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Abstract. Stochastic processes are widely adopted in many domains to deal with problems
which are stochastic in nature and involve strong nonlinearity, nonstationarity and uncertain
system parameters. However, the uncertainties of spectral representation of the underlying
stochastic processes have not been adequately acknowledged due to the data problems in prac-
tice, for instance, missing data. Therefore, this paper proposes a novel method for uncertainty
quantification of spectral representation in the presence of missing data using Bayesian deep
learning models. A range of missing levels are tested. An example in stochastic dynamics is
employed for illustration.
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1 Introduction

Spectral density estimation involves describing how the power of a signal (or time series) is
distributed over frequency, often enabling inferences and model development towards the un-
derlying physical processes. However, real world observations are often imperfect in the sense
that they are limited, noisy, unevenly-spaced or missing [1, 12, 5]. In this sense, one of the main
challenges in spectral density estimation is to investigate the propagation of uncertainty, from
imperfect observations to the subsequent spectral representation. In particular, nonuniformly
sampled data (commonly referred to as missing data problem) is a frequent issue in practice
which concerns various fields, see [1] for a review.

Standard spectral analysis methods (e.g. Fourier transform based) typically require data to
be equidistantly spaced. But in practice it is often difficult for incomplete measurements to
be reevaluated, especially for geophysical or environmental data series. As such, it is almost
impossible to reconstruct the missing samples not measured with certainty. Nevertheless, with
assumptions and prior knowledge of the underlying process, there are many efforts dedicated to
the spectral analysis in the presence of missing data.

Parametric models give rise to a parametric formulation of the spectrum by imposing certain
structures on the underlying stochastic process. However, these assumptions can be inefficient
and sometimes unwarranted, for example the ignorance of nonstationarity for many spectral es-
timators based on the stationary assumption [12]. Semi-parametric methods, sometimes known
as sparse methods, are also proposed. In [7] a compressive sensing approach with additional
assumption of the sparsity in frequency domain, have been proposed for spectral density esti-
mation where multiple records compatible with a stochastic process are available. However,
in many practical applications we only have access to a single realization, and sometimes that
realization is corrupted by missing data. Alternatively, a variety of methods explicitly or im-
plicitly transform the spectral analysis with missing data into iterative imputation of missing
samples [18], followed by established full-data spectral analysis (either non-parametric estima-
tors or parametric models). Notably, neural network models have shown prospects in learning
the temporal dependency in data of sequential nature, such as time series [15].

However, despite these recent progresses, it should still be noted that a deterministic ap-
proach with certain assumptions is inadequate to account for the inherent uncertainty associated
with the missing data. Besides, another challenge is to recover the nonstationary characteristics
of time series corrupted by missing gaps, which adds additional complexity in reflecting the
evolution of spectral density for those missing periods.

This study addresses the spectral uncertainty quantification of stochastic processes under
missing data using Bayesian LSTM (long short memory model).

2 Spectral uncertainty quantification

2.1 Spectral representation of stochastic processes

In this section, a brief review of the theory of the spectral representation of stochastic pro-
cesses (stationary and non-stationary) is outlined, providing a basis for the proposed frame-
work. In particular, focus is on power spectral estimation and simulation of the corresponding
processes. A general non-stationary random process, with respect to a family of oscillatory
functions, can be represented in the form [14]:

Xt =

∫ ∞

−∞
A(ω, t)eiωtdZ(ω) (1)
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where ϕt(ω) = A(ω, t)eiωt represent the oscillatory functions, of which A(ω, t) suggests a
slowly varying and frequency-dependent modulating function and Z(ω) is an orthogonal pro-
cess; {Xt} is termed as oscillatory processes whose (two-sided) evolutionary power spectral
density is further given as:

S(ω, t) = |A(ω, t)|2S(ω) (2)

where S(ω) represents the power spectral density function in the case of a stationary pro-
cess with a family of complex exponentials, i.e., ϕt(ω) = eiωt. The semi-stationary property
due to the slowly-changing spectra premise facilitates the practical estimation of the evolution-
ary spectra given a realization record via non-stationary time-frequency methods, e.g. wavelet
transforms [16, 17, 13].

Inversely, a versatile formula for generating sample realizations compatible with the stochas-
tic process is given by spectral representation method (SRM) [13]:

x(i)(t) =
√
2
N−1∑
n=0

√
2S(ωn, t)∆ω cos(ωnt+ Φ(i)

n ) (3)

where x(i)(t) is a sample simulation, Φ(i) is the set of independent random phase angles,
distributed uniformly over the interval [0, 2π], for the ith sample realizations; N and ∆ω relate
to the discretization of the frequency domain.

2.2 Variational Bayesian inference in Recurrent neural networks

In accounting for the epistemic uncertainty, probability distributions are introduced upon the
model parameters of the neural network model that is employed to learn the temporal dynam-
ics of the underlying process. A resulting issue is the huge dimensionality of a deep learning
model. To efficiently approximate the true posterior distribution of these many model param-
eters, under the framework Bayesian infernce, stochastic variational inference (see e.g. [10,
11, 2]) involves in optimizing an approximate to the intractable true posterior. It optimizes
the parameters of a proposed variational distribution q(w|θ) so that the Kullback-Leibler (KL)
divergence between the approximate distribution and the true posterior after seeing data D is
minimised: θ∗ = argminθ KL[q(w|θ) ∥ p(w|D)]. It thus leads to the minimization of a general
stochastic objective function for neural network models in the Bayesian supervised learning
setting [3]:

J (D, θ) = KL[q(w|θ) ∥ p(w)]− Eq(w|θ) log p(D|w) (4)

which stands for the negative lower bound of the evidence term log p(D), i.e. negative ELBO.
The formulation of Eq. (4) is interpreted as a tradeoff between the two composing terms: the
variational distribution needs to both explain the observed data well, while be close to the prior.

Evaluation of the stochastic objective and further gradients is challenging and several Monte
Carlo estimators are adopted as approximate solutions [2]. Additional difficulty comes with the
complexity of the architectures of deep learning models (e.g. LSTM in this analysis) than the
regular fully-connected networks. With the recurrent network architecture, correspondingly, the
negative ELBO in the case of RNN, can be written as [8]:

JR = Eq(ω) log p
(
y|fω

y (f
ω
h (xT , f

ω
h (. . . f

ω
h (x1,h0) . . . )))

)
+ KL[q(ω) ∥ p(ω)] (5)
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where ω collectively represents all the parameters in a LSTM model. Specifically, a Bernoulli
variational distribution for each matrix row ωk is proposed on the basis of a mixture of Gaus-
sians with small variance σ2 [8]:

q(wk) = pN (wk;0, σ
2I) + (1− p)N (wk;ϕk, σ

2I) (6)

where the random weight matrix is factorized over the rows as ωk = g(ϕk, ϵ) = ϕk ·diag(ϵk);
ϕk represent the variational parameters; diag means the diagonal matrix operation. Following
the idea of Monte Carlo estimator to approximate expectation and reparameterization to re-
move the dependence of q(·) in the integral (see a Gaussian case in [11] for details), a further
approximation of the stochastic objective function [8]:

JR ≈ −
N∑
l=1

log
(
y|fω(l)

y (fω(l)

h (xT , f
ω(l)

h (. . . fω(l)

h (x1,h0) . . . )))
)
+ λ||ϕ||22 (7)

ω(l) = g(ϕ, ϵ(l)) with ϵ(l) ∼ p(ϵ) (8)

where p(ϵ) denotes a Bernoulli distribution with parameter p given in advance as hyperpa-
rameters; λ||ϕ||22 suggests a further approximation of the second term in Eq. (5) by L2 regular-
isation with weight decay λ and variational parameters ϕ to be solved, see [9] for more details.
In minimizing Eq. (7), for efficiency a new realization ω(l) is sampled for each input xi data
point. In particular, note that the weight sharing mechanism in RNN requires the same weight
realizations being used at each time step, suggesting the same (but random) masking given by
the Bernoulli distribution is passed throughout time steps.

Substituting the Bernoulli variational distribution for the true posterior then approximates
the predictive distribution for each missing point, as given below:∫

p(ỹ|x̃,ω)q(ω)dω ≈ 1

T

T∑
t=1

p(ỹ|x̃,ω(t)) (9)

where x̃ represents the missing samples and ỹ the recurrent imputations. It yields a predic-
tive distribution for each missing time point. Effectively, it amounts to implement T stochastic
forward passes {ω(t)}Tt=1 ∼ q(ω), obtained from T realizations of the variational Bernoulli
distribution parameterized by the parameter p, through the network model and average the re-
sults. Iteratively sampling from the model’s predictive distribution at each step, coupled with
the accordingly updated hidden states, produces an ensemble of reconstructions.

3 Example application

In this study, we investigate the challenge that, when characterizing earthquake-induced
stochastic excitations, the source load record is corrupted with missing gaps [6]. Specifically,
instead of conducting the spectral estimation towards the same stochastic process with multiple
artificial records (which is generally not the case in practice), only one real seismic record is
employed to demonstrate the performance of the proposed method in spectral estimation and
uncertainty quantification. A seismic record of magnitude M = 6.5, normal faulting, epicentral
distance R = 18.6km, recorded at a class A site in Italy is adopted from the ESM database.

Many existing spectral estimators aim to perform spectral estimation from the available sam-
ples. However, the very limited information contained in the available samples, especially
when there is a high proportion of incomplete data, imposes a performance ceiling for these
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approaches and restricts the potential for robust uses in practice. As such, to build an informed
neural network model for the imputation task, we equip the network model with prior knowl-
edge by training the model from physics-based simulations. Given the incomplete record from
an environmental process, there exists a great deal of information besides the available samples,
for instance, in this case, the meta data (e.g magnitude, epicentral distance, 30m shear wave
velocity), local site effects and regional seismicity. In this study, a well-calibrated finite fault
stochastic model that encapsulates various factors affecting ground motions (e.g. source, path,
and site effects) into a parametric formulation of the Fourier amplitude spectrum, is adopted:

A(f ;Θ) = E(f,M ;Θe)P (f,R;Θp)G(f ;Θs) (10)

where M is magnitude, R epicentral distance, the vector Θ = (Θe,Θp,Θs) represent the
region specific parameters reflecting the source, path, and site effects from a physics-based
perspective (see [4, 19] for a detailed explanation on each component of the parameterized
spectrum). These region specific parameters are taken from the seismological analysis of the
corresponding region. As a result, 100 simulations are created to initialize the Bayesian LSTM
model. For comparison purpose, another model with classic fully-connected layers is also con-
structed. A range of percentages (ϵMP ) of missing data are considered, in particular, 10% to
70% of the data are removed over 10 gaps at random locations.

Fig. 1 show the power spectral density estimation from an ensemble of 500 reconstructed
time histories based on the non-parametric Welch’s method. It can be seen that both meth-
ods have approximated the target PSD fairly well with the ensemble average and the credible
intervals have well contained the target from the otherwise complete recording.
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(a) Bayesian LSTM model
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(b) Bayesian dense neural network model

Figure 1: Welch-based estimates on power spectral density and associated credible intervals
under ϵMP = 30%

To quantitatively reflect the dissimilarity between PSD estimates under different missing sce-
narios and Bayesian models, the Wasserstein Fourier distance [5], which computes the Wasser-
stein distance between (normalized power spectral density), is adopted, given below:

Wp(µ, ν) =
(∫ 1

0

|F−1
µ (q)− F−1

ν (q)|pdq
)1/p

(11)
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where F−1 denote the inverse cumulative distribution (also known as quantile function of q)
of two probability measures of interest µ, ν, as in the normalized power spectral density [5].
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Figure 2: Wasserstein metric of spectral dissimilarity of PSD estimates for the two Bayesian
models under a range of missing levels
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Figure 3: Morlet wavelet based evolutionary power spectra (EPS) without missing data

As highlighted before, many physical processes are in fact nonstationary. A realistic spec-
tral representation that have captured these characteristics (e.g. temporal nonstationarity and
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Figure 4: Ensemble-avaeraged Morlet wavelet based EPS estimate by the Bayesian dense neural
network model (ϵMP = 40%)

spectral nonstationarity) is vital in describing the response behavior of engineering structures
subject to these physical processes. A continuous gap will make it difficult to estimate the
evolutionary spectral density Sft at those missing time stamps. Specifically, Morlet wavelet
is adopted (see [17] for details) to estimate the EPS (evolutioanry power spectrum) from the
ensemble reconstructions.

Fig. 5 displays the target EPS without missing data. Fig. 4 shows the ensemble-averaged EPS
estimate for Bayesian DNN model in the case of 40% missing data. It should be noted that while
the BDNN model is capable of producing reasonable PSD estimates up to 70%, it yields evident
discrepancy on the EPS estimates since 50%. These discrepancies can be illustratively seen in
Fig. 6b, where a suite of sample realizations compatible with the underlying stochastic process,
represented by the estimated EPS, are generated by Eq. 3 using the spectral representation
method.

By comparison, Fig. 5 suggests that the Bayesian LSTM model is effective in the spectral
density estimation even with 70% missing data, though with a noticeable loss of power. A
direct comparison of these two models, as shown in Fig. 6. The quality of EPS estimates are
reflected by the subsequent sample realizations. It can be seen that Bayesian LSTM model
managed to create effective sample realizations even with 70% missing data. Under the effect
such significant amount of incompleteness, a bias can be found regarding spectral periods over
3 seconds. In terms of Bayesain DNN model, significant discrepancies are found with both EPS
estimate and associated sample realizations.
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Figure 5: Ensemble-averaged Morlet wavelet based EPS estimate by the Bayesian LSTM model
(ϵMP = 70%)
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(a) Bayesian LSTM model ϵMP = 70%
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(b) Bayesian DNN model ϵMP = 50%

Figure 6: Pseudo-acceleration response spectra of sample realizations generated by Eq. (3)
under different missing percentages
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4 Conclusion

In this paper, the challenge of quantifying the uncertainty in stochastic process spectral es-
timates based on an incomplete realization with missing gaps is addressed. In particular, a
Bayesian LSTM model is proposed to account for the uncertainty in the time domain recon-
structions and subsequently the uncertainty in the subsequent spectral estimates. A range of
missing levels are tested. The results suggest that LSTM model outperforms the classic fully
connected model in the estimation of evolutionary spectra. Of particular note is that the pro-
posed Bayesian model is effective even with a missing percentage as high as 70%.

5 Code

The Python code for the implementation of the spectral representation method and also
the estimation of evolutionary spectrum with wavelet transform is provided by the authors at
https://github.com/leslieDLcy/StoSpecRep. The code for the implementation
of the stochastic finite fault model is provided at https://github.com/leslieDLcy/
stoexsim.git.
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