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The paper includes analysis of an elastic chiral
waveguide, subjected to gravity, where a coupling
between different displacement components is
assumed owing to gyroscopic action. The importance
of gravity and chirality on the dispersion of waves is
demonstrated and behaviour in all regimes, including
asymptotic ones, is addressed and linked to the value
of the chirality parameter. In the transient regimes,
we analyse chiral imperfect temporal interfaces in the
waveguide subjected to gravity.

1. Introduction
The emphasis of this paper is on the analysis of
gravity-induced waves in a chiral elastic waveguide.
For a discrete system, chirality is introduced through
a gyroscopic force, exerted by gyroscopic spinners
embedded in an elastic structure. Examples of such
structures are studied in [1–3]. The formal connection
was noted in [4] for models of mechanical gyroscopic
systems and models of electromagnetic systems, in
the context of the classical work of Lorentz [5]
(also, see [6]).

Homogenization leads to a continuum formulation,
where gyroscopic forces are represented by the ‘90-
degree rotation’ coupling terms. The effect of gravity
appears to be important in the context of wave dispersion
and wave localization.

2023 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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Discrete models of vibrations in chiral elastic lattice systems, without the effects of gravity,
were discussed in [7], with the focus on wave dispersion. Reference [7] also included ideas of
homogenization of chiral elastic media, which were successfully used in [8] to generate one-way
elastic edge waves.

Experimental observations and discussion of mechanical chiral systems in the context of
Topological Mechanics, are presented in [9].

Detailed analysis of elastic waves in a chiral elastic chain, containing gyroscopic spinners,
which includes construction of dynamic Green’s matrices and study of localized defect modes, is
reported in [10]. In a recent reference [11], the effect of gravity has been analysed for dispersion
and localization of waves in discrete chiral elastic waveguides.

Elastic multi-structures, which incorporate elastic beams connected to gyroscopic spinners,
were analysed in [12–14] in the framework of linearized models, which capture the gyroscopic
coupling, but do not take into account the effect of gravity. These papers include the study of the
dynamic response of such systems and the dispersion properties of chiral flexural waveguides.
In particular, the paper [12] makes a formal link between waves in the structure, incorporating
flexural beams constrained by a periodic system of gyroscopic hinges, and wave dispersion in
elastic gyrobeams.

The book [15] presents the mathematical theory of dynamic materials, where the coefficients in
the governing equations may change in time. The analysis of wave patterns in structures, which
possess spatial and temporal interfaces, is analysed in [16–18]. Causality always holds for physical
processes, but interesting wave phenomena are observed when a wave is split at a temporal
interface. The energy balance relations for waves in a spatio-temporal material composite is
addressed in [19]. The modelling of frontal waves, incorporating the analysis of the transient
wave phenomena in structures that have stratification in the temporal dimension, is discussed
in [20]. The study of temporal modulation of frontal waves is emphasized, with special regimes
being identified where the solution shows growth in time. Imperfect interfaces, across which the
displacements are discontinuous, are also considered in [20] for the vector case of chiral elastic
systems.

In the present paper, we focus on the effect of gravity on transient regimes in elastic chiral
waveguides and analysis of temporal boundary layers. The structure of the paper is as follows.
The formulation of the problem and the normalization, which reduces the equations to a non-
dimensional form, are discussed in §2. In addition to fully transient modelling, this section also
includes the case of time-harmonic vibrations where an analysis of the effects of variation of the
main parameters is carried out. Discussion of the case where the gyricty is high is presented in
§3, where an additional normalization, related to rapid oscillations, and ’fast time’, is introduced.
Furthermore, the stationary wave solution is analysed where the spatial evolution of the wave is
negligibly small compared to the oscillations in time. Additionally in §4, the boundary layer in
the transition regimes is discussed, together with imperfect temporal interfaces, when gyroscopic
gyricity is large and gravity is present.

2. Thegoverningequations: transient solutions andnormalized representations
Here, the model of elastic waves in a continuum elastic waveguide is considered. The
waveguide is characterized by the gyroscopic coupling and subjected to gravity. The questions of
normalization of the governing equations appear to be important, especially for the cases when
the gyricity, associated with the coupling terms, increases. Waves in a chiral ‘meta-waveguide’,
have been analysed in [1] in the absence of gravity. If the gravity term is introduced in the
governing equations, the solution shows significant changes, especially in the transition regimes
for small values of time. The periodic discrete system of pendulums, connected by springs, has
been analysed in [11] and here we consider the continuum analogue with a focus on transient
regimes.
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(a) The continuum equations of the chiral elastic waveguide subjected to gravity
Consider the continuum analogue of the discrete chiral elastic chain positioned along the x-axis.
Let u(x, t) and v(x, t) be the longitudinal and transverse displacements, respectively. Consider
further, an analogue of the discrete gyroscopic spinner-spring chain, subjected to gravity, with
lattice spacing d, similar to the one analysed in [1,11]:

mÜn(t) − d−2diag(λ1d2, λ2d2)(Un+1(t) + Un−1(t) − 2Un(t))

− mαRU̇n(t) + mGUn(t) = 0. (2.1)

Here, m is the common value of the masses in the chain, Un(t) is the displacement of the nodal
point n in the horizontal plane, λ1 is the spring stiffness and λ2 an induced stiffness perpendicular
to the chain [1], d is the inter-mass equilibrium distance, α is the gyricity parameter, and R is the
90o clockwise rotation matrix

R =
(

0 1
−1 0

)
. (2.2)

The normalized gravity parameter G is the same as in [11], G = g/l, where g is the gravity
acceleration and l is the length of the arm of the pendulum in the elementary cell of the
waveguide. The term, including the velocity U̇n(t) represents the gyroscopic force, which is
orthogonal to the velocity vector. The linearized differential equations, describing the motion of
a single gyropendulum for small values of the nutation angle, are classical (e.g. [4]). The gyricity
parameter α depends on the rate of spin and the moments of inertia, and its evaluation for
particular cases, including physical examples, is discussed in detail in [1].

The continuum limit is found by letting d → 0, m → 0 and λ1 → ∞ such that the chiral line
density, m/d, and tension, λ1d, are finite. Bulk continuum properties are defined as: the chiral
density ρ = m/d3 and Young’s modulus E1 = λ1/d. We also use the notation E2 = λ2/d. In the
continuum limit

∂2u
∂t2 − E1

ρ

∂2u
∂x2 − α

∂v

∂t
+ Gu = 0

and
∂2v

∂t2 − E2

ρ

∂2v

∂x2 + α
∂u
∂t

+ Gv = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.3)

When gyroscopic action and gravity are absent (i.e. α = 0 and G = 0), equation (2.3) is reduced
to a system of uncoupled wave equations. When |α| > 0, the coupling between u(x, t) and v(x, t)
becomes apparent, and the waves along the chiral rod governed by equation (2.3) become
dispersive.

(b) Normalization of the governing equations
A canonical system is considered whereby the parameter α is used as a measure of the degree of
chirality in the system, while the force owing to gravity is considered to be a constant quantity.
Thus equation (2.3) will be solved subject to the initial conditions

u(x, 0) = Lf1
( x

L

)
, v(x, 0) = Lf2

( x
L

)
,

∂u
∂t

(x, 0) = c1g1

( x
L

)
and

∂v

∂t
(x, 0) = c1g2

( x
L

)
.

⎫⎪⎪⎬
⎪⎪⎭ (2.4)

Here L is defined as a characteristic length introduced in the initial conditions and c1 = √
E1/ρ.

The functions fi and gi are dimensionless.
Introduce the dimensionless variables:

x̃ = x
L

, t̃ = c1t
L

, ũ = u
L

, ṽ = v

L
, λ = c2

c1
, μ = c1

αL
and G̃ = GL2

c2
1

. (2.5)

where c2 = √
E2/ρ.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

15
 J

an
ua

ry
 2

02
4 



4

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20230338

..........................................................

The governing equations then become

∂2ũ

∂ t̃2
− ∂2ũ

∂ x̃2 − 1
μ

∂ṽ

∂ t̃
+ G̃ũ = 0,

and
∂2ṽ

∂ t̃2
− λ2 ∂2ṽ

∂ x̃2 + 1
μ

∂ũ

∂ t̃
+ G̃ṽ = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.6)

with initial conditions

ũ(x̃, 0) = f1(x̃), ṽ(x̃, 0) = f2(x̃),
∂ũ

∂ t̃
(x̃, 0) = g1(x̃) and

∂ṽ

∂ t̃
(x̃, 0) = g2(x̃). (2.7)

It may be noted that other scalings of the time variable are possible and an alternative will
be considered in §3 in the regime of high gyricity and for small times. With the scaling above,
μ is the parameter determined by the chirality and not gravity nor pre-stress, G̃ is the ‘gravity’
parameter, not affected by the chirality and pre-stress and λ is purely the pre-stress parameter.
The other physical parameters may be regarded as fixed and having secondary importance for
our purposes.

(c) The transient solution for finite chirality
For the case when the chiral rod is pre-stressed and experiences the effects of both gravity and a
finite degree of chirality, the governing equations (2.6) with initial conditions (2.7) describe fully
coupled chiral elastic waves moving under the force of gravity. The equations need to be solved
numerically.

An illustration of this is shown in figure 1, where standard MATLAB software was used.
The chirality and stiffness parameters are set to μ = 1 and λ = 0.5, respectively, with the gravity
parameter set as G̃ = 10. The rod is released from rest but with a non-zero initial longitudinal
displacement and no transverse displacement. The initial conditions are:

ũ(x̃, 0) = e−x̃2
, ṽ(x̃, 0) = 0,

∂ũ

∂ t̃
(x̃, 0) = 0 and

∂ṽ

∂ t̃
(x̃, 0) = 0. (2.8)

A dimensionless time frame up to t̃ = 12 is chosen and an x domain is chosen sufficiently large
such that the waves do not hit the boundary in this time frame. The longitudinal and transverse
displacements are shown in figure 1a,b, respectively, as functions of x and t. Some representative
orbits of points along the rod are shown in figure 1c and the position of the rod itself is shown in
figure 1d at some representative times.

The chiral rod was released from rest with simply a displacement in the x̃-direction. Chirality
has caused displacement at subsequent times in the direction perpendicular to the rod. From
figure 1d, it is apparent that the initial wave profile is no longer preserved in time and there is
evidence of dispersion.

For the remainder of this paper, the ‘˜’ will be omitted for convenience.

(d) Time harmonic solutions
Here, the special case of time harmonic solutions to the governing equations (2.6) will be
considered. The governing equations simplify significantly, and the problem can be solved in
a closed analytical form.

In the special case of time harmonic solutions of equation (2.6), we look for solutions of
the form u(x, t) =R�[A exp(i(kx − ωt))] and v(x, t) =R�[B exp(i(kx − ωt))], where A and B are, in
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Figure 1. Transient motion of the chiral rod between t̃ = 0 and t̃ = 12. The pre-stress parameter λ = 0.5, the chirality
parameter μ = 1 and the gravity parameter G̃ = 10, with the initial conditions (equation (2.8)). (a) The longitudinal
displacement ũ(x̃, t̃). (b) The transverse displacement ṽ(x̃, t̃). (c) The orbits of selected points of the chiral rod. (d) The chiral
rod position at selected times.

general, complex phase-dependent constants, k is a wavenumber and ω an angular frequency (in
dimensionless variables). Substituting these into equation (2.6) leads to the dispersion equation

μ2ω4 − (μ2λ2k2 + μ2k2 + 2μ2G + 1)ω2 + (k2 + G)(λ2k2 + G)μ2 = 0. (2.9)

The solutions are given by

ω2
±(k, μ, λ, G) = 1 + (k2λ2 + k2 + 2G)μ2 ±

√
1 + k4(1 − λ2)2μ4 + 2((λ2 + 1)k2 + 2G)μ2

2μ2 . (2.10)

Thus, for fixed μ, λ and G, there are two dispersion curves, both symmetric about k = 0. Some
typical dispersion curves are shown in figure 2 for varying values of the parameters G, μ and λ.
At k = 0, ω± is independent of λ. Decreasing μ for fixed λ and G, leads to increasing separation
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Figure 2. The effect of the varying values of the parameters μ, λ and G on the dispersion curves ω±(k,μ, λ, G). (a) The
dispersion curvesω±(k,μ, 0.5, 10). (b) The dispersion curvesω±(k, 5, λ, 10). (c) The dispersion curvesω±(k, 5, 0.5, G).

of the modes with ω+ increasing without limit (ω+ ∼ 1/μ) and ω− decreasing to zero as μ → 0.
Additionally, when G is non zero, there is a zero-level band gap which is not present in the absence
of gravity. As μ → ∞ (corresponding to the case of zero gyricity), the dispersion curves coalesce
to the single dispersion curve ω± =

√
1 + k2 as expected. When both G = 0 and λ = 0, only one

dispersion mode occurs.
The ratio of the amplitudes R± = (B/A)± corresponding to the modes with frequency ω± are

given by

R±(k, μ, λ, G) = i
μ(k2 − ω±(k, μ, λ, G)2 + G)

ω±(k, μ, λ, G)
. (2.11)

Since the ratio of the amplitudes is purely imaginary, points along the chiral rod all move in
standard elliptical orbits with their axes aligned with the rod and perpendicular to the rod. The
equations of the orbits are given by

x′2 +
(

y′

Im(R±)

)2

= 1, (2.12)

where (x′, y′) are local displacement coordinates of a particle corresponding to the parallel and
perpendicular directions to the rod, respectively, but with origin at the centre of the ellipses. The
particles move in elliptical orbits in opposite directions for the two modes.

Thus, the eccentricity of the ellipses are determined by the behaviour of the functions
|R±(k, μ, λ, G)|. The variation of the functions |R±(k, μ, λ, G)| with μ, G and λ is shown in figure 3
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Figure 3. The variation in the eccentricity-related functionR±(k,μ, λ, G) with each pair of the parametersμ, G and λ for
a representative value of k = 0.75. In each case, the ‘third’ parameter has value λ = 0.5, μ = 5, G = 10. (a) The function
R±(0.75,μ, 0.5, G). (b) The functionR±(0.75, 5, λ, G). (c) The functionR±(0.75,μ, λ, 10).

for a representative value of k = 0.75. In the figure, there is a boundary between the two modes
represented by the plane

|R±(k, μ, λ, G)| = 1. (2.13)

This may be thought of as a ‘purely chiral boundary’ in that all modes with parameters, such
that equation (2.13) holds, are degenerate with the orbits given as circles. As μ → 0, one circular
mode only remains for all values of k, λ, μ and G. Circular orbits may be found in the limit λ → 1,
corresponding to very high pre-stress.

For the general situation when μ > 0, G > 0 and 0 < α < 1, there are two elliptical orbits, with
major axes aligned to the longitudinal and transverse axes of the chiral rod. This feature of ellipses
being aligned only in the longitudinal or transverse directions was noted in the analysis of the
chiral rod in the absence of gravity in [1] and in discrete chiral chains in [10].

For a particular choice of values for μ, G and λ then the two functions R±(k, μ, λ, G)
will determine the shapes of the two standard ellipses. As in the calculations for figure 3, a
representative value of k = 0.75 is considered. These two ellipses are shown as functions of each
of three parameters μ, G and λ in figure 4. The ellipses are determined by equation (2.12). The
ellipses are cut away for ease of viewing. It may be seen that there are single mode circular orbits
in figure 4a,c in the limits μ → 0 and λ → 1, respectively. It is not possible to design circular orbits
through the control of the parameter G with μ and λ fixed.

An example of the chiral rod profiles for the ‘plus’ and ‘minus’ modes together with the
orbits of three representative points on the rod are shown in figure 5. It should be noted that
the eigenvectors determining the mode shapes are unique only up to the ratio of their amplitudes
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Figure 4. The two standard ellipses, referred to local coordinates x′ and y′, for the twomodes shown as continuously changing
with the parametersμ, G andλ. (a) The variation in the two standard ellipses with the gyricity parameterμ. (b) The variation
in the two standard ellipses with the gravity parameter G. (c) The variation in the two standard ellipses with the pre-stress
parameterλ.

given in equation (2.11). Initially, the representative points are at positions x = −4, x = 1, x = 2.
The orbits are plotted as time increases until, after one-fifth of the period, the positions of every
point on the rod are calculated and joined by a black line. The orbits are plotted as time continues
until two-fifths of the period have passed and again the positions of every point on the rod are
calculated and joined by a black line. This process is continued for one period. The five lines
indicate the travelling wave. The orbits of the ‘plus’ mode rotate clockwise and the ‘minus’ mode
anticlockwise. However, both waves move to the right as is expected from the dispersion relation
at the chosen value of k = 0.75. The other parameters have values in both cases of λ = 0.5, μ = 5,
G = 10.
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Figure 5. The chiral rod profiles for the ‘plus’ and ‘minus’ modes together with the orbits of three points on the rod, initially at
positions x = −4, x = 1, x = 2. The ‘plus’ mode rotates clockwise and the ‘minus’ mode anticlockwise. The parameter values
in both cases areλ = 0.5,μ = 5, G = 10. (a) The ‘plus’ mode. (b) The ‘minus’ mode.

3. The case of high gyricity
When gyricity α increases, while c1 and L in the normalization equation (2.5) remain fixed, the
non-dimensional parameter μ becomes small.

In this case, we introduce the ‘fast’ time variable T = t/μ (t being the original dimensioned
variable for time). Then equations (2.6) can be re-written in the form

∂2u
∂T2 − ∂v

∂T
− μ2 ∂2u

∂x2 + μ2Gu = 0

and
∂2v

∂T2 + ∂u
∂T

− μ2λ2 ∂2v

∂x2 + μ2Gv = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.1)

which suggests that on a finite interval of values of T, which is a small time interval if measured
in terms of t, the spatial variation of u and v will be small, so that they can be approximated as
functions of T only.

It is also noted that the gravity terms μ2Gu, μ2Gv appear to be small when G is fixed, while
μ → 0.

(a) The competition between the gravity and chirality
To observe a possible competition between the gravity and chirality, in the regime when |μ| � 1,
we introduce the quantity

G = μ2G.
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The system (3.1) can be re-written in the form

∂2u
∂T2 − ∂v

∂T
+ Gu − μ2 ∂2u

∂x2 = 0

and
∂2v

∂T2 + ∂u
∂T

+ Gv − μ2λ2 ∂2v

∂x2 = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.2)

It is also assumed that, while the initial displacements are finite, the initial velocities (gj, j = 1, 2)
may be large, i.e.

u(x, 0) = f1(x), v(x, 0) = f2(x),
∂u
∂T

(x, 0) = g1(x) and
∂v

∂T
(x, 0) = g2(x), (3.3)

where gj(x) = μgj, j = 1, 2 are finite.

(b) The stationary wave limit
The case where chirality is very large, and μ → 0, has been considered in [1] where it is shown that
the individual displacement fields maintain their original shape but these oscillate in time with a
single characteristic frequency. Each point on the chiral rod oscillates in a circular trajectory. The
gyricity now influences the parameter G. For the present case with gravity, equations (3.2) with
initial conditions (3.3) with μ = 0 have analytical solutions given by

u(x, T) = 1
2Γ

[
A+(x) cos

(
ω−T

2

)
+ A−(x) cos

(
ω+T

2

)

−4B−(x)
ω− sin

(
ω−T

2

)
+ 4B+(x)

ω+ sin
(

ω+T
2

)]
(3.4)

and

v(x, T) = 2
Γ

[
C+(x)
ω+ sin

(
ω−T

2

)
+ C−(x)

ω− sin
(

ω+T
2

)

+D+(x)
4

cos
(

ω−T
2

)
+ D−(x)

4
cos

(
ω+T

2

)]
, (3.5)

where Γ = √
4G + 1 and ω± = Γ ± 1 with

A±(x) = ω±f1(x) ± 2g2(x), (3.6)

B±(x) = Gf2(x) ± ω±g1

2
, (3.7)

C±(x) = ω±
(

f1(x) + g2(x)
2

)
± Gf1(x) (3.8)

and D±(x) = ω±f2(x) ∓ 2g1(x). (3.9)

From this solution, it may be seen that the presence of gravity has introduced an additional
characteristic frequency, there being two frequencies ω±. Each point on the chiral rod moves in
the same shape of orbit, which is non circular.

When the initial velocities are both zero and the initial displacement of either u(x, T) or v(x, T)
is also zero, then the solution is separable in x and T indicating no dispersion.
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Figure 6. Motion of the chiral rod between T = 0 and T = 10 in the stationary wave limit. The pre-stress parameter
λ = 0.6, and the gravity parameterG = 0 (gravity neglected). (a) The longitudinal displacement u(x, T). (b) The transverse
displacement v(x, T). (c) The displacement of the chiral rod at various times showing the orbits of a selection of points.

(c) Illustrative examples of the stationary wave solutions
An illustrative example of the stationary wave limit will now be given. The initial conditions for
the calculations are

u(x, 0) = v(x, 0) = e−x2
,

∂u
∂T

(x, 0) = 0 and
∂v

∂T
(x, 0) = 0.1. (3.10)

With the pre-stress parameter λ = 0.6, the results for the case when G = 0 are shown in figure 6
and may be compared with the corresponding results when the effect of gravity is included
(G = 10) in figure 7, both sets of results being taken over 0 ≤ T ≤ 10.

As seen in figure 6a,b, the initial Gaussian profile is maintained throughout the subsequent
motion but with amplitude varying with time. This is not the case when gravity is present as
shown in figure 7a,b. The presence of the second non-zero frequency component, for the case
when gravity is present, may also be seen in figure 7a,b with the increased number of ‘ripples’ in
the direction of the T-axis. The orbits for each point along the chiral rod are circular when gravity
is absent as may be seen in figure 6c. However, the presence of gravity changes the shape of the
orbits considerably. In figure 7c, the orbits at selected points along the rod are plotted about a
common centre for 0 ≤ T ≤ 10. They are seen to be scaled versions of a common shape.

A few orbits for four representative points along the rod are plotted for 0 ≤ T ≤ 10 in figure 7d.
Initially, the representative points are at positions along the rod at x = −3, x = −1, x = 1, x = 3. The
initial positions of every point on the rod are calculated and joined by a red line giving the initial
displacement of the rod.

The orbits of the four representative points are plotted as time continues until T = 1. At this
time, the positions of every point on the rod are calculated and joined by a red line giving the
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Figure 7. Motion of the chiral rod between T = 0 and T = 10 in the stationary wave limit. The pre-stress parameterλ = 0.6,
and the gravity parameterG = 10. (a) The longitudinal displacement u(x, T). (b) The transverse displacement v(x, T). (c) The
orbits of selected points of the chiral rod plotted relative to a common central point. (d) The orbits of selected points on the
chiral rod.

position of the rod at this time. This process is continued at every integer value of T up to T = 10.
Note that the motion is not periodic in time (unless the ratio of the two frequencies is a rational
number).

4. Transition regime for the case of a large gyricity
Here, we consider the transient case, when the dimensioned time interval is small (0 ≤ t � 1 with
t being the original dimensioned time), and when the displacements u and v are considered as
functions of x, t and T = t/μ, while μ is considered to be a small non-dimensional parameter:

|μ| � 1.

In this section, the symbol ‘t’ is used throughout for the original dimensioned time.
In the vector form, the system (2.6) is written as

Ü − C
∂2

∂x2 U − 1
μ

RU̇ + GU = 0, (4.1)

where

C =
(

1 0
0 λ2

)
, R =

(
0 1

−1 0

)
and U =

(
u
v

)
.
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The initial conditions (equation (2.7)) are re-written as

U(x, 0) = f =
(

f1(x)
f2(x)

)
and U̇(x, 0) = g =

(
g1(x)
g2(x)

)
. (4.2)

In the transition regime, the vector function U characterizing the normalized vector of
displacements, is assumed to depend on x, t and T :

U = U(x, t, T),

which yields

U̇ = ∂

∂t
U + 1

μ

∂

∂T
U,

and

Ü = ∂2

∂t2 U + 2
μ

∂2

∂t∂T
U + 1

μ2
∂2

∂T2 U.

In this case, the vector equation (4.1) takes the form

∂2

∂T2 U − R
∂

∂T
U + μ

(
2

∂2

∂t∂T
U − R

∂

∂t
U

)
+ μ2

(
∂2

∂t2 U − C
∂2

∂x2 U + GU

)
= 0. (4.3)

In addition, if the gravity parameter is large, i.e. G = μ−2G, then the above equation becomes

∂2

∂T2 U − R
∂

∂T
U + GU + μ

(
2

∂2

∂t∂T
U − R

∂

∂t
U

)
+ μ2

(
∂2

∂t2 U − C
∂2

∂x2 U

)
= 0. (4.4)

(a) Asymptotic approximation. Boundary layer
When 0 < t < Const μ, and |μ| � 1 we show that the solution of the initial value problem,
equations (4.1) and (4.2) may exhibit rapid temporal variation. Moreover, we distinguish between
the case of finite gravity (see equation (4.3)), and the case when the gravity parameter G is large
(see equation (4.4)). The term ‘boundary layer’ will be used here in connection to the terms, which
depend on the fast-time variable T = μ−1t.

(i) The case of finite gravity

When the vector equation (4.3) holds, supplemented with the initial conditions (equation (4.2)),
for the vector field U, we consider the following asymptotic approximation:

U ∼ U(0)(x, t) + μU(1)(x, T), (4.5)

where μ is the small non-dimensional parameter, and the approximation is considered on a small
time interval 0 ≤ t � 1. To be more specific, we assume that t = O(μ).

Here, the first term U(0) in equation (4.5) is a vector function of ‘slow’ variables (x, t), whereas
the second term U(1) is the boundary layer term, which represents a stationary wave limit field
and depends on x and the ‘fast’ variable T.

The direct substitution of equation (4.5) into equation (4.3) gives

μ

(
∂2

∂T2 U(1) − R
∂

∂T
U(1) − R

∂

∂t
U(0)

)
+ μ2

(
∂2

∂t2 U(0) − C
∂2

∂x2 U(0) + GU(0)

)
+ O(μ3) = 0. (4.6)

Also, the initial conditions (equation (4.2)) take the form

U(0)(x, 0) + μU(1) + O(μ2) = f

and
∂

∂t
U(0)(x, 0) + ∂

∂T
U(1)(x, 0) + O(μ) = g,

⎫⎪⎬
⎪⎭ (4.7)
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and, accordingly, we choose the functions U(0), U(1) to satisfy the initial conditions:

U(0)(x, 0) = f(x) and
∂U(0)

∂t
(x, 0) = 0 (4.8)

and

U(1)(x, 0) = 0 and
∂U(1)

∂T
(x, 0) = g(x). (4.9)

Furthermore, if on a small time-interval 0 < t < Const μ the vector function U(0) is
approximated as

U(0)(x, t) = f(x) + O(μ2),

then equation (4.6) can be re-written as follows:

μ

(
∂2

∂T2 U(1) − R
∂

∂T
U(1)

)
+ O(μ2) = 0. (4.10)

Therefore, the boundary layer correction term corresponds to a stationary wave limit, already
considered in the earlier §3b, and the vector function U(1)(x, T) satisfies the equation

∂2

∂T2 U(1) − R
∂

∂T
U(1) = 0, (4.11)

with the initial conditions (equation (4.9)). Using equations (3.4)–(3.9), with G = 0, Γ = 1,
ω+ = 2, ω− = 0, we deduce

U(1)(x, T) = 2 sin
(

T
2

)
M

(
−T

2

)
g(x), (4.12)

where the matrix function M is defined by

M(T) =
(

cos(T) − sin(T)
sin(T) cos(T)

)
, (4.13)

and therefore

U(x, t) ∼ f(x) + μ

⎛
⎝g1(x) sin

(
t
μ

)
+ g2(x)

(
1 − cos

(
t
μ

))
g2(x) sin

(
t
μ

)
− g1(x)

(
1 − cos

(
t
μ

))
⎞
⎠ . (4.14)

We note that although the boundary layer correction term in equation (4.14) appears to be
small, its time-derivative is of order O(1).

A comparison between the numerical solution u(0, t), v(0, t) of the governing equations (2.6),
(2.7) and the asymptotic approximation equation (4.14), denoted by the suffix ‘a’ in the figure,
is shown in figure 8a for small values of time. Here, we use the small parameter μ = 0.1, finite
value of the gravity parameter G = 1 and the parameter λ = 0.5 in the numerical solution. Good
agreement is seen as t = O(μ), as predicted by the asymptotic model.

(ii) The case when the gravity is large

When G = G/μ2, there are changes in the transition regime, when 0 < t < Const μ. In this case, the
competition between the large parameter μ−1 (large gyricity) and large gravity parameter G is
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Figure 8. Comparison of the numerical solution u(0, t), v(0, t) of the governing equations (2.6), (2.7) and the asymptotic
solutions for the cases of finite values (a) and large values (b) of the gravity parameter G. In both cases, the asymptotic values
are denoted with a suffix ‘a’ in the figure. The pre-stress parameterλ = 0.5 and the small chirality parameterμ = 0.1 in both
figures. (a) The numerical solutions for the longitudinal and transverse displacements versus the asymptotic approximations
(equation (4.14)), for the casewhenG = 1. (b) The numerical solutions for the longitudinal and transverse displacements versus
the asymptotic approximations (equation (4.29)), for the case of the large gravity parameter G= 50.

taken into account. The representation (equation (4.5)) will take the new form

U ∼ U(0)(x, T) + μU(1)(x, T), (4.15)

where both vector functions U(0) and U(1) now depend on the fast variable T = t/μ. By
substituting equation (4.15) into equation (4.4) we deduce

∂2

∂T2 U(0) − R
∂

∂T
U(0) + GU(0) + μ

(
∂2

∂T2 U(1) − R
∂

∂T
U(1) + GU(1)

)
+ O(μ2) = 0, (4.16)
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with the initial conditions (equation (4.2)) taking the new form

U(0)(x, 0) + μU(1)(x, 0) + O(μ2) = f

and
1
μ

∂

∂T
U(0)(x, 0) + ∂

∂T
U(1)(x, 0) + O(μ) = g.

⎫⎪⎬
⎪⎭ (4.17)

Accordingly, the initial conditions for the functions U(0)(x, T) and U(1)(x, T) are chosen as follows:

U(0)(x, 0) = f(x) and
∂U(0)

∂T
(x, 0) = 0, (4.18)

and

U(1)(x, 0) = 0 and
∂U(1)

∂T
(x, 0) = g(x). (4.19)

It follows from equation (4.16) that the leading-order term U(0) satisfies the equation

∂2

∂T2 U(0) − R
∂

∂T
U(0) + GU(0) = 0, (4.20)

together with the initial conditions (equation (4.18)). According to equations (3.4)–(3.9), the
solution of this initial value problem is

U(0)(x, T) = 1
Γ

A(0)(T)f(x), (4.21)

where the matrix function A(0)(T) is defined by

A(0)(T) = 1
2

⎛
⎝ω+ cos

(
ω−T

2

)
+ ω− cos

(
ω+T

2

)
ω− sin

(
ω+T

2

)
− ω+ sin

(
ω−T

2

)
ω+ sin

(
ω−T

2

)
− ω− sin

(
ω+T

2

)
ω+ cos

(
ω−T

2

)
+ ω− cos

(
ω+T

2

)
⎞
⎠ , (4.22)

and
ω±=Γ ± 1 and Γ = √

4G + 1. (4.23)

Therefore, the equivalent representation of U(0)(x, T) is

U(0) =
{

cos
(

Γ T
2

)
I − 1

Γ
sin

(
Γ T
2

)
R
}
M

(
−T

2

)
f(x), (4.24)

where I is the identity matrix, and the rotation matrices R and M are defined by equations (2.2)
and (4.13), respectively.

Similarly, the vector function U(1)(x, T) satisfies the equation

∂2

∂T2 U(1) − R
∂

∂T
U(1) + GU(1) = 0, (4.25)

subject to the initial conditions (equation (4.19)). The solution of this initial value problem has the
form (see equations (3.4)–(3.9))

U(1)(x, T) = 1
Γ

A(1)(T)g(x), (4.26)

where

A(1)(T) =
⎛
⎝sin

(
ω−T

2

)
+ sin

(
ω+T

2

)
cos

(
ω−T

2

)
− cos

(
ω+T

2

)
cos

(
ω+T

2

)
− cos

(
ω−T

2

)
sin

(
ω−T

2

)
+ sin

(
ω+T

2

)
⎞
⎠ , (4.27)

or equivalently

U(1)(x, T) = 2
Γ

sin
(

Γ T
2

)
M

(
−T

2

)
g(x), (4.28)

where the rotation matrix function M is defined in equation (4.13). We also note that
equation (4.28) reduces to equation (4.12) when Γ = 1.

Finally, we deduce that when the gravity is large, and μ is small, in the transition regime when
0 ≤ t � 1, the displacement along the chiral waveguide corresponds to the stationary wave limit,
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described by equations (3.4), (3.5), and the asymptotic approximation of U(x, t) can be re-written
in the form

U(x, t) ∼ 1
Γ

(
A(0)

(
t
μ

)
f(x) + μA(1)

(
t
μ

)
g(x)

)
, (4.29)

where the matrix functions A(0), A(1) are defined by equations (4.22) and (4.27), respectively.
We also note that, the formulae (4.24) and (4.28) show a certain structure, which incorporates

the parameter Γ , depending on gravity, into a matrix factor in front of the rotation matrix function
M(−T/2).

A comparison between the numerical solution u(0, t), v(0, t) of the governing equations (2.6),
(2.7) and the asymptotic solution (equation (4.29)) (denoted by the suffix ‘a’ in the figure), is
shown in figure 8b for the time interval corresponding to the transition regime. We use the
small parameter μ = 0.1, the large gravity parameter G = 50 and the parameter λ = 0.5 in the
numerical solution. Excellent agreement is seen in figure 8b between the numerical solution and
the asymptotic approximation (equation (4.29)).

(b) A temporal chiral interface of high gyricity
The problem of imperfect temporal chiral interface, without gravity, was analysed in [20].

In the presence of gravity, the vector equation of motion (equation (4.1)) takes the form

∂

∂t

(
M

(
t
μ

)
∂

∂t
U(x, t)

)
− M

(
t
μ

)
C

∂2

∂x2 U(x, t) + GM
(

t
μ

)
U(x, t) = 0, (4.30)

where the rotation matrix function M is defined by equation (4.13). Here, μ may change
instantaneously across a temporal interface t = T∗, while the finite gravity parameter G is
constant. It is also assumed that the displacement and the momentum remain continuous across
the interface:

[U]t=T∗+0
t=T∗−0 = 0 and

[
M

(
t
μ

)
∂

∂t
U
]t=T∗+0

t=T∗−0
= 0. (4.31)

We assume that at time t = 0, the gyricity switches from 0 to α � 1, which corresponds to μ

such that |μ| � 1. At time t = d > 0, the gyricity switched back to zero. In this case, we consider
the temporal interface 0 < t < d. In particular, we are interested in the values of μ and d such that
|μ| � 1, while d/μ remains finite.

While outside the chiral interface, the displacement U satisfies the linear Klein–Gordon
equation:

Ü − C
∂2

∂x2 U + GU = 0, (4.32)

there are jump conditions across the chiral interface.
If we use the asymptotic approximation (equation (4.14)), across such a temporal interface,

then we obtain the approximations for the jumps of the displacements and their derivatives:

[U(x, t)]t=d+0
t=0− � μ

⎛
⎝g1(x) sin

(
d
μ

)
+ g2(x)

(
1 − cos

(
d
μ

))
g2(x) sin

(
d
μ

)
− g1(x)

(
1 − cos

(
d
μ

))
⎞
⎠ . (4.33)

and [
∂

∂t
U(x, t)

]t=d+0

t=0−
�
(

M
(

d
μ

)
M

(
− d

μ

)
− I

)(
g1(x)
g2(x)

)
= 0. (4.34)

The results demonstrate that for the temporal chiral interface, there is a small displacement
jump. This jump is governed by the velocity g at time t = 0−. It is also observed that, when
the gravity is finite, the jump conditions across the temporal chiral interface are not affected by
gravity, and are similar to those studied in [20].

The applications of the dynamic materials with temporal interfaces are discussed in [15,19], and
the wave patterns in such materials are also analysed in [16–18,20].
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5. Concluding remarks
In the present paper, we have focused on the problem of wave propagation in a chiral meta-
waveguide, subjected to gravity in addition to gyroscopic forces. We observe a gyroscopic
coupling between the components of the displacement vector and gravity, in the context of the
wave dispersion and wave localization.

An important part of the work is the analysis of the normalized governing equations, which
incorporate non-dimensional displacements as well as the gyricity parameter and gravity, which
emphasizes on the ‘competition’ between the gyroscopic chirality and gravity.

In particular, for the case when the gyroscopic gyricity is large, closed form analytical
approximations of solutions have been derived in a given small time interval. It has also been
demonstrated that when the normalized gravity parameter increases, the presence of gravity
introduces an additional characteristic frequency in the wave pattern.

When the gyricity of the chiral system increases, we observe ‘gyroscopic rigidity’ in the
transient context, i.e. the spatial advance of the elastic wave becomes negligibly small. In this case,
the fast time-variable is used to describe the rapid oscillation of the mechanical system in some
transitional regimes. Two classes of formulations have been analysed in the presence of gravity:
the case of finite gravity and large gyroscopic chirality, and the case when gravity is finite and
the gyroscopic chirality is large. The first case shows the ‘frequency split’ in the representation
of the temporal boundary layer, compared to the second case. Finally, these results were used to
derive the jump conditions across temporal chiral interfaces in an elastic wave guide, subjected
to gravity.
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