is a critical Galton-Watson tree conditioned to have n vertices.

Through this section we assume that µ belongs to the domain of attraction of a stable law of index

α ∈ (1, 2], and refer to tn as an α-stable GW-tree. We will always let w = (we : e ∈ edge(tn))

be a sequence of i.i.d. uniform random weights on [0, 1] which is also independent of tn. We write

W lex
n = (W lex

n (⌊nu⌋), u ∈ [0, 1]) for the associated time-scaled Łukasiewicz path of tn. We also write

W prim
n = (W prim

n (⌊nu⌋), u ∈ [0, 1]) for the time-scaled Prim path of tn with respect to the weights w.

The asymptotic behavior of large α-stable GW-trees is well understood, in particular through scaling

limits of their associated Łukasiewicz paths; see, e.g., [19]. In this section, we first show that the Prim

path of tn has the same asymptotic behavior as its Łukasiewicz path. Then, we use this as a stepping

stone to study the Prim path of the fragmentation forest of tn associated to the weights w. Recall that

Xexc
α = (Xexc

α (u), u ∈ [0, 1]) denotes the α-stable excursion of index α; see Section 3.

Theorem 2. Let tn be an α-stable GW-tree, and let (Bn)n≥1 be a sequence of positive real numbers

satisfying (2). For ∗ ∈ {lex, prim}, we have that

(

1
Bn

W ∗
n(⌊nu⌋), u ∈ [0, 1]

)

d
−→ (Xexc

α (u), u ∈ [0, 1]), as n → ∞, in the space D([0, 1],R).

Proof. The proof for the Łukasiewicz path can be found in [19, Theorem 3.1]. For the Prim path the

result follows from that of the Łukasiewicz path and Proposition 2.

For s ∈ [0, 1], let fn(s) be the fragmentation forest of tn at time s. Denote by W prim
n,s = (W prim

n,s (⌊nu⌋), u ∈

[0, 1]) the time-scaled Prim path of fn(s). In particular, W prim
n,1 is exactly W prim

n . For fixed t ≥ 0, con-

sider the sequence (sn(t))n≥1 of positive times given by

sn(t) = 1 −
Bn

n
t,

where (Bn)n≥1 a sequence of positive real numbers satisfying (2). Define the process W
(t)
n = (W (t)

n (u), u ∈

[0, 1]) by letting

W (t)
n (u) =

1
Bn

W prim
n,sn(t)(⌊nu⌋), for u ∈ [0, 1]. (8)
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Later, in the proof of Theorem 1, we will refer to the process W
(t)
n as the (normalized and time-scaled)

Prim path of the fragmentation forest at time sn(t), i.e., f(sn(t)). We then set Wn = (W (t)
n , t ≥ 0).

From the previous section, the mapping t 7→ W
(t)
n is non-increasing in t which implies that the process

Wn has càdlàg paths. Thus, we will view (t, u) 7→ W
(t)
n (u) as a random variable taking values in

the space D(R+,D([0, 1],R)) of D([0, 1],R)-valued càdlàg functions on R equipped with the Skorokhod

topology. In other words, for fixed t ≥ 0, W
(t)
n is a random variable in D([0, 1],R).

We introduce the continuous counterpart of the process Wn. For every t ≥ 0, let Y
(t)

α = (Y (t)
α (u), u ∈

[0, 1]) be defined by Y
(t)

α (u) = Xexc
α (u) − tu, for u ∈ [0, 1]. In particular, for t = 0, Y

(0)
α = Xexc

α and we

sometimes write Xexc
α instead of Y

(0)
α , for simplicity. Then, define the process Yα = (Y (t)

α , t ≥ 0).

The following theorem is the main result of this section.

Theorem 3. We have the convergence

(W (t)
n , t ≥ 0) d

−→ (Y (t)
α , t ≥ 0), as n → ∞, in the space D(R+,D([0, 1],R)).

Theorem 3 generalizes [15, Theorem 10]. Specifically, in [15], the authors only consider the case when

tn is a GW-tree with µ being the law of a Poisson random variable of parameter 1 (i.e., tn is a Cayley

tree) while our setting is clearly more general. As in most proofs for convergence of stochastic processes,

the proof of Theorem 3 consists in two steps: convergence of the finite-dimensional distributions and

tightness of the sequence of processes (Wn)n≥1. To accomplish the above, recall the random walk

connected to the Prim path of the fragmentation forest of the α-stable GW-tree tn (Proposition 3).

More precisely, for s ∈ [0, 1], let Xs = (Xs(k), k ≥ 0) be the stochastic process defined in (7). For n ∈ N

and t ≥ 0, define the process Y
(t)

n = (Y (t)
n (u), u ∈ [0, 1]) by letting

Y (t)
n (u) =

1
Bn

Ysn(t)(⌊nu⌋), for u ∈ [0, 1],

and set Yn = (Y (t)
n , t ≥ 0). From Proposition 3, we see that Wn has the same finite-dimensional

distribution as Yn under the conditional probability distribution Pn(·) := P(·|ζ1 = n). In the following,

we will always work with the process Yn (or Y
(t)

n ) under the conditional probability distribution Pn, and

to keep the notation simple, we will continue to write Yn (and Y
(t)

n ) also for the conditional version.

Finite-dimensional distributions. We start with two observations that will be used quite often.

Proposition 2 and Theorem 2 imply that

(

Y (0)
n (u), u ∈ [0, 1]

)

d
−→ (Xexc

α (u), u ∈ [0, 1]) , as n → ∞, in the space D([0, 1],R). (9)

For g ∈ D([0, 1],R), we write ‖g‖∞ := supu∈[0,1] |g(u)|. Since the supremum is a continuous functional

on D([0, 1],R) (see e.g. [25, Proposition 2.4 in Chapter VI]), (9) implies that

‖W (0)
n ‖∞

d
−→ ‖Xexc

α ‖∞, as n → ∞, in distribution and ‖Xexc
α ‖∞ < ∞ a.s. (10)
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We continue with the convergence of the finite-dimensional distributions.

Lemma 2. For k, m ∈ N, and for any u1, . . . , uk ∈ [0, 1] and t1, . . . , tm ∈ R+, we have that

(

Y (ti)
n (ur) : 0 ≤ r ≤ k, 0 ≤ i ≤ m

)

d
−→
(

Y (ti)
α (ur) : 0 ≤ r ≤ k, 0 ≤ i ≤ m

)

, as n → ∞.

Proof. By the Skorokhod representation theorem, we can assume that (9) and (10) hold almost surely.

For u ∈ [0, 1] and t ≥ 0, we have that

W (t)
n (u) =

1
Bn

⌊nu⌋
∑

k=1

(ξsn(t)(k) − 1) =
1

Bn

⌊nu⌋
∑

k=1

(

− 1 +
ξ(k)+1
∑

i=1

1{Uk(i)≤1−tBn/n}

)

.

Since
∑⌊nu⌋

k=1 (ξ(k) + 1) = ⌊nu⌋ + BnY
(0)

n (u), we see that

Y (t)
n (u) = S(t)

n (u) −
1

Bn
⌊nu⌋ +

1
Bn

(

1 −
Bn

n
t

)

(⌊nu⌋ + BnY (0)
n (u)), (11)

where we set

S(t)
n (u) =

1
Bn

⌊nu⌋
∑

k=1

ξ(k)+1
∑

i=1

(

1{Uk(i)≤1−tBn/n} −

(

1 −
Bn

n
t

))

. (12)

For fixed t ≥ 0, the terms in the sum (12) are independent centred random variables whose variance

is bounded by tBn/n. Moreover, these terms are also independent of (ξ(k), 1 ≤ k ≤ n). Since the

number of terms in the sum (12) is bounded by n + Bn‖Y
(0)

n ‖∞, the Chebyshev’s inequality together

with (10) implies that S
(t)
n (u) → 0, as n → ∞, in probability. For the remaining terms at the right-hand

side of (11), we see that (9) implies that

−
1

Bn
⌊nu⌋ +

1
Bn

(

1 −
Bn

n
t

)

(⌊nu⌋ + BnY (0)
n (u)) −→ Xexc

α (u) − tu, as n → ∞,

almost surely. Finally, for any u ∈ [0, 1] and t ≥ 0, Y
(t)

n (u) −→ Y
(t)

α (u), as n → ∞, in probability, which

implies our claim.

Tightness. Since we are going to work with processes with sample paths in the set D(R+,D([0, 1],R))

equipped with the Skorokhod topology, we start by recalling some aspects of this space of càdlàg

functions and refer to [14, Chapter 3] (or [25, Chapter VI]) for details. Fix a separable, complete

metric space (M, d), and consider the space D(R+,M) of càdlàg functions from R+ to M. For a > 0,

0 < δ < 1 and k ∈ N, a sequence ∆a,k = {0 = t0 < t1 < · · · < tk = a} of subdivisions of [0, a] is

called δ-sparse if it satisfies min1≤i≤k(ti − ti−1) ≥ δ. The so-called modified modulus of continuity in

D(R+,M) is given by

ω̃(δ, a, d; g) := inf
∆a,k

max
1≤i≤k

sup
r,r′∈[ti−1,ti)

d(g(r), g(r′)), for g ∈ D(R+,M),
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where the infimum extends over all δ-sparse sets ∆a,k. Let Θ denote the class of strictly increasing,

continuous mappings of [0, 1] onto itself. For θ ∈ Θ, we put

‖θ‖◦ := sup
0≤r<r′≤1

∣

∣

∣

∣

log
θ(r′) − θ(r)

r′ − r

∣

∣

∣

∣

,

and recall that the Skorokhod metric in D([0, 1],M) is defined by

Skd(g, g′) := inf
θ∈Θ

{

‖θ‖◦ ∨ sup
0≤r≤1

d(g(r), g′(θ(r)))

}

, for g, g′ ∈ D([0, 1],M),

where the infimum extends over all θ ∈ Θ such that ‖θ‖◦ < ∞ and sup0≤r≤1 d(g(r), g′(θ(r))) < ∞. It is

well-known that the metric space (D([0, 1],M), Skd) is complete and separable; see [14, Theorem 12.2,

Chapter 3]. In particular, if M = R, we will consider the separable and complete metric space (R, | · |),

where | · | is the Euclidean metric. We then write, for g, g′ ∈ D([0, 1],R), Sk|·|(g, g′).

Lemma 3. For any a > 0 and ε, ε′ > 0, there exists 0 < δ < 1 such that

lim sup
n→∞

Pn(ω̃(δ, a, Sk|·|; Yn) ≥ ε) ≤ ε′. (13)

In particular, the sequence of stochastic processes (Yn)n≥1 is tight on D(R+,D([0, 1],R)).

As a preparation for the proof of Lemma 3, we need a technical result. For t ≥ 0 and g(t) =

(g(t)(u), u ∈ [0, 1]) ∈ D([0, 1],R), recall that we write ‖g(t)‖∞ = supu∈[0,1] |g(t)(u)|. Then for g =

(g(t), t ≥ 0) ∈ D(R+,D([0, 1],R)), a > 0 and 0 < δ < 1, define the modulus

ω(δ, a; g) := sup{‖g(t) − g(t′)‖∞ : |t − t′| < δ, 0 ≤ t, t′ ≤ a}.

For t ≥ 0, let S
(t)
n = (S(t)

n (u), u ∈ [0, 1]) be the process defined in (12) and set Sn = (S(t)
n , t ≥ 0).

Lemma 4. For any a > 0 and ε, ε′ > 0, there exists 0 < δ < 1 such that

lim sup
n→∞

Pn(ω(δ, a; Sn) ≥ ε) ≤ ε′.

We postpone the proof of Lemma 4 for later and continue with the proof of Lemma 3.

Proof of Lemma 3. Suppose that we have proven (13) in Lemma 3. Thanks to the arbitrariness of

ε, ε′ > 0, one can see that for each a > 0,

lim
δ→0

lim sup
n→∞

E[ω̃(δ, a, Sk|·|; Yn) ∧ 1] = 0.

Then, [26, Theorem 16.10, Chapter 16] and Lemma 2 show that the sequence of processes (Yn)n≥1 is

tight on D(R+,D([0, 1],R)). So, it suffices to prove (13) to finish the proof of Lemma 3.
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Fix a > 0, and observe from (11) that for 0 ≤ t1 < t2 ≤ a and u ∈ [0, 1],

Y (t1)
n (u) − Y (t2)

n (u) = S(t1)
n (u) − S(t2)

n (u) +
⌊nu⌋

n
(t2 − t1) +

Bn

n
(t2 − t1)Y (0)

n (u).

Since the identity map on [0, 1] belongs to Θ, the triangle inequality implies that

Sk|·|(Y
(t1)

n , Y (t2)
n ) = inf

θ∈Θ

{

‖θ‖◦ ∨ sup
u∈[0,1]

|Y (t1)
n (u) − Y (t2)

n (θ(u))|

}

≤ ‖S(t1)
n − S(t2)

n ‖∞ + (t2 − t1) + a
Bn

n
‖Y (0)

n ‖∞.

For the set [0, a) and each 0 < δ < min{a/2, 1/2}, we can have a δ-sparse set ∆a,k satisfying δ ≤

ti − ti−1 ≤ 2δ, for 1 ≤ i ≤ k. Then,

ω̃(δ, a, Sk|·|; Yn) ≤ ω(2δ, a; Sn) + 2δ + 2δ
Bn

n
‖Y (0)

n ‖∞, for 0 < δ < min{a/2, 1/2}.

Then, (13) follows from the previous inequality, the convergence in (10) and Lemma 4.

Proof of Lemma 4. For n ∈ N and a > 0, set t0 = 0 and tr = ra/⌈Bn⌉, for r = 1, . . . , ⌈Bn⌉. For

0 ≤ r < r′ ≤ ⌈Bn⌉, define the process Zr,r′,n = (Zr,r′,n(u), u ∈ [0, 1]) by letting

Zr,r′,n(u) := S(tr)
n (u) − S

(tr′ )
n (u) =

1
Bn

⌊nu⌋
∑

k=1

ξ(k)+1
∑

i=1

(

1{1− Bn
n

tr′<Uk(i)≤1− Bn
n

tr} −
Bn

n
(tr′ − tr)

)

.

Recall that
∑⌊nu⌋

k=1 (ξ(k) + 1) = ⌊nu⌋ + BnY
(0)

n (u). For r = 0, 1, . . . , ⌈Bn⌉ − 1 and tr ≤ t ≤ tr+1,

∣

∣

∣S(tr)
n (u) − S(t)

n (u)
∣

∣

∣ ≤
∣

∣

∣S(tr)
n (u) − S(tr+1)

n (u)
∣

∣

∣+
a

⌈Bn⌉n
(⌊nu⌋ + BnY (0)

n (u))

≤
∣

∣Zr,r′,n(u)
∣

∣+
a

⌈Bn⌉
+

1
n

‖Y (0)
n ‖∞.

For n large enough, the triangle inequality together with the previous inequality implies that

ω(δ, a; Sn) ≤ 2 sup{‖S(tr)
n − S(t)

n ‖∞ : 0 ≤ r ≤ ⌈Bn⌉ − 1, tr ≤ t ≤ tr+1}

+ sup{‖S(tr)
n − S

(tr′ )
n ‖∞ : 0 ≤ r < r′ ≤ ⌈Bn⌉, |tr − tr′ | < δ}

≤ 2 sup{‖Zr,r+1,n‖∞ : 0 ≤ r ≤ ⌈Bn⌉ − 1} +
2a

⌈Bn⌉
+

2
n

‖Y (0)
n ‖∞

+ sup{‖Zr,r′,n‖∞ : 0 ≤ r < r′ ≤ ⌈Bn⌉, |tr − tr′ | < δ}. (14)

for 0 < δ < 1. We will prove that for all ε > 0, there is a constant Cε,p > 0 such that for all p ≥ 2,

Pn
(

‖Zr,r′,n‖∞ ≥ ε
)

≤ Cε,pB−p/2
n (1 − Bn/n)p/2(tr′ − tr)p/2, 0 ≤ r < r′ ≤ ⌈Bn⌉. (15)

Then, Lemma 4 will follow from (10), (14) and the union bound.
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Observe that ‖Zr,r′,n‖∞ = sup1≤m≤n

∣

∣Zr,r′n(m/n)
∣

∣. By Etemadi’s inequality, we have that

Pn

(

‖Zr,r′,n‖∞ ≥ ε
)

≤ 3 sup
1≤m≤n

Pn

(∣

∣Zr,r′,n(m/n)
∣

∣ ≥ ε/3
)

, (16)

for all ε > 0. On the one hand, the terms in the sum Zr,r′,n(m/n) are independent centred random

variables with variance bounded by a/n. On the other hand, these terms are also independent of the

random variables (ξ(k), 1 ≤ k ≤ n). Moreover, the number of terms in the sum Zr,r′,n(m/n) is bounded

by
∑n

k=1(ξ(k) + 1) = n + BnY
(0)

n (1) = n − Bn, under Pn. By the Marcinkiewicz–Zygmund inequality,

it is not difficult to see that, for p ≥ 2,

E[
∣

∣Zr,r′,n(m/n)
∣

∣

p] ≤ CpB−p/2
n (1 − Bn/n)p/2(tr′ − tr)p/2,

for some constant Cp > 0. So, (15) follows from (16) and Chebyshev’s inequality.

We have now all the ingredients to prove Theorem 3.

Proof of Theorem 3. Theorem 3 is a consequence of Proposition 3, Lemma 2 and Lemma 3.

6 Proof of Theorem 1

In this section, we prove Theorem 1. We start by developing a general approach for the convergence of

fragmentation processes encoded by functions in D([0, 1],R). Recall that S denotes the space defined in

(1) endowed with the ℓ1-norm. For an increasing function h = (h(s), s ∈ [0, 1]) ∈ D([0, 1],R), we write

F(h) := (F1(h), F2(h), . . . ) ∈ S

for the sequence of the lengths of the intervals components of the complement of the support of the

Stieltjes measure dh, arranged in decreasing order; we tacitly understand F(h) as an infinite sequence,

by completing with an infinite number of zero terms. Let Supp(dh) denote the support of dh and note

that (0, 1) \ Supp(dh) is the union of all open intervals on each of which the function h is constant. For

any g = (g(s), s ∈ [0, 1]) ∈ D([0, 1],R) such that g(0) = 0, let ĝ = (ĝ(s), s ∈ [0, 1]) be given by

ĝ(s) := inf
u∈[0,s]

g(u), s ∈ [0, 1].

Note that −ĝ(s) = supu∈[0,s](−g(u)), then −ĝ is an increasing function in D([0, 1],R). In particu-

lar, the Stieltjes measure d(−ĝ) is well-defined and Supp(d(−ĝ)) is given by the set of points where

the function g reaches a new infimum. We call constancy interval of −ĝ any interval component of

(0, 1) \ Supp(d(−ĝ)). Indeed, those constancy intervals corresponds to excursion intervals of g above

its infimum (or equivalently, excursion intervals of the function g − ĝ above 0).

For g = (g(t), t ≥ 0) ∈ D(R+,D([0, 1],R)), we let g(t) = (g(t)(s), s ∈ [0, 1]) ∈ D([0, 1],R), for t ≥ 0.

Similarly, for n ∈ N, we write gn = (g(t)
n , t ≥ 0) ∈ D(R+,D([0, 1],R)) such that, for each t ≥ 0, g

(t)
n =
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(g(t)
n (s), s ∈ [0, 1]) ∈ D([0, 1],R). If g(t)(0) = 0 (resp. g

(t)
n (0) = 0), we define ĝ(t) = (ĝ(t)(s), s ∈ [0, 1])

(resp. ĝ
(t)
n = (ĝ(t)

n (s), s ∈ [0, 1])) by letting

ĝ(t)(s) := inf
u∈[0,s]

g(t)(u)

(

resp. ĝ(t)
n (s) := inf

u∈[0,s]
g(t)

n (u)

)

, s ∈ [0, 1].

The following result is the key ingredient in the proof of Theorem 1. Recall that S1 ⊂ S denotes

the space of the elements of S with sum 1.

Lemma 5. On some probability space (Ω, F ,P), let (gn)n≥1 be a sequence of random elements of

D(R+,D([0, 1],R)) such that g
(t)
n (0) = 0, for n ∈ N and t ≥ 0. Suppose that for any fixed 0 ≤ t⋆ ≤ t⋆ <

∞ and any ε > 0, there exists K, N ∈ N such that for any k ≥ K and n ≥ N

inf
t∈[t⋆,t⋆]

k
∑

i=1

Fi(−ĝ(t)
n ) ≥ sup

t∈[t⋆,t⋆]
lim

r→∞

r
∑

i=1

Fi(−ĝ(t)
n ) − ε, almost surely. (17)

Assume further that there exists a random g ∈ D(R+,D([0, 1],R)) such that g(t)(0) = 0, for t ≥ 0, and

(i) gn
d
−→ g, as n → ∞, in the space D(R+,D([0, 1],R)),

for every fixed t ≥ 0,

(ii) g(t)(s) ∧ g(t)(s−) > ĝ(t)(s), for every s ∈ (a, b) whenever (a, b) ⊂ [0, 1] is an interval of constancy

for the function −ĝ(t).

(iii) F(−ĝ(t)) ∈ S1,

where (ii) and (iii) hold almost surely. Then,

(F(−ĝ(t)
n ), t ≥ 0) d

−→ (F(−ĝ(t)), t ≥ 0), as n → ∞, in the space D(R+,S).

Proof. By the Skorokhod representation theorem, we can and we will work in a probability space where

the convergence in (i) together with (ii) and (iii) holds almost surely. By (i), there exists a dense subset

D of R+ such that for any fixed k ∈ N and collection 0 ≤ t1 < t2 < · · · < tk < ∞ with t1, . . . , tk ∈ D,

we have that a.s.,

(g(t1)
n , . . . , g(tk)

n ) → (g(t1), . . . , g(tk)), as n → ∞,

in D([0, 1],R)⊗k (i.e., the k-fold space of D([0, 1],R)). Then [9, Lemma 4] implies that a.s.,

(F(−ĝ(t1)
n ), . . . , F(−ĝ(tk)

n )) → (F(−ĝ(t1)), . . . , F(−ĝ(tk))), as n → ∞,

in S
⊗k (i.e., the k-fold space of S equipped with the ℓ1-norm). Note that the conditions in [9, Lemma 4]

are satisfied by our assumptions (in fact, one has to apply [9, Lemma 4] to −gn and −g). This shows the

convergence of the finite-dimensional distributions of the sequence of processes ((F(−ĝ
(t)
n ), t ≥ 0))n≥1

to those of the process (F(−ĝ(t)), t ≥ 0).
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To finish with the proof, we need to show that the sequence of processes ((F(−ĝ
(t)
n ), t ≥ 0))n≥1 is

tight in D(R+,S). Indeed, it is enough to see that for each 0 ≤ t⋆ ≤ t⋆ < ∞ the sequence of processes

((F(−ĝ
(t)
n ), t ∈ [t⋆, t⋆]))n≥1 is tight in D([t⋆, t⋆],S). But this follows by showing that ((F(−ĝ

(t)
n ), t ∈

[t⋆, t⋆]))n≥1 satisfies the conditions (a), (b) and (c) of [15, Lemma 22] with p = 1. To see this, for every

fixed t ∈ [t⋆, t⋆], one has that ‖F(−ĝ
(t)
n )‖1 ≤ 1 which implies conditions (a) and (b) in [15, Lemma 22].

Condition (c) in [15, Lemma 22] is (17) in our statement.

Finally, we are in position to prove our main result Theorem 1.

Proof of Theorem 1. Let tn be an α-stable GW-tree of index α ∈ (1, 2]. Recall that (Bn)n≥1 denotes a

sequence of positive real numbers satisfying (2). For t ≥ 0, let W
(t)
n be the (normalized and time-scaled)

Prim path defined in (8) of the fragmentation forest at time sn(t) = 1−(Bn/n)t, i.e. f(sn(t)), associated

to tn and the i.i.d. uniform random weights w. Define the process I
(t)
n = (I(t)

n (u), u ∈ [0, 1]) by letting

I(t)
n (u) = inf

s∈[0,u]
W (t)

n (s), for s ∈ [0, 1].

Recall that F
(α)
n = (F(α)

n (t), t ≥ 0) stands for the fragmentation process of tn defined in (3). From

Lemma 1 and the preceding discussion, it is clear that F
(α)
n (t) = F(−I

(t)
n ), for t ≥ 0. Let Y

(t)
α and I

(t)
α be

the processes defined in (4), and recall that the α-stable fragmentation process, F(α) = (F(α)(t), t ≥ 0),

is given by F(α)(t) = F(−I
(t)
α ), for t ≥ 0. Note that for all t ≥ 0, W

(t)
n (0) = Y

(t)
α (0) = 0. Then, to

prove Theorem 1, one only needs to check that the processes Wn = (W (t)
n , t ≥ 0) and Yα = (Y (t)

α , t ≥ 0)

satisfy the conditions of Lemma 5.

We start by verifying that the process Yα fulfills (i), (ii) and (iii) of Lemma 5. Indeed, (i) has

been proven in Theorem 3. The process Xbr
α has exchangeable increments due to the stationary and

independent increments of the stable Lévy process Xα; see e.g., [26, Chapters 11 and 16]. Then, (ii)

follows along the lines of the proof of Lemma 7 (i) in [9] thanks to the property in (6). To prove that

Y
(t)

α fulfills condition (iii) for every t ≥ 0, recall that the support of the Stieltjes measure d(−I
(t)
α )

coincides with the ladder time set L α(t) of Y
(t)

α , which is a random closed set with zero Lebesgue

measure. The latter follows from [7, Corollary 5, Chapter VII] but alternatively, it can be deduced

from (6) by following the same argument as in [9, Proof of Lemma 7]. Since F(−I
(t)
α ) is defined as the

ranked sequence of the lengths of the open intervals in the canonical decomposition of [0, 1]/L α(t),

condition (iii) follows.

We now check that the sequence (Wn)n≥1 fulfills (17). Note that, for every t ≥ 0, ‖F(−I
(t)
n )‖1 = 1.

Fix t⋆, t⋆ such that 0 ≤ t⋆ ≤ t⋆ < ∞. For every t ∈ [t⋆, t⋆] and m ∈ N,

‖F(−I(t)
n )‖1 −

m
∑

i=1

Fi(−I(t)
n ) =

∑

i>m

Fi(−I(t)
n )

reaches its maximum at t = t⋆. Then for (17) to be satisfied, it suffices that for any ε > 0, there exists
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m ∈ N and n ∈ N such that

m
∑

i=1

Fi(−I(t⋆)
n ) ≥ lim

r→∞

r
∑

i=1

Fi(−I(t⋆)
n ) − ε = 1 − ε. (18)

This would imply that for any t ∈ [t⋆, t⋆], we have that
∑m

i=1 Fi(−I
(t)
n ) ≥ 1 − ε, which shows that

(Wn)n≥1 satisfies (17).

Theorem 3 implies that (W (t)
n , t ∈ [t⋆, t⋆]) → (Y (t)

α , t ∈ [t⋆, t⋆]), in distribution, as n → ∞, in the

space D([t⋆, t⋆],D([0, 1],R)). By the Skorokhod representation theorem, we can and we will work on a

probability space on which this convergence holds almost surely. Since we have proven that the process

Y
(t⋆)

α fulfills (iii) of Lemma 5, for any ε > 0, there exists an m ∈ N such that
∑m

i=1 Fi(−I
(t⋆)
α ) ≥ 1−ε/2.

On the other hand, recall that Y
(t⋆)

α fulfills (ii) of Lemma 5. Then [9, Lemma 4] implies that a.s.,

F(−I
(t⋆)
n ) → F(−I

(t⋆)
α ), as n → ∞ in the space S with the ℓ1-norm. Hence, a.s. for all n large enough,

∑m
i=1 Fi(−I

(t⋆)
n ) ≥ 1 − ε, which proves (18).

7 Proof of Proposition 1

In this section, we prove Proposition 1. The proof follows along the lines of the proof of Proposition

13 in Aldous and Pitman [6] (see also Theorem 3 in [5]). We provide enough details to convince the

reader that everything can be carried out as in [6], but also to make this work self contained.

The α-stable Lévy tree. Recall that an α-stable Lévy tree Tα = (Tα, dα, ρα, µα) of index α ∈

(1, 2] is a random compact rooted measure that arises naturally as the scaling limit of large α-stable

GW-trees. More precisely, let tn be an α-stable GW-tree, view it as a rooted metric measure tree

tn = (tn, dgr
n , ρn, µnod

n ), where tn is identified as its set of n vertices {v1, . . . , vn}, dgr
n is the graph-

distance on tn, ρn ∈ tn is the root (the initial individual in the population) and µnod
n := 1

n

∑n
i=1 δvi

is the uniform measure on the set of vertices of tn; here δv is the Dirac measure in the point v ∈ tn.

Let (Bn)n≥1 be a sequence of positive real numbers satisfying (2) and consider the rescaled α-stable

GW-tree (Bn/n) · tn = (tn, (Bn/n) · dgr
n , ρn, µnod

n ). Then it is well-known, by results of Aldous [3] and

Duquesne [19], that

(tn, (Bn/n) · dgr
n , ρn, µnod

n ) d
−→ (Tα, dα, ρα, µα), n → ∞, (19)

for the pointed Gromov-Hausdorff-Prohorov (pGHP) topology. (see for example [34, Proposition 9],

[1, Theorem 2.5] and reference therein for background on the pGHP topology.) We list some useful

properties of the α-stable Lévy tree and the rescaled α-stable GW-tree.

(T1) The mass measure µα is non-atomic and it is supported on Lf(Tα), a.s.; see [21, Theorem 4.6].

For k ∈ N, let V n
1 , . . . , V n

k be independent random vertices of tn with common distribution µnod
n .

Let R(tn, Vn
k ) be the reduced subtree of tn by its root and the vertices Vn

k = (V n
1 , . . . , V n

k ) (i.e.,

R(tn, Vn
k) is the compact rooted metric space (JvkK, dgr

n , ρ), where the distance dgr
n in the right-hand
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side is tacitly understood to be restricted to the appropriate space). Let also (Bn/n) · R(tn, Vn
k ) be the

space R(tn, Vn
k) with distances multiplied by Bn/n. Similarly, we let V1, . . . , Vk be independent random

points (leaves) of Tα with common distribution µα, and write R(Tα, Vk) for the reduced subtree of Tα

by its root and the vertices Vk = (V1, . . . , Vk).

(T2) For every fixed k ∈ N, (Bn/n) · R(tn, Vn
k ) d

−→ R(Tα, Vk), as n → ∞, for the pointed Gromov-

Hausdorff topology. This follows from (19), [34, Proposition 10] and [24, Lemma 35].

Define the empirical (random) measures

µnod
n,k :=

1
k

k
∑

i=1

δV n
i

and µα,k :=
1
k

k
∑

i=1

δVi
, (20)

(T3) The Glivenko-Cantelli Theorem implies that µnod
n,k → µnod

n and µα,k → µα, almost surely, as

k → ∞, in the weakly sense.

(T4) Theorem 3 in [3] shows that the family of reduced subtrees (R(Tα, Vk), k ∈ N) satisfies the

so-called leaf-tight property, i.e. inf2≤i<∞ dα(V1, Vi) = 0, almost surely.

Exchangeable random partitions. Let P∞ be the set of partitions of the set of positive integers

N = {1, 2, . . . }. Lemma 2.6 in [11] shows that P∞ can be endowed with an ultra-metric dP∞
such that

(P∞, dP∞
) is compact. A partition Π ∈ P∞ is a countable collection Π = (Π(i), i ∈ N) of pairwise

disjoint subsets of N (also called blocks) such that
⋃

i∈N Π(i) = N. For e.g., an equivalence relation ∼

on the set N can be identified with a partition of N into equivalence classes. In particular, a random

equivalence relation on N can be identified with a random partition of N. An exchangeable random

partition Π is a P∞-valued random variable whose restriction Πk = Π|[k] to the set [k] := {1, . . . , k}

has an invariant distribution under the action of permutations of [k], for every k ∈ N.

Following Kingman’s theory [27], we recall some useful properties of exchangeable random partitions.

For k ∈ N and a partition Π ∈ P∞, let Πk = (Πk(i), i ∈ N) be the restriction of Π to [k], and let

#Π↓
k = (#Π↓

k(i), i ∈ N) be the decreasing rearrangement of the block sizes (number of elements) of Πk

such that #Π↓
k(i) = 0 whenever Πk has fewer than i blocks. Let S≤1 ⊂ S be the space of the elements

of S with sum less than or equal to 1. Recall also that S1 ⊂ S denotes the space of the elements of S

with sum 1.

(P1) Let Π be an exchangeable random partition. Theorem 2.1 in [11] and the Fatou’s lemma show

that the asymptotic ranked frequencies (in decreasing order)

|Π(i)|↓ := lim
k→∞

#Π↓
k(i)
k

, for i ∈ N, exist a.s. and (|Π(i)|↓, i ∈ N) ∈ S≤1.

(P2) (|Π(i)|↓, i ∈ N) ∈ S1 a.s. if and only if {1} is not a class (i.e., the singleton {1} is not a block) of

Π a.s.; see [11, Proposition 2.8].
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(P3) For each n ∈ N∪{∞}, let Π(n) be an exchangeable random partition, and write (|Π(n)(i)|↓, i ∈ N)

for the sequence of asymptotic ranked frequencies of its blocks in decreasing order. For k ∈ N,

let Pk be the set of partitions of [k] endowed with the discrete topology. Then, Proposition 2.9

in [11] implies that

Π(n)|[k]
d
−→ Π(∞)|[k], as n → ∞, for each k ∈ N, in the space Pk

if and only if

(|Π(n)(i)|↓, i ∈ N) d
−→ (|Π(∞)(i)|↓, i ∈ N), as n → ∞, in the space S≤1, (21)

where S≤1 is given the topology of pointwise convergence (or equivalently, the uniform distance

in [11, Proposition 2.1] which makes S≤1 compact).

Lemma 6. Suppose that (21) holds and that (|Π(∞)(i)|↓, i ∈ N) ∈ S1 almost surely. Then,

(|Π(n)(i)|↓, i ∈ N) d
−→ (|Π(∞)(i)|↓, i ∈ N), as n → ∞, in the space (S1, ℓ1).

Proof. The proof follows by a simple application of Fatou’s lemma and Scheffé’s lemma.

Fragmentation processes. Following ideas of Aldous and Pitman [6], the framework of exchangeable

random partitions provides a different interpretation for the fragmentation processes associated to α-

stable Lévy trees and α-stable GW-trees.

Consider an α-stable Lévy tree Tα = (Tα, dα, ρα, µα) together with a Poisson point process of cuts

on its skeleton with intensity dt ⊗ λα(dv) on [0, ∞) × Tα, where λα is the length measure associated

to Tα. Recall that for all t ≥ 0 we defined an equivalence relation ∼t on Tα by saying that v ∼t w,

for v, w ∈ Tα, if and only if no atom of the Poisson process that has appeared before time t belongs to

the path [v, w]. We use the above to define a random equivalence relation on N. Let V1, V2, . . . be a

sequence of independent random points of Tα with common distribution µα. For t ≥ 0 and i, j ∈ N, we

say i ∼α,t j if and only if Vi ∼t Vj . In particular, we let Π(t)
α = (Π(t)

α (i), i ∈ N) be the random partition

of N induced by the equivalence classes of the equivalence relation ∼α,t on N.

Lemma 7. For every t ≥ 0, Π(t)
α is exchangeable. In particular, Π(t)

α is proper a.s., i.e., the asymptotic

ranked frequencies (|Π(t)
α (i)|↓, i ∈ N) (in decreasing order) of Π(t)

α belongs to S1 almost surely.

Proof. The first claim follows from the fact that for every k ∈ N the distribution of the reduced subtree

R(Tα, Vk) of Tα is invariant under any permutation of the points (leaves) V1, . . . , Vk, i.e. R(Tα, Vk).

To prove the second part, note that the probability that 1 ∼α,t j is exp(−tdα(V1, Vj)), for j ≥ 2. Then

(T4) implies that {1} is not a class a.s., and our claim follows from (P2).

Corollary 2. For every t ≥ 0, we have that FTα(t) = (|Π(t)
α (1)|↓, |Π(t)

α (2)|↓, . . . ) almost surely.
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Proof. For k ∈ N, let Π(t)
α,k = (Π(t)

α,k(i), i ∈ N) be the restriction of Π(t)
α to [k], and let #Π(t),↓

α,k =

(#Π(t),↓
α,k (i), i ∈ N) be the decreasing rearrangement of the block sizes of Π(t)

α,k such that #Π(t),↓
α,k (i) = 0

whenever Π(t)
α,k has fewer than i blocks. Let A

(t)
α,1, A

(t)
α,2, . . . be the distinct equivalence classes for ∼t.

Then, the vector (#Π(t),↓
α,k (1), #Π(t),↓

α,k (2), . . . ) is equal to the ranked vector (µα,k(A(t)
α,1), µα,k(A(t)

α,2), . . . )

in decreasing order. Thus, our claim follows from (T3) and (P1).

Consider now the (rescaled) α-stable GW-tree (Bn/n) · tn = (tn, (Bn/n) · dgr
n , ρn, µnod

n ), where

(Bn)n≥1 is a sequence of positive real numbers satisfying (2). For t ≥ 0, recall that the fragmentation

forest at time sn(t) = 1 − (Bn/n)t, that is fn(sn(t)), is obtained by keeping those edges in tn with

uniform weight smaller than sn(t). As for the fragmentation process of the α-stable Lévy tree, we

can define a random equivalence relation on N. Let V n
1 , V n

2 , . . . be a sequence of independent random

vertices of tn with common distribution µnod
n . For t ≥ 0 and i, j ∈ N, we say i ∼n,t j if and only if there

is no cut edge on the path from V n
i to V n

j before time sn(t). In particular, we let Π(t)
n = (Π(t)

n (i), i ∈ N)

be the random partition of N induced by the equivalence classes of the equivalence relation ∼n,t on N.

Lemma 8. For every t ≥ 0, Π(t)
n is exchangeable. In particular, F

(α)
n (t) = (|Π(t)

n (1)|↓, |Π(t)
n (2)|↓, . . . )

almost surely, where (|Π(t)
n (i)|↓, i ∈ N) are the asymptotic ranked frequencies of Π(t)

n in decreasing order.

Proof. This follows along the lines of the proofs of Lemma 7 and Corollary 2

Now we are able to prove Proposition 1.

Proof of Proposition 1. Let tn be an α-stable GW-tree, and for every fixed t ≥ 0, view the (time-scaled)

continuous cutting-down procedure of tn as a (rescaled) Bernoulli process of cuts on its set of edges,

that is, every edge of tn is cut at time t with probability (Bn/n)t. Then, at time t ≥ 0, the sequence of

sizes of the connected components of tn in decreasing order and renormalized by a factor 1/n is given

by F
(α)
n (t). For every k ∈ N fixed, it should be clear that (T2) implies that, as n → ∞, the above

(rescaled) Bernoulli process of cuts on tn (viewed as a rooted metric measure tree) up to time t and

restricted to R(tn, Vn
k) converges (in distribution) to the Poisson point process of cuts on the skeleton

of Tα with intensity ds ⊗ λα(dv) restricted to [0, t] × R(Tα, Vk). In fact, this convergence holds jointly

with that in (T2). For every t ≥ 0, it follows that

Π(t)
n |[k]

d
−→ Π(t)

α |[k], as n → ∞, for each k ∈ N, in the space Pk.

Property (P3), Lemma 7, Corollary 2 and Lemma 8 imply that

F(α)
n (t) d

−→ FTα(t), as n → ∞, in the space S≤1,

where S≤1 is given the topology of pointwise convergence. Since Lemma 7 also shows that FTα(t) ∈ S1

a.s., Lemma 6 entails that the above convergence holds in (S, ℓ1). This shows the convergence of the

one-dimensional distribution of F
(α)
n to FTα . In general, the same argument can be used to obtain the

convergence of the finite-dimensional distributions thanks to the convergence of the (rescaled) Bernoulli

process of cuts to the Poisson point process of cuts. Finally, Proposition 1 follows from Theorem 1.
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