
University of Liverpool

Local Interaction Region Coupling
Correction for the LHC

Submitted by:
Félix Soubelet

Supervised by:
Dr. Tobias Persson
Dr. Rogelio Tomás

Dr. Oznur Apsimon
Prof. Carsten Welsch

Thesis submitted in accordance with the requirements of the
University of Liverpool, School of Physical Sciences

for the degree of Doctor in Philosophy

October 22, 2023

https://www.liverpool.ac.uk/
https://orcid.org/my-orcid?orcid=0000-0001-8012-1440
https://www.researchgate.net/profile/Tobias-Persson
https://orcid.org/0000-0002-9857-1703
https://orcid.org/0000-0002-5410-7706
https://orcid.org/0000-0001-7085-0973
https://www.liverpool.ac.uk/
https://www.liverpool.ac.uk/physical-sciences/




iii

Declaration of Authorship

I, Félix Soubelet, declare that this thesis and the work presented in it are my
own, done while in candidature for a doctorate degree. This thesis was not used, in
whole or in part, to achieve an academic degree. No external sources were used without
declaration in the text: any thoughts from others or literal quotations are clearly marked
and where I have quoted from the work of others, the source is always given. Except
for such quotations, this thesis is entirely my own work.

Several studies and results presented in this document have already been published,
either in proceedings of the International Particle Accelerator Conference (IPAC) or
as a peer-reviewed article in Physical Review Accelerators and Beams (PRAB), and a
summary of these references is given below.

The following articles report on work that was included in this thesis:

[1]: F. Soubelet et al., "Prospects for Local Interaction Region Coupling Correction at
the LHC in Run 3", in Proceedings of 12th Int. Particle Accelerator Conf. (IPAC’21),
Campinas, Brazil, MOPAB007, 2021.

[2]: F. Soubelet et al., "First Interaction Region Local Coupling Corrections in the LHC
Run 3", in Proceedings of 13th Int. Particle Accelerator Conf. (IPAC’22), Bangkok,
Thailand, WEPOPT007, 2022.

[3]: F. Soubelet et al., "Supervised Machine Learning for Local Coupling Sources De-
tection in the LHC", in Proceedings of 13th Int. Particle Accelerator Conf. (IPAC’22),
Bangkok, Thailand, WEPOPT008, 2022.

[4]: F. Soubelet et al., "Rigid Waist Shift: A New Method for Local Coupling Correc-
tions in the LHC Interaction Regions", Phys. Rev. ST Accel. Beams 26, 2023.

[5]: F. Soubelet et al., "Prospect of Operating with Limited Skew Quadrupole Corrector
Availability in the LHC Interaction Regions", in Proceedings of 14th Int. Particle
Accelerator Conf. (IPAC’23), Venice, Italy, MOPL044, 2023.

The following articles are studies that were contributed to by myself but are not
included in this thesis:

[6]: F. Carlier et al., "LHC Run 2 Optics Commissioning Experience in View of
HL-LHC", in Proceedings of 10th Int. Particle Accelerator Conf. (IPAC’19), Mel-
bourne, Australia, MOPMP033, 2019.



iv

[7]: R. Tracey et al., "AI-Driven Holistic Approach to Energy Efficient HPC", in
ISC High Performance 2020: High Performance Computing, pp 267-279, 2020.

[8]: I. Béjar Alonso et al., "High-Luminosity Large Hadron Collider (HL-LHC): Techni-
cal Design Report", in CERN Yellow Reports: Monographs, 2020.

[9]: T. Persson et al., "Optics Correction Strategy for Run 3 of the LHC", in Proceedings
of 12th Int. Particle Accelerator Conf. (IPAC’21), Campinas, Brazil, WEPAB027, 2021.

[10]: E. Maclean et al., "Optics Measurement by Excitation of Betatron Oscillations in
the CERN PSB", in Proceedings of 12th Int. Particle Accelerator Conf. (IPAC’21),
Campinas, Brazil, THPAB168, 2021.

[11]: T. Persson et al., "Optics Measurements and Correction Plans for the HL-LHC",
in Proceedings of 12th Int. Particle Accelerator Conf. (IPAC’21), Campinas, Brazil,
WEPAB026, 2021.

[12]: X. Buffat et al., "Optics Measurement and Correction Strategies for HL-LHC", in
CERN ATS Notes, 2022.

[13]: T. Persson et al., "Optics Correction Strategy for Run 3 of the LHC", in Proceedings
of 13th Int. Particle Accelerator Conf. (IPAC’22), Bangkok, Thailand, WEPOST008,
2022.

[14]: E. Fol et al., "Experimental Demonstration of Machine Learning Application in
LHC Optics Commissioning", in Proceedings of 13th Int. Particle Accelerator Conf.
(IPAC’22), Bangkok, Thailand, MOPOPT047, 2022.

[15]: F. Carlier et al., "Challenges of k-Modulation Measurements in the LHC Run 3", in
Proceedings of 14th Int. Particle Accelerator Conf. (IPAC’23), Venice, Italy, MOPL014,
2023.

[16]: F. Carlier et al., "LHC Run 3 Optics Correction", in Proceedings of 14th Int.
Particle Accelerator Conf. (IPAC’23), Venice, Italy, MOPL015, 2023.

[17]: J. Dilly et al., "First Operational Dodecapole Correction in the LHC", Phys. Rev.
ST Accel. Beams 26, 2023.



v

UNIVERSITY OF LIVERPOOL

Abstract
CERN

School of Physical Sciences

Doctor of Philosophy

Local Interaction Region Coupling Correction for the LHC

by Félix Soubelet

In order to further expand our knowledge of the structure of matter and the workings
of our universe, scientists are constantly seeking to collide particles at ever-increasing
energies and with higher luminosity. So is the task of the Large Hadron Collider (LHC)
at CERN, the highest energy particle accelerator and collider to date, and the goal of
its future upgrade into the High-Luminosity Large Hadron Collider (HL-LHC). This
constant progress in performance requires more intense beams and smaller beam sizes
at collisions points as well as a tight control of these parameters. Thus, successful
operation of large-scale particle colliders heavily depends on the precise correction of
magnet field or alignment errors present in the machine.

In the LHC, transverse betatron coupling has been shown to have a significant
impact on both the beam dynamics and luminosity production due to uncompensated
sources close to the Interaction Points (IPs). However, current measurement methods
are not sufficient for precise local coupling measurement at the IP, and the impact of
these sources has so far been left uncompensated. This thesis covers work done in an
effort to determine and correct Interaction Region (IR) local coupling.

A key tool presented in this document is the designed Rigid Waist Shift (RWS), a
new optics configuration which allows the determination of local coupling corrections
based on correlated global variables such as the closest tune approach |C−|. The validity
of this new method has been demonstrated through simulations and experimental
measurements taken during the LHC Run 3 commissioning in 2022, where determined
corrections were applied and led to a measured luminosity increase of 9.7% and 3.5%
at the ATLAS and CMS detectors, respectively. Additionally, the application of
machine learning techniques for high complexity problems such as the detection of
coupling sources in the LHC has been explored, yielding promising results but requiring
some more improvements to be operationally viable. Finally, optics studies which
revealed avenues for improvements in the optics measurements done at the LHC are
also presented.

HTTPS://WWW.LIVERPOOL.AC.UK/
http://home.cern
https://www.liverpool.ac.uk/physical-sciences/
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Glossary

Nomenclature

AC Dipole Dipole magnet attached to an AC power source with variable frequency
and strength, allowing the imposition of forced oscillations on the beam. See
Section 3.3.1.

ALICE (A Large Ion Collider Experiment) An experiment optimized to study heavy-
ion collisions at the Large Hadron Collider (LHC) .

Amplitude detuning Tune change with the transversal amplitude of a particle. See
Section 2.3.5.

ATLAS (A Toroidal LHC Apparatus) One of two general purpose detectors at the
LHC. It investigates a wide range of physics, from the search for the Higgs boson
to extra dimensions and particles that could make up dark matter. Although it
has the same scientific goals as the CMS experiment, it uses different technical
solutions and a different magnet-system design .

Beam Short for "Particle Beam". The name for the collection of all particles in an
accelerator traveling in the same direction. In the Large Hadron Collider (LHC)
there are two beams (Beam 1 and Beam 2) traversing in opposite directions and
colliding at the Interaction Points (IPs).

Beta-beating Relative difference of the β-functions between measurement and model:
(βmeasured − βmodel)/βmodel. It is a good indicator of the quality of the linear optics.
See Section 3.3.

Beta-function Value of the Twiss parameters β as a function of longitudinal location.
This value is closely related to the amplitude A of the betatron-oscillations and
hence the size of the beam at that location via the action J by A =

√
2Jβ.

Betatron coupling Coupling between the horizontal and vertical transverse motion of a
particle. Common sources of coupling are skew quadrupoles and solenoids. See
Section 2.4.

Closed Orbit The orbit of a particle with reference momentum, sometimes also called
"reference orbit" or "ideal orbit". See Section 2.1.1.

CMS (Compact Muon Solenoid) One of two general purpose detectors at the LHC. It
investigates a wide range of physics, from the search for the Higgs boson to extra
dimensions and particles that could make up dark matter. Although it has the
same scientific goals as the ATLAS experiment, it uses different technical solutions
and a different magnet-system design .
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Courant-Snyder Parameters Set of quantities describing the distribution of positions
and momenta of the particles in a beam. Also known as Twiss parameters. See
for instance the β-function.

Experiment In the context of the LHC, an "experiment" denotes one of the particle
physics detector experiments and its accompanying data-collecting research struc-
ture. The four largest detectors, ATLAS, CMS, ALICE, LHCb are located at the
four colliding IPs of the LHC.

Feed-down Particles passing off-center through a multipole field experience effects akin
to the influence of lower-order multipoles due to the orbit offset.

Flat optics Optics in which the β∗ is different for both transverse planes, usually much
smaller in one than in the other. See also round optics.

Hadron Composite subatomic particles consisting of two or more quarks, held together
by strong interactions.

IP (Interaction Point) The specific point at which the two counter-rotating beams
interact, i.e. their particles collide. In the LHC these are located in the center of
Insertion Regions (IRs) 1, 2, 5 and 8 inside the detectors, or experiments .

IR (Insertion Region) Straight section between the arcs of a synchrotron, housing
larger facilities such as detectors (experiments), acceleration (RF), etc. In this
document the shorthand IR mostly refers to an "Interaction Region", a.k.a. an
Insertion Region hosting an IP where beams are made to collide .

Knob A group setting of magnets powerings to be changed together.

LHCb (LHC-beauty) A specialized b-physics experiment, designed primarily to measure
the parameters of CP violation in the interactions of b-hadron, heavy particles
containing a bottom quark .

Long Shutdown Planned shutdown periods of the LHC between Runs spanning multiple
years, as opposed to the Year-End Technical Stop (YETS), which only lasts a few
months. This time is used for repairs and upgrades of the machine, as well as
general maintenance.

Luminosity The ratio of the number of events, i.e. collisions, detected per cross section,
either per time interval ("instantaneous luminosity") or in total ("integrated
luminosity", e.g. since the beginning of a year, a run or of operation). See
Section 2.5.

MAD-X Current version of the Methodical Accelerator Design (MAD) framework
developed in BE-ABP at CERN.

MD (Machine Development) Studies dedicated to understanding and improving the
machine, e.g. by trying to reveal error-sources or attempting their correction,
or testing possible future procedures and machine configurations. They usually
involve beam-time, i.e. measurements in the CERN Control Center (CCC) .
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Normal magnets Magnet with a "normal" oriented multipole field with pole-tips off
the horizontal axis. Opposed to a skew magnet of the same order n, for which
the field is rotated by π/(2n) rad.

Optics Refers to accelerator beam optics, describing the particle motion through an
accelerator as defined by the elements (i.e. magnets) of the machine. As the
behaviour of a particle beam in magnetic fields shows similarities to a light beam
propagating through lenses and can be described with similar equations, a lot of
theory and nomenclature has been borrowed from ray optics.

RF (Radio Frequency) Shorthand for the acceleration part of a synchrotron, as the
frequency of the accelerating electric field is usually in the radio-frequency range
(at the LHC ≈ 400MHz) .

Round optics Optics in which the β∗ is identical for both planes. See also: flat optics.

Run Consecutive years of LHC operation, separated by long shutdowns. Run 1 has
taken place from 2008 to 2013, Run 2 from 2015 to 2018 and Run 3 started in
2022.

RWS (Rigid Waist Shift) A specific perturbation of the optics in an IR that moves all
four betatron waists of the beam simultaneously. See Section 4.4 .

Skew magnets Magnet with a "skew" oriented multipole field, with pole-tips on the
horizontal axis. Opposed to a normal magnet of the same order n, for which the
field is rotated by π/(2n) rad.

Synchronous particle The ideal particle that defines the reference trajectory in a circular
accelerator. See Section 2.1.1.

Trim A trim refers to powering adjustements of a given electrical circuit powering one
or several magnets in series or according to a given scheme.

Tune Number of betatron oscillations per turn in a circular accelerator. See also:
β-function.

Twiss Parameters See Courant-Snyder Parameters.

Acronyms

ABP Accelerator and Beam Physics group at CERN.

ALICE A Large Ion Collider Experiment.

ATLAS A Toroidal LHC Apparatus.

ATS Achromatic Telescopic Squeeze.

BBQ Base Band Tune.

BE Beams Department.



xvi

BPM Beam Position Monitor.

CCC CERN Control Center.

CERN European Organization for Nuclear Research.

CMS Compact Muon Solenoid.

FCC Future Circular Collider.

HEP High Energy Physics.

HL-LHC High-Luminosity Large Hadron Collider.

IP Interaction Point.

IPAC International Particle Accelerator Conference.

IR Insertion Region.

LHC Large Hadron Collider.

LHCb LHC-beauty.

LINAC Linear Accelerator.

LIV.DAT Liverpool Big Data Science Center for Doctoral Training.

LSA LHC Software Architecture.

MAD Methodical Accelerator Design.

MD Machine Development.

OMC Optics Measurements and Corrections.

PRAB Physical Review Accelerators and Beams.

PS Proton Synchrotron.

PSB PS Booster.

PTC Polymorphic Tracking Code.

RDT Resonance Driving Term.

RF Radio Frequency.

RWS Rigid Waist Shift.

SPS Super Proton Synchrotron.

SVD Singular Value Decomposition.

YETS Year-End Technical Stop.
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Symbols

J Action. One of the phase space coordinates in the Courant-Snyder normalization
and closely related to the invariant of (linear) motion ε = 2J . Usually subscripted
with x or y giving the transversal plane. Unit: m.

Bρ Magnetic rigidity. Used as a normalization factor for normal magnetic field strength
and skew magnetic field strength. Unit: Tm.

β∗ The β-function at the IP. Usually subscripted with x or y giving the transversal
plane. Unit: m.

|C−| The minimum tune separation. It is a quantification of the amount of global
linear coupling in the machine. Dimentionless.

Jn Skew magnetic field strength. Skew field component normalized to the magnetic
rigidity. Usually subscripted with an integer n giving the field order. Unit: m−n.

Kn Normal magnetic field strength. Normal field component normalized to the magnetic
rigidity. Usually subscripted with an integer n giving the field order. Unit: m−n.





xix

List of Figures

2.1 The Frenet-Serret coordinate system used in accelerator physics. Here
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CHAPTER 1

Introduction

ò
In this document a distinction is made between glossary items and acronyms,
and locally relevant terms and concepts. The former will appear in blue
and are clickable links bringing the reader back to the glossary such as the
following: optics. The latter will appear in orange and are an indication of
a term or concept that is important to the content at hand but does not
necessarily warrant its own entry in the glossary.

1.1 Motivations

Accelerator physics as a branch of physics has its roots nearly a century ago with the
pioneering work of E. Lawrence [18] inventing the cyclotron, and shortly after in 1932
when J. Cockcroft and E. Walton [19–21] built the first particle accelerator that could
produce nuclear reactions. Since then accelerator physics has grown into a mature field
of research with applications ranging from cancer treatment and the production of
medical isotopes to material science such as the analysis of archeological items, but also
many industrial uses.

However, High Energy Physics (HEP) - the study of the fundamental constituents
of matter - has historically been the main drive to push the boundaries of accelerator
science. One of the most significant contributions of this field has been the design,
construction and operation of particle colliders providing data for experiments at the
forefront of HEP research, such as the Large Hadron Collider (LHC) at CERN, the
highest energy and most technologically advanced particle accelerator yet built. These
contributions recently culminated with the discovery of the Higgs boson by the ATLAS
and CMS experiments at the LHC in 2012 [22, 23], which Peter Higgs and François
Englert were awarded the 2013 Nobel Prize in Physics for predicting nearly 50 years
prior [24, 25].

Since then experiments at the LHC keep analyzing data from collisions to probe
in more detail the now uncovered mechanisms, as well as attempt to discover physics
beyond the Standard Model such as supersymmetry or dark matter. To this end, the
LHC has kept pushing its performance to even higher energies and luminosity. The
machine has already undergone two Long Shutdowns during which it was upgraded,
and is currently in the Run 3 of its operation. Another shutdown is planned a few years
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from now to upgrade the accelerator to the High-Luminosity Large Hadron Collider
(HL-LHC) [26], which aims to increase the luminosity of the collider by a factor of 10.

Increasing the luminosity of the machine however is not without its challenges and
limitations, and in order to achieve an optimal performance an understanding and
control of the dynamics of the particle beams is essential. One such limitation to the
delivery of optimal luminosity is the so-called local linear betatron coupling in the
Insertion Regions (IRs), which can lead to a significant decrease in collision numbers if
left uncorrected.

The focus of this thesis is on the handling of local linear coupling in the IRs of the
LHC, and the development of a new method to measure and correct the phenomenon,
improving the performance of the accelerator. By addressing this issue, the research
presented in this document aims to contribute to the ongoing efforts to push the
performance of the LHC to even greater heights, and to hopefully enable new discoveries
in the field of particle physics.

1.2 Thesis Outline

This document describes work done on the matter of local linear coupling correction in
the LHC, and of this thesis at large. Across studies a focus is kept on the main IRs of
the LHC, 1 and 5, which are more error-sensitive due to their optics configurations.

As a first step and to allow the reader to follow the details of this work, Chapter 2
gives an in-depth introduction to the world of accelerator physics and beam dynamics.
The chapter starts with the linear beam dynamics as the core foundation to any particle
accelerator, then carries on with non-linear phenomenology present in more complex
machines in order to introduce necessary concepts and quantities of interest to the work
presented in this document, such as Resonance Driving Terms (RDTs). A section is
dedicated to betatron coupling and its parametrization, and another to luminosity as a
key performance indicator of a collider.

Chapter 3 opens with a comprehensive overview of the LHC machine and its
operation in Run 3, with particular attention given to the main IRs. The second
half of the chapter dives into the practice of Optics Measurements and Corrections
(OMC) as done at the LHC by the OMC team. Insight is given on each step, from
data acquisition methods and devices to the reconstruction of quantities of interest and
the determination of adjustments that would bring the machine closer to its desired,
nominal state.

The main body of work for this thesis, which offers a new experimental setup and
correction method for local linear coupling in the LHC IRs, is detailed in Chapter 4.
The chapter opens by providing the reader with a justification of the need for local linear
coupling correction both for the LHC and the future HL-LHC machine. An overview of
the local coupling situation in the LHC is given, including current correction methods
and their limitations which stem from the specific conditions of the LHC IRs. The
theoretical basis for the new correction method is laid out, which relies on the leakage of
RDTs from the IRs to the rest of the machine, and the various experimental setup tools
that were developed are thoroughly presented. Experimental measurements and data
analysis from the method’s application in the LHC 2022 commissioning are presented
as well as the resulting luminosity improvements observed from the application of the
determined corrections. A short section is dedicated to the relevance of this method
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for other existing or future colliders. Finally, the chapter offers an assessment of the
realistic eventuality of one or more failure of the dedicated magnets used for coupling
correction and the explored solutions.

In line with the themes of the Liverpool Big Data Science Center for Doctoral
Training (LIV.DAT) [27] a machine learning-based approach to the subject of local
linear coupling has been explored, that is presented in Chapter 5, which starts with
a minimal overview of the relevant machine learning concepts. The new approach to
local linear coupling is presented with a focus on the data preparation, model training
and achieved results. A discussion on the potential of this machine learning approach is
held, as well as the challenges to overcome to make it fully viable in LHC operations.

Some additional work performed during this thesis is presented in Chapter 6. While
not relating directly to the main subject of this thesis, the work presented in this
chapter is nonetheless relevant to either the LHC and its operation or to the OMC
team’s activities at large.

Finally, Chapter 7 restates the main results and conclusions from the work done in
this thesis. A discussion is held on the findings and any missing element to this work, as
well as the potential avenues for future developments. The chapter closes with a look at
the future of LHC operations and potential implications of this work to other colliders.

Some additional material is provided in the appendices of this document. Appendix A
offers a detailed derivation for the Hamiltonian thin kick expansion which would have
been too cumbersome to include in Chapter 2. Appendix B provides complementary,
illustrated supporting material regarding the naming conventions in use for the LHC,
which the reader might find useful considering the inevitable amount of machine specific
jargon used in this document. In the spirit of completeness, Appendices C to E provide
details on the experimental campaign relating to the studies in this thesis. The former
lists the different experimental knobs used for measurements in the LHC for the results
shown in Chapter 4, and the latter provides a comprehensive list of the LHC fills
used for measurements. Appendix D provides details on additional measurements not
presented in detail in Chapter 4. Finally, Appendix F succinctly presents the main
software development contributions done over the course of this PhD.
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CHAPTER 2

Relevant Theory of Beam Dynamics

The design, operation, performance, and safety of a particle accelerator depend on the
beam dynamics. This chapter provides an overview of the beam dynamics theories
relevant to the material in this thesis, and more specifically beam optics. For a more
complete treatment of relevant accelerator physics the reader is best referred to textbooks
by Wilson [28], Lee [29], Wiedemann [30], Minty and Zimmermann [31], Wolski [32] or
Chao [33, 34]. Most of the material herein can be found in the aforementioned literature,
and when not in these works explicit references to the relevant content are given.

This chapter starts out with a description of linear dynamics and a parametrization
of turn-by-turn motion in a circular accelerator. It then moves on to aspects of non-linear
dynamics and the use of normal form to obtain the non-linear motion and introduce
Resonance Driving Terms (RDTs), then follows up with an introduction to betatron
coupling and ends with a discussion of luminosity.

2.1 Linear Beam Dynamics

The linear dynamics of an accelerator are, mainly, the endeavor to bend and focus
particle beams to confine them within the machine’s aperture.

2.1.1 Transport and Guiding of Charged Particles

To force the beam’s particles into a closed trajectory, they are subjected to magnetic
fields that deflect their trajectories. The force exerted on the beam is the Lorentz force
FL given by the equation:

F⃗L =
dp⃗

dt
= q(E⃗ + v⃗ × B⃗) , (2.1)

where p⃗ is the particle momentum, q the particle charge, E⃗ the electric field, v⃗ the
particle velocity and B⃗ the magnetic field. In most accelerators, including the Large
Hadron Collider (LHC), the particles’ speed is close to the celerity of light c and the
force from the magnetic field is significantly stronger than that produced by the electric
field for realistic values of E⃗ and B⃗. As a result, while electric fields are used for
acceleration, in high energy particle accelerators magnetic fields are typically used to
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guide particles. The guiding magnetic field can be expanded into a series of multipolar
fields, for instance here in the horizontal plane:

By = By0

dipole

+
dBy

dx
x

quadrupole

+
1

2!

d2By

dx2
x2

sextupole

+
1

3!

d3By

dx3
x3

octupole

+ . . . (2.2)

Bending forces are supplied by dipole magnets with a magnetic field perpendicular
to the beam trajectory, while focusing is typically performed with the use of quadrupole
magnets. Higher orders belong to the non-linear dynamics and will be discussed later on
in this chapter. Figure 2.1 illustrates the Frenet-Serret coordinate system traditionally
used in linear beam dynamics.

Figure 2.1: The Frenet-Serret coordinate system used in accelerator
physics. Here x̂, ŷ, and ŝ form the right-handed orthogonal basis, while

ρ is the local bending radius.

The coordinate system travels longitudinally with the particle, along a reference
trajectory defined by an ideal, or synchronous, particle. The longitudinal curvilinear
coordinate is s, and denotes the position of the particle along the ideal orbit with respect
to an arbitrary initial point at s = 0. One can define a local radius of curvature, ρ(s),
which depends on the local magnetic field B⃗ and varies along the ring. The transverse
phase space is defined by (x, x′, y, y′), where x and y are a particle’s coordinates in the
transverse planes relative to the reference trajectory. The x′ and y′ coordinates are
divergent angles, with the prime indicating differentiation with respect to s.

In the linear regime, magnetic dipoles define the ideal orbit for a particle of reference
momentum p0. This ideal orbit goes through the magnetic center of all elements in
the machine to close back on itself after a revolution, and is called the closed orbit. In
practice however the real closed orbit will deviate from the ideal orbit due to various
effects such as dipolar field errors, and the two are distinct. Particles within the beam
are distributed in amplitude and oscillate around the closed orbit, which corresponds to
the path of a particle with zero amplitude within the beam, because of focusing forces.
This is illustrated in Fig. 2.2 where a conceptualized design orbit, a closed orbit and an
actual particle trajectory are shown.
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x

y

s

Figure 2.2: Illustration of a design reference orbit (blue), a closed orbit
(orange) and a single turn particle trajectory (red).

Focusing forces are typically provided by magnetic quadrupoles: a quadrupolar field
acting on a charged particle displaced from the closed orbit will provide a restoring
(focusing) force proportional to the displacement in one transverse plane, while simul-
taneously providing a diverging (defocusing) force in the other. As a convention, a
quadrupole focusing in the horizontal plane and defocusing in the vertical one is referred
to as a focusing quadrupole. Respectively, a quadrupole defocusing in the horizontal
plane but focusing in the vertical one is referred to as a defocusing quadrupole.

A net focusing effect in both planes can be obtained with a setup of quadrupoles of
alternating polarity in equal distance, a widely used configuration named the FODO
cell. A schematic of a FODO cell is shown in Fig. 2.3, and Fig. 2.4 illustrates magnetic
fields in an LHC dipole and quadrupole.

Figure 2.3: Schematic of a FODO cell. A focusing quadrupole is
denoted with an F while a defocusing one is denoted with a D.
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For each magnet applying a field B one can define the magnetic rigidity Bρ, which
is an indication of the field’s ability to alter a particle’s course based on its charge q
and momentum p, as:

Bρ =
p

q
. (2.3)

(a) Magnetic dipole. (b) Magnetic quadrupole.

Figure 2.4: Magnetic fields in an LHC dipole and quadrupole, with a
cos(θ) and cos(2θ) current distribution in the circular coil, respectively.
Currents in the dipole and quadrupole coils are indicated in color. These

visuals were taken from [35].

2.1.2 Equations of Motion and Twiss Parameters

ò
The dynamics described in the material below apply similarly for both
transverse planes. From now on, for clarity of the exposed expressions z will
be used to denote either x or y, and when explicitly needed a distinction
will be made between the two transverse planes.

The focusing from quadrupoles in a circular accelerator such as the LHC is periodic
in s, with a period of at most the circumference of the machine. Assuming the existence
of a closed orbit, the transverse motion of a single particle in a synchrotron with a
periodic lattice is described by Hill’s equation:

z′′(s) +Kz(s)z(s) = 0; z = x, y; z′ =
dz

ds
, (2.4)

where Kz represents the focusing effect of dipoles and quadrupoles in the transverse
plane z and varies with s given that it is dictated by the magnetic elements traversed
by particles.
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This focusing effect can be expressed according to:

Kx(s) =
1

ρ(s)2
− k1(s) ,

Ky(s) = k1(s) ,
(2.5)

where k1(s) is the normalized quadrupole strength. A focusing quadrupole has a K > 0,
a defocusing quadrupole has K < 0, and a drift space has K = 0. The term (1/ρ2) in
the horizontal component arises from the weak focusing caused by dipoles.

According to the theorem of Floquet [29], the solution with periodic boundary
conditions to Hill’s equation takes the form of Eq. (2.6):

z(s) =
√
βz(s)εz cos (ϕz(s) + ϕz,0) ,

z′(s) = −
√

εz
βz(s)

[sin (ϕz(s) + ϕz,0) + α(s) cos (ϕz(s) + ϕz,0)] .
(2.6)

These equations describe a harmonic oscillation in the transverse planes. Here εz is
the geometric emittance of a particle and is a constant of the motion at a given energy.
The ϕz(s) and αz(s) terms are the phase advance and the alpha-function, respectively.
βz(s) is the beta-function and represents the beam envelope, or size, around the ring.
It describes the transverse position dependent amplitude of the oscillation and has the
dimension of a length. In particle colliders such as the LHC the β-functions at the
Interaction Points (IPs), where the beams are made to collide, are commonly referred
to as the β∗. The solution of Hill’s equation (Eq. (2.4)) can also be written in matrix
form as:

(
z
z′

)

s

= M

(
z
z′

)

0

. (2.7)

In this form, which makes the assumption that the magnetic field of an element is
constant along the longitudinal direction, M is called a transfer matrix. Below are the
transfer matrices corresponding to a drift space (Mdrift), a dipole (Mdip.), a focusing
quadrupole (Mfoc.quad.) and a defocusing quadrupole (Mdefoc.quad.), respectively:

Mdrift =

(
1 L
0 1

)
, (2.8)

Mdip. =

(
cos θ ρ sin θ

−1
ρ
sin (θ) cos θ

)
, (2.9)

Mfoc.quad. =

(
cos
(√

k1L
)

1√
k1
sin
(√

k1L
)

−
√
k1 sin

(√
k1L
)

cos
(√

k1L
)
)

, (2.10)

Mdefoc.quad. =




cosh
(√

|k1|L
)

1√
|k1|

sinh
(√

|k1|L
)

√
|k1| sinh

(√
|k1|L

)
cosh

(√
|k1|L

)

 , (2.11)

where L is the element length and θ = L/ρ is the bending angle of the dipole.
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The above correspond to a 2D case and should be appropriately used depending
on the plane. For instance, for a focusing quadrupole Mfoc.quad. (Eq. (2.10)) should be
used to transform the horizontal coordinates, and since the element will be defocusing
in the vertical plane Mdefoc.quad. (Eq. (2.11)) should be used to transform the vertical
coordinates.

Larger transfer matrices can be constructed in 4D (or even 6D when including the
longitudinal coordinates) to be applied to (x, x′, y, y′) directly. In the uncoupled case,
this corresponds to a 4 × 4 matrix with the respective 2D transfer matrices on the
diagonal and zeros elsewhere. The 4D transfer matrix of a normal focusing quadrupole
is then expressed as:

M =



Mfoc.quad.

(
0 0
0 0

)

(
0 0
0 0

)
Mdefoc.quad.


 . (2.12)

Some elements will have non-zero terms outside the diagonal in their transfer matrix.
This is the case of a skew quadrupole for example, which gives a horizontal kick
proportional to the vertical offset of the particle, and vice-versa. This leads to coupled
motion, or betatron coupling, where the horizontal and vertical coordinates no longer
evolve independently. Betatron coupling will be discussed in more detail later on, and
for now only the 2D case of a given plane will be considered.

The transfer matrix of a group of elements is obtained by multiplying the transfer
matrices of all individual elements. For example, the transfer matrix corresponding to
the FODO cell of Fig. 2.3 is:

MFODO = Mfoc.quad. ·Mdrift ·Mdefoc.quad. ·Mdrift . (2.13)

For a complete machine with hundreds to thousands of elements, the maps of linear
elements can still be combined to obtain the coordinates of a particle after a full
revolution. This specific transfer map is called the one-turn map and fully describes
the linear evolution of a particle’s coordinates over one revolution of the accelerator. It
can be expressed as:

MOTM = MN ·MN−1 · . . . ·M2 ·M1 , (2.14)

where Mi is the transfer matrix of the ith in the machine. The transformation of
coordinates over a revolution is then given by:

(
z
z′

)

s0+C

= MOTM ·
(
z
z′

)

s0

. (2.15)

The phase advance ϕz(s) mentioned above corresponds to the difference of the
betatron phase functions at two points, typically also taken with respect to an arbitrary
initial point at s = 0. The phase advance between two points at longitudinal positions
s1 and s2 in the lattice is defined as:

ϕs1→s2 = ϕ(s2)− ϕ(s1) =

∫ s2

s1

1

β(s)
ds . (2.16)
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As particles go around the ring, they oscillate around the closed orbit within an
envelope defined by the β-functions and the emittance. The number of these so-called
betatron oscillations per revolution is the tune Qz. The tune is defined in Eq. (2.17),
where ∆ϕz is the total betatron phase advance of a particle over a full circumference:

Qz =
1

2π
∆ϕz =

1

2π

∮

C

ds

βz(s)
. (2.17)

The α-function is defined via the derivative of the β-function by:

αz(s) = −1

2
β′
z(s) . (2.18)

Similarly to the β-function, the gamma-function γu(s) describes the envelope of
oscillations in z′. Both quantities are related by the α-function according to:

γz(s) =
1 + α2

z(s)

βz(s)
. (2.19)

The αz(s), βz(s), γz(s) and ϕz(s) are also called the Twiss parameters [36]. The
transfer matrix can be expressed with Twiss parameters according to [37]:

M =

(
m11 m12

m21 m22

)
=

(
cos (ϕz) + αz sin (ϕz) βz sin (ϕz)

−γz sin (ϕz) cos (ϕz)− αz sin (ϕz)

)
, (2.20)

where the s dependency of the Twiss parameters is omitted for simplicity.

2.1.3 Phase Space Ellipse

ò
Strictly speaking, the (z, z′) plane forms the trace space for the transverse
coordinate z while the (z, pz) plane forms the phase space. However, for
monochromatic beams with constant momentum (e.g. no acceleration)
the angular displacement z′ is linked to the transverse momentum pz by
pz = βrγrm0cz

′, with m0 the particle’s rest mass and βr, γr the relativistic
factors. Therefore, in the following we will consider trace space and phase
space as equivalent and simply refer to phase space.

In the linear regime all particle trajectories describe ellipses in (z, z′), or (z, pz)
phase space. The geometric emittance εz introduced in Eq. (2.6), also named the
Courant-Snyder invariant, defines together with the Twiss parameters αz(s), βz(s) and
γz(s) the equation of the phase space ellipse:

γz(s)z(s)
2 + 2αz(s)z(s)z

′(s) + βz(s)z
′(s)2 = εz . (2.21)

Figure 2.5 shows a schematic illustration of the phase space ellipse, the area A of
which is defined by the geometric emittance according to:

A = πεz . (2.22)
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Figure 2.5: Phase space ellipse in the transverse (z, pz) plane, where z
represents either transverse coordinate x or y.

According to the Liouville theorem, the phase space volume - the ellipse area A -
is a constant in a closed system. When accelerating the beam this theorem no longer
holds true and the geometric emittance εz will decrease as the beam energy increases.
One can then construct the normalized emittance, which is invariant with beam energy,
based on the relativistic beta and gamma:

εnormz = βrelγrelεz . (2.23)

When referring to the emittance of a specific particle one uses the term single particle
emittance. The action Jz is related to the single particle emittance by:

2Jz = εz . (2.24)

The state of particles in phase space can be fully characterized by the action variable
Jz and the corresponding phase variable ϕz seen previously. Different particles in the
beam will have different single particle emittances and will undergo betatron oscillations
of varying amplitudes. For a Gaussian shaped beam the transverse beam size is:

σz =
√
βzεbeamz , (2.25)

with εbeamz the beam emittance, typically defined as the emittance corresponding to a
1σ amplitude of the Gaussian charge distribution. In the case of more general particle
distributions, an alternative definition of the beam emittance is often used [38, 39]:

εrms
z =

√
⟨z⟩2 ⟨z′⟩2 − ⟨zz′⟩2 . (2.26)
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The phase space trajectory of a particle depends on the Twiss parameters α(s), β(s),
and γ(s). One can remove this dependency by performing a coordinate transformation
to the Courant-Snyder coordinates [40], defined as:

(
ẑ
ẑ′

)
=

(
1√
βz

0
αz√
βz

√
βz

)(
z
z′

)
, (2.27)

where the Courant-Snyder coordinates are denoted with a hat .̂ An identical transforma-
tion exists to go from (z, pz) to (ẑ, p̂z) coordinates. In this new system, particles follow
circular trajectories in phase space. Figure 2.6 provides an illustrative representation of
phase space in both physical and normalized coordinates for an accelerator with linear
elements only. In the new representation, the elliptical phase space is transformed into
a simpler circular phase space where the motion corresponds to simple rotations, fully
described by, and depending only on, the action and angle variables (Jz, ϕz).

(a) Physical coordinates. (b) Normalized coordinates.

Figure 2.6: Illustrative representation of phase-space in physical coor-
dinates (left) and normalized, or Courant-Snyder, coordinates (right) for

an accelerator with linear elements only. Courtesy of F. Carlier [41].

2.1.4 Chromatic Effects

Until now, it was assumed that all particles had the intended design momentum p0.
Naturally, in practice particles withing the beam have a distribution in energy and
momentum. For a particle with a momentum p ≠ p0 one defines and uses the relative
momentum deviation δp:

δp =
p− p0
p0

=
∆p

p0
. (2.28)

Such momentum offsets introduce chromatic errors in the beam dynamics. Effects
and parameters depending on δp are called chromatic effects.
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From the definition of the magnetic rigidity in Eq. (2.3), it follows that particles
of different momenta will have different local radii of curvature when going through
dipoles and therefore follow different orbits along the machine. The orbit deviation
of an off-momentum particle from that of the synchronous particle is defined by the
dispersion function D(s). Its contribution to a particle’s orbit in a region of non-zero
dispersion is described by:

∆zdispersion = Dz(s)δp . (2.29)

Off-momentum particle positions scale linearly with dispersion, and in its presence
Eq. (2.6) is extended to [30]:

z(s) =
√
εzβz(s) cos (ϕz(s) + ϕz,0) +Dz(s)δp . (2.30)

Another chromatic parameter is the chromaticity Q′
z, which describes the tune shift

∆Qz with particle momentum by:

Q′
z =

∆Qz

δp
. (2.31)

The effective focusing strength of quadrupoles, which is inversely proportional to
the momentum, differs for off-momentum particles. The change of focusing strength
due to energy deviation is:

∆k1 = − e

p2
dBy

dx
∆p = −k1δp . (2.32)

This quadrupole error results in a tune shift proportional to the energy offset:

∆Q =
1

4π

∫
β(s)∆k1(s)ds =

[
− 1

4π

∫
β(s)k1(s)ds

]
δp . (2.33)

The natural chromaticity of a linear lattice can then be approximated by [42]:

Q′
z ≈ − 1

4π

∮
βz(s)Kzds . (2.34)

2.2 Non-Linear Magnetic Multipoles

Magnetic fields of sextupolar and higher order are called non-linear magnetic fields.
While only dipolar and quadrupolar magnetic fields are considered in the linear ap-
proximation, non-linear magnetic fields are present in most accelerators. They can be
introduced by design or by the presence of flaws in lower order magnets, the latter
having the potential to seriously disrupt the beam.

ò
We label n the order of a multipole. This document uses the European
convention for field indices, in which n = 1 corresponds to a magnetic
dipole, n = 2 to a quadrupole, etc.
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The magnetic field of a multipole of order n is given by:

By(x, y, s) + iBx(x, y, s) =
∞∑

n=1

[Bn(s) + iAn(s)] (x+ iy)n−1 ,

Bn(s) =
1

(n− 1)!

∂n−1By

∂xn−1

∣∣∣∣
(0,0,s)

,

An(s) =
1

(n− 1)!

∂n−1Bx

∂xn−1

∣∣∣∣
(0,0,s)

.

(2.35)

Here Bn(s) and An(s) are the normal and skew multipole coefficients, respectively,
where a skew magnet of order n is rotated by π/(2n) with respect to its normal
counterpart. Starting from the Hamiltonian equations:

dp⃗z
dt

= −∂H
∂z⃗

,
dz⃗

dt
=
∂H
∂p⃗z

, (2.36)

the Hamiltonian for the transverse planes for a multipole of order n is given by
Eq. (2.37) [43, 44]:

Hn =
q

p
Re

[
(Bn + iAn)

(x+ iy)n

n

]
. (2.37)

In the linear regime, this Hamiltonian may then be written as:

H =
1

2
p2x +

1

2
p2y +

1

2
K(s)x2 − 1

2
K(s)y2 , (2.38)

where K(s) describes the variation of the focusing strength around the ring. More
generally, if the Hamiltonian for a normal multipole of order n is labeled Nn and that
of a skew multipole of order n is labeled Sn, then [45, 46]:

Nn ∝ Re [(x+ iy)n]

∝ Re

[
n∑

k=0

(
n
k

)
ikβ

n−k
2

x β
k
2
y

(√
2Jx cos (ϕx)

)n−k (√
2Jy cos (ϕy)

)k
]

,
(2.39)

Sn ∝ Im [(x+ iy)n]

∝
[

n∑

k=0

(
n
k

)
ikβ

n−k
2

x β
k
2
y

(√
2Jx cos (ϕx)

)n−k (√
2Jy cos (ϕy)

)k
]

.
(2.40)

The powering of non-linear magnets and the presence of magnetic errors can have a
significant impact on the beam dynamics. Geometric errors can also contribute to the
presence of non-linear components. For instance, when a particle does not pass through
the magnetic center of an element it will see not only the primary field component but
also perturbations of all lower orders to that of the traversed element [30]. This effect
is called feed-down and can be introduced by misalignment of lattice elements, which
would cause the closed orbit to deviate from the ideal one and the beam to pass off-axis
in magnets.
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Should that happen with a sextupole, for instance, the beam would experience a
sextupolar field but also encounter quadrupolar and dipolar components. The rotational
misalignment of elements is also a concern, as rotating a purely normal or skew multipole
results in the beam experiencing a combination of both normal and skew fields.

2.3 Non-Linear Formalism and Resonance Driving Terms

The material below takes inspiration from [43–46] where some aspects are described
in more detail than given here. For the curious reader, a very thorough approach to
normal forms can be found in [41] and [47].

2.3.1 Non-Linear Transfer Maps

As introduced in Eq. (2.14), the dynamics of a circular accelerator can be parametrized
in terms of transfer maps relating final to initial phase space coordinates. This approach
is described in [40, 48]. While the transfer map of a linear element is described by a
matrix, that of a non-linear element is itself described by the exponential Lie operator
e−:f : defined as [32]:

e−:f :g = g + [f, g] +
1

2
[f, [f, g]] + . . . ,

[f, g] =
∑

i

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
,

(2.41)

where qi and pi are the canonical coordinates and momenta, respectively. Here [f, g] is
the Poisson bracket of f and g. When including non-linear sources, the one-turn map
introduced in Eq. (2.14) becomes:

MOTM = e−:hN :e−:hN−1: . . . e−:h2:e−:h1:R , (2.42)

where R is a matrix describing the linear dynamics of the machine, and the hi terms
represent the thin kick Hamiltonians of the non-linear elements in the accelerator.

Relevant properties of the exponential Lie operator can be found in [43, 44], one of
which being that the product of exponential Lie operators can be expressed as another
exponential Lie operator following the Baker-Campbell-Hausdorff theorem [49]. The
one-turn map becomes:

MOTM = e−:h:R , (2.43)

in which, in the case that the hi are small, h can be approximated as:

h =
N∑

n=1

hn +
N∑

n,m<n

[hm, hn] + . . . . (2.44)

Using only the first order in hn, the thin kick h can be expressed in expanded terms
using the action and angle variables according to [44]:

h =
∑

jklm

hjklm (2Jx)
j+k
2 (2Jy)

l+m
2 ei[(j−k)(ϕx+ϕx,0)+(l−m)(ϕy+ϕy,0)] , (2.45)
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with hjklm being the Hamiltonian coefficient encompassing the contribution of all
multipoles of order n = j + k + l +m. The derivation for the result of Eq. (2.45) can
be found in Appendix A. A multipole of order n = j + k + l +m gives rise to terms
∝ xj+kyl+m in the Hamiltonian. In the case of a skew quadrupole (n = 2) for example,
one will see terms in the Hamiltonian ∝ xy, meaning a contribution to h1010, h1001,
h0110 and h0101.

2.3.2 Normal Form, Resonance Driving Terms and Resonances

Due to the presence of non-linear sources the linear invariant Jz introduced in Sec-
tion 2.1.3 is no longer a constant. This leads to the phase space trajectory in normalized,
or Courant-Snyder, coordinates no longer describing a circle. An example of this situa-
tion is given in Fig. 2.7, where the horizontal phase space trajectories of 200 particles
are shown in normalized coordinates when exciting a third order resonance.

10 5 0 5 10
x [103]

10

5

0

5

10

p x
 [1

03 ]

Figure 2.7: Phase space in normalized coordinates from tracking 200
particles in a simple FODO-based lattice, when exciting a third order
resonance. Points of each color corresponds to the trajectory of a given

particle.
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One may wish to create a new transformation, akin to that to normalized coordinates,
that would allow describing betatron motion in phase space by a pure rotation in the
presence of non-linear sources. The change of coordinates is represented by a similarity
transformation of the one turn map, written as [43]:

e−:F :e:h:Re:F : , (2.46)

where F is the generating function of the transformation. The coordinates resulting
from the transformation are called normal form coordinates. The different coordinate
systems are illustrated in Fig. 2.8.

(a) Physical coordinates. (b) Normalized coordinates. (c) Normal form coordinates.

Figure 2.8: Illustrative exaggerated representations of phase space
in the three different coordinate systems: physical (left), normalized
(middle) and normal form (right) coordinates. Courtesy of F. Carlier [41].

The generating function of the transformation F contains a large portion of the
information describing the non-linear dynamics, and a new non-linear invariant Iz can
be introduced. Similarly to h in Eq. (2.45), the generating function F can be expanded
in terms of the normal form coordinates according to [44]:

F =
∑

jklm

fjklm (2Ix)
j+k
2 (2Iy)

l+m
2 ei[(j−k)(ψx+ψx0)+(l−m)(ψy+ψy0)] , (2.47)

where (Iz, ψz) are to normal form coordinates what (Jz, ϕz) are to normalized coordinates.
The fjklm coefficients are related to the hjklm terms by:

fjklm =
hjklm

1− ei2π[(j−k)Qx+(l−m)Qy ]
. (2.48)

From Eq. (2.48) one can see that the fjklm coefficients diverge for certain values of
the tunes. Specifically, divergence happens when the following relation is satisfied:

(j − k)Qx + (l −m)Qy = p , where j, k, l,m, p ∈ Z . (2.49)

A divergence of the fjklm terms leads to a divergence of the transformation to normal
form coordinates, which generally indicates an unclosed phase space trajectory due to a
resonance in the beam motion. The condition in Eq. (2.49) corresponds to situations
where particles lie on resonant frequencies, typically causing their amplitudes to grow
unbounded by the dynamics. Therefore the fjklm terms are called Resonance Driving
Terms.
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For this reason, the tune is one of the single most important design parameters in
synchrotrons. The chosen operational transverse tunes of a synchrotron are known as its
working point, and should be selected carefully in order to avoid resonances. Resonances
up to order n = 5 are shown in Fig. 2.9, with lines of different orders differentiated
from one another.

0.0 0.2 0.4 0.6 0.8 1.0
Qx

0.0

0.2

0.4

0.6

0.8

1.0

Q y

5th order
4th order
3rd order
2nd order
1st order

Figure 2.9: Tunes diagram showing resonance lines up to order n = 5.
The LHC working points are indicated by the two dots: in blue for

injection tunes and red for collision tunes.

Commonly, the label of a given resonance is written as (n1, n2), where n1 = (j − k)
and n2 = (l −m). Every generating function term fjklm and, equivalently, every
Hamiltonian term hjklm, is associated with a specific resonance defined by the values of
j, k, l, and m.

The RDTs vary in amplitude through the machine as they depend on the local
multipole strength of contributing sources. Characteristically, the fjklm terms show
abrupt jumps at the location of relevant sources.
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2.3.3 Resonance Basis and Normal Form Coordinates

The normalized Courant-Snyder coordinates (ẑ, p̂z) are related to the action and angle
variables (Jz, ϕz) by:

ẑ =
√

2Jz cos (ϕz + ϕz0) ,

p̂z = −
√

2Jz sin (ϕz + ϕz0) .
(2.50)

One can define the resonance basis
(
h+x , h

−
x , h

+
y , h

−
y

)
by the relation:

h±z = ẑ ± ip̂z =
√
2Jze

∓i(ϕz+ϕz0) . (2.51)

The transformation to the normal form coordinates introduced in the previous
section,

(
ζ+x , ζ

−
x , ζ

+
y , ζ

−
y

)
, is expressed as:

ζ±z =
√

2Ize
∓i(ψz+ψz0) = e−:F :h±z . (2.52)

where (Iz, ψz) are the terms introduced in Eq. (2.47).
By definition of the transformation, the one-turn map in normal form coordinates is

an amplitude dependent rotation. It follows that the motion of these coordinates as a
function of the turn number N is then given by:

ζ±z (N) =
√
2Ize

∓i(2πQzN+ψz0) , (2.53)

with Qz the transverse tunes. The inverse transformation from the new normal form
coordinates to the resonance basis coordinates is written, to first order, as:

h±z = e:F :ζ±z ≃ ζ±z +
[
F, ζ±z

]
. (2.54)

Using Eq. (2.53) and Eq. (2.54), the linearly normalized coordinates can be expressed
after N turns as [44, 50]:

h−x (N) =
√

2Ixe
i(2πQxN+ψx0) −

2i
∑

jklm

jfjklm (2Ix)
j+k−1

2 (2Iy)
l+m
2 ei[(1−j+k)(2πQxN+ψx0)+(m−l)(2πQyN−ψy0)]

h−y (N) =
√
2Iye

i(2πQyN+ψy0) −
2i
∑

jklm

lfjklm (2Ix)
j+k
2 (2Iy)

l+m−1
2 ei[(k−j)(2πQxN+ψx0)+(1−l+m)(2πQyN−ψy0)] .

(2.55)
Figure 2.10 shows a schematic of the different transformations and changes to the

one-turn map. While one can calculate the evolution of the Courant-Snyder coordinates
by applying the map M, the approach is complicated to solve in the presence of
non-linearities. Solving the one-turn map for the next turn is best done by performing a
transformation to normal form coordinates ζ±z using the generating function F , applying
the amplitude dependent rotation map R, and transforming back to Courant-Snyder
coordinates. These calculations are in practice simpler than the former method, and
conserve non-linearities.



2

2.3. Non-Linear Formalism and Resonance Driving Terms 21

(ẑ, p̂z)N (ẑ, p̂z)N+1

ζ±zN ζ±zN+1

M

e:−F :

e−:h:R

e:F :

Figure 2.10: Illustration of the coordinate transformations and change of
the one-turn map. This diagram reads from Courant-Snyder coordinates
at turn N in the top left, and shows both paths to reach the Courant-

Snyder coordinates at turn N + 1 in the top right.

2.3.4 Spectral Contribution

Each term in the summations of Eq. (2.55) corresponds to a certain mode in the beam
motion and contributes to a specific frequency in the spectrum of the motion [51].
Said spectrum may be determined by a frequency analysis of the turn-by-turn beam
position data, through means of a Fourier transform. In this spectrum, an RDT fjklm
at a specific location in the machine contributes to lines in the horizontal and vertical
spectra according to [51, 52]:

H(1− j + k,m− l) = 2j |fjklm| (2Ix)
j+k−1

2 (2Iy)
l+m
2 ,

V (k − j, 1− l +m) = 2l |fjklm| (2Ix)
j+k
2 (2Iy)

l+m−1
2 ,

(2.56)

where in the parentheses multiples of the fractional tunes are given. For example,
H(0, 1) indicates an observed line at 1×Qy in the horizontal spectrum.

In principle the |fjklm| may be determined by a comparison of the amplitude of
various spectral lines. In practice, some additional considerations need to be taken, as
decoherence of a kicked beam can lead to a reduction in the amplitude of the spectral
lines observed, or the fact that the contributions of different RDTs might not be distinct.
More details are given in Chapter 3.

2.3.5 Amplitude Detuning

The amplitude detuning is the variation of the tune with the single particle emittance.
It can be described with a Taylor expansion of the tune Qz around the unperturbed
tune Qz,0 as:

Qz (εx, εy) = Qz,0 +
∂Qz

∂εx
εx +

∂Qz

∂εy
εy

+
1

2!

(
∂2Qz

∂ε2x
ε2x +

∂2Qz

∂εx∂εy
εxεy +

∂2Qz

∂ε2y
ε2y

)
+ . . . ,

(2.57)

where εz = 2Jz is the invariant of motion in the transverse plane z. The first order
terms of the amplitude detuning, ∂Qz

∂εx
and ∂Qz

∂εy
, are generated by octupoles and by

the second order contribution of sextupoles [40]; while the following terms come from
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higher order multipoles. The amplitude detuning is a good indication of the machine
non-linearities.

2.4 Betatron Coupling

When the betatronic motion of particles in transverse planes are independent of each
other, they are said to be uncoupled. In particle colliders such as the LHC this is
the desired behaviour. When these motions share a dependency, they are said to be
coupled, and one refers to this phenomenon as betatron coupling, or linear coupling.
The transverse motions of particles in an accelerator may couple due to a variety of
factors, with solenoid and skew quadrupole fields being the primary sources of linear
coupling.

In the LHC the main contribution to coupling comes from unwanted skew quadrupo-
lar fields. These mostly arise from normal quadrupoles mounted with a rotation error
with respect to the longitudinal axis, but also from field imperfection from other mag-
nets and feed-down from higher order magnets. An example of a normal and skew
quadrupole is given in Fig. 2.11.

SN

S N

(a) Normal quadrupole.

S

N

S

N

(b) Skew quadrupole.

Figure 2.11: Illustration of a normal (left) and skew (right) magnetic
quadrupole and their magnetic field lines.

Betatron coupling needs to be kept under control as it can perturb the tune feedback
systems and push tunes into resonances, lead to a reduction in the dynamic aperture [53]
or loss of beam stability [54, 55].

2.4.1 Parametrization of Betatron Coupling

There are different ways to parametrize coupled motion in a particle accelerator, the two
most common being the Edwards-Teng [56] and Mais-Ripken [57] parametrizations. For
coupled motion a dependency between the horizontal and vertical planes is introduced,
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and as mentioned in Section 2.1.2 the transverse motion can no longer be described by
two independent 2× 2 matrices. Instead, it is described by a 4× 4 matrix M̂ such that

M̂ =

(
P p
q Q

)
, (2.58)

where P, p, q and Q are 2× 2 matrices. In the absence of betatron coupling, it follows
that p and q are 0. Magnetic elements introducing coupling between the horizontal and
vertical planes have non-zero terms in the respective p and q of their transfer matrices.
For instance, the transfer matrix of a skew quadrupole can be written

Mskew quad. =

(
Mx Mxy

Myx My

)
, (2.59)

where, using ω =
√
k1s ≥ 0 for clarity, the various 2× 2 matrices are expressed as [58]:

Mx =

(
1
2
(cos (ωL) + cosh (ωL)) 1

2ω
(sin (ωL) + sinh (ωL))

−ω
2
(sin (ωL)− sinh (ωL)) 1

2
(cos (ωL) + cosh (ωL))

)
,

Mxy =

(
1
2
(cos (ωL)− cosh (ωL)) 1

2ω
(sin (ωL)− sinh (ωL))

−ω
2
(sin (ωL) + sinh (ωL)) 1

2
(cos (ωL)− cosh (ωL))

)
,

Myx =

(
1
2
(cos (ωL)− cosh (ωL)) 1

2ω
(sin (ωL)− sinh (ωL))

−ω
2
(sin (ωL) + sinh (ωL)) 1

2
(cos (ωL)− cosh (ωL))

)
,

My =

(
1
2
(cos (ωL) + cosh (ωL)) 1

2ω
(sin (ωL) + sinh (ωL))

−ω
2
(sin (ωL)− sinh (ωL)) 1

2
(cos (ωL) + cosh (ωL))

)
.

(2.60)

Edwards-Teng Parametrization

The effect of betatron coupling can, figuratively, be seen as a rotation of the beam
ellipse. In the Edwards-Teng parametrization presented in [56], the linear coupling is
then described by a symplectic rotation R of M̂ into its normal modes form M, as
shown in Eq. (2.61). In this new frame the motion is decoupled, and all the information
on the coupling is held by the matrix R.

M =

(
X 0
0 Y

)
= RM̂R−1 . (2.61)

Edwards and Teng have characterized the transformation R with the symplectic
matrix:

R =

(
I cos θ −K−1 sin θ
K sin θ I cos θ

)
, (2.62)

where I is the 2×2 unit matrix and K is a 2×2 symplectic matrix, such that det(K) = 1.
The coupled motion may then be described by the uncoupled Twiss parameters seen in
Section 2.1.2, together with the elements of matrix K and Teng’s angle of rotation θ.
In the case that θ = 0, the matrix R is the identity matrix and as a result it will not
rotate any of the modes: this corresponds to uncoupled motion.
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The Edwards-Teng parameterization is used in the MAD-X code [59] when handling
coupled motion. In MAD-X the relevant parameters are αx,y, βx,y, µx,y, γx,y and r11,
r12, r21, r22, where r11 . . . r22 correspond to the elements of K multiplied by tan(θ).

Mais-Ripken Parametrization

The approach of Mais and Ripken was developed in [60] and is more accessible in [57,
61]. It defines so-called Ripken parameters αkj, βkj and γkj, where k = 1 . . . 3 refers
to the plane (x, y, . . .) and the index j refers to the eigenmodes, that are accurate
in the presence of coupling. In the coupled case, all βN are non-zero and β11, β22
are distinctively different from βx, βy, respectively. The relations linking these new
parameters to the Twiss parameters can be found in [62].

The Mais-Ripken parameterization is the basis of the Polymorphic Tracking Code
(PTC) [63]’s handling of coupled dynamics.

Coupling and Beam Matrix

Considering the 2D case of a given transverse direction the so-called beam matrix or
sigma matrix, which is the covariance matrix of the particle distribution, is expressed
as:

σ =

(
σ11 σ12
σ21 σ22

)
=

(
⟨z2⟩ ⟨zpz⟩
⟨pzz⟩ ⟨p2z⟩

)
. (2.63)

where the brackets indicate an average over all particles in the beam. Note that this
matrix is symmetric with σ12 = σ21.

Considering that the Twiss parameters and the emittance defining the phase space
ellipse are related to the various moments of the beam distribution as

ϵz =

√
⟨z2⟩ ⟨p2z⟩ − ⟨zpz⟩2 ,

βz =
⟨z2⟩
ϵz

,

αz = −⟨zpz⟩
ϵz

,

γz =
⟨p2z⟩
ϵz

,

(2.64)

one can relate them to the sigma matrix via the emittance through:

σ = εz

(
βz −αz
−αz γz

)
. (2.65)

When considering the full 4D transverse space one can express the beam matrix Σ as a
block diagonal 4× 4 matrix with the respective horizontal and vertical sigma matrices
on the diagonal and zeros elsewhere. In the presence of coupling, the general covariance
matrix has non-zero terms outside its diagonal and takes the form of Eq. (2.66):
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Σ =




σ11 σ12 σ13 σ14
σ21 σ22 σ23 σ24
σ31 σ32 σ33 σ34
σ41 σ42 σ43 σ44


 =




⟨x2⟩ ⟨xpx⟩ ⟨xy⟩ ⟨xpy⟩
⟨xpx⟩ ⟨p2x⟩ ⟨pxy⟩ ⟨pxpy⟩
⟨xy⟩ ⟨pxy⟩ ⟨y2⟩ ⟨ypy⟩
⟨xpy⟩ ⟨pxpy⟩ ⟨ypy⟩

〈
p2y
〉


 . (2.66)

Through Σ the coupling can be characterized by the values of the cross-plane elements
⟨xy⟩, ⟨xpy⟩, ⟨pxy⟩ and ⟨pxpy⟩. Through the symmetry (for instance, ⟨xy⟩ = ⟨yx⟩) only
those four terms are needed.

The angle of rotation θ in the Edwards-Teng parametrization is related to these
terms through [64]:

tan (2θ) =
2Σxy

Σxx − Σyy

=
2σ13
σ11σ33

. (2.67)

In the Mais-Ripken parameterization, the Ripken parameters are constructed in
order to be related to the Σ matrix in a similar way to that shown in Eq. (2.65) for the
2D uncoupled case.

2.4.2 Coupled Motion

To the first order, according to Eq. (2.49), linear coupling drives the two resonances
Qx +Qy = p and Qx −Qy = p, with p ∈ Z. These are respectively called the sum and
difference resonances, and in their vicinity the beam dynamics are heavily influenced.

The impact of linear coupling on the beam motion has been studied through
Hamiltonian perturbation theory [30, 65], and through the normal form and RDT
formalism [44]. As the transverse tunes approach the difference resonance, the emittance
is described by:

εx + εy = const , (2.68)

and as the resonance is approached the beam motion may not become unstable. Instead,
there is a periodic exchange of emittance between the transverse planes, which leads to
a beating in the betatron oscillation amplitudes.

The relation between the unperturbed tunes (Qx, Qy) and the coupled tunes (Q1, Q2)
is given by [66]:

Q1 = Qx −
∆

2
+

√
∆2 + |C−|

2
,

Q2 = Qy +
∆

2
−
√
∆2 + |C−|

2
,

(2.69)

with ∆ being the unperturbed fractional tune split and |C−| the linear coupling
coefficient, a parameter describing the strength of the coupling.

When ∆ ≫ |C−|, away from the resonance, the observed oscillation modes (Q1, Q2)
are almost identical to the uncoupled tunes (Qx, Qy). When the tunes are moved closer
together, approaching the difference resonance (∆ → 0), the perturbed tunes are forced
apart by the coupling and a minimal tune separation ∆Qmin can be observed. The
|C−| of Eq. (2.69), named the closest tune approach, corresponds to this separation.
Figure 2.12 shows an illustration of the phenomenon in the vicinity of the resonance,



2

26 Chapter 2. Relevant Theory of Beam Dynamics

where both the unperturbed (dashed) and coupled (colored) fractional tunes are plotted
against the uncoupled tune split.

ΔQ

Qx

Qx

Qy

Qy

Qx,y

ΔQmin

Fig.2.7.Finiteclosest tune Qmin caused by linear betatron coupling.Figure 2.12: Illustration of coupled and uncoupled fractional tunes
versus the uncoupled tune split. Courtesy of J. Keintzel [67].

On the other hand, when approaching the sum resonance the emittances follow:

εx − εy = const . (2.70)

This resonance allows for unstable motion as only the difference in emittance is
constrained. Therefore, it is common to choose a working point far from the sum
resonance. In the LHC, the working points (visible on Fig. 2.9) are set such that
the linear coupling is dominated by the difference resonance: the fractional tunes are
(Qx, Qy) = (0.28,0.31) at injection and (Qx, Qy) = (0.31,0.32) for squeezed beams and
collisions1.

2.4.3 Linear Coupling Resonance Driving Terms

Linear coupling in the LHC is dominated by the contribution of skew quadrupole fields,
which lead to terms ∝ xy in the Hamiltonian. According to the resonance relation
of Eq. (2.49) and as seen in Section 2.4.2, this gives rise to the RDTs f1001 and f0110,
which correspond to the Qx−Qy = p difference resonance; and f1010 which corresponds
to the Qx +Qy = p sum resonance.

1The LHC working point is actually more diverse and will be discussed in more detail in the next
chapter.
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The f1001 and f0110 describe the same dynamics but the former is for the horizontal
plane while the latter is for the vertical plane. Since they describe the same dynamics
it is customary to label both of them as f1001, which is a convention used throughout
this document.

It was mentioned in Section 2.4.2 that the LHC working point is selected to be
close to the stable difference resonance, and as a consequence in the LHC the |f1001|
dominates relative to the |f1010|. These RDTs can be expressed as a function of the
uncoupled lattice parameters at the location of both the coupling-contributing elements
and the observation point s as [65]:

f1001(s) = − 1

4 (1− e2πi(Qx−Qy))

∑

l

kl

√
βlxβ

l
ye
i(∆ϕslx −∆ϕsly ) ,

f1010(s) = − 1

4 (1− e2πi(Qx+Qy))

∑

l

kl

√
βlxβ

l
ye
i(∆ϕslx +∆ϕsly ) ,

(2.71)

where kl is the lth integrated skew quadrupole strength, βlx,y are the β-functions at the
location of the lth skew quadrupole, Qx,y are the horizontal and vertical tunes, and
∆ϕslx,y are the phase advances from the lth skew quadrupole to the observation point
at the longitudinal coordinate s. The summation is done over all contributing skew
quadrupoles.

These RDTs can be related to the strength of the coupling ∆Qmin, and as such the
|C−| can be expressed in relation to the f1001 RDT. In [44] a simple version of this
relation was established as:

∣∣C−∣∣ ≈ 4∆
1

N

N∑

i=1

|f1001|i , (2.72)

where the summation is done over the N observation points, and ∆ is the fractional
tune split. A more accurate relation was established in [68], which is:

∣∣C−∣∣ =
∣∣∣∣
4∆

2πR

∮
dsf1001e

−i(ϕx−ϕy)+is∆/R
∣∣∣∣ , (2.73)

where the dependence of variables on the position s was omitted for clarity.
In [65] the equations of motion are solved perturbatively under the influence of

a weak skew quadrupole strength j(s). Assuming that the machine is close to the
difference coupling resonance, ∆ = Qx −Qy → 0, the |C−| can be approximated as:

∣∣C−∣∣ = 1

2π

∣∣∣∣
∮
ds
√
βx(s)βy(s)j(s)e

−i(ϕx−ϕy)+i s∆R

∣∣∣∣ , (2.74)

where s is the position around the ring, βx,y are the horizontal and vertical β-functions,
ϕx,y are the phase advances and R is the radius of the machine.

2.5 Luminosity

The LHC machine being a particle collider, it is operated to produce collisions between
two counter-rotating beams and to produce data for High Energy Physics (HEP)
experiments. As the studied interactions coming from these collisions are rare, a
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substantial interaction rate is required. Naturally, the performance of the machine
is then described by the number of collisions provided to experiments as well as the
center-of-mass energy of these collisions.

As a figure of merit for the number of collisions the luminosity is used. The
instantaneous luminosity L is the proportionality factor between the number of events
per unit of time dR/dt and the process cross-section σcross:

dR

dt
= Lσcross . (2.75)

The instantaneous luminosity is given in units of inverse barns per second (b−1 s−1),
where [b] = 10−24 cm2. For a collider with Gaussian beams, it can be expressed as [69]:

L =
frevN1N2

4πσxσy
S , (2.76)

where frev is the revolution frequency of particle bunches, N1 and N2 are the number of
particles in each beam, and σx,y are the transverse beam sizes at the interaction points.
S is the luminosity reduction factor and depends on various parameters such as crossing
angles, orbit offsets, beam-beam interactions, beam tilts in the case of flat optics etc.
For Gaussian bunches colliding with a crossing angle θ, where σs ≫ σx,y and neglecting
other contributions, the luminosity reduction factor is approximated by [69]:

S ≈ 1√
1 +

(
θ
2
σs
σx

)2 . (2.77)

The luminosity can be influenced by the local presence of betatron coupling through its
impact on beam size, as will be discussed in Chapter 4. As seen in Eq. (2.25) the beam
sizes directly depend on the β-function at the IP, β∗, which then defines the collider’s
performance from the point of view of the optics. Indeed, the smaller the β∗ the smaller
the beam sizes, and the more collisions will be produced per bunch crossing.

The integrated luminosity, the accumulated luminosity over a given period of time,
is given by:

Lint =

∫ t2

t1

Ldt . (2.78)

The integrated luminosity is usually in units of fb−1 = 1039 cm−2. The total number
of collisions, or events, over said time period is then:

Nevents = Lintσcross . (2.79)

Throughout luminosity production, the instantaneous luminosity naturally decreases
as more and more particles are lost to collisions [70]. Any particle losses happening
before colliding the beams will lead to a reduction of the initial N1,2 and of the resulting
integrated luminosity of the given fill.

Luminosity production requires a good control of the linear optics, both for the
quality of the optics themselves but also for a smooth and safe operation. Many
non-linear contributions may also influence the dynamics away from the linear regime,
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leading to a deterioration of the dynamics and, down the line, the luminosity. Therefore
for a particle collider like the LHC a good control of all effects influencing the beam
dynamics is required, and methods to both measure and correct any deviations from
the ideal machine are a necessity. An overview of these is given in Chapter 3.
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CHAPTER 3

Optics Measurements and Corrections at the
LHC

The Large Hadron Collider (LHC) is a 26.659 km long synchrotron collider located at
the European Organization for Nuclear Research (CERN), on the French-Swiss border.
It is part of CERN’s Accelerator Complex, illustrated in Fig. 3.1, a chain of particle
accelerators progressively bringing protons and heavy ions up to an energy of 6.8TeV
per beam as of 2023.

Figure 3.1: The CERN Accelerator Complex in 2022, not to scale [71].
For typical LHC operation, a proton beam is produced in LINAC4 and

follows the chain: LINAC4 → PSB → PS → SPS → LHC.
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Particles go through a chain of different particle accelerators before reaching their
experimental destinations. For protons colliding in the LHC, the first step is a linear
accelerator, LINAC4, which accelerates them up to a kinetic energy of 160MeV. Next,
the protons are injected into the PS Booster (PSB), where they are accelerated to an
energy of 1.4GeV. The next stages are the Proton Synchrotron (PS), in which they will
reach 25GeV; then the Super Proton Synchrotron (SPS) where they are accelerated to
450GeV before being finally injected into the LHC.

The LHC circulates two counter-rotating hadron beams, each in their ring, which are
made to collide at four Interaction Points (IPs) to provide data for High Energy Physics
(HEP) experiments. The main data-taking experiments on the LHC are ATLAS [72–74],
ALICE [75–77], CMS [78–80], and LHCb [81–83]; with other notable experiments being
LHCf [84–86], MATHUSLA [87–89], FASER [90–92], SND [93–95], TOTEM [96–98],
and MoEDAL [99–101]. The LHC is currently the world’s highest energy particle
accelerator, colliding beams at 13.6TeV center-of-mass energy as of Run 3, 2023.

3.1 The LHC Lattice

The LHC lattice consists of eight octants each intersected by an Insertion Region (IR).
Conventionally, the segment between two IRs is called an arc and the arc between IR1
and IR2 is named Arc12, and similarly for other arcs. An octant is defined as going
from mid-arc to mid-arc around a given IR which is located at its center. Each octant
is named according to the IR at its center: the octant with IR1 at its center is named
Octant1, and similarly for other octants. An illustration and a detailed description on
naming conventions can be found in Appendix B.

ATLAS

ALICE

CMS

LHCb

Momentum
Cleaning

Betatron
Cleaning

RF Dump

B1 B2

IR1

IR5

Figure 3.2: Schematic of the LHC layout, adapted from [102].
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Beam 1 rotates clockwise in its ring when viewing the LHC from above, and Beam 2
rotates counter-clockwise as viewed from above. The beams occupy separate apertures
- or beam pipes - side by side except in the IRs where they are made to collide. The
layout of the LHC can be seen in simplified schematic form in Fig. 3.2, and full details
can be found in the LHC Design Report [103–105].

3.1.1 The LHC Arcs

Each arc in the LHC is made up of 23 cells and is approximately 2.45 km long. The
layout of an LHC arc cell is given in Fig. 3.3, and a clearer schematic representation can
be found in [106]. The cell is based on an FBDB (FODO with Bends) layout alternating
focusing and defocusing quadrupoles interspaced with dipoles. These elements are all
superconducting and are commonly labeled MQF, MQD and MB, respectively.
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Figure 3.3: Schematic of an LHC arc cell [103].

Each cell contains two MQ (one MQF, one MQD) with three MBs in between, for
a total of 6 MBs per cell. The MBs are all powered in series and, for size constraint
reasons [103], are of a dual bore design. The MQs are themselves also powered in series
but split in two families: one power circuit is dedicated to MQF magnets and another
circuit for the MQD magnets, where each arc holds a circuit for each family. As a
consequence, these elements can only be trimmed in groups.

Part of the main assemblies are superconducting spool piece magnets, correctors
used for the local compensation of magnetic errors in the main arc magnets [103]. These
include sextupole correctors, sextupolar spool pieces named MCS and mounted on the
ends of every main dipole, used to correct b3 errors of the MBs. Similarly, octupole
and decapole spool pieces are included and used for the compensation of b4 and b5
errors in the main arc magnets, respectively. The octupole correctors are named MCO
while the decapole correctors are named MCD, and both are nested together in an
assembly named MCDO which is mounted on the end of every second MB. The spool
piece magnets in the LHC are single aperture and powered in series similarly to the
MQs, with one circuit assigned for each magnet family.
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In addition to spool piece magnets, linear and non-linear lattice correctors are
mounted on the main arc quadrupoles MQs. These lattice correctors are powered in series
per family, and independently for each beam. Horizontal and vertical orbit correctors, re-
spectively MCBH and MCBV, are installed at each focusing and defocusing MQ. Normal
trim quadrupoles, named MQT, are primarily used for tune correction. In each arc four
MQTs are rotated by 45◦ to form skew quadrupoles, named MQS, used for betatron cou-
pling correction. Normal and skew sextupoles MS and MSS, used for natural chromaticity
and chromatic coupling correction respectively, are mounted on the MQs. Landau
octupoles MO provide damping of coherent oscillations, and are split into two families (fo-
cusing and defocusing) powered in series, such that there are two families per arc and per
beam.

Figure 3.4 shows a simplified layout of an LHC arc cell’s elements as well as β and
dispersion functions for 2022 optics at β∗ = 30 cm. In the layout (top) part of the plot
the powering of elements is indicated, with MBs in blue, MQs in red, MSs in yellow and
MOs in green. Beam position monitors (BPMs) are indicated as grey patches. Note
that not all elements are indicated. Figure 3.5 shows a similar plot but across LHC
arc23 for the same optics.
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Figure 3.4: Simplified layout (top) and optics functions (bottom) of an
LHC arc cell for the β∗ = 30 cm optics.

The purpose of the arcs is that of beam transport to the more purpose-specific parts
of the machine located in the IRs.
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Figure 3.5: Simplified layout (top) and optics functions (bottom) of
the LHC arc23 for the β∗ = 30 cm optics.

3.1.2 The LHC Experimental Interaction Regions

In the middle of each octant, in between arcs, the LHC hosts long straight sections (see
Appendix B for details) with specific purposes. Each of these is centered around an
Insertion Region (IR) where a dedicated layout is in place to fulfill the section’s purpose.
The purpose of each straight section is briefly stated in Fig. 3.2 and detailed in Table 3.1.

Straight Section Description
IR1 ATLAS Experiment
IR2 ALICE Experiment and B1 Injection
IR3 Momentum Cleaning (Collimation)
IR4 RF Systems and LHC Instrumentation
IR5 CMS Experiment
IR6 Beam Dump System
IR7 Betatron Cleaning (Collimation)
IR8 LHCb Experiment, and B2 Injection

Table 3.1: Description and purpose of the straight sections in the LHC.
Out of the experiments only the four major ones are mentioned.
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Of interest to this thesis are the experimental insertions, located in IR1, IR2, IR5,
and IR8, where the beams are made to collide. An insertion region in which beams are
made to collide is called an Interaction Region, or sometimes Experimental Interaction
Region.

ò
Though in the strict sense the short form IR stands for Insertion Region, it
is commonly used to refer to an Interaction Region. It is the case in this
document, where when used IR should be taken as Interaction Region.

At the center of the IR, beams are made to collide at the Interaction Point (IP).
In order to achieve high luminosity during collisions, and as shown in Section 2.5,
the β-functions at the IPs are squeezed to very small values. Figure 3.6 shows the
β-functions in the LHC around IP5 at both injection and collision optics, where the
effect of the squeeze is apparent.
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Figure 3.6: The horizontal and vertical β-functions in the LHC around
IP5 at injection optics (top) and collision optics (bottom). Notice the

drastically different scales on the vertical axes.

During normal operation for collisions the β∗ at ATLAS and CMS is squeezed down
to β∗ = 30 cm. In this configuration, at ALICE and LHCb the β∗ are only squeezed
to higher values, 10m and 2m respectively in 2023. During collisions involving ions
(Pb-Pb and p-Pb) the β∗ is reduced at ALICE and LHCb. Table 3.2 summarizes the
β∗ values for the different experiments and configurations.
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IP
Lowest β∗

Injection Optics Proton Collisions Ion Collisions
IP1 11m 30 cm 50 cm

IP2 11m 10m 50 cm

IP5 11m 30 cm 50 cm

IP8 11m 2m 150 cm

Table 3.2: Value of the β∗
x,y at different IPs for different optics configu-
rations as of Run 3.

In order to achieve a small β∗ at the IPs, the beams are focused using a supercon-
ducting triplet of quadrupoles, on either side of and close to the IP [107]. The triplet
is optimized to be symmetric [108], with Q1 and Q3 being the same length at 6.3m
and Q2 split into two sub-magnets Q2a and Q2b of 5.5m each. All three magnets are
powered in series but can be adjusted individually using dedicated trim converters [109].

This arrangement of three quadrupoles allows for a strong focusing of the β-functions
in both transverse planes. However, such an arrangement leads to high β-functions in
the triplet quadrupoles themselves and neighboring elements. An illustration of the
area close to IP5 for collision optics with β∗ = 30 cm is given in Fig. 3.7.
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Figure 3.7: The simplified element layout (top) and β-functions (bot-
tom) in the close vicinity of IP5 at β∗ = 30 cm collision optics, without

crossing angles.

On the layout plot the four red patches closest to the IP location correspond
to Q1, Q2a, Q2b and Q3 respectively, the triplet quadrupoles. The blue patches
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correspond to D1 (first batch closest to the IP) and D2 (the furthest dipole), the
separation/recombination dipoles responsible for bringing the beams together/apart
in the common region from/to their separate apertures in the arcs. The separation
dipole D1 is made of six 3.4m long normal conducting magnets while D2 is a super-
conducting twin aperture magnet 9.45m long. Further quadrupoles after the triplet
are matching quadrupoles and will be discussed later. The grey lines correspond
to the location of Beam Position Monitors (BPMs), measurement instrumentation.

Due to the large β-functions in the triplet quadrupoles, as can be seen in Fig. 3.7,
any magnetic error in the elements of the IR would have a strong impact on the beam
dynamics. To enable correction of these errors, linear and non-linear corrector magnets
are installed along the IR, distributed symmetrically around the IP: every corrector
magnet on one side of the IP has a counterpart on the other side. Of interest to this
thesis are the a2 skew quadrupole correctors installed just before Q3 on each side of
the IP, the locations of which are highlighted in Fig. 3.7 by green vertical lines. A
schematic of the corrector layout is shown in Fig. 3.8. All IR correctors are individually
powered magnets.

Figure 3.8: Layout of the triplet magnets and the linear and non-linear
correctors in the LHC experimental insertions [110], showing common
aperture magnets. The skew quadrupole correctors correspond to order

a2 and are located in the C2 package.

In order to prevent parasitic crossings between the two beams’ bunches around the
IP during collisions, separation bumps are implemented in a single transverse plane for
each IP, in the form of closed orbit bumps. Due to the presence of these bumps, in
order to reach collisions a crossing angle is introduced.

The optics in IR1 and IR5 are identical except for the crossing schemes. In IR1
the crossing angle is in the vertical plane while it is in the horizontal plane in IR5.
Respectively, the separation bumps are in the horizontal plane in IR1 and in the vertical
plane in IR5. On top of the opposite planes for the separation bump and crossing
angles, the schemes themselves are slightly different.

Figure 3.9 shows the crossing schemes for both IR1 and IR5 for the β∗ = 30 cm
collision optics, with the location of the triplets highlighted in grey and that of the
separation dipoles in yellow.
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Figure 3.9: Crossing schemes for IR1 and IR5 at collision optics.

Other IRs, of lower interest to this thesis, have significantly different layouts which
can be found in detail in [103, 111].

3.1.3 Matching Sections and Dispersion Suppressors

Assuring the transition between the arcs and the specific optics conditions of the IRs are
matching sections and dispersion suppressors, the location of which is highlighted on
Fig. 3.6. Together, the two segments are responsible for matching the Twiss parameters
between the arcs and the IRs, and for reducing the dispersion to near-zero value at the
IP, respectively.

The dispersion suppressor is made of two arc cells containing two instead of the
regular three dipoles. The quadrupoles in these cells, Q7 to Q10, are powered individually.
The dispersion suppressor leading to IP5 can be seen on Fig. 3.10, where the beam
travels from left to right.

The matching section is made of individually powered superconducting quadrupoles
Q4 to Q6. These are used to match the Twiss parameters from their values out of the
arcs to that at the entrance of the triplets. In order to help the matching to the arcs the
trim quadrupoles QT11 to QT13, adjacent to the FODO quadrupoles Q11 to Q13, are
also individually powered and used for the matching. The full segment from the start
of the dispersion suppressor to just before separation dipole D2 is shown in Fig. 3.11,
where again the beam travels from left to right.
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Figure 3.10: Simplified layout and optics functions in the dispersion
suppressor leading beam 1 to IP5, for the β∗ = 30 cm optics.
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3.1.4 The ATS Optics Scheme

When pushing the β∗ to smaller values, and therefore the β-functions in the triplets
to higher ones, the chromatic effects produced by the triplet quadrupoles (Eq. (2.34))
increase drastically and need to be corrected. As the beam energy reaches its maximum,
the beam size gets smaller and an aperture margin that allows to increase the β-functions
appears in the arcs.

The Achromatic Telescopic Squeeze (ATS) optics scheme [112–114] consists of
splitting the reduction of the β∗ - the squeeze - into two stages. In the first one, the
pre-squeeze, the β∗ is reduced using the matching quadrupoles around the affected
IP. To ease the strain on these quadrupoles (magnet strength, need for chromaticity
correction and orbit control) a second stage is performed. In this stage, the tele-squeeze,
the β∗ is reduced by using the matching quadrupoles in the adjacent IRs: IR2 and IR8
for the tele-squeeze of IR1, and IR4 and IR6 for the tele-squeeze of IR5. Sectors 81,
12, 45 and 56 are therefore called ATS sectors. This modulation in the second stage
sends β-beating waves down the arcs, which make the β-functions peak at the location
of sextupoles and octupoles in those arcs, enhancing their efficiency.

The ratio between the peak β-functions induced in the arcs is called the telescopic
index, or tele-index, and is denoted rTele [115]. It is defined as:

rTele = βpeak
ats /βpeak

non−ats (3.1)

Figure 3.12 shows the β-functions around IP5, at two different steps in the squeeze,
where one can see the β-beating waves in the neighboring ATS sectors 45 and 56.
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This ATS optics scheme has been used in the LHC since Run 2 and allowed the
reduction of the collision optics β∗ from its design value of 55 cm to 30 cm. It is the
operational baseline for Run 3.

3.2 The Operational Cycle of the LHC

The LHC operational cycle [116], illustrated in Fig. 3.13, begins with a pre-cycle of
certain magnetic elements [117]. A full pre-cycle is only done after an interruption of
the machine operations, such as when a technical intervention is performed. During the
pre-cycle no beams are present in the machine and the respective element currents are
increased up to several TeV beam energy configuration, to ensure the reproducibility of
the magnetic fields over successive fills. The exact nature of the pre-cycle depends on
the magnetic elements.

After the pre-cycle comes the injection stage: beams are injected from the SPS at
an energy of 450GeV. First a probe beam consisting of just a single bunch is injected
to check the validity of several systems (injection interlock, orbit, tune, chromaticity
and coupling control), then a 12-bunches beam, and finally a physics beam meant for
collisions is injected. At injection optics the β∗

x,y at the main colliding IPs (IP1 and IP5)
is 11m. The number of bunches, their intensity and their filling pattern [118] depends
strongly on the experimental demands. For optics measurements for instance, between
one and three low intensity, non-colliding bunches of about 1010 protons per bunch are
injected for each beam. For luminosity production a larger number of high intensity
bunches is injected: of the order of a few 103 bunches, with ≥ 1011 protons per bunch.

Time

Einj

Ecoll

Pre-Cycle Injection Ramp & Squeeze,
Squeeze,

Adjust

Stable Beams Collisions

Du
m

p

Ramp
Down

Beam Energy ATLAS / CMS *

*
coll

*
flattop

*
inj

Figure 3.13: Simplified illustration of the LHC nominal cycle.

After injection, the beam energy is increased up to collision energy (6.8TeV in Run 3)
while the beams are squeezed and the β∗ reduced. This process, called combined ramp
and squeeze, has been used in the LHC since 2017 [119]. Before then, the squeezing
process only started once the energy had reached collision value.
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After reaching top energy, a configuration known as flat-top, another squeeze is
performed to bring the β∗ to collision value. This is when the ATS scheme mentioned
in Section 3.1.4 happens.

In a final step before luminosity production, called adjust, the last few needed
parameters are adjusted to bring the beams into collision: tunes, crossing angles,
collapse of the separation bumps. The resulting configuration, called stable beams, is
kept throughout the fill for luminosity production. The fill ends when the beams are
extracted from the machine, a.k.a. beam dump, after which the cycle ends by a ramp
down of the magnets’ currents. Some magnets pre-cycle during the ramp down.

The working point is changed several times along the cycle for stability reasons. As
of 2022, at injection the transverse tunes are (62.275, 60.293). The working point is
brought to (62.28, 60.31) during the ramp and squeeze, at the end of which it is moved
to (62.311, 60.318). A final change is made in the adjust step, where the tunes are
brought to (62.314, 60.319) before going into collisions. This last setting may be changed
by machine operators during stable beams in order to optimize the beam lifetime.

Starting in Run 3, some additional complexities were added to the cycle that are
not shown in Fig. 3.13. In 2022 a β∗-leveling was introduced, where collisions start at
β∗ = 60 cm and the β∗ is progressively reduced to 30 cm during stable beams. This is
done in order to limit pile-up for the experiments (at around 52 events per bunch crossing
for the main IPs in 2022) and the impact on the triplets’ cryogenics capacity [120,
121]. This β∗-leveling will start at β∗ = 1.2m in 2023 and 2024, with a higher pile-up
value. Starting in 2023 an anti-telesqueeze is performed in the ramp to allow this earlier
leveling, and a crossing-angle rotation at LHCb (IP8) is done when reaching flat-top in
order to maintain physics conditions at the IP regardless of the LHCb spectrometer
polarity [120].

3.3 Optics Measurements and Corrections

The quality of the LHC optics has a significant impact on the machine’s performance.
For instance, the luminosity achieved by the machine is directly determined by the
β-functions at the IPs, as seen in Section 2.5. Furthermore, a good control of the
β-functions is essential for safe beam operations due to the destructive power of the
LHC beams, and the machine is subject to strict limits on the deviation from model
values [122]. One can then define the β-beating, a good indicator of the quality of the
linear optics, as the relative deviation of the machine’s β-functions from that of the
design values. It is defined as:

∆βz(s)

βz(s)
=
βz(s)measured − βz(s)model

βz(s)model

where z = x, y . (3.2)

In order to verify the machine’s beam optics and find any potential faults, or
deviations from the model values, beam measurements are necessary. From these,
comparisons to model values are made which allow for an assessment and understanding
of the errors in the machine; and corrections can be calculated and applied to bring the
optics as close to the nominal scenario as possible. As the linear optics functions impact
the non-linear phenomenology of an accelerator, a well understood and corrected linear
optics is a pre-requisite to study of the non-linear dynamics.
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Figure 3.14 shows the β-beating for beam 2 of the LHC in its 2022 virgin1 state
and with all determined corrections trimmed in, at the end of the commissioning phase.
Correction of the linear optics functions towards their nominal values also leads to an
enhanced rms closed orbit around the ring since the orbit feedback algorithms in the
LHC assume the nominal LHC model [123, 124].
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Figure 3.14: The measured β-beating at the beginning (blue) and end
(orange) of the LHC 2022 commissioning, for beam 2.

3.3.1 Beam Instrumentation for Optics Measurements

Circular machines such as the LHC include a variety of beam instrumentation devices
which serve various purposes, from injection kickers and feedback systems used in regular
operations to dedicated devices for optics measurements. Below is an introduction to
those of interest for optics measurements.

Beam Position Monitors and Tune Measurement

Beam Position Monitors (BPMs) are one of the most crucial devices for beam diagnostics.
They measure the transverse center of charge of circulating bunches, either in a given
plane for single plane BPMs, or in both planes simultaneously for dual plane BPMs.
In the LHC, this centroid beam position can be measured on a turn-by-turn and
bunch-by-bunch basis by around 500 dual plane BPMs across the machine. So-called
stripline BPMs are employed in the common apertures as they can discriminate between
counter-rotating bunches, while button BPMs are used in the remaining portions of the

1The term virgin refers to the state of the machine without any corrections.
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machine [103]. The location of BPMs in the lattice can be seen as vertical grey lines, in
an insertion region such as IR5 in Figs. 3.7 and 3.11 and in the arcs in Fig. 3.4.

In the LHC, the Base Band Tune (BBQ) system [125, 126] provides continuous,
passive monitoring of the tune by performing spectral analysis of the turn-by-turn data
at a specific location in IR4. The BBQ is also capable of measuring an estimation of the
linear coupling at the measurement location, which can be used as a rough first estimate
for the coupling in the machine. While it is possible to assess tune and coupling with
the BBQ without external excitation of the beam, the LHC chirp can generate small
transverse oscillations to improve the quality of these measurements.

Experimental Kickers

For the study of beam dynamics, measurements are done by inducing large transverse
oscillations of the beam to be picked up by the BPMs, typically much larger than
natural beam size. Large oscillation amplitudes are required to provide a good signal-to-
noise ratio. The spectral analysis of measured turn-by-turn positions provides valuable
insights in all the modes contained in the particle motion, at each BPM location. In the
LHC kicker dipole magnets are available for both beams, and are located in IR4. These
magnets can operate in three possible modes, referred to as the Tune Kicker (MKQ),
Aperture Kicker (MKA), and the AC dipole.

The tune and aperture kickers [127, 128] operate as traditional kicker magnets:
ramping their magnetic field up and down in a single turn, applying a transverse kick
to the beam and then allowing free motion. The name only refers to the amplitude
of induced oscillations: lower strength to measure the tune and higher strength to
measure the available dynamic aperture. Unfortunately, at top energy the amplitude of
oscillations achievable with the kickers is considerably reduced. Additionally, the beam
will decohere after being kicked: the momentum distribution of particles in the bunch
will cause the observed centroid of the beam to show a decaying oscillation [129]. As a
consequence a beam can only be kicked a certain number of times before needing to be
replaced, and it can take up to several hours to reach the same machine configuration
again, as the cycle detailed in Section 3.2 needs to be respected.

For optics measurements lasting oscillations are preferred, as they increase the
spectral resolution and reduce the noise floor in the spectral analysis of turn-by-turn
data. Furthermore, a non-destructive excitation method is preferred in order not to
alter the beam state, which allows for repeated measurements.

Such a non-destructive, sustained excitation of the beams can be achieved with
an AC dipole. It is a rapidly oscillating dipole magnet which can generate forced
driven oscillations with large amplitudes by exciting the beam at frequencies close to
the natural tunes [130, 131]. Moreover, the AC dipole strength can be ramped up
and down adiabatically [132] and kept constant at high amplitudes, allowing for long
lasting coherent oscillations of the beam. These properties, fullfilling the aforementioned
requirements, make the AC dipole the most important tool for optics measurements in
the LHC. A comparison of the turn-by-turn data obtained from beam excitation with a
single free kick and an AC dipole is shown in Fig. 3.15.
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Figure 3.15: Comparison of turn-by-turn data obtained from a single
free kick (top) and an AC dipole excitation (bottom).

3.3.2 Optics Measurements

Optics measurements are performed by exciting the beam and analyzing the resulting
betatron oscillations. The various steps of the measurement and analysis process are
described below.

Beam Excitation

The first step of optics measurements in the LHC is to excite the beams with the AC
dipole. As excitation of the beams to large amplitudes can represent a risk to the safety
of the machine, such measurements are only performed with one to three low intensity
bunches of about 1010 protons each. In the LHC, the AC dipole has a ramp-up and
ramp-down time of 2000 turns, and is able to drive excitations at maximum strength for
6600 turns before ramping down, as can be seen in Fig. 3.15. When exciting the beam,
the turn-by-turn position of the bunch is measured by the BPMs across the machine
and only the turns corresponding to the maximum AC dipole strength are used for
analysis.

It is important to note that the forced oscillations introduce a perturbation on the
optics. In the case of free oscillations, it was shown in Chapter 2 that the transverse
motion goes according to Eq. (2.6). For the transverse plane z, by considering ϕz,0 = 0
at the start of machine one gets:

z(s) =
√

2Jzβz(s) cos (ϕz) , z = x, y , (3.3)

where ϕz and Jz are the action and angle variables introduced in Section 2.1.3, respec-
tively.
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When the AC dipole is driving the beam, an equivalent parametrization exists, and
denoting the transverse driven coordinate as zD(s) one can express it as [130, 133]:

zD(s) =
√

2Jzβz(s) cos (ϕz) +
√

2AβD,z(s) cos (ϕD) , (3.4)

where A and ϕD are respectively the action and angle variables of the forced oscillations,
and βD,z(s) is the β-function modified by the AC dipole. The form of Eq. (3.4) makes
the assumption that the forced oscillation term depends only on ϕD.

The β-function modified by the AC dipole, corresponding to the perturbed optics
under forced oscillations, is given by [134]:

βD,z(s) =
1 + λ2D − 2λD cos (ψD(s))

1− λ2D
βz(s) , (3.5)

where ψD(s) is the phase advance with respect to the AC dipole location. The λD term
is dependent on the gap between the driven and natural tune, and is defined by [134]:

λD =
sin (πδD)

sin (2πQz + πδD)
, (3.6)

where δD = QD − Qz corresponds to the aforementioned gap, often called the tune
delta. In the LHC, the AC dipole is usually driven with δD,x = −0.01 and δD,y = 0.012.

One can see in Fig. 3.16 the impact of an AC dipole on the vertical β-function in a
simple FODO lattice, where the difference between the free and forced cases is apparent.
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Figure 3.16: Resulting vertical β-functions in a FODO lattice in the
case of free (orange) and driven (blue) oscillations.
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One can then determine the β-beating induced by the AC dipole, as defined in
Eq. (3.2). From Eq. (3.5) and Eq. (3.6) one can express this beating according to:

βD,z − βz
βz

=
1 + λ2D − λD cos (2ψD − 2πQz)

1− λ2D
− 1 , (3.7)

with Qz the natural transverse tune of the machine. Figure 3.17 shows this β-beating
for various phase advances between the AC dipole and an element where the observation
would be made. The vertical black lines correspond to the usual tune deltas used in
LHC measurements, and the values are displayed for the two fractional tunes of a
common working point for LHC measurements: (Qx, Qy) = (0.28, 0.31). For these usual
settings the AC dipole induced β-beating reaches no more than 9%.
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Figure 3.17: AC dipole induced β-beating as a function of δD, for
various phase advances between the AC dipole and a given location in
the ring where the observation would be made. The results are shown for
the horizontal (left) and vertical (right) planes with a common working

point used for measurements.

As a consequence, the measured oscillations, associated optics functions and Reso-
nance Driving Terms (RDTs) will not be those of the natural machine. This impact
of the AC dipole on the optics is taken into account and compensated in analysis
steps [135], and this compensation is expanded later on in this chapter.

Spectral Analysis

As a first step, the recorded raw turn-by-turn data is cleaned of noise using a Singular
Value Decomposition (SVD) approach [136]. An interpolated Fourier Transform is then
performed on the cleaned data [137, 138], which provides information about the phase
and the measured amplitude at each BPM. Automatic outlier detection is available
based on the spectra of BPMs, both as an automated step [139] and a manual step
(removing BPMs with exact-zero signals, wrong tune lines etc.). Figure 3.18 shows a
horizontal spectrum obtained from a measurement during the Run 2 commissioning in
2022, with the main tune lines identified. The frequency space is zoomed for clarity.
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Figure 3.18: Horizontal spectrum from the frequency analysis of a
measurement taken during the Run 2 commissioning in 2022. The main
(orange) and natural (green) tune lines are indicated, where for instance
(0, 1) corresponds to the 0 · Qx + 1 · Qy = Qy tune in the horizontal

spectrum.

Optics Reconstruction

With knowledge of the phase information at each measuring BPM, and with knowledge
of the model machine, the transverse optics functions can be determined. For LHC
measurements the model knowledge traditionally comes from design studies done with
the MAD-X code [59]. The β-function at a given BPM can be calculated from the
measured phases of 3 BPMs (i, j, k), according to [31, 140]:

βphase
z (si) =

cot (ϕz(i→ j)) + cot (ϕz(i→ k))

cot (ϕmz (i→ j)) + cot (ϕmz (i→ k))
βmz (si) , z = x, y , (3.8)

where the superscript m denotes the model values and ϕz(i→ j) is the phase advance
between the ith and jth BPMs. The BPMs do not necessarily need to be consecutive,
and specific phase advances between the chosen BPMs increase the precision of the
measurement. This method has also been extended to use specifically chosen combina-
tions of N BPMs [141, 142], which improves its precision as it then only depends on
the measured phase advances and is fully independent of BPM calibration [143].

From Eq. (2.24) one infers that the β-function can also be determined directly from
the amplitude A of the oscillations recorded at BPMs:

βamp
z (si) =

A2
z(si)

2Jz
. (3.9)
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Using the peak-to-peak oscillation amplitude over N BPMs, one can determine the
calibration-dependent [144] term Jz according to:

2Jz =

∑N
n=1

(
peak−to−peak

2

)2
n
/βmz

N
. (3.10)

The reconstructed β-function from amplitude is dependent on the calibration of
measuring BPMs. Figure 3.19 shows the β-beating reconstructed from phase and from
amplitude for a 2022 LHC measurement at β∗ = 30 cm, where the lower precision from
reconstructing from amplitude can be seen.
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Figure 3.19: The β-beatings obtained when reconstructing the β-
functions from phase (blue) and from amplitude (orange) in an LHC

measurement in 2022.

Other Twiss parameters can be reconstructed from the phases and β-functions.
Chromatic parameters are reconstructed by performing measurements at different
momentum settings. By adjusting the frequency of the accelerating cavities, typically
between −100Hz and +100Hz of the nominal setting, the energy of the beam is changed
and the dispersion is then determined from the mean orbit recorded at different energies.
Recent improvements have allowed doing so in a single measurement by modulating
the RF frequency while transversely exciting the beam [137, 145].

One can also compute the normalized dispersion D/
√
β which is independent from

model values and BPM calibration [146].

K-Modulation

It is possible to directly measure the β∗ at the IPs without beam excitation using the
k-modulation technique [147]. By modifying the strength of individual quadrupoles and
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recording the resulting tune changes, one can determine the average β-functions at the
modulated quadrupole according to [31]:

βavg
z = ± [cot (2πQz) (1− cos (2π∆Qz)) + sin (2π∆Qz)]

2

∆kL
,

≈ ±4π
∆Qz

∆kL
,

(3.11)

where ∆k is the quadrupole strength variation, L its length and ∆Qz the resulting tune
variation in the machine. Figure 3.20 shows an example of the data retrieved from the
k-modulation.
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Figure 3.20: Example data from the k-modulation of the first
quadrupole left of IP1. The top plot shows the quadrupole strength
variation over time and the bottom plot the resulting horizontal (blue)

and vertical (orange) tune variations.

By modulating both innermost quadrupoles near the IP, one determines the average
β-functions in these quadrupoles, which can then be propagated through the drift space
in between to determine both the β∗ value as well as any potential waist shift [148]. In
the LHC the k-modulation technique is the main method to determine the β∗ at the
IPs. Its results are also used as a better reconstruction of the β-function values in the
inner BPMs.

3.3.3 Reconstruction of Linear Coupling RDTs

Of particular relevance to this thesis are the betatron coupling RDTs f1001 and f1010,
and it is worth spending some time detailing their reconstruction. As mentioned in
Section 2.3.4, the fjklm RDTs can be determined from the specific spectral lines arising
during the spectral analysis of turn-by-turn data. By the term spectral lines one
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refers here to the Fourier transform of the complex Courant-Snyder coordinate, which
corresponds to:

H±(nx, ny) = F{h±x }(nxQx + nyQy) ,
V ±(nx, ny) = F{h±y }(nxQx + nyQy) ,

(3.12)

in which H indicates a line in the spectrum of horizontal turn-by-turn data, and V a
line in the spectrum of vertical turn-by-turn data.

As seen in Eq. (3.12) the Courant-Snyder variables defined in Eq. (2.51) are needed.
Since the momentum present in the expression of h±z is not a quantity directly measurable
from a single BPM, it is reconstructed using two successive BPMs:

p̂zn =
ẑn+1 − ẑn cos (∆ϕz)

sin (∆ϕz)
, z = x, y , (3.13)

with ∆ϕz the phase advance between the nth and (n + 1)th BPMs in the transverse
z plane. In Eq. (3.13) it is assumed that the region between the two BPMs is free of
coupling sources as well as non-linearities contributing to the main line and the coupling
line in each spectrum.

With the information from two BPMs, one can compute the spectral lines according
to Eq. (3.12). Starting from Eq. (2.56), one can for instance subsitute j = 1, k = 0,
l = 0, m = 1 and obtain H(0, 1) = |f1001| (2Iy)

1
2 , the amplitude of the line at Qy in the

horizontal spectrum.
With the proper values for j, k, l,m and using lines from the vertical spectrum one

can cancel out the dependence on the action and look to obtain |f1001|. However, it
is possible - and likely - that the BPM calibrations aren’t perfect, in which cases the
measured and real coordinates differ:

xmeas = Cxx
real ,

ymeas = Cyy
real .

(3.14)

One can cancel out the Cx,y factors by dividing any line amplitude by that of the
main line, to create normalized spectral lines. Of interest for the coupling RDTs are
the following:

A0,1 =
H(0, 1)

|H(1, 0)| ,

B1,0 =
V (1, 0)

|V (0, 1)| ,

A0,−1 =
H(0,−1)

|H(1, 0)| ,

B−1,0 =
V (−1, 0)

|V (0, 1)| ,

(3.15)

where the A0,1 and B1,0 normalized spectral lines contain information on f1001 whereas
the A0,−1 and B−1,0 ones contain f1010.
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By combining these normalized spectral lines, it has been shown that the amplitudes
of the coupling RDTs may be expressed as [149, 150]:

|f1001| =
1

2

√
|A0,1B1,0| =

1

2

√
H(0, 1)V (1, 0)

V (0, 1)H(1, 0)
,

|f1010| =
1

2

√
|A0,−1B−1,0| =

1

2

√
H(0,−1)V (0,−1)

V (0, 1), H(1, 0)
,

(3.16)

and the phases as:

q1001 = ϕV (1,0) − ϕH(1,0) +
π

2
= ϕH(0,1) − ϕV (0,1) +

π

2
,

q1010 = ϕH(0,−1) − ϕV (0,1) +
π

2
= ϕV (−1,0) − ϕH(1,0) +

π

2
.

(3.17)

Here H(1, 0) corresponds to the line in the horizontal spectrum at Qx while H(0, 1)
corresponds to the line at Qy in the same spectrum. In [47] a table is given that relates
various spectral lines to amplitudes and phases of the corresponding resonances and
RDTs. From the amplitude and phase information of Eqs. (3.16) and (3.17) the complex
coupling RDTs are reconstructed as:

f1001 = |f1001| eiq1001 ,
f1010 = |f1010| eiq1010 .

(3.18)

In Fig. 3.18, which shows a spectrum from an LHC measurement during the 2022
commissioning, the coupling lines are visible and highlighted. This reconstruction
method has successfully been used to measure linear coupling RDTs in the LHC since
Run 1 [135, 151, 152].

AC dipole Compensation

Mentioned in Section 3.3.2 is the effect of AC dipole excitation on the observables, which
differ from those of the natural machine. This effect is also present in the reconstructed
coupling RDTs, and must be compensated for in order to obtain the natural machine’s
values. Several compensation methods exist, with the most straightforward being the
application of a rescaling factor to the reconstructed RDTs.

Using this rescaling, one can express the driven RDTs as [153]:

fdriven
±,x =

sin (Qx ±Qy)

sin (QD,x ±Qy)
f± ,

fdriven
±,y =

sin (Qx ±Qy)

sin (Qx ±QD,y)
f± ,

(3.19)

where f+ = f1010 corresponds to the sum resonance, f− = f1001 corresponds to the
difference resonance, fdriven

±,x denotes the driven RDT as measured from horizontal turn-
by-turn data, QD,z is the driven tune in the transverse plane z and Qz the natural tune
in the same plane. Here the f± notation is used for conciseness.



3

54 Chapter 3. Optics Measurements and Corrections at the LHC

A fully analytical compensation of the AC dipole effect can be found in [135, 154]
but will not be detailed in this document. A comparison of these methods’ efficiency
can be found in [155].

Single BPM

It is possible to approximate the coupling RDTs from the real coordinates using a single
BPM, and doing the reconstruction without the momentum information. In this case,
where only the position data is used, the spectal analysis will mix up lines Z(a, b) and
Z(−a,−b) as it cannot distinguish one from the other. For the coupling RDTs this
means that the f1001 and f1010 will contribute to the same resonance lines and cannot
be separated [46]. It may, however, be possible to neglect one of them depending on
their relative strengths.

Additionally, from the method described above it becomes clear that dual plane
BPMs are required for coupling measurements. In case such instrumentation is not
available, one can numerically construct a pseudo dual plane BPM by virtually shifting
a vertical plane monitor towards the location of the nearest horizontal one, or inversely.
To do so, the phases of the real spectral lines are shifted in accordance with the phase
advance between the monitors, which assumes that the segment between these monitors
is free of non-linear sources [111].

3.3.4 Correction Principles

Corrections of the linear optics in the LHC are based on two different approaches.
Global corrections are better suited to compensate for widely distributed sources, while
local corrections are focused towards the identification and compensation of strong,
highly localized errors, and are mostly used around the IPs.

Local Corrections

In the LHC local optics errors are determined and corrected using the Segment-by-
Segment (SbS) technique [150, 156]. The technique treats a section - or segment - of the
accelerator as an independent beam line and propagates optics parameters measured at
the start of the segment through the line using the MAD-X code [59]. The propagated
optics parameters may be compared with the observation and one then tries to find
correction settings - powering changes of selected magnets - that would best reproduce
these propagated optics. Inverting the settings found and applying the inverted values
in the machine corrects the measured errors.

This method is mostly used in the LHC IRs, where the β-beating is corrected by
compensating the discrepancies in the betatron phase, which has the same impact as
correcting the β-beating directly but proved to be a more precise and local observ-
able [150]. For this one looks at the ∆ϕ quantity thought the segment and tries to
minimze it:

∆ϕ = ϕmodel − ϕmeasurement . (3.20)

An example of a local correction of the phase advance around IP5 from the LHC
2022 commissioning is shown in Fig. 3.21, where the phase deviation from the model
values are shown across the segment together with the effect of the reconstructed errors.
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Figure 3.21: Local phase correction in IR5 (vertical line indicates IP5)
from the LHC 2022 commissioning at flat-top. The blue line shows the
measured phase deviation from model values, while the orange line shows
the effect of the reconstructed errors on the model. The green line shows

the expected phase deviation after applying the correction.

The concept from Eq. (3.20) can be applied to other observables such as the β-
functions or the coupling RDTs. In the case of the coupling RDTs, due to the lower
number of magnets available for adjustment one usually tries to compensate for the RDTs
at the edges of the segment. One can also attempt to match for specific components of
the RDTs specifically (real and imaginary parts). Figure 3.22 shows an example of a
local correction of the coupling RDTs around IP2 from the LHC 2021 beam test. In this
case, a good rematching at the edges of the segment means the contribution of the IR
to the global coupling is well compensated. More details are given in the next chapter.

The segment-by-segment method has successfully been applied in the LHC for many
years [123, 124, 157].

Global Corrections

Global corrections are based on a response matrix approach [111, 158]. This matrix,
constructed from the machine model and simulation codes, holds the information on
the response of the model optics functions to changes made in model settings, usually
magnet powering changes. For instance, the response to a quadrupole knob trim of
optics functions such as the phase advances, β-functions, normalized dispersion and
tunes can be expressed as:

R∆K⃗ =

(
∆
−→
ϕx,∆

−→
ϕy,

∆
−→
βx
βx

,
∆
−→
βy
βy

,∆

−→
Dx√
βx
,∆Qx,∆Qy

)
. (3.21)



3

56 Chapter 3. Optics Measurements and Corrections at the LHC

9

12

15

|f 1
00

1| 
[1

0
2 ]

IP2

Measurement Correction

0 250 500 750 1000
Distance from start of segment [m]

0.0

2.5

5.0

|f 1
01

0| 
[1

0
2 ]

IP2

Figure 3.22: Local coupling RDTs correction in IR2 (vertical line
indicates IP2) from the LHC 2021 beam test. The blue line shows the
measured RDTs, while the orange line shows the attempt at canceling the
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in the IR.

Here R is a M ×N matrix, where N is the number of adjusted quadrupole knobs
and M is the number of observation points, usually the number of BPMs. To calculate
corrections the pseudo-inverse of the R matrix, denoted R−1, is calculated and multiplied
with the measured deviations from the model.

∆K⃗ = R−1

(
w1∆

−→
ϕx, w2∆

−→
ϕy, w3

∆βx
βx

, w4
∆βy
βy

, w5∆

−→
Dx√
βx
, w6∆Qx, w7∆Qy

)
. (3.22)

The w1 . . . w7 terms are weights which can be adjusted to either focus on correcting
a given quantity, to ignore some parameters completely or to balance the corrections
between all properties. By choosing weights and plugging measured optics deviations
into Eq. (3.22), one can determine the knob trims that could correct said observed
deviations.



4

57

CHAPTER 4

Interaction Region Local Coupling
Correction in the LHC

The linear optics and coupling correction usually constitute the first phase of machine
commissioning as both are major contributors to the performance of colliders, and are
required to be under good control for the next phases of commissioning. In recent years,
significant efforts have been made to improve the measurement and correction of linear
and non-linear global coupling both in the Large Hadron Collider (LHC) [156, 159–167]
and other synchrotrons [168–180], as their effects can lead to instabilities and unwanted
dynamics in the machine [52, 55, 166, 181, 182].

In the LHC, local coupling correction has so far been done with the Segment-by-
Segment technique [150]. The method, however, suffers inherent weaknesses making
it not local enough for coupling corrections at the collisions points. This chapter,
which constitutes the core of this thesis, presents a new method that was developed
to determine corrections of betatron coupling at the Interaction Points (IPs). An
overview of the various experimental measurements taken for this work can be found in
Appendix E.

4.1 Local Betatron Coupling in the LHC Interaction Regions

In the LHC, corrections of local Insertion Region (IR) linear coupling are of importance
to keep a good control of beam sizes at the IPs and hence the luminosity performance,
as well as to prevent a significant impact on the beam dynamics.

In Eq. (2.71), the contribution of elements to the linear coupling Resonance Driving
Terms (RDTs) is given, where contributing elements are typically skew quadrupoles and
solenoids. The amplitude of the contribution is dominated by the integrated strength of
the magnet kL as well as the

√
βxβy term at the location of the magnet. Given that a

tilted quadrupole interacts with the beam as a straight quadrupole with an additional
skew quadrupolar component, one can see from Fig. 3.6 that any tilt in the triplet
quadrupoles would generate a significant contribution to the coupling RDTs due to the
very high β-functions in these magnets.

Figure 4.1 shows the coupling RDTs’ amplitudes from tilts in triplet quadrupoles,
with the β∗ = 30 cm 2022 optics [183]. In this MAD-X simulation, triplets around IP1
were assigned random tilts within ± 1.5mrad, and these were the only contribution
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to coupling in the machine. Nevertheless, this contribution amounted to a |C−| of
3.84× 10−2, already too high for machine operation.

4

0

4

K 1
L 

[1
0

2 m
1 ]

QUAD

1.0

0.5

0.0

0.5

DP
SI

 [m
ra

d]

IP1
Tilt

60 0 60
Distance to IP1 [m]

0.15

0.30

0.45

|R
DT

|

IP1

f1001
f1010

0.2

0.0

0.2

K 0
L 

[m
ra

d]

BEND

Figure 4.1: Amplitudes of the coupling RDTs (bottom) f1001 (blue)
and f1010 (orange) from tilts in the triplet quadrupoles around IP1. The
top plot shows the magnets’ powering while the middle plot shows the

assigned tilts in each element.

As a consequence, the IR contribution - mainly the triplets - to global coupling
needs to be compensated. For this, in the LHC the local coupling correction is done by
measuring the RDTs in the vicinity of the IP and using the MQSX skew quadrupole
correctors introduced in Section 3.1.2 and showcased in Figs. 3.7 and 3.8 for correction.
The corrections are determined with the Segment-by-Segment technique described in
Section 3.3.4, and try to compensate for the triplets’ contribution as well as possible.
Though this compensation is rarely perfect, the residual contribution is usually small
enough to be handled by the skew quadrupole correctors present in the LHC arcs (see
Section 3.1.1). This correction is essential in order to reach low β∗ with good optics
control: at β∗ = 30 cm, the local errors compensated in Run 2 [184] would contribute



4

4.1. Local Betatron Coupling in the LHC Interaction Regions 59

to the |C−| by the amount of 0.33, too much for the arc correctors to handle. While
such coupling in the machine is not inherently unstable in itself, it leads to other effects
causing the machine to be unstable, for instance the impossibility of independently
controlling the tunes, a change of working point or transverse instabilities from loss of
Landau damping [54, 55].

Due to their location, the MQSX correctors are single aperture magnets, meaning
that both beams pass through a single cavity in the element and feel the same magnetic
field. This means finding a correction has the additional constraint that it is applied to
both beam 1 and 2 simultaneously, and should be a compromise that works for both
beams. As the triplet quadrupoles - also single aperture magnets - are expected to
cause most of the contribution to local coupling, the local error to be corrected should
be the same for both beams and such an arrangement of correctors is manageable.

During the late 2018 ion run in the LHC Run 2, it was observed that while global
coupling was well corrected, a local coupling bump in IR2 had a significant impact on
collisions and led to a reduction of the luminosity at the affected IP by up to 50% [6,
184, 185]. Investigations revealed that a coupling bump around IP2 led to a strong
increase in beam size and a drop in collision rate. Importantly, the incident highlighted
that no method existed to correct for the coupling specifically at the IP.

Figure 4.2 shows the expected beam size growth and luminosity decrease from
various strengths of such a local coupling bump at one of the main IPs, for the LHC at
β∗ = 30 cm and for the HL-LHC at β∗ = 15 cm. These results highlight the necessity of
a proper handling of local coupling for the Run 3, as well as for the HL-LHC where the
tolerance is about a factor 4 lower.
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Figure 4.2: Relative values of the RMS beam size at IP1 (blue) as well
as relative instantaneous luminosity (orange) for different strengths of a
local coupling bump around the IP generated with skew quadrupoles, for

the LHC (filled) and HL-LHC v1.5 (dashed) collision optics.
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In the studies presented in this thesis, various calculations rely heavily on the Ripken
parameters mentioned in Section 2.4.1. For instance, beam sizes are calculated from
the βkj terms according to [62]:

⟨z⟩ =
√
ε1β1z + ε2β2z, z ∈ {x, y}, (4.1)

in which the ε1 and ε2 terms represent the horizontal and vertical emittances, respec-
tively.

The validity of this calculation has been verified in simulations by comparing its
results to those obtained from other means. Figure 4.3 shows the relative deviation
between computed beam sizes at IP5, calculated either according to Eq. (4.1) or from
tracking a particle distribution, under various strengths of local coupling. In all cases
the relative deviation is below 0.25%.
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Figure 4.3: Relative deviation between beam sizes calculated from
Ripken parameters according to Eq. (4.1) and from tracking a particle
distribution, at an IP affected by coupling for the horizontal (blue) and

vertical (orange) planes.

At the LHC IPs with round beams, as is the case in Run 3, the effect of the beam’s
tilt induced by linear coupling is negligible and its impact fully manifests as an increase
in the beam size, as was the case at IP2 in 2018. Figure 4.4 shows a reconstruction of
transverse beam sizes at IP1 (similar for IP5) for various strengths of a local coupling
bump. While the beam ellipses show a ≫ 99% overlap indicating a negligible tilt effect,
the beam size in the most affected case is about 250% of the uncoupled case.
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Figure 4.4: Transverse beam sizes at IP5 at 6.8TeV and β∗ = 30 cm
with normalized emittances εx = εy = 3.75 µm and for different strengths
of a local coupling bump around the IP. The ellipses are reconstructed
through the σ11, σ13 and σ33 terms of the sigma matrix, obtained from

MAD-X.

Instantaneous luminosities calculated for Fig. 4.2, in the absence of crossing angles,
are given by [69]:

L =
N1N2frevNb

2π
√(

σ2
x,1 + σ2

x,2

)√(
σ2
y,1 + σ2

y,2

) , (4.2)

where Nn is the number of protons per bunch in beam n, frev the revolution frequency
of particles, Nb the number of bunches per beam and σz,n is the size at the IP of beam
n in the transverse plane z, calculated according to Eq. (4.1).

4.2 Current Correction Methods and Their Limitations

While the coupling RDTs contain information on the coupling situation in the machine,
looking at their patterns along the ring is not a good indicator of the situation at an IP.
For instance, Fig. 4.5 shows the reconstructed coupling RDTs from two measurements
taken during the LHC 2022 commissioning. One of these measurements corresponds
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to a 20% lower measured luminosity at IP1 compared to the other, however it is not
possible to tell which is the better one from looking at the RDTs alone.
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Figure 4.5: Similar looking coupling RDTs from two measurements (top
and bottom) taken during the LHC 2022 commissioning. One scenario
leads to a 20% instantaneous luminosity decrease at IP1 compared to

the other.

Segment-by-Segment

The Segment-by-Segment technique mentioned in Section 4.1 and used to implement
local corrections in the LHC IRs suffers from inherent limitations making it unsuitable
for the correction of coupling at the IP. Firstly, due to unfavorable phase advances in
between BPMs in the IRs, it is difficult to get a good measurement of the coupling
RDTs in these regions. As these are reconstructed from the h±z coordinates, they require
reconstruction of the momentum (see Section 3.3.3). Knowing that the phase advance
in the IRs is ∼ 0 from BPM to BPM, and ∼ π from one side of the IP to the other,
one can see through Eq. (3.13) why the momentum reconstruction is difficult at BPMs
around an IP.

As a consequence, the reconstruction of coupling RDTs in close proximity to the
IPs is inaccurate. Figure 4.6 shows the amplitude of the coupling RDTs propagated
with the SbS technique in the IR1 segment, from measurements taken during the LHC
2021 beam tests and 2022 commissioning. Not only can large error bars be noticed
on the reconstructed data points, but no given case appears to be specifically better
than the other while the orange line (2022 commissioning) corresponds to a better
correction than the blue one (2021 beam tests). Given the data patterns and the fact
that the orange case corresponds to a better correction, it does not appear that the
SbS technique gives a good indication of the local coupling at the IP.
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Figure 4.6: Propagation of the measured |f1001| and |f1010| for beam 1
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Furthermore, the SbS technique does not allow to differentiate the contribution
of one individual corrector from the other in the LHC IRs, making it difficult to find
the correct balance of left and right powering settings. Indeed, as both correctors
can compensate each other one might find a good compensation of the overall IR
contribution to global coupling which also deteriorates the coupling situation at the
IP. Additionally, as the coupling RDTs are reconstructed at BPMs the method cannot
provide an estimate of coupling at the IP where there are no BPMs. In such a case
where both correctors compensate for each other, SbS would not allow a degradation of
the coupling at IP to be detected.

Combined Coupling Resonance Driving Terms

A candidate for a better observable that was considered are the combined coupling
RDTs [47], also simply called Combined RDTs (CRDTs), denoted |F̂XY | and |F̂Y X |.
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These can be expressed from the coupling RDTs, here with a scaling factor, as:

F̂xy =
sinh 2P

P (f ∗
1001 − f ∗

1010) ,

F̂yx =
sinh 2P

P (f1001 + f ∗
1010) ,

(4.3)

where 2P =
√

|2f1010|2 − |2f1001|2 and ∗ denotes the complex conjugate. These have
the advantage that they can be reconstructed directly from the particle coordinates
(x, y) without the need for momentum reconstruction [186].

Although the CRDTs seemed to work well in straightforward simulations, they
were found to not be useful when it came to applying them to more realistic cases
or real measurement data. Figure 4.7 shows the reconstructed CRDT |F̂XY | from
measurements done in a late 2018 Machine Development (MD), computed with the
OMC team’s analysis tools [187]. During the MD, the first investigations were made of
local coupling at the IP, and while little data was collected due to a dump of beam 1,
they provide a good test bed for a new observable candidate. Information about the
MD fill can be found in Appendix E.
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The percentages indicate the strength of the AC dipole kicks.

While the error bars are barely visible compared to the large ones in Fig. 4.6, the
main observed issue was a lack of reproducibility between different measurements:
different measurements done with identical settings give different results. Indeed, two
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identical kicks with nominal optics (blue) give different values of the CRDTs at inner
BPMs, sometimes differing by a factor two; and other measurements conducted in the
presence of a constant coupling bump (orange) also demonstrate no consistency in the
computed results. For this reason, the CRDTs were not considered further.

K-Modulation

The usual technique to get a measurement of the β-functions at the IP is k-modulation
(see Section 3.3.2). Unfortunately, previous studies have shown that k-modulation
measurements are robust against the presence of local coupling, both analytically [148,
186] and experimentally in a dedicated MD [188]. This prevents the possibility of driving
a correction directly by measuring the β-function variations at an IP from coupling.

A Short Recap

To summarize so far, control of local coupling in the LHC IRs is an important goal that
should be tackled for Run 3. Coupling corrections determined with the segment-by-
segment method allow compensation of the IR’s contribution to global coupling and
are crucial to allow squeezing of the beams as well as safe machine operation. However,
existing methods do not provide a reliable way to minimize coupling at the IP. To
achieve this goal, two new things are needed:

1. A way of adjusting the coupling at the IP without affecting the rest of the machine,
so as not to spoil the compensation of the IR’s contribution to global coupling.

2. A reliable way of measuring coupling at the IP in order to derive the correction.

The former can be achieved with a knob described in Section 4.3, while the latter was
achieved with a new optics configuration presented in Section 4.4.

4.3 The Colinearity Knob

The colinearity knob is a powering setting convention for the IR skew quadrupole
correctors, the MQSX magnets. Originally designed for a flat optics MD [189], the knob
acts anti-symmetrically on the left and right corrector magnets. The definition of the
knob is given in Table 4.1. A full definition of the knobs as implemented and used in
the LHC can be found in Appendix C.1.

Magnet ∆K1S [m−2]

MQSX.3R[IP] → K1S 10−4

MQSX.3L[IP] → K1S −10−4

Table 4.1: Definition of one unit of the colinearity knob, a powering
setting of the IR skew quadrupole correctors.

In the case of only skew quadrupolar coupling sources, Eq. (2.74) becomes a sum-
mation over the individual sources and the j(s) term becomes Jw - the integrated skew
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quadrupole strength of the source indexed by w - in that summation:

∣∣C−∣∣ =
∣∣∣∣∣
1

2π

∑

w

√
βwx β

w
y Jwe

−i(ϕx−ϕy)+i s∆R

∣∣∣∣∣

=

∣∣∣∣∣
1

2π

∑

w

√
βwx β

w
y Jwe

i(ϕx−ϕy)

∣∣∣∣∣+O(∆).

(4.4)

In the case of the MQSX magnets, given the ∼ 180◦ phase advance between the two
correctors, the contribution to the global coupling can be written as:

∆C− =
1

2π

∑

w

√
βwx β

w
y Jw =

1

2π

(√
βlxβ

l
yk

l
SL+

√
βrxβ

r
yk

r
SL
)
, (4.5)

with kwSL = Jw the integrated strength of the skew quadrupole at position w. The l
and r superscripts denote the corrector left or right of the IP, respectively.

Since, for round optics in the LHC the β-functions are by design identical at the
correctors left and right of the IP (see Fig. 3.7) and those have identical lengths, with
opposite powering settings as defined in Table 4.1 and assuming a good β-beating
correction, this contribution reduces to 0. Therefore, the knob induces a closed coupling
bump going from corrector to corrector around the IP without affecting the machine’s
global coupling. Figure 4.8 shows the effect of the colinearity knob on the f1001.
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Figure 4.8: Amplitude of the f1001 RDT in the vicinity of IP1 for
various settings of the colinearity knob, in the absence (blue, orange and
purple) and presence (red) of global coupling. The locations of the MQSX

corrector magnets are highlighted as green vertical lines.
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One can observe that in all cases without global coupling (blue, orange and purple
lines) the |f1001| falls down to 0 outside the MQSX to MQSX zone. When global
coupling is present, the |f1001| goes back to its original value outside the limits of the
bump. A similar plot can be obtained for the |f1010|. The reader might notice how the
amplitude of the RDT does not fall down to exactly 0 in the blue, orange and purple
cases. As mentioned above the phase advance between the two magnets deviates from
π by 1%, and similarly the

√
βxβy term is not perfectly equal on each side but changes

by 0.1%. For all intents and purposes though, these deviations are small enough for
the contribution to be negligible.

Therefore, the colinearity knob is an effective tool to introduce a closed coupling
bump in between the MQSXs. It can be used to modify the coupling specifically at the
IP without changing the situation outside the IR, and can therefore act as a second
step to adjust coupling locally without affecting the compensation of the IR coupling
contribution. One now needs a way to relate the coupling at the IP to some reliable
observable, which is achieved with a new optics setup as presented below.

4.4 Rigid Waist Shift for Local Coupling Correction

In order to circumvent the issues related to measuring the local coupling at the IP, it is
necessary to find a way to relate it to other measurable quantities. This is achieved
by the application of a Rigid Waist Shift (RWS), which changes the machine’s optics
configuration in the IRs, as presented below.

4.4.1 Rigid Waist Shift

Applying a Rigid Waist Shift to the beam - meaning all four betatron waists are moved
simultaneously - breaks the (anti-)symmetry of the optics in the IR. An RWS is achieved
by unbalancing the powering strength of the triplet quadrupoles Q1-Q3 on either side
of the IP anti-symmetrically: over-powering one side and under-powering the other by
the same amount.

The knob is designed so that a trim setting of 1 will result in a 0.5% change in the
triplet knob powering (individual magnet trims are not used), which creates a waist
shift of ∼43.5 cm to the left or right of the IP depending on the unit setting of the knob.
The definition of the knob is given in Table 4.2. A full definition of the RWS knobs as
implemented and used in the LHC can be found in Appendix C.2.

Circuit Powering ∆

KQX.R[IP] −0.5%

KQX.L[IP] 0.5%

Table 4.2: Definition of one unit of the rigid waist shift knob.

Figure 4.9 shows how applying the knob in a given IR displaces the beam’s waists
away from the IP location, and also shows how the β-functions at the IP are modified.
These were determined in MAD-X simulations, using the β∗ = 30 cm optics of 2022, by
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applying the RWS with different strength settings at IP1 and determining the waist,
both numerically with a fine lattice slicing and analytically as described in [148]. Similar
results are obtained when performing these simulations for IP5, as the design optics are
identical for the two main experiments.
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Figure 4.9: Simulated effect of the designed Rigid Waist Shift knob
as defined in Table 4.2 on the β∗ = 30 cm optics of 2022. The blue
line represents the waist displacement from the design location. The
orange and green lines represent, respectively, the horizontal and vertical

β-function change at the IP as the waist is displaced.

The waist displacement from the design location (blue line) is almost completely
linear with the knob setting. One can note that the minima of the parabolas indicating
the change of β-functions at the IP (blue and orange curves) are not found at exactly
the zero knob setting, which is because the LHC design optics include a very small
waist at IP1 and IP5.

In Fig. 4.10 one can observe how the β-functions are affected by the application of an
RWS, also simulated with the β∗ = 30 cm optics of 2022. In this simulation, the lattice
was sliced to improve the resolution of the data points, which explains the smoother
lines compared to, for instance, Fig. 3.7. One can observe how the (anti-)symmetry
of the optics in the IR is broken when applying the knob (full vs dashed lines): the
horizontal (blue) and vertical (red) β-functions do not mirror each other anymore. Inset
zooms are included around the location of the MQSX magnets (green vertical lines),
showing how the horizontal and vertical β-functions are modified in their vicinity. The
purpose of this setup is detailed in Section 4.4.2.
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Optics Impact and Rematching

Predictably, the application of a Rigid Waist Shift as described above has a strong
impact on the optics across the machine. This is due to the significant change of
β-functions in the triplets, which sends a beating wave from the IR through the rest
of the machine. Applying an RWS with a unit setting of 1, as defined in Table 4.2,
leads to a 20–30% increase in peak β-beating throughout the machine, depending on
the observed beam and plane.

This can be seen in Fig. 4.11, where in simulations an RWS was implemented with a
unit setting of 1 at IP1 and the optics deviations from the nominal scenario were deter-
mined across the machine for both beams. The most affected beam and plane depends
on the setting of the RWS: in Fig. 4.11 beam 1 horizontal and beam 2 vertical are most
affected, but these would be beam 1 vertical and beam 2 horizontal if the RWS was ap-
plied with a setting of −1. Strong outliers can be observed in the vicinity of the IP, which
correspond to the desired deviation at the IP and in the triplets induced by the knob trim.
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Figure 4.11: Simulated β-beating induced across beam 1 in both the
horizontal (blue) and vertical (orange) planes, from applying an RWS as
defined in Table 4.2 at IP1. A 20 to 30% β-beating is observed through

most of the machine, with (wanted) outliers close to IP1.

Such a deviation of the optics has an impact on correction knobs. For instance,
simulations show that the application of the RWS causes a 15% deviation of the |C−|
from the target value set through the LHC global coupling knobs, used for coupling
correction with the arc skew quadrupoles. Additionally, the optics deviations will
change the impact of any errors probed while the RWS is trimmed in, namely the skew
quadrupolar impact on the closest tune approach (see Eq. (2.74)).

In order to limit this impact on the optics and guarantee good measurements under
an RWS, new correction knobs have been developed that make use of individually
powered quadrupoles Q4 to Q10 (included). These knobs tune the optics functions and
rematch them at the edges of the IR. They were designed with the MAD-X code and a
software developed specifically that can create these experimental configurations for a
given IP in the machine [190].

These knobs are obtained from simulations after applying an RWS in a given IR
and iterating several matching routines for quantities of interest at different locations in
the machine. Importantly, no involved magnet sees its powering change by more than
∼3% with the application of these knobs, which allows for respecting the powering
limits of individually powered elements. As the rematching knobs depend on the RWS
setting and optics configuration, many variations are possible and no general definition
table is available akin to Tables 4.1 and 4.2. A full definition of the rematching knobs
for the β∗ = 30 cm optics of 2022 as used in the LHC can be found in Appendix C.3.
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Figure 4.12 shows a comparison of the simulated optics deviation in the beam 1
horizontal plane, induced by the RWS before (blue) and after (orange) applying the
rematching knob, here implemented at IP1. Across the machine the β-beating is brought
down by ∼20% to around ∼5% depending on the beam and plane compared to the
nominal scenario, except for the vicinity of the IP where the desired deviation is kept
unchanged. A 5% β-beating across the machine is an acceptable level as it is similar to
the level of control achieved during normal operation with all corrections trimmed in
(see [124, 184]), as can be seen in Fig. 3.14.

While only beam 1 horizontal is shown in this figure, results are similar for all planes
of beam 1 and beam 2. As the rematching depends on the desired configuration, for a
given optics and setting of the RWS, a knob has to be designed for each beam, at each
IR and for each RWS setting.
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Figure 4.12: Simulated β-beating induced across the machine in the
beam 1 horizontal plane from applying an RWS at IP1, before (blue) and

after (orange) applying the optics rematching knob.

One can notice that, near the IP, the beating is also lowered by the rematching, but
stays high enough to still break the symmetry of the optics in the IR. Figure 4.13 shows
the β-functions around IP1 before (full lines) and after (dashed lines) application of
the rematching knobs. One can observe how the deviation between the two cases is
negligible close to the IP and, importantly, in both cases the symmetry of the IR is
broken compared to, for instance, Fig. 3.7.
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Figure 4.13: Simulated β-functions around IP1 when applying an RWS,
before (full lines) and after (dashed lines) application of the rematching

knobs, with the β∗ = 30 cm optics of 2022.

4.4.2 Application Concept and Simulations

Making away with the optics symmetry of the IR allows to break the locality of any
coupling bump, even a truly local one. As can be seen on the inset zooms of Fig. 4.10,
with the application of an RWS the β-functions at the MQSX magnets change enough
that the

√
βxβy term in Eq. (4.5) are different at the two magnets. Table 4.3 shows

the values of these terms with and without an RWS applied. Phase advances are also
changed, but by a very small amount.

Magnet

√
βxβy [m]

Without an RWS With an RWS
MQSX.3L[IP] 5193.084 5186.603

MQSX.3R[IP] 5199.142 5396.527

Table 4.3: Values of the
√

βxβy term in Eq. (4.5) at the MQSX magnets
around IP1 or IP5 without (left) and with (right) the application of an

RWS, with the β∗ = 30 cm optics of 2022.
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Figure 4.14 shows the coupling RDTs from a closed coupling bump around the IP
created through the colinearity knob, both in the presence (red) and absence (blue) of
an RWS.
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Figure 4.14: Amplitudes of the linear coupling RDTs in the vicinity
of IP1 under a coupling bump, with (red) and without (blue) an RWS.
The vertical green lines represent the positions of the skew quadrupoles
correctors (MQSX.3[RL]1) used to implement the coupling bump. A
colinearity knob setting of 10 and a rigidity waist shift knob setting of 1

were used.
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When applying a Rigid Waist Shift and breaking the optics symmetry of the IR,
one can observe a leakage of the coupling RDTs outside the limits of the initial coupling
bump. These RDTs will then have a residual presence in the machine, which can be
measured and reconstructed from turn-by-turn data from Beam Position Monitors
(BPMs) with more suitable phase advances. As a consequence, under an RWS even a
local coupling bump that would normally be invisible to the rest of the machine will
have a direct impact on the global coupling, measured as the |C−|. This can be seen in
Fig. 4.15, where changes in the setting of the colinearity knob now have a strong effect
on the |C−| when an RWS is applied in the relevant IR.
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Figure 4.15: Impact of the colinearity knob on the global |C−|, calcu-
lated according to Eq. (2.73), with (blue) and without (orange) applying

an RWS.

As previously mentioned, since the bump is not actually perfectly closed the orange
line in Fig. 4.15 is not completely flat and reaches up to ∼ 10−5, which is well below the
measurement accuracy for the |C−|. The behavior seen in Fig. 4.15, though theoretical,
has been experimentally tested and confirmed in the machine [188]. Importantly, this
behavior opens the possibility of using an RWS to probe IR local coupling through the
measured global coupling.

Simulations have been done to investigate the feasibility of finding local coupling
correction settings using an RWS, with the β∗ = 30 cm optics of 2022. At both IR1 and
IR5, a local coupling bump was created by introducing identical tilt errors in triplet
quadrupoles Q3 - thus giving a skew quadrupolar component - and the colinearity knob
was powered for compensation. The full parameter space was explored, both with and
without an RWS applied. Figure 4.16 shows the values of the resulting |C−| when an
RWS is applied. Figure 4.17 shows the resulting IP beam size increase as a ratio to the
nominal beam size across the same parameter space.
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Figure 4.16: Resulting |C−| (Eq. (2.73)) for various combinations of
tilt error and colinearity knob settings, when applying an RWS.
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Figure 4.17: Resulting beam size (Eq. (4.1)) increase for identical
settings of tilt error and colinearity knob settings as Fig. 4.16, but

without an RWS.
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The results of Fig. 4.17 highlight that minimization of the growth is possible, though
a wrong setting would enhance the phenomenon. A strong correlation between beam
size growth from the local coupling bump (without RWS, see Fig. 4.16) and the |C−|
from leaked RDTs (with RWS, see Fig. 4.17) is observed.

Simulations replicating a more complex scenario - akin to operational conditions -
were also performed. In these, tilt errors were introduced in triplet quadrupoles Q3 as
previously to create a closed local coupling bump around the IP. Additionally, some
tilt errors were added to an individually powered quadrupole in IR5 (for instance Q5)
to simulate the presence of the expected residual local coupling errors in the other
main IR, which contribute to the global coupling by the amount of 10−3. Some global
coupling sources were also added with a dedicated knob [191] that bring the global
coupling to 10−2, which was then corrected through a routine and brought down to
∼3× 10−3, a level similar to what can be achieved in the machine [192, 193]. The RWS
and colinearity knobs were then powered to different settings, and the resulting |C−|
and IP beam sizes were determined for all settings combinations.

Similar to the previous studies made for Figs. 4.16 and 4.17, an entire parameter
space of implemented errors and corrections was explored. The evolution of both the
|C−| and the beam size growth at IP1 for one of these simulations can be seen in
Fig. 4.18. These curves would correspond to a vertical line in Figs. 4.16 and 4.17, but
with a realistic scenario.
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Figure 4.18: Resulting |C−| under an RWS (orange) and IP1 beam
size (Eq. (4.1)) without an RWS relative to the nominal scenario (blue),
for various colinearity knob settings. The black dotted line represents
the threshold of a 1% beam size increase from the nominal scenario.

It can be observed that settings minimizing the measured |C−| under an RWS are
very close to minimizing the coupling induced beam size increase without said RWS.
Here, these settings also compensate for the contribution of the other added sources, on



4

4.4. Rigid Waist Shift for Local Coupling Correction 77

top of the local ones. Similarly to previous studies a great correlation is observed, and
across the parameter space one computes a 0.96 Pearson correlation coefficient between
the quantities shown in Fig. 4.18. This confirms the link between the measured |C−|
and the quantities of interest at the IP location. To summarize:

• Thanks to the RWS, sources leading to truly local coupling can be probed through
their forced impact on global coupling.

• Using the correlation properties demonstrated above, one can find settings to
minimize said local coupling and its effects at the IP.

4.4.3 Determining Corrections

The corrections which would compensate only the local sources are determined by
comparing the measured |C−| to simulations, such as the orange line in Fig. 4.18.

In the real machine, some coupling will remain in the arcs due to a non-perfect
global correction and non-local SbS corrections. As the method probes local errors’
impact through the |C−|, it will naturally be sensitive to the global coupling in the
machine, which should be replicated in simulations. Although the overall behavior of
simulations remains similar when including this component, an important change from
the line seen in Fig. 4.18 is the location of the setting that minimizes the |C−|. The
relevance of this property will be discussed below. By comparing measurements from a
colinearity knob scan to simulations - where the former includes the impact of local
errors, but the latter does not - one can single out the contribution of the local sources
to global coupling. This is illustrated in Fig. 4.19.
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Figure 4.19: Resulting |C−| in simulations as done for Fig. 4.18, with
(blue) and without (orange) local coupling sources in IR1.
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Figure 4.19 shows the resulting |C−| values under an RWS during a colinearity
knob scan, for one of the simulation scenarios mentioned previously (Fig. 4.18) (blue),
and a similar scenario in which no local coupling sources were implemented in IR1
(orange). The former represents what would be measured in the machine, including
the contribution of local sources. The latter represents a simulation to compare such a
measurement to, which includes all contributions to global coupling except for the IR
local sources. The difference between the two curves is then fully explained by the local
sources.

Applying a trim of the colinearity knob setting linearly translates the curves of
Fig. 4.19 horizontally. This behavior is valid and verifiable in both simulations and
measurements. Therefore, one looks to determine a colinearity knob trim that, if applied
in the machine, would bring the measurement’s |C−| minimization point to that of the
simulation. As this difference is fully explained by local sources, this trim contains
the information on the local error in terms of colinearity knob setting: powering of
the corrector magnets. In Fig. 4.19 the minima are highlighted with vertical lines and
the aforementioned correction trim is determined from the relative position of these
two minima. The value is different from that of the minimization in Fig. 4.18 as there
global sources are also compensated while this correction aims at compensating only
the local sources.
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Figure 4.20: Relative IP beam sizes when compared to the nominal
scenario (blue) when inputting the local errors used in the study for
Fig. 4.19 (orange) and after applying the suggested correction (green).
The black dotted line represents the threshold of a 1% beam size increase

from the nominal scenario.

When only considering the local sources used for the results in Fig. 4.19 and inputting
the correction trim suggested, one obtains a good compensation of the beam sizes at
IP1. Figure 4.20 shows the impact of these local errors and the effect of applying the
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suggested correction trim. The exactitude and effectiveness of the determined correction
can be improved by performing higher resolution scans of the colinearity knob, but the
values used are representative of what can be done in measurements.

Reproducing the Machine’s Coupling

The reproduction of the machine’s global coupling in simulations becomes necessary
as soon as strong non-IR sources are present, which is likely in the real machine.
Unfortunately the true distribution of sources in the machine is not known, and this
reproduction can then be done in different ways. In studies, various implementations
were tested: random tilts in all quadrupoles, LHC specific knobs [191], longitudinal
misalignment of sextupoles, field errors in specific magnets or random combinations of
the above. The resulting |C−| for these can be seen in Fig. 4.21, where for each scenario
the minimization point is highlighted by a vertical dashed line.
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Figure 4.21: Resulting simulated |C−| under an RWS during a scan of
the colinearity knob, for various implementations of global coupling in
the machine. For each case a vertical dashed line highlights the location

of the minimization point.

In all investigated scenarios the achieved |C−| before applying the RWS is the same
value before (∼ 10−2) and after (∼ 2 · 10−3) applying a correction routine. It was found
that, to the levels of coupling we achieve after correcting the machine the distribution
and implementation of sources had little impact on the minimization point of the |C−|
curve under an RWS, as long as the overall pattern of the f1001 and the level of coupling
measured in the machine were accurately reproduced.
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One can see in Fig. 4.21 how the minimization point is relatively unchanged by
the global coupling implementation method within the precision of the mesh step
used for the scan, which was chosen to reflect that achievable in the machine. As a
consequence, this coupling contribution was simulated using the coupling correction
knobs implemented in the machine, as determined during earlier commissioning steps.

4.4.4 Rigid Waist Shift Procedure

To summarize so far, two tools have been developed and presented to tackle local
coupling correction:

• The colinearity knob (Table 4.1) allows adjusting the coupling at the IP without
affecting the rest of the machine, namely previously established corrections.

• The Rigid Waist Shift knob (Table 4.2) allows probing local errors through the
|C−| (Figs. 4.14 and 4.15) and to find a correction setting of the colinearity knob
that will minimize the coupling at the IP (Figs. 4.19 and 4.20).

Using those, the complete correction procedure for local linear coupling is then made
of three steps:

1. Firstly, calculating and applying a correction of the IR contribution to global
coupling based on RDTs from turn-by-turn measurements, using the SbS technique.

2. Secondly, breaking the optics symmetry between the right and left-hand side of
the IP by applying an RWS, and performing a scan of the colinearity knob.

3. Finally, analyzing the data and comparing them to simulations in order to find a
colinearity knob adjustment that minimizes the global coupling, without impacting
the correction found in step 1.

These measurements can be performed for each IR and for each beam, and the
subsequent determined corrections can then be directly applied in the machine.

4.5 Local Coupling Correction in the LHC 2022 Commission-
ing

Below are presented experimental results of local coupling correction in the LHC’s first
year of Run 3, during the 2022 commissioning, using the RWS procedure presented
above. One can refer to Appendix E for information on the fills used for experimental
measurements.

4.5.1 Segment-by-Segment Corrections

In October 2021 a week of beam tests was done in the LHC at injection energy. From
the measurements at 450GeV a first set of local coupling corrections were calculated for
each of the four main IRs using the segment-by-segment technique. Figure 4.22 shows
the segment-by-segment results for the absolute value of the f1001 RDT in IR5, from
the 12th BPM left to right of IP5. The vertical grey line indicates the location of the IP
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in the segment. Due to the skew quadrupole correctors in the IRs being single aperture
magnets, one needs to find a single powering setting that works for both beams and
both are shown on the figure.
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Figure 4.22: Propagation of the measured |f1001| (blue) around IP5
(dashed grey line) and of the reconstructed values from the determined

correction (orange), measured at 450GeV and β∗ = 11m.

One can see that the determined correction in IR5 matches the propagated measure-
ment within the tolerance of the error bars at the edges of the segment. This guarantees
a good compensation of the IR’s contribution to global coupling.
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During the LHC Run 3 commissioning, local coupling corrections determined during
the previous year’s beam test were trimmed in the machine from the start. After
reaching the β∗ = 30 cm optics, where the machine is more sensitive to local errors, a
noticeable deviation around IP1 was observed and a refinement of the correction was
determined, still with the segment-by-segment technique. Figures 4.23 and 4.24 show
the effect of the new correction on the real and imaginary parts of the f1001 RDT in
the segment, respectively.
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Figure 4.23: Propagation of the measured ℜf1001 (blue) around IP1
(dashed grey line) and the reconstructed values from the determined

correction (orange), measured at 6.8TeV and β∗ = 30 cm.
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Figure 4.24: Propagation of the measured ℑf1001 (blue) around IP1
(dashed grey line) and the reconstructed values from the determined

correction (orange), measured at 6.8TeV and β∗ = 30 cm.

The beating observed from the old correction was re-matched thanks to a setting
adjustment where the IR1 right-hand side corrector’s powering was changed by 10−4m−2.
The final correction settings determined with the segment-by-segment technique and
trimmed in the machine at the four main IRs can be found in Table 4.4, along with
their counterpart values from Run 2 for comparison.
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IR Circuit
K1S [10−4m−2]

2016-2018 [184] 2022 SbS

IR1
RQXS.3L1 11 8

RQXS.3R1 7 7

IR2
RQXS.3L2 −14 −14

RQXS.3R2 −14 −14

IR5
RQXS.3L5 7 6

RQXS.3R5 7 6

IR8
RQXS.3L8 −5 −5

RQXS.3R8 −5 −5

Table 4.4: Local IR skew quadrupole correctors powering at the four
main LHC IRs as determined with the segment-by-segment technique in
the 2022 commissioning and their values as used during the LHC Run 2.

4.5.2 Rigid Waist Shift Corrections

The RWS method was implemented in both IR1 and IR5 at 6.8TeV and β∗ = 30 cm to
determine final correction settings in the form of adjustments from the SbS corrections
presented above. Relevant fills used for these measurements can be found in Table E.3.

As a first step, the validity of the experimental setup was verified by trimming
the RWS in the machine and then checking the efficiency of the optics rematching
knobs. Figure 4.25 shows the β-beating across the machine for beam 1 before any knob
application (yellow), from applying the RWS in IR5 (blue) and after the application of
the optics re-matching knob (red). Similar checks were done for both beams and both
IRs. The β-functions in these measurements are reconstructed with the OMC codes
according to [194].

The measured impact is in agreement with what was expected from earlier simulations
(see Section 4.4.1), leading to a 15-25% additional β-beating in the machine depending
on the observed beam and plane; while the re-matching knob brought this beating back
to about 5% where it was previously kept thanks to existing corrections. Considering
the state of the machine at the time of these measurements, it can be considered that
the optics re-matching shows great efficiency. Naturally, some strong deviations are
noticed close to IP5 (going out of range of the y-axis) as the optics there are changed
on purpose, but also because β-function reconstruction close the IPs is of relatively low
quality.

After confirming the validity of the optics knobs and with the waist shift in the
machine, scans of the colinearity knob (Table 4.1) were performed. At each setting, a
few measurements were taken by method of beam excitation, from which the coupling
RDTs were computed. As the optics are affected - and re-matched - differently for
beam 1 and beam 2, a scan of the colinearity knob was performed for each beam and for
each IR. Different scans were done with different granularity due to time constraints.

For each measurement, the RDTs across the machine are normalized to the base
case with no RWS, global coupling corrected and no colinearity knob trim. Only then
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Figure 4.25: The beam 1 β-beating observed at 6.8TeV and β∗ = 30 cm
for the corrected machine (yellow), from the implementation of the RWS
in IR5 (blue) and after applying the optics re-matching knob (red). The
highlighted area (orange) shows where magnetic elements are affected by

the knobs.

is the |C−| computed according to Eq. (2.73). Then the variations due to the changes
of the colinearity knob are visualized and compared to simulations. In said simulations,
the global coupling of the machine is reproduced by introducing the coupling correction
knobs implemented in the machine at the time of measurements.

In Figs. 4.26 to 4.29 comparisons are shown between simulations and scan measure-
ments at IR1 for beam 1 and beam 2, then IR5 for beam 1 and beam 2, respectively.
The delta between minimization settings, corresponding to the suggested correction
adjustment, is highlighted on each plot. The relatively low range of achieved |C−|
values is due to the aforementioned RDTs normalization. The noticeably different
behavior of beam 1 and beam 2 simulations is explained by the different coupling
situation in each beam: throughout commissioning beam 2 has required only small
global coupling corrections while beam 1 required significantly stronger ones, as well
as local adjustments for different arcs. As these are reproduced in simulations, this
difference in behavior is unsurprising.

In Figs. 4.26 to 4.29, simulations for beam 2 suggest that the (small) repro-
duced global coupling has little effect on the procedure, and the colinearity knob
scan could almost be used alone to determine the corrections. For beam 1 simula-
tions, however, the impact of the reproduced global coupling appears much more
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Figure 4.26: Measurement scan done at IR1 for beam 1 (red) and
simulations for the same setup (blue). The minima of both curves
are highlighted by vertical dashed lines and the delta between the two,

suggesting the remaining error to correct, is displayed on the graph.
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Figure 4.27: Measurement scan done at IR1 for beam 2 (red) and
simulations for the same setup (blue). The minima of both curves
are highlighted by vertical dashed lines and the delta between the two,

suggesting the remaining error to correct, is displayed on the graph.
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Figure 4.28: Measurement scan done at IR5 for beam 1 (red) and
simulations for the same setup (blue). The minima of both curves
are highlighted by vertical dashed lines and the delta between the two,

suggesting the remaining error to correct, is displayed on the graph.
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Figure 4.29: Measurement scan done at IR5 for beam 2 (red) and
simulations for the same setup (blue). The minima of both curves
are highlighted by vertical dashed lines and the delta between the two,

suggesting the remaining error to correct, is displayed on the graph.
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substantial, as was the case in the machine, and this highlights the need to com-
pare the scan measurements to simulations. Overall, this comparison is needed
in the case that there are significant coupling errors in the arcs. It is worth not-
ing that both beams’ measurements converge to similar correction suggestions.

Table 4.5 shows a summary of the suggested correction settings for each beam
and IR. While slightly different corrections are suggested from independent scans of
beam 1 and beam 2, it is possible that both values are simultaneously true. Indeed,
while most of the error contribution is expected to come from the dual-beam triplet
quadrupoles and be common to both beams, errors in double aperture magnets Q4
to Q10 would affect each beam individually and force a divergence of the suggested
correction adjustments for each beam.

Scan
Suggested ∆k [10−4m−2]

Beam 1 Beam 2

IR1 −3.5 −3

IR5 −2 −1.5

Table 4.5: Correction adjustments suggested from the Rigid Waist Shift
scans analysis, on top of the existing segment-by-segment corrections

that were in the machine (see Table 4.4).

Furthermore, the orbit and hence feed-down but also the β ratio between sources
and correctors are different for both beams, which could explain part of the difference.
As the main contributors to the error are the triplets, it is not unsurprising to obtain
similar correction suggestions for both beams.

Some more measurements were performed with an opposite setting of the RWS in
both IRs that did not yield sensible correction suggestions, which have not been shown
here. For completeness, these are exposed in Appendix D together with the suspected
reasons for each one’s failure.

4.5.3 Luminosity Confirmation

Later on during the 2022 physics run, beam time was allocated to trim in the suggested
adjustments from Table 4.5. The impact of the corrections was assessed based on
instantaneous luminosity measurements at the time of the trims. Time was found to
perform measurements of the efficiency of corrections in each IR at both β∗ = 30 cm
and β∗ = 42 cm. Information on the fills used can be found in Table E.4.

For each measurement, trims around the suggested correction adjustments were also
performed in order to look for the best local setting, which might not necessarily have
been found by the method. Below are shown data from the trims at β∗ = 30 cm only,
while β∗ = 42 cm results are compiled in a later table.

Figure 4.30 shows the trim performed at IR1 (blue) and subsequent measured lumi-
nosity changes at the ATLAS experiment (orange). The light blue area highlights the
trim values suggested by the RWS method, which vary for beam 1 and beam 2. The in-
stantaneous luminosity signal slightly trails up after the end of the correction adjustment
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trim as the ATLAS experiment publishes a time-averaged value. A great improvement
in luminosity can be observed from the trim, with an almost 10% improvement from
the adjustment.
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Figure 4.30: Trim of the colinearity knob setting (blue) and observed
IP1 instantaneous luminosity change (orange) at 6.8TeV and β∗ = 30 cm.
The blue area highlights the trim values suggested by the RWS method,

which varies for beam 1 and beam 2.

Figure 4.31 shows the trim performed at IR5 during the same fill. Once again the
trim of the colinearity knob is shown in blue and the recorded luminosity change at the
CMS experiment in orange. Similarly to Fig. 4.30, the light blue area highlights the
trim values suggested by the RWS method. The luminosity data outliers observed in
the plot are either luminosity measurement artifacts or changes from adjustment to
the head-on scheme and can be safely dismissed, as they are located outside the time
periods of the trims.

Unfortunately, due to higher priority tasks for the operators at the time, the trim
was not completed in a single go to the target value and as a result the luminosity
decreased in the time between the different parts of the trim. Figure 4.32 shows a cut
view of the data, where the downtime in between the various parts of the trim has
been left out (notice the cut in the horizontal axis). The overall improvement from the
complete trim is estimated from the individual observed luminosity improvements of the
different parts of the trim, and amount to an almost 4% increase from the adjustment.

Table 4.6 gives a summary of the observed luminosity improvements for each per-
formed trim, at both β∗ = 30 cm and β∗ = 42 cm. Overall great improvements are
obtained throughout, with the largest gains recorded for IP1. It is expected that lower
gains are observed at higher β∗ as the

√
βxβy term of Eq. (4.4) is substantially lower in

the triplets for the less squeezed optics, resulting in a smaller effect of any tilt error. It
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Figure 4.31: Trim of the colinearity knob setting (blue) and observed
IP5 instantaneous luminosity change (orange) at 6.8TeV and β∗ = 30 cm.
The blue area highlights the trim values suggested by the RWS method,

which varies for beam 1 and beam 2.
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Figure 4.32: Zoomed view of the colinearity knob setting (blue) and
observed IP5 instantaneous luminosity change (orange) at 6.8TeV and
β∗ = 30 cm. The blue area highlights the trim values suggested by the

RWS method, which varies for beam 1 and beam 2.
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is also expected that there be a smaller improvement at the CMS detector based on the
numbers in Table 4.5: a lower suggested adjustment indicates a smaller coupling error
remains in IR5 than in IR1 after segment-by-segment corrections, and the subsequent
smaller applied correction recovers less luminosity.

Experiment
Luminosity Gain [%]

β∗ = 30 cm β∗ = 42 cm

ATLAS (IP1) 9.7 5.2

CMS (IP5) 3.5 1.5

Table 4.6: Instantaneous luminosity gains observed at the main experi-
ments ATLAS and CMS from the method’s suggested corrections.

The adjustments determined with the RWS have been incorporated into the nominal
corrector settings and the LHC now uses the resulting skew quadrupole powerings in
normal operation. Table 4.7 gives a summary of the final settings at the two main LHC
IRs as well as a comparison to their values in previous years, as an update of Table 4.4.

IR Circuit
K1S [10−4m−2]

2016-2018 [184] 2022 SbS 2022 RWS

IR1
RQXS.3L1 11 8 11.5

RQXS.3R1 7 7 3.5

IR5
RQXS.3L5 7 6 4

RQXS.3R5 7 6 8

Table 4.7: Final values of local IR skew quadrupole correctors powering
at the two main LHC experiments, as determined with segment-by-
segment (middle), compared to the values used in the LHC Run 2 (left)

and the values after RWS adjustments (right).

4.5.4 Comparison to Expectations

Simulations were performed to compare the observed luminosity improvements to what
one would expect from correcting the suspected local errors. As the adjustments were
determined in terms of unit setting of the colinearity knob, one can consider these an
accurate representation of the error that was left - and corrected - in the machine. For
instance, a correction of ∆colin = 5 suggests that the corrected local error in the machine
could be reproduced by introducing a −5 trim of the colinearity knob in simulations.

In these simulations, done at 6.8TeV using the 2022 optics, the nominal machine
setup was reproduced and the suspected errors at either IR1 or IR5 were introduced
in the form of a powering of the colinearity knob with the opposite values as those
from Table 4.5. Beam sizes were determined (Eq. (4.1)) for both beams in each case:
with the trim of the colinearity knob, corresponding to the errored case; and without
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any trim, corresponding to the corrected case. From these, instantaneous luminosities
were determined according to Eq. (4.2). Figure 4.33 shows the expected values from
simulations as well as the measured values as reported in Table 4.6.
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Figure 4.33: The expected (lines) and observed (triangular markers)
instantaneous luminosity changes at 6.8TeV for the various optics in
the LHC cycle, for IP1 (blue) and IP5 (orange). Vertical dashed lines

indicate the β∗ = 30 cm and β∗ = 42 cm data points.

While the expected luminosity gains at IP5 are in agreement with the observed
ones, some discrepancies are present for IP1 data and a factor ∼1.26 between the
measurement and prediction is present.

.
As will be seen later on in Section 4.7, similar measurements show a much
better agreement with IP1 simulation predictions using the same calculations
as in Fig. 4.33. Those measurements were taken later on in the year, with
higher intensity beams - thus a higher quality of the luminosity signal -
and better detector setup and calibration. This leads us to believe the IP1
luminosity measurement in Fig. 4.33 is an underestimation of the actual
values. The expected value for the IR1 trim, from measurements presented
in Section 4.7, would be an 11.6% luminosity increase at β∗ = 30 cm.

4.6 Relevance to Other Colliders

For any collider the requirement of small β-functions for collisions is a key design
parameter, and leads to using a doublet or triplet of quadrupoles to achieve the
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necessary intense focusing of the beams at the IP. On either side of the collision point,
in the drift space leading to the first quadrupole the β-functions evolve as:

β(s) = β∗ + s2/β∗ . (4.6)

where β∗ is the β-function at the IP and here s denotes the distance from the IP.
Using L∗ as the length of this drift space, the phase advance from the IP to the first
quadrupole is expressed as:

µ =

∫ L∗

0

1

β(s)
ds =

∫ L∗

0

β∗

β∗2 + s2
ds , (4.7)

which one can integrate to obtain:

µ = β∗
[
1

β∗ tan
−1

(
s

β∗

)]L∗

0

= tan−1

(
L∗

β∗

)
. (4.8)

Then, for traditionally L∗ ≫ β∗ one gets:

µ ≃ tan−1 (∞) ≃ π

2
. (4.9)

As a consequence, for a typical collider layout, the phase advance from left to right
doublet / triplet quadrupoles is ∼ π. This can be seen in Fig. 4.34 for the FCC-ee [195]
V22 lattice in the Z operation mode, which uses an asymmetric doublet of quadrupoles.
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Figure 4.34: Phase advances relative to IP5 in the FCC-ee V22 lattice,
in the Z operation mode at 45.6GeV and β∗ = 10 cm.
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As a further direct consequence, tilts in these quadrupoles are likely to create a
coupling bump around the IP. This can be seen, again for the FCC-ee V22 lattice, in
Fig. 4.35.
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Figure 4.35: Simulated amplitude of coupling RDTs f1001 (blue) and
f1010 (orange) from a 1mrad tilt in the first Q1 quadrupoles around the

FCC-ee’s IP5.

Furthermore, the segment-by-segment limitations encountered in the LHC would also
be present: no observation point is present at the IP, and due to the large β-functions
in the doublet quadrupoles the phase advance from element to element close to the IP
is very close to 0, making the accurate reconstruction of coupling RDTs difficult (see
Section 3.3.3).

These conditions were confirmed in existing and future machines. The High-
Luminosity Large Hadron Collider (HL-LHC) and FCC-hh lattices, being based on the
LHC’s, share the limitations that have been exposed in this chapter. The FCC-ee V22
lattice, as shown above, also exhibits these conditions and could suffer from a close
coupling bump from doublet tilts. Another existing collider, SuperKEKB, has also
encountered non-trivial issues with local coupling in their High Energy Ring [196].

As such, for the aforementioned accelerators but also more generally for most circular
collider layouts, the presented use of a Rigid Waist Shift could provide a useful method
to tackle local linear coupling.
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4.7 Operation with Limited Correctors Availability

Magnet lifetime studies done during the Long Shutdown 2 (LS2) have projected that
some magnets in the main IRs will reach their radiation dose limit during Run 3 [197],
including the MQSX magnets used for local coupling correction. Table 4.8, reproduced
from data presented in [197], shows the expected total received dose for the skew
quadrupole corrector magnets in the main IRs, for various scenarios.

Magnets
Peak Dose [MGy]

After 395 fb−1 After 480 fb−1

MQSX (IR1) 7.5 9

MQSX (IR5) 8 9.5

Table 4.8: Expected total received dose of the MQSX magnets in the
main IRs in Run 3. Table reproduced based on data from [197].

One can notice that the MQSXs at both IR1 and IR5 are expected to surpass their
dose limit of 7MGy during Run 3. The study itself highlights1:

° ±
[. . . ] assuming a limit of 6MGy for the corrector magnets in the triplet,
this is expected to be reached in the four MCBX.1 and four MQSX by the
end of 2024.

It is then warranted to prepare for one or more failures at some point during
Run 3, which would drastically impact the LHC’s operations, potentially shutting the
machine down depending on the severity of the failures. It was therefore necessary
to investigate the operational impact of losing one or more MQSX magnets in the
main IRs, specifically in terms of machine safety and luminosity production. For this,
different failure scenarios and containment options were investigated that would try
and compensate for one or more missing correctors. The MQSX magnets in IR2 and
IR8, though not considered at risk, were nonetheless included in some of these studies.

4.7.1 Operating with a Missing Corrector

Should an MQSX stop functioning, the priority is to ensure safe machine operation.
In the first place, the impact of a single corrector failure around one of the main
experiments was investigated.

Correction Load Carry Over

As seen in Section 4.3, the contribution of one magnet can be replicated by its counterpart
with a similar powering setting. For instance, looking at Table 4.7, if the MQSX.3R5
were to fail the loss of contribution to global coupling would be that of an MQSX magnet
with K1S = −4× 10−4m−2 at this location. It could be compensated by modifying the
powering of MQSX.3L5 by 4× 10−4m−2, since the optics conditions at the correctors

1Although this quote mentions 6MGy this value refers to the MCBX magnets and the MQSX dose
limit is indeed 7MGy.
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are identical. This compensation corresponds to a trim of −4 units of the colinearity
knob around IP5 (see Table 4.1).

As such, should one MQSX fail it would still be possible to compensate for the
IR’s contribution to global coupling by properly powering its counterpart. It would
therefore be possible to fulfill the first correction stage mentioned in Section 4.2 and to
squeeze the beams down to β∗ = 30 cm. Minimizing coupling at the IP, however, would
not be possible anymore as it requires trimming both magnets simultaneously. The
operational impact of losing one of the correctors would then be that of a potentially
strong coupling at the IP.

Simulations were done with the MAD-X code to assess the impact of missing a
specific corrector magnet and compensating its effect by carrying its correction setting
over to its counterpart on the other side of the IP. In these simulations the power settings
from Table 4.7 were used, as determined with the RWS, and beam size increases were
determined from Ripken parameters according to Eq. (4.1). From these, the changes in
instantaneous luminosity were calculated according to Eq. (4.2).

Figure 4.36 shows the expected instantaneous luminosity reduction from the nominal
case for various trims of the colinearity knob corresponding to different missing MQSX
magnets, for different β∗ optics.
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Figure 4.36: Expected instantaneous luminosity reduction for various
trims of the colinearity knob at IP1/IP5 for different β∗ optics. Each line
corresponds to the trim necessary to compensate for a specific corrector’s

powering.

Should the most powered correctors fail, the instantaneous luminosity at the affected
IP is expected to drop by up to 60% at β∗ = 30 cm. Importantly, as the powering
limit of the MQSXs is K1S = 30 × 10−4m−2, it would be possible to compensate for
any single failing MQSX.
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The possible impact of this change on the aperture was also considered. Figure 4.37
shows the relative change in beam size around IP1 with the β∗ = 30 cm optics of 2023,
from the most important trim: carrying over the correction of the MQSX left of IP1 to
the MQSX right of IP1.
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Figure 4.37: Relative change in horizontal (blue) and vertical (orange)
beam sizes from carrying over the correction of the MQSX left of IP1 to

the MQSX right of IP1.

The beam sizes in the affected case are kept very close to the nominal ones at less
than a 1% deviation through the machine, being significantly affected only in the space
between the left to right Q1 quadrupoles. This behavior was also observed in [186]
where the coupling RDTs themselves are only significantly affected in the same space for
a similar trim. Figure 4.38 shows the physical aperture limitations of elements around
IP1 for the β∗ = 30 cm optics, as well as representations of the beam envelopes at the
same locations.

As can be seen in Fig. 4.38 the triplet elements constitute the aperture bottleneck
at β∗ = 30 cm, while the drift space right around the IP is not a constraint for aperture
limitations. One can then conclude that the aperture would not suffer from such a
compensation scheme. Similarly, the impact on Beam-Beam Long Range (BBLR) [102]
interaction should be minimal as the increase is only significant within a meter of the
IP location itself.
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Figure 4.38: Magnets powering (top) and horizontal (middle) and
vertical (bottom) aperture limitations around IP1, at β∗ = 30 cm. The
blue and red shaded areas represent, in each plane, the 3σ, 6σ and 11σ
beam envelopes, from darkest to lightest respectively. The grey blocks

represent the physical locations of various elements.

Experimental Measurements of Carry-Over

Measurements were conducted in late 2022 to assess the accuracy of these predictions.
A comparison of instantaneous luminosity loss from carrying over the left corrector’s
powering to the right one at IR1 is shown in Fig. 4.39, measured at β∗ = 30 cm. Carrying
over the correction to the left magnet was not done due to time constraints.
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Figure 4.39: Instantaneous luminosity drop from correction carry-over
to the right MQSX at IR1 at β∗ = 30 cm. The vertical grey line indicates

the nominal operating point after the RWS correction adjustments.

In Fig. 4.39, the horizontal axis indicates the colinearity knob deviation from the
baseline powering of the correctors determined with the segment-by-segment technique
(see Table 4.4). The vertical grey line indicates the nominal operating point after
incorporating the RWS correction adjustments (see Tables 4.5 and 4.7), as well as the
starting point of the scan. This means the data point at −0.5 on the horizontal axis
(fourth from left) corresponds to a ∆colin = 3 trim from the normal operating point,
and similarly the data point at 8 on the horizontal axis corresponds to a ∆colin = 11.5
trim, which is the full carry-over of the correction from left to right MQSX.

ò
These are the IP1 measurements mentioned in Section 4.5.4. As one can see
on Fig. 4.39, the luminosity change from a −3.5 units trim of the colinearity
knob (from 0 to −3.5 on the horizontal axis) shows a good agreement with
expectations and leads to an 11.6% increase in the instantaneous luminosity.
It is the same trim as performed earlier in the year, which can be seen in
Fig. 4.30. This time however, the luminosity change is higher than the
9.7% initially measured, and closer to the 12.25% expected in Fig. 4.33. As
this measurement was performed with higher beam intensity and a better
detector calibration it is more trusted.



4

100 Chapter 4. Interaction Region Local Coupling Correction in the LHC

Figure 4.40 shows a similar comparison for IR5, also at β∗ = 30 cm. There again the
nominal operating point corresponds to the RWS adjustment from the SbS corrections
and is indicated by the vertical grey line. Due to time constraints again, however, the
trim could not be fully done when carrying over the correction to the right corrector
(orange line).
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Figure 4.40: Instantaneous luminosity drop from correction carry-overs
in both directions at IR5 at β∗ = 30 cm. The vertical grey line indicates

the nominal operating point after the RWS correction adjustments.

In both Figs. 4.39 and 4.40 simulations and measurements show a reasonable
agreement. Simulations systematically slightly over-estimate the loss of luminosity,
particularly the larger the trim is, but some discrepancy is to be expected as Eq. (4.2)
is a simplified calculation.

Impact Through the Operational Cycle

In Run 3 a β∗-levelling was introduced in the LHC operational cycle to limit pile-up at
the main IPs [198], as mentioned in Section 3.2. As seen in Fig. 4.36 the luminosity
losses depend on the β∗, thus in order to keep operating at the pile-up limit one would
have to take more frequent steps in the levelling, reducing its overall length as well as
the integrated luminosity over the fill.

For instance, the levelling time would be reduced from 8.2 h to 1.23 h in the worst
case, in which the MQSX.3L1 were to fail. Studies were done to assess the impact
of operating with a single MQSX on the integrated luminosity over a fill, with 2023
settings. An initial bunch population of 1.8 × 1011 protons per bunch was assumed,
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with 2380 bunches per beam and a β∗-levelling from 1.2m down to 30 cm. The resulting
integrated luminosity loss over a day is shown in Fig. 4.41, for each missing MQSX and
for two different baselines of levelled instantaneous luminosity [199].
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Figure 4.41: Integrated luminosity loss over a day for each missing
MQSX and for two different baselines of instantaneous luminosity. Data

is a courtesy of S. Kostoglou .

Over a day, the integrated luminosity loss reaches upwards of 25% for the worst
case - failure of MQSX.3L1 -, relatively to the nominal scenario with an instantaneous
luminosity target of 2.2× 1034Hz cm−2. Given that the impact on the instantaneous
luminosity increases with decreasing β∗, as seen in Fig. 4.36, when operating with lower
intensities the impact would be bigger as the levelling would have the machine stay at
lower β∗ for longer. It is also expected that operating with settings at the Beam-Beam
Long Range limit would only improve the loss by a few percentage points in the worst
case. An MD is planned in 2023 to assess both the feasibility of this approach and the
accuracy of these predictions.

4.7.2 Operating with Two Missing MQSX

There is a possibility that both MQSXs in a given IR fail. In this case the compensation
of a corrector’s contribution by its counterpart - as described in the previous section -
would no longer be possible, and the uncompensated coupling coming from the IR would
be too large at small β∗ for safe machine operation. Simulation results suggest that
it would not be feasible to squeeze to the optics below β∗ = 90 cm, and new solutions
would be needed in order to be able to provide collisions to the experiments.

https://orcid.org/0000-0002-7387-904X
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Tilt of Triplet Elements

A potential solution to mitigate the impact of corrector failures is to physically tilt
a close triplet quadrupole, introducing a skew component in the element’s field and
relying on this contribution to perform the correction in place of the defecting corrector.

Studies were performed to determine the amount of Q2 or Q3 tilting that would
be needed to take on the coupling contribution of its closest MQSX, assuming it
stops working. In each study an error was introduced in the form of the corrector’s
opposite powering, and a simple parametric scan was made of the introduced tilt angle.
Figure 4.42 shows the coupling RDTs’ amplitude at IP1 for various tilts of Q3 on the
left of the IP, assuming a failure of the left skew quadrupole MQSX.3L1. Notice the log
scale of the vertical axis.
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Figure 4.42: The amplitude of the coupling RDTs at IP1 for various
tilts of the triplet quadrupole Q3 left of the IP, assuming a failure of the

skew quadrupole corrector MQSX.3L1.

Figure 4.43 shows the coupling RDTs’ amplitude at IP5 for various tilts of Q2 on
the right of the IP, assuming a failure of the right skew quadrupole MQSX.3R5. On
each figure, the location of the tilt setting that would minimize coupling at the IP is
highlighted with a vertical red dashed line. In all studied cases a good compensation
can be achieved.

Table 4.9 shows the determined tilt angles necessary for compensation for each
scenario. The necessary tilts using Q2 or Q3 range between −2 and 2.85mrad, with
the most impactful ones at IR1 and IR5 - due to higher β-functions in the triplets -
between −1.65 and 2.325mrad. Note that it would also be possible to use lower values
by tilting both elements simultaneously, in opposite directions.
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Figure 4.43: The amplitude of the coupling RDTs at IP5 for various
tilts of the triplet quadrupole Q2 right of the IP, assuming a failure of

the skew quadrupole corrector MQSX.3R5.

It is worth noting that tilting a triplet quadrupole by that much has very little impact
on the optics. For instance, in the case that the MQSX.3L1 fails and is compensated
by a tilt of the Q3 close to it, an additional 0.16% β-beating would be added through
the machine, which is negligible.

IR Failing Magnet K1S [10−4m−2]
Necessary Tilt for Compensation
Q2 Tilt [mrad] Q3 Tilt [mrad]

IR1
MQSX.3L1 11.5 −1.65 2.325

MQSX.3R1 3.5 0.5 −0.7

IR2
MQSX.3L2 −14 −1.97 2.85

MQSX.3R2 −14 1.97 −2.85

IR5
MQSX.3L5 4 0.575 −0.8

MQSX.3R5 8 −1.15 1.6

IR8
MQSX.3L8 −5 −0.725 1

MQSX.3R8 −5 0.725 −1

Table 4.9: Necessary tilt angles of either Q2 or Q3 triplet elements to
compensate for the loss of the closest skew quadrupole corrector/ Results
are shown for IR2 and IR8, but only IR1 and IR5 are at risk of failure.
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Discussions were engaged with the Machine Protection group to determine the
practical feasibility of such a solution, and several issues were raised. Firstly, the LHC
triplet alignment systems are not meant for angular alignment, but for vertical alignment
of the magnet assemblies. Additionally, the alignment system relies on supporting jacks
positioned at each end of the assemblies: two bellows on the IP side and one on the
non IP side for Q2 triplets, for instance [200, 201]. For this reason, with only three
supporting jacks it is not possible to achieve a pure tilt of the assembly, and an attempt
to do so would result in both a partial tilt and misalignment of the magnet [202].
Finally, due to the possibility of damaging what is arguably the most important magnet
assembly in the machine during the procedure, this solution would only be used as a
last resort.

Warm Skew Quadrupole Replacement

Another solution would be to install a new warm skew quadrupole magnet as replacement
either close to triplet Q3, to the separation dipole D1 or to quadrupole Q4, on the
non-IP side [203]. This option is still, however, in early stages of study and will not be
developed in this document.

4.8 Summary

In the Large Hadron Collider, corrections of local Interaction Region linear coupling are
of importance to keep a good control of beam sizes at Interaction Points, to guarantee
luminosity performance of the machine and to prevent any significant impact on the
beam dynamics. So far the correction of local linear coupling has been performed
by finding a powering setting of the dedicated skew quadrupole correctors with the
Segment-by-Segment technique, which aims to compensate for the Interaction Region’s
contribution to global coupling in the machine. However, the technique suffers from
inherent weaknesses that do not allow for a correction of linear coupling at the IP, and
other existing methods or observables have not sovled the issue.

We have presented a new method - the Rigid Waist Shift - which was developed
specifically to correct for local linear coupling at the IP, and is based on the controlled
perturbation of the optics in the Interaction Regions. The method allows one to
determine a powering adjustment of the correctors from the values determined with
Segment-by-Segment that optimizes the coupling at the IP location. The method’s
validity has been demonstrated in simulations and with experimental data taken in
the LHC 2022 commissioning, where the determined corrections led to a measured
instantaneous luminosity gain of 9.7% and 5.2% at the ATLAS and CMS experiments,
respectively. These corrections are now the baseline values used in the machine for
physics production. The relevance of this method was investigated for other existing
and future colliders, and we have shown that for most circular collider layouts the Rigid
Waist Shift could be a viable solution to tackle local linear coupling.

Magnet lifetime studies conducted during the Long Shutdown 2 have shown that
the dedicated correctors are expected to reach their radiation dose limit during Run 3,
and it is realistic to expect one or more failures. Studies have been performed to
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determine the impact of such failures on the machine’s performance and assess the
viability of potential solutions. It was shown that one could compensate for the loss
of a single corrector and guarantee both safe machine operation and squeezing of
the beams down to collision configuration, but at the cost of luminosity. Estimates
of expected instantaneous luminosity losses were determined and confirmed through
experimental measurements; and the impact over a complete physics fill with the 2023
configuration was extrapolated. Potential solutions were investigated to compensate for
the simultaneous loss of both correctors in a given Interaction Region, but these are
still at the stage of early studies.
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CHAPTER 5

Machine Learning for Interaction Region
Local Coupling

Machine learning methods have found their application in a variety of fields including
technology development, scientific research, medical diagnosis and business insights.
The now widespread application of machine learning techniques demonstrates their
applicability to various challenges and tasks.

In recent years, machine learning has been successfully applied to various areas of
accelerator physics [204–214], including at the Large Hadron Collider (LHC) [139, 215,
216]. The primary purpose of the work presented hereafter is to explore the possibility
of applying machine learning techniques to the subject of local Insertion Region (IR)
coupling in the LHC.

5.1 Relevant Concepts of Machine Learning

Machine learning can be seen as the intersection of statistics and computer science.
The key characteristics of machine learning are described by T. Mitchell as [217]:

° ±
Machine learning techniques aim to build computer programs and algorithms
that automatically improve with experience by learning from examples with
respect to some class of task and performance measure, without being
explicitly programmed.

A key characteristic distinguishing machine learning from conventional programming
is the program’s ability to automatically achieve performance improvements based on
provided data. This section provides a quick introduction to some relevant machine
learning paradigms and concepts, primarily derived from [217, 218] where one can find
detailed discussions on the subject. The focus is kept on concepts relevant to the work
presented in this chapter.

5.1.1 Defining a Machine Learning Task

In the context of machine learning, learning refers to the process of improving per-
formance. Generally speaking a model can improve its performance by adjusting its
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parameters with respect to provided data, in order to refine the approximation function
that is derived from that data. It is important to note that a trained model will always
remain an approximation of the relationship in the underlying data, but with good
enough training this approximation should be sufficiently reliable for the specific task
at hand. The requirements on the model’s performance in terms of accuracy, precision
and reliability depend on a particular task and application domain.

The chosen performance criteria, the type of experience to be gained through learning
and the specific approach and algorithm are specific to the task that must be learned.
These three parameters - task, measure of performance and source of experience - are the
fundamentals of a well-defined machine learning problem. In practice, it is reflected in
the selection of an appropriate learning method and function approximation algorithm,
definition of the loss function and its acceptable values, as well as the preparation of
data. The latter can be non-trivial and require dedicated techniques and algorithms.

5.1.2 Supervised and Unsupervised Learning

Two main approaches are available in machine learning depending on the problem
definition and the availability and structure of the learning examples.

Unsupervised learning is characterized by the use of unlabeled datasets. Unsuper-
vised learning algorithms solve tasks where only input data is available, and are used to
analyze and cluster inputs by discovering patterns in data without the need for human
intervention, hence they are unsupervised. They are suitable for tasks such as anomaly
detection, signal denoising, dimensionality reduction, and feature extraction.

Supervised learning is characterized by the use of labeled datasets. These datasets
are used to train - or supervise - the model to learn how to accurately classify data
or predict outcomes. During the training, predictions are computed from the inputs
and compared to the known corresponding outputs. By adjusting the parameters of
the model - or approximation function - the quantified difference between computed
predictions and correct outputs, the so-called loss function, is minimized. Supervised
learning is typically used for classification and regression tasks. Classification tasks
aim to accurately assign test data into specific categories, and regression tasks aim
to understand and approximate the relationship between dependent and independent
variables in order to predict the outcome of a given input.

5.1.3 Regression Models

In the case of regression problems, the regression function is what is being approximated
by the model. The core model principles are outlined below.

Linear Models

Linear models compute the estimates of the output values using a linear function of the
input variables [219]. For regression tasks, the estimation for the predicted output ŷ of
a linear model is expressed as:

ŷ = w0 +
N∑

i=1

wixi , (5.1)
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where x⃗ is the input vector containing N features, and w⃗ is the vector containing the
learned coefficients of the model, with w0 being the bias. In a simple case (see Fig. 5.1
below) ŷ is a scalar, but it is usually a vector of dimension K. In this case the model
parameters w are then represented as an N ×K matrix.

Typically, linear regression models are trained using the least squares method, which
minimizes the residual sum of squared errors between the predicted and actual output
values. Given a set of N samples from the training dataset, and with y being the true
output for a given sample, the linear model’s parameters are updated during training
with each incoming sample, minimizing:

RSS(ŵ) =
N∑

m=1

(ym − ŷm)
2 . (5.2)

After training, the resulting coefficients should be sufficiently general to generate
accurate predictions for all provided data samples.

Polynomial Regression

Some learning tasks, due to the complex properties of the data, require non-linear
predictors. For instance, this is the case when fitting a one dimensional polynomial
function of degree n:

p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n , (5.3)

where (a0, . . . , an) is a vector of coefficients of size n+ 1. One way to train a model to
approximate such a function is to reduce the problem to linear regression [220]. To do
so one can introduce a mapping such that ψ(x) = (1, x, x2, . . . , xn), which reduces the
problem to:

p(ψ(x)) = a0 + a1x+ a2x
2 + . . .+ anx

n = ⟨⃗a, ψ(x)⟩ , (5.4)

and the optimal vector a⃗ can be found by minimizing the residual sum of squares (RSS)
as in Eq. (5.2).

5.1.4 Generalization, Underfitting and Overfitting

In supervised learning, one tries to train a model capable of making correct predictions
on new, unseen data based on the experience and tuning acquired on the training data’s
known outputs. This ability to predict on new data is called generalization, and is the
most important aspect of the built model [221, 222]. A separate and unrelated test
dataset is usually used in order to evaluate the predictive power of the model. Most of
the time, training and test datasets share enough similarities - properties and relations
in the underlying data - such that the model can accurately predict on the test set.

However, in the case of highly complex models, high accuracy can be achieved
on the training data with poor prediction performance on the test data. When too
complex, models can tend to fit very closely to individual data points in the training
data and extrapolate unexisting relations that will later on perform badly on new data.
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This phenomenon is called overfitting. Similarly, when too simple for the data at hand
the model will not be able to capture the underlying relations and will not be able to
perform accurate predictions even on training data. This is referred to as underfitting.

Figure 5.1 illustrates these concepts by showing an underfitting model, a model that
generalizes well, and an overfitting model. Though simple, this example highlights the
importance of building a model that generalizes well.

x

y

Degree 1
MSE =  4.1 10 1 (± 4.3 10 1)

Model
True function
Samples

x

Degree 4
MSE =  4.3 10 2 (± 7.1 10 2)

Model
True function
Samples

x

Degree 15
MSE =  1.8 108 (± 5.5 108)

Model
True function
Samples

Figure 5.1: Three examples showcasing models approximating (blue) a
true function (orange) after training on provided samples (dark blue). Of
the three models one is too simple and underfits (left), one generalizes
properly (middle), and one is too complex and overfits (right). This plot

was reproduced from the scikit-learn documentation [223, 224].

One of the common ways to identify underfitting or overfitting is to provide validation
data to the model in addition to the training data. The training set is then used to
drive the learning procedure, and after training the error is evaluated on the validation
set. When done properly, the model’s performance on both training and validation sets
should be nearly equal. If the performance on the training set is substantially better,
the model has been overfitted and further adjustments on the model complexity are
then required.

Regularized Regression

A potential approach to avoid overfitting is to apply regularization during the model
training by imposing a penalty on the update of the model’s parameters. As the model
parameters are updated to attempt to fit every incoming input-output pair, the penalty
constrains the change of these parameters such that the model becomes more robust
against variations in the data. This technique is known as L2 regularization, and in the
context of supervised regression ridge regression [225].

A ridge regressor minimizes the residual sum of squares introduced above by intro-
ducing a tuning parameter α which mitigates the potential linear dependencies between
different input variables in the dataset. In the presence of such dependencies, parameters
might be updated inappropriately during training in response to small changes in the
model or the data. The regression task is formulated as:

min
w

||wx⃗− y⃗||22 + α ||w||22 , (5.5)
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where w is the matrix containing the parameters of the model, x⃗ is the input data
vector and y⃗ the vector of targets to be predicted by the model. With higher values
of α the changes in model parameters are reduced at each update step, preventing
overreactions to correlated changes in the data.

It is also possible to mitigate overfitting by decreasing the number of input features
while retaining only uncorrelated features for function approximation by the model.
Lasso regression [226] uses an L1 norm to drive some regression coefficients to 0, which
improves the model in terms of variance and allows for automatic feature selection.

To tune additional model parameters such as the ridge penalty α or the number
of input features to be retained in Lasso regression one can use cross-validation, a
resampling method which consists of randomly dividing the dataset into equally sized
parts. For instance, the dataset is divided into ten subsets and the model is fitted
on nine of those while the loss is computed on the remaining subset. This procedure
is repeated for each of the ten subsets to be used for loss computation, and all ten
estimates of the prediction error are averaged. As the practice is part of the training
process cross-validation is only applied to the training dataset, and the test dataset is
still used only to evaluate a trained model’s performance on unobserved data.

5.2 Identification of Local Coupling Sources

In the previous chapter, the negative impact of local IR linear coupling in the LHC has
been extensively discussed, as well as the necessity of its identification and mitigation.
The precise knowledge of a coupling source’s location and relative strength would
be a valuable asset for further correction. However, it was illustrated in Section 4.2
how simply looking at patterns and jumps in the coupling Resonance Driving Terms
(RDTs) was not always sufficient to accurately pinpoint the location of a source, nor
can it be used in locations with little instrumentation or unfavorable conditions. As
machine learning techniques have found their application in a wide range of particle
accelerator control tasks in the past [139, 212, 215, 227–230], the possibility of applying
machine learning techniques to the detection of local IR coupling sources in the LHC
was explored.

In order to perform a prediction of betatron coupling sources’ locations, one first
needs to compute the f1001 and f1010 coupling RDTs which will serve as input data for
the model. The strength and variations of the coupling RDTs throughout the machine
is then used to estimate the location of coupling sources and their relative strengths.
Though it was highlighted in Section 4.2 that looking at coupling RDTs through the
machine did not allow evaluating coupling at the Interaction Point (IP) (see Fig. 4.5),
their pattern provides information on sources; and the amount of data and nature of
the task fits a statistical model more than a human eye.

In terms of machine learning, this task can be defined as a regression problem that
can be solved by training a model using measurements and corresponding solutions.
Such a regression model requires a large dataset in order to be able to generalize and
produce reliable results. As in the real machine the true location of coupling sources is
unknown, no real-world data is available for model training.
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5.2.1 Dataset Generation

In order to create a training dataset simulations were performed with the MAD-X [59]
code, in which random rotations around the s-axis are introduced into individually
powered IR quadrupoles, in each IR. The tilt generates a skew quadrupolar component
at the affected element and thus turns it into a source of coupling. It has to be noted
though, that in simulations only quadrupole tilts - given by the DPSI variable in MAD-X
- were used to generate coupling sources, which means other potential sources such as
feed-down from higher order magnets were ignored in this study.

When generating the data from simulations, the introduced tilt components form
the training output and the produced coupling RDTs generated from the perturbed
optics functions are the input in the training dataset. The data was generated for both
Beam 1 and 2 using the β∗ = 30 cm optics. Figure 5.2 shows the reconstructed coupling
RDTs for a given simulation in which a truncated Gaussian distribution of tilts was
assigned to all independently powered IR quadrupoles Q1 to Q11 in IRs 1, 2, 5 and 8.
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Figure 5.2: Beam 1 (top) and Beam 2 (bottom) coupling RDTs f1001
(blue) and f1010 (orange) after the implementation of tilt errors in the
independently powered IR quadrupoles Q1 to Q11 in IRs 1, 2, 5 and 8,

for the 6.8TeV and β∗ = 30 cm optics.
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The standard deviation of the applied tilt errors Gaussian distribution was aligned
with expected values from the element alignment precision in the LHC, after discussions
with the alignment group. Each sample of the dataset is obtained by applying the
following steps in simulations:

1. A truncated Gaussian distribution of tilt errors (MAD-X DPSI) is applied to
quadrupoles Q1 to Q11 in IRs 1, 2, 5 and 8 for Beam 1.

2. Quadrupoles located outside the IRs are excluded as these sources can be identified
and compensated by other means.

3. The coupling RDTs f1001 and f1010 are calculated at each BPM from Twiss
parameters for Beam 1.

4. The DPSI values for triplets are exported and applied to Beam 2, as these are
common magnets and should share the error.

5. A truncated Gaussian distribution similar to the one of step 1 is applied to the
remaining quadrupoles Q4 to Q11 in IRs 1, 2, 5 and 8 for Beam 2.

6. Coupling RDTs for Beam 2 are calculated at each BPM as done for Beam 1.

7. The real and imaginary parts of the coupling RDTs at each BPM and for each
beam are concatenated in order to obtain a single vector of values for a given
sample.

To train the model the relation is flipped, and the introduced tilt errors have to be
predicted based on given coupling RDTs computed from the perturbed optics. Therefore,
the coupling RDTs reconstructed at each BPM are considered as model input and a
vector containing the predicted DPSI value attributed to each affected quadrupole is
the desired output. Figure 5.3 shows a conceptual schematic of the dataset generation
and supervised model training process for this given application.
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Figure 5.3: Conceptual representation of the dataset generation and
supervised model training. This diagram is heavily inspired from [216].

A dataset of 50 000 samples (each an individual simulation following the steps above)
was divided into train and test sets (75% and 25% respectively). Each sample pair
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consists of 4424 inputs - real and imaginary parts of each coupling RDT for each BPM
for each beam - and 160 outputs: one DPSI value at each affected IR quadrupole.

In addition, in order to reproduce the uncertainty of the RDTs reconstructed from
measurements, both train and test datasets were augmented by adding Gaussian noise
to the RDTs. The standard deviation of the added noise was determined by a statistical
analysis of several measurements from the LHC Run 2. Figure 5.4 shows the standard
deviation of measured coupling RDTs across Beam 1 BPMs for a batch of measurements
taken on April 3, 2018.
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Figure 5.4: Standard deviation of the coupling RDTs at BPMs for
Beam 1, from a batch of measurements taken on April 3, 2018. These
data points were later divided into IR and arc BPMs to determine applied

noise levels.
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After analyzing several such batches, the following noise levels to be added were
determined:

• Coupling RDTs at arc BPMs were noised with a truncated Gaussian distribution
of standard deviation ranging from 0 to 10−5 absolute error.

• Inner BPMs located in the IRs (number 1 to 6 from the IP) were noised with
a truncated Gaussian distribution of standard deviation ranging from 0 to 10−2

absolute error.

A new dataset was created for each combination of the noise levels mentioned above.
For instance, a given set had IR BPMs noised with a standard deviation of 10−3 and arc
BPMs with 10−6. Similarly, several such datasets were created for different standard
deviation of the introduced tilt errors.

5.2.2 Model Training and Evaluation

In this study models have been evaluated based on their R2 scores, or coefficient of
determination, as well as the normalized mean absolute error between the true output
values and the model predictions. Several models suited for regression tasks were tested,
and a minimal amount of hyperparameter tuning was performed.

Each model was trained and evaluated on the various datasets generated, in order to
assess their performance and usability in various realistic contexts of noise in the data.
A simple least squares linear regression [219] showed very good results on clean data,
however its performance dropped drastically when applied to the noised datasets, down
to unusable accuracy. A decision tree regressor [231] and a random forest regressor [232]
showed poor performance on all datasets. A ridge regressor model (see Section 5.1.4)
showed good performance on both clean and relatively low-noise datasets.

Figure 5.5 shows the test performance of the ridge regressor [225] on noised datasets
depending on the level of noise added to different BPMs, where the impact of noise on
the reconstructed coupling RDTs is apparent. In the top plot the Mean Absolute Error
(MAE) - the sum of absolute errors divided by the sample size - was normalized to the
standard deviation of the applied magnet tilts, σDPSI = 10−4 rad in this case. In this
figure each curve represents a noise level applied to arc BPMs data while each point
on these curves corresponds to a noise level applied to the inner BPMs. While dense,
this representation allows visualizing the performance of the model for a wide range of
noised datasets, for a single given distribution of the tilt errors.

To the left of the plot are data points corresponding to low noise levels in IR BPMs,
where for two of the curves (blue and orange) the model’s performance is excellent.
Moving up one order of magnitude in the arc BPMs noise level (green curve) leads
to a significant performance drop. Points to the right of the plot, corresponding to
increasing noise in IR BPMs data, show a drop in performance down to an unusable
model, with R2 = 0.54 in the worst case.

Figure 5.6 shows histograms of the distributions of true attributed errors, of the
ridge regressor’s predictions and of deviations to the true values. These were obtained
by evaluating the model on a noised dataset with σDPSI = 10−4 rad, σIRs = 10−5 and
σarcs = 10−6 (corresponding to the third leftmost point on the orange curve in Fig. 5.5).
One can notice the histogram of deviations much more narrowly centered on 0 than
that of the attributed errors, which is the sign of good performance.
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tom) of a ridge regressor on various datasets corresponding to different
noise levels added to the coupling RDTs. The σ values indicated cor-
respond to the standard deviation of the Gaussian noise distributions

added to the coupling RDTs data.

Figure 5.7 shows the ridge model’s predictions on a sample from the same noised
test dataset (σDPSI = 10−4 rad, σIRs = 10−5 and σarcs = 10−6), where a good agreement
between the predicted and the assigned true values can be observed. Prediction
performance significantly degrades with the addition of noise, with sometimes predictions
being off by an order of magnitude or more in the worst cases.
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Results showing the best R2 scores obtained by each model on both clean and noised
datasets are presented in Table 5.1, where the ridge regressor clearly outperforms its
counterparts.

Model
R2 Score

Clean Data Noised Data
Ridge Regressor 0.9911 0.8934

Linear Regression 0.9913 0.5638

Decision Tree Regressor 0.1385 −0.0018

Random Forest Regressor 0.0175 −0.0009

Table 5.1: Comparison of the R2 score averaged over 1000 samples
taken from the test dataset for different models. For the results in this
table, the standard deviations of the applied noise were σ = 10−4 for IR
BPMs and σ = 10−6 for arc BPMs. The distribution of tilt errors had a

standard deviation of σ = 10−4 rad.

From the results on clean data or low noise levels in Fig. 5.5 and Table 5.1, one
can view this study as a good proof of principle for the application of machine learning
to IR coupling sources detection. However, with realistic noise levels even the best
performing model is not yet good enough to be used in operation or incorporated in
correction techniques. Nonetheless, while predictions on noised data might not yield
totally accurate numbers they still provide a good indication of suspected locations of
coupling sources, which may be valuable for the alignment group.

There is also potential for performance improvements. Assigning more computing
resources to the determination of model parameters through hyperparameter tuning
is a first step towards better performance, but will not circumvent certain models’
shortcomings. More complex models such as Convolutional Neural Networks (CNNs)
have in the past been successfully used with impressive success on regression tasks -
such as in HEP [233] and recently in optics measurements studies [234] - and would
be a promising tool that could yield better prediction accuracy especially on noised
datasets. Another avenue of improvements would be to create a pipeline where first
a denoising step is applied on the coupling RDTs data using another model trained
for the task - this has been successfully done with auto-encoder neural networks [235]
- before feeding the results to the above prediction models. With good enough noise
cleaning, the prediction models should reach the level of performance displayed in this
study on clean or low noise datasets.

Currently, another limitation of these trained models is the fact that only skew
quadrupole components were considered in the study for the introduction of coupling.
In the real machine, other effects such as field errors in higher order magnets or orbit
offsets in sextupoles would also lead to a coupling contribution, which the models would
try to blame on a quadrupole. However, the effect of higher orders to coupling is small
and assuming most contributions are in the form of tilted quadrupoles is reasonable.
Circumventing the limitation would be feasible but need much more complex and
inclusive simulations.
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5.3 Summary

Following the successful application of machine learning methods to various tasks in
particle accelerators in recent years, we explored the possibility of training machine
learning models to predict linear coupling sources in the LHC IRs in the form of
quadrupole tilts. Several datasets were generated for training, corresponding to realistic
tilt error distributions and noise levels aiming to reproduce measurement uncertainties.

We have shown that specific machine learning models among those tested are capable
of predicting the IR quadrupole tilts by assigning a representative value to specific
magnets with good accuracy on datasets generated from simulations. A ridge regressor
shows the best performance among the tested models, including on datasets with small
amounts of noise.

While usability in operation would require better accuracy on datasets with higher
noise, this is a successful proof of concept for the application of machine learning
techniques to the subject of local coupling corrections in particle accelerators. Poten-
tial improvements such as using previously successful but more complex models and
workflows have been identified which could allow to improve the performance of models
discussed in this study. On the other hand, upgrading to better beam instrumentation
that would yield more precise reconstructed coupling RDTs would also allow the use of
the currently developed models with confidence.
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CHAPTER 6

Optics Studies

The luminosity delivered to the experiments is not the only performance metric from
the point of view of the optics in the Large Hadron Collider (LHC). Measuring and
correcting the phase advance through the machine is crucial for optics measurements
and corrections. Similarly, the measurement and correction of amplitude detuning is
essential in order to understand and prevent instabilities in the machine. These are
relevant not only to the LHC but for any circular accelerator.

Two further optics studies performed during the course of this thesis are presented
in this chapter. The first one is a statistical analysis of the phase measurement error in
the LHC, that aimed to determine the influence of the Beam Position Monitors (BPMs)
on the phase error. The second one is an investigation of the sextupolar contribution to
amplitude detuning in the LHC.

6.1 Phase Error Dependency on BPM Type and Location

In the LHC and many other circular accelerators, BPM measurement data constitutes
the primary source for optics properties computation. Since the computation of global
corrections (see Section 3.3.4) relies on obtaining the best possible phase measurement,
it is valuable to understand the limitations and potential means of improvement of said
measurement. As different BPM types [236] have different measurement resolution,
and higher β-functions lead to better signal-to-noise ratios on measurements, these
measurements and the subsequent results were suspected to be substantially affected by
both the type of BPM used for the measurements and the value of the β-functions at
the measuring devices. This study was performed to investigate the influence of these
properties on the precision of the reconstructed phase values from turn-by-turn data.

In practice, the presence of systematic errors can prevent different sets of measure-
ments from being independent. In the following study measurements are assumed to
be independent and identically distributed normal random variables (IIDs), meaning
repeating the same BPM measurement in identical conditions will spawn a range of
values forming a Gaussian distribution. As no sets of measurements were available that
made use of specific groups of BPMs, a statistical analysis of the phase errors from
previous measurements was needed to differentiate between BPMs of interest. Using the
underlying properties of the measurement-derived distributions, one can numerically
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infer the impact on the phase measurement error of specific subgroups of measuring
devices.

Measurement Data and Underlying Distributions

The methods and considerations below can be applied on BPM turn-by-turn measure-
ment data from synchrotron machines. The following analysis was done on data taken
during the LHC Run 2, in 2018 and at β∗ = 30 cm. Information about the measurement
data used for this analysis can be found in Appendix E. Figure 6.1 shows how BPMs in
the LHC are spread across a wide range of β-functions.
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Figure 6.1: Distribution of BPM β-functions across the machine for the
Run 2 measurements used. A small amount of BPMs located at much

higher β are not shown on this plot.

The sum of two IIDs - which our measurements are assumed to be - is also normal.
Using the characteristic function of a normal distribution

φ(t) = exp

(
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)
, (6.1)

and given that the characteristic function of the sum of two independent random
variables X and Y is the product of their respective characteristic functions, one gets
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itµX − σ2

Xt
2

2

)
exp

(
itµY − σ2

Y t
2

2

)
,

= exp

(
it (µX + µY )−

(σ2
X + σ2

Y ) t
2

2

)
,

(6.2)
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which corresponds to a normal distribution with its mean being the sum of the two
means, and its variance being the sum of the two variances. Respectively, one can
deduce the same for the subtraction of two IIDs by changing the signs.

In particle accelerators, phase advances are measured from BPM to BPM and are,
in the simplest form, the result of a subtraction. As a consequence, the repeated phase
advance measurements obtained from a given BPM pair form a normal distribution
with average phase advance φ̄ and standard deviation σµ. Traditionally, the error on
phase advance is computed via the standard deviation of N measurements:

ε2 =
1

N

N∑

i=1

(
φi − φ̄

)2 . (6.3)

This means the squares of phase advance (and phase advance error) values ε2 form
a chi-square distribution, with a number of degrees of freedom k = N − 1 since the
sample mean is subtracted. Therefore, grouping sufficient BPM pairs of the same type
or with similar β-functions, and computing the distribution of their ε2 one obtains a
chi-square distribution. Figure 6.2 shows those chi-square distributions for different
ranges of β-function combinations between measuring BPMs.
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Figure 6.2: Chi-square distribution of the squares of phase measurement
errors for different BPM combinations, differentiated by the β-functions at
the locations of the measuring BPMs. For this plot a BPM was considered
"low" below β = 100m, "high" above β = 200m and "medium" in

between.

Similarly, the positive real square roots of values from this chi-square distribution
form a chi distribution, which can be derived with a change of variable x = y2. Figure 6.3
shows these distributions for the same β-function ranges seen in Fig. 6.2.
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Figure 6.3: Distribution of the phase measurement errors for different
BPM combinations, differentiated by the β-functions at the locations of
the measuring BPMs. For this plot a BPM was considered "low" below

β = 100m, "high" above β = 200m and "medium" in between.

Computing the Standard Deviation on Phase Advance

A chi-square distribution with k degrees of freedom is the distribution of a sum of the
squares of k independent standard normal random variables. Let Xi represent the N
normal random variables, then the associated standard deviation square is given by

σ2 =
1

N

N∑

i=1

(
Xi − X̄

)2 , (6.4)

where X̄ is the sample mean of the normal distribution. In our analysis codes the
standard error differs slightly from Eq. (6.4) and is defined as:

(SE)2 =
1

N − 1

N∑

i=1

(
Xi − X̄

)2 . (6.5)

The ensemble of σ2 values from different sets of measurements form a chi-square
distribution, such as those that can be seen in Fig. 6.2. The associated Probability
Density Function (PDF) for k degrees of freedom, which is non-zero for positive values
only, is given by:

P (x ≥ 0, k) =
xk/2−1e−x/2

2k/2Γ(k
2
)

. (6.6)
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The mode is the value x∗ that maximizes the PDF. In this case, one can notice that
for positive values where the PDF is defined, x∗ will be the same for P (x) and logP (x).
When adopting the following convention:

A(x) = logP (x) ,

C = −k
2
log(2)− log Γ(k/2) ,

(6.7)

where C is a constant of the given distribution, one can deduce the value of the mode
x∗ through a derivation:

A(x) = C +

(
k

2
− 1

)
log(x)− x

2
,

dA(x)

dx
=

(
k

2
− 1

)
1

x
− 1

2
=
k − 2− x

2x
.

(6.8)

Thus we find that the mode is x∗ = k − 2. For k ≤ 2 the mode is 0 since the PDF
in that case is strictly decreasing with x. Figure 6.4 illustrates this property with a
generated chi-square distribution and its PDF, highlighting the determined location of
the mode from a distribution fit.
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Figure 6.4: A randomly generated chi-square distribution (blue) with
k = 4 degrees of freedom, and a numerically fit probability density
function (orange). The determined mode (red) is indeed located at
k − 2 = 2. Here ’df’ (degrees of freedom), ’loc’ (horizontal offset) and
’scale’ (a scaling factor) are parameters determined during the fit. The

horizontal axis is in units of σ2.
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The standard deviation of the phase advances σµ is then given from the mode by:

σµ =

√
(ϵ2)∗

k − 2
=

√
(ϵ2)∗

N − 3
. (6.9)

For the chi distribution mentioned above and derived through x = y2, the associated
probability density function of Eq. (6.6) becomes:

Pσ(y, k) = P (y2, k)2y ,

Pσ(y, k) =
yk−1e−y

2/2

2k/2−1Γ(k
2
)

,
(6.10)

and the mode of Pσ(y, k) is located at y∗ =
√
k − 1. The determination of the standard

deviation of Eq. (6.9) above becomes:

σµ =
y∗√
k − 1

=
y∗√
N − 2

. (6.11)

However, for non-perfect distributions it is numerically difficult to accurately detect
this mode: one can use the mode of a fitted probability density function (as done in
Fig. 6.4 on a perfect chi-square distribution) but this will suffer from the quality of the
fit; or try to detect the highest bins from the distribution’s histogram but this suffers
from bin width and outlier data points skewing the result.

It is possible to use properties other than the mode. For instance, similarly shown
as previously for the mode, one can compute back the desired standard deviation using
the mean of the chi distribution through:

σµ =
µ

T
,

T =
√
2
Γ((k + 1)/2)

Γ(k/2)
,

(6.12)

where σµ is the phase measurement’s standard deviation, µ is the chi distribution’s
mean, k is the chi distribution’s degrees of freedom and Γ is the Gamma function.

To summarize so far, the desired standard deviation of the phase advance measure-
ments is not available for specific subgroups of measuring BPMs. It is however possible
to compute it back from either the mode of the chi-square distribution of the phase
advance errors squared, or from the mode or mean of the chi distribution of the phase
advance errors, through the following steps:

1. Perform optics analysis on a set of measurements and select part of the data
corresponding to the BPMs of interest.

2. Form either the chi-square or chi distribution of, respectively, their phase advance
errors squared or their phase advance errors.

3. Compute the relevant property from said distribution - mode or mean, depending
on the distribution - and determine the standard deviation of the phase advance
measurements from that quantity.

This way, one can determine the standard deviation on the phase advance reconstruction
for a given arbitrary subgroup of BPMs from the optics analysis of a set of measurements.
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Application to Measurements

Due to the presence of many outliers (see Fig. 6.1) in measurement data and the lack
of a sufficient number of data points in some BPM type categories, in the following the
calculation from either the chi-square (Eq. (6.9)) or chi (Eq. (6.12)) distribution was
used, depending on the specific BPM subgroup.

Optics analysis was run on turn-by-turn data, BPMs were categorized based on their
types [236] and the value of β-functions at their locations, and both the chi distributions
and the chi-square distributions were generated as detailed above. Figure 6.5 shows the
distributions of phase errors for different β-function combinations among standard arc
BPMs, the most common ones in the LHC.
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Figure 6.5: Phase error distributions for different BPM β combinations,
between standard arc BPMs.

For each of these cases, the standard deviation on phase advance is computed using
either Eq. (6.9) or Eq. (6.12). Depending on parameters set for the optics analysis
one might have to apply a correcting factor of

√
N − 1 - with N being the number

of measurements used for the analysis - to compensate for this factor being already
present in calculations performed by the analysis software (choosing to ignore the t-value
correction and single file uncertainty makes this factor appear in the optics calculations
and requires that it is removed in later on analysis). Values inferred with this method
for an LHC Run 2 for standard arc BPMs can be seen in Fig. 6.6, and for warm type
BPMs in Fig. 6.7. Results were computed for all BPM types but are not all shown.

Obtained results are in line with expectations: BPM types with lower resolution
such as warm or wide-aperture BPMs consistently yield a higher standard deviation on
phase advances than for instance standard BPMs. Similarly, phase advances between
measuring BPMs placed at higher β-functions offer better precision.
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Figure 6.6: Computed standard deviations on phase advances between
standard arc BPMs for the LHC Run 2 (2018, β∗ = 30 cm) for different

β-functions combinations of these BPMs.
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Figure 6.7: Computed standard deviations on phase advances between
warm type BPMs for the LHC Run 2 (2018, β∗ = 30 cm) for different
β-functions combinations of these BPMs. Empty slots correspond to

β-functions ranges where no BPMs of this type are present.
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Conclusions

Assuming the normal nature of BPM measurements, one can use the underlying
properties of the chi-square and chi statistical distributions in order to compute the
standard deviation of phase advances while also differentiating between BPMs categories,
without performing measurements involving only the BPMs of interest. The dependency
of said standard deviation on both BPMs’ types and their β-functions was confirmed and
quantified. The ability to accurately compute key statistical values on phase advance
measurements - but also potentially a number of optics values which are computed
from phase - while differentiating between arbitrary BPM categories opens up potential
applications in analysis algorithms, for instance refining the phase accuracy in harmonic
analysis or optimizing BPM selection in the N-BPM method.

6.2 Simulations of Sextupolar Amplitude Detuning in the
LHC

As mentioned in Section 2.3.5, a measurement of the machine non-linearities can be
obtained by characterizing the amplitude detuning: the dependency of the tune on
the amplitude of particle oscillations. Amplitude detuning traditionally comes from
octupolar fields and is used for beam stabilization against collective effects [34, 237].
More generally, it comes from multipolar fields of even order m = 2n, where n is
a natural number strictly higher than one since quadrupolar fields provide a linear
behavior.

Analytical formulae from [29, 33, 238] show that second order terms of sextupole
strengths contribute to free amplitude detuning. It has previously been suspected that
the forced amplitude detuning induced by sextupolar fields would behave similarly to
that already studied for octupolar fields in [239].

This study aims to first demonstrate the possibility of observing this amplitude
detuning using AC dipole excitation, as previous works have shown that not all higher
order effects can be measured with driven oscillations [240], and also to confirm the
similarity of its behavior to that of the octupolar one. This will aid the understanding
of the impact of our sextupolar corrections on amplitude detuning measurements,
which may be non-negligible. Simulations were performed to investigate the sextupolar
amplitude detuning in the LHC lattice, both through forced oscillations using AC dipole
and free oscillations up to similarly high amplitudes.

Amplitude Detuning with an AC Dipole

The feasibility of direct amplitude detuning measurement with an AC dipole was
demonstrated in [239], as well as its benefits compared to the previously traditional
technique of exciting the beam to large amplitudes with a single kick. In the same
paper, the authors go over the linear motion of particles and distinguish two cases. The
parametrization of the transverse coordinate z in the case of free and forced oscillations
with an AC dipole is given by Eq. (3.3) and Eq. (3.4), respectively.

Analysis of the β-function of the driven particle, βD, can be found in [130, 134, 239].
It is derived in [239] that for multipoles of even order m = 2n, the amplitude detuning
in the case of horizontally driven oscillations is given by
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∆Qx =
qB2n

2np

2−n

2π

(2n)!

(n− 1)!(n− 1)!
βxβ

n−1
D,x A

n−1 ,

∆Qy = −qB2n

2np

2−n

2π

(2n)!

(n− 1)!(n− 1)!
βyβ

n−1
D,x A

n−1 ,
(6.13)

where q is the charge of the particle, p its momentum and B2n the gradient of the
multipole of order 2n providing the detuning. Importantly, it is analytically shown that,
neglecting the typically small difference between βz and βD,z:

° ±
for multipoles of order 2n, the direct term of the amplitude detuning
measured with an AC dipole will be a factor n larger than for free oscillations
while the cross terms in both cases are equal.

This means in the case of octupolar amplitude detuning that the direct term
detuning Qx(Jx) under AC dipole oscillations is a factor n = 2 stronger than under
free oscillations, while the cross term detuning Qy(Jx) will be the same in both cases.
It was suspected that in the LHC sextupolar detuning can be measured with AC
dipoles and that it behaves similarly with this factor 2 observed in the case of even
order multipoles, while being a multipole of order 3 itself. Tracking simulations were
performed to investigate this effect.

Amplitude Detuning via Particle Tracking

On-momentum particles were tracked with the MAD-X code through the LHC lattice
of 2018, with β∗ = 30 cm optics. In the setup, non-linearities were stripped down to
the contribution of sextupoles only: no magnet errors, crossing angles or orbit bumps
were included; and neither octupoles nor higher order magnets were powered. This
way the only non-negligible contribution to amplitude detuning is the sextupolar one.
Sextupoles were powered with strengths similar to what was used in operation.

Tracking was performed in the case of both free and AC dipole forced oscillations
in the horizontal plane, with similar amplitudes. Several scenarios corresponding to
different tune separations for the driven motion were explored, namely ∆Qx = −10−2

and ∆Qx = −5× 10−3, resulting in driven fractional horizontal tunes of QDx = 0.30
and QDx = 0.305, respectively A small initial amplitude was applied in the vertical
plane in order to enable the measurement of the vertical tune.

The AC dipole ramp-up and flattop excitation length were chosen as used in optics
measurements in the LHC, to preserve the adiabaticity of the process. Turn-by-turn
data was gathered at all BPMs during the tracking, and the resulting file was analyzed
as done for LHC measurements. Both the natural tunes and actions were derived from
harmonic and then optics analysis of the data.

Figures 6.8 and 6.9 show the horizontal and vertical amplitude detuning results for
both free and driven motion, respectively. For each result a linear regression is performed
against the data to determine the detuning coefficient. In the case of simulations, where
the uncertainty on the data points is negligible, this fit is enough to accurately determine
the detuning coefficient. Results are compiled in Table 6.1.
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Figure 6.8: Natural horizontal tune Qx shift with horizontal free or
forced action (Jx or Ax), in the case of free oscillations (blue) and driven

motion with ∆Qx = −0.01 (red) and ∆Qx = −0.005 (orange).
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For the direct detuning (Fig. 6.8), where a factor 2 is expected, the fit to free
oscillations data gives a detuning coefficient of 13.14µm−1, which makes the expected
detuning coefficient for the forced oscillations around 26.3 µm−1. With a tune separation
of ∆Qx = −10−2, this coefficient is determined at 24.04µm−1, within a 10% margin
of the expected value. Halving the tune separation to ∆Qx = −5× 10−3 brings this
coefficient closer to the factor 2, now within a 5% margin. This change is attributed to
the modification of the β-function and phase advances by the AC dipole: the βD,z term
in Eq. (3.4), which is assumed close enough to βz in the factor 2 hypothesis. As the
relative difference between βD,z and βz reduces with the tune separation, this behavior
is expected.

For the cross detuning (Fig. 6.9) where a factor 1 is expected, similar results are
observed: the driven motion’s detuning coefficient is determined to be −15.99µm−1,
reasonably close to the −14.94 µm−1 in the case of free oscillations. Again, halving the
tune separation to ∆Qx = −5× 10−3 brings us closer to the factor 1.

Scenario
Detuning Coefficient [µm−1]
Direct Term Cross Term

Free Oscillations 13.14 −14.94

Driven (∆Qx = −0.01) 24.04 −15.99

Driven (∆Qx = −0.005) 25.01 −15.50

Table 6.1: Direct and cross term detuning coefficients for free and
forced motion, determined from tracking data with a linear regression.

Conclusions

Measurement of the sextupolar amplitude detuning has not been done so far in the
LHC. The negligible contribution of the sextupolar sources to the amplitude detuning
in the LHC compared to other typical sources has been demonstrated, both in the
presence and absence of AC dipole driven motion. Additionally, with small enough tune
separation, this contribution behaves similarly to octupolar amplitude detuning when
comparing the case of forced motion and free oscillations.

6.3 Summary

A statistical analysis of the phase reconstruction precision in the LHC was performed,
distinguishing between BPM categories. The results confirmed the influence of both
BPM type and the β-functions at the measuring device on the precision of the phase
reconstruction, with up to a factor of 3 between the best and worst performing BPMs.
This knowledge could be applied in optics measurements algorithms to, for instance,
select a subset of BPMs to use for a given measurement. Such an analysis presents
a clear improvement avenue for the reconstruction of optics functions in a circular
accelerator and the improvement of computed global corrections.

A second simulation-based study was performed to investigate the sextupolar con-
tribution to amplitude detuning in the LHC. A clear contribution, though relatively
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small compared to that of other sources, was observed. The suspected behavior of this
contribution in the presence of AC dipole forced oscillations, similar to that of the
octupolar amplitude detuning, was confirmed.
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CHAPTER 7

Conclusion

In the quest for new physics, modern particle colliders such as the Large Hadron
Collider (LHC) are always striving to increase their luminosity - both instantaneous
and integrated - in order to reduce statistical uncertainties and increase the potential
for new discoveries. As a result, the machine is subject to constant upgrades and
improvements in terms of hardware, software and operational configuration. In parallel
to these upgrades, an ever tighter control of the beam dynamics is necessary to ensure
safe operation as well as the best possible performance of the machine.

One performance limitation in the LHC is the proper handling of local betatron
coupling in the Insertion Regions (IRs) which, if left uncorrected, has the potential to
degrade or even interrupt beam operations, as well as to reduce the collision rates as was
observed during an incident in 2018. The upcoming High-Luminosity Large Hadron Col-
lider (HL-LHC) upgrade is bound to drastically enhance the impact of any uncorrected
local coupling on the machine’s performance, warranting a dedicated effort on this topic.
The objective of this work has been to provide a novel approach that can measure and cor-
rect the local IR coupling and to experimentally determine corrections to improve LHC
operations.

The main body of the presented work addresses the problem of measuring and
correcting the local betatron coupling in the LHC IRs. The shortcomings of existing
local IR measurement methods for local coupling (segment-by-segment technique, k-
modulation and alternative observables such as combined Resonance Driving Terms
(RDTs)) justified the creation of new tools. The newly developed tools, the colinearity
knob and Rigid Waist Shift (RWS), allow relevant quantities of interest to be related to
strong observables such as the RDTs and the |C−| in order to drive a correction. The
effect of each was demonstrated through extensive simulations, and an experimental
setup to use them for the determination of corrections was laid out.

Measurements using the new experimental setup during the LHC 2022 commissioning,
at 6.8TeV and β∗ = 30 cm were presented, together with the determined corrections
obtained by comparing the measurements to simulations. These corrections were
trimmed in the machine and their efficiency assessed through instantaneous luminosity
measurements. Great improvements in collision rates were observed at the main
Interaction Points (IPs): an additional 9.7% and 3.5% instantaneous luminosity at the
ATLAS and CMS experiments, respectively. Comparison of these results to expectations
from simulations revealed a disagreement, with the ATLAS numbers lower than expected.



7

136 Chapter 7. Conclusion

This discrepancy was attributed to the early calibration setup of the detector. Luminosity
predictions and measurements showed a much improved agreement at the same detector
in identical measurements performed later in the year with higher intensity beams.
Good agreement was observed at the CMS detector.

This new method allowed the measurement, quantification and correction, for the
first time, of the local betatron coupling in the LHC IRs. It has the advantage of being
applicable early on in commissioning with low intensity beams and enables distinction
between the two beams, which could require different types of adjustments: magnet
realignment, orbit corrections, etc. Furthermore, it has been shown to be relevant and
applicable to both existing and future colliders.

As the radiation exposure of the used LHC corrector magnets is expected to sur-
pass the allowed limit during the LHC Run 3, the impact of losing these crucial
elements was studied. It was demonstrated through simulations that one could com-
pensate for the loss of a single corrector magnet and guarantee both safe machine
operation and squeezing of the beams down to collision configuration. This com-
pensation, however, would happen at the cost of luminosity: up to a 60% loss of
instantaneous luminosity in the most affected case. These expectations were confirmed
through beam measurements in which the loss of correctors were simulated. Using
these numbers and taking into account the β∗-leveling as well as other parameters
in the 2023 configuration, up to a 25% loss of integrated luminosity over a com-
plete physics fill is expected. Further studies are required for scenarios involving the
simultaneous loss of both correctors in a given IR and to investigate potential solutions.

After the successful application of machine learning techniques to several other
tasks in particle accelerators, including optics corrections, the possibility of using
them for a different approach to tackle local coupling in the LHC IRs was explored.
Through extensive simulation-supported data sets, specific models were trained to
predict the location of coupling sources in the form of quadrupole tilts from mea-
sured RDTs. Models were obtained that achieved good prediction performance on
clean data sets but did not generalize well to realistically noisy data sets. These
models show promising results but improvements in the precision of the reconstructed
RDTs would be necessary before they could confidently be used in the LHC. Such
improvements could be achieved with better beam instrumentation, more accurate op-
tics reconstruction methods or the use of additional, dedicated machine learning models.

Additional studies were performed that contributed to the understanding of the
LHC optics and potential measurement method improvements. Through statistical
analysis, the influence of both Beam Position Monitor (BPM) type and β-function at
the measuring device on the precision of the phase reconstruction in the LHC was deter-
mined. The results allowed, without dedicated measurements, identification of the best
conditions for phase reconstruction. This result has the potential to be applied in optics
measurements algorithms to, for instance, select a subset of BPMs for better phase and
potentially β-function measurements. The impact of the sextupolar contribution to the
amplitude detuning in the LHC, never previously measured, was demonstrated through
simulations and was shown to behave similarly to the first order octupolar amplitude
detuning under forced oscillations. The determined negligible level of the contribution,
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as well as its now confirmed behavior, allow it to be safely neglected from ampli-
tude detuning measurements when characterizing the non-linearities of the machine.

The overall goal of this thesis has been to develop a new approach to the measurement
and correction of local betatron coupling in the LHC IRs. Different methods were
developed and tested including, mainly, a new experimental setup which was used to
measure and correct local coupling in the LHC 2022 commissioning, improving the
instantaneous luminosity at the ATLAS and CMS experiments. This new method is
relevant for typical conditions in an Interaction Region, and therefore relevant for other
existing colliders such as SuperKEKB, but also future machines such as the HL-LHC and
the Future Circular Collider (FCC). The work presented in this document contributes
to the improved performance and understanding of the LHC, but also potentially other
present and future particle colliders.





A

139

APPENDIX A

Thin Kick Hamiltonian Derivation

This appendix contains the full derivation leading to the result of Eq. (2.45), showing
the Hamiltonian thin kick expansion.

A.1 Multinomial Expansion

Let us start by reminding the multinomial expansion rule. For any positive integer m
and non-negative integer m, the multinomial expansion describes the expansion of a
sum of m numbers raised to the power n:

(x1 + . . .+ xm)
n =

∑

k1+...+km=n

n!

k1! . . . km!
xk11 . . . xkmm . (A.1)

Another form of writing the multinomial expansion is with the Kronecker delta:

δi,j =

{
0 if i ̸= j ,
1 if i = j .

(A.2)

In this case, Eq. (A.1) can be written:

(x1 + . . .+ xm)
n =

∑

k1+...+km≤n

δj+k+l+m,n
n!

k1! . . . km!
xk11 . . . xkmm . (A.3)

Note that in this form, the indices of the summation k1 + k2 + . . .+ km are less than
or equal to n. Let us illustrate with the following example:

(a+ b+ c+ d)n =
∑

j+k+l+m=n

n!

j!k!l!m!
ajbkcldm

=
∑

j+k+l+m≤n

δj+k+l+m,n
n!

j!k!l!m!
ajbkcldm

=
n∑

j=0

n∑

k=0

n∑

l=0

n∑

m=0

δj+k+l+m,n
n!

j!k!l!m!
ajbkcldm .

(A.4)
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A.2 Hamiltonian Derivation

Starting from Eq. (2.6), the transverse coordinates x and y can be expressed from action
and angle variables:

x(s) =
√

2Jxβx cos (ϕx + ϕx,0) ,

y(s) =
√

2Jyβy cos (ϕy + ϕy,0) .
(A.5)

Here the dependence on the longitudinal coordinate s has been removed for clarity
compared to Eq. (2.6). Using Euler’s formula, these can be rewritten as:

x =
√

2Jxβx
ei(ϕx+ϕx,0) + e−i(ϕx+ϕx,0)

2
,

y =
√

2Jyβy
ei(ϕy+ϕy,0) + e−i(ϕy+ϕy,0)

2
.

(A.6)

As seen in Section 2.2, the multipole expansion of the transverse planes Hamiltonian
for a multipole of order n goes as:

H = Re

[
(Kn + iJn)

(x+ iy)n

n!

]
. (A.7)

This is a slight change over Eq. (2.37) as here the terms Kn and Jn, representing
the integrated magnet strengths, are used over Bn and An. When plugging in the forms
of Eq. (A.6), one gets:

H = Re

[
1

2n · n! (Kn + iJn)

(√
2Jxβxe

i(ϕx+ϕx,0)

+
√
2Jxβxe

−i(ϕx+ϕx,0)

+ i
√
2Jyβye

i(ϕy+ϕy,0)

+ i
√
2Jyβye

−i(ϕy+ϕy,0)
)n]

.

(A.8)

Now, we can do the multinomial expansion of last term via Eq. (A.1). Let us define
a, b, c, and d such that (a+ b+ c+ d)n equals this last term. This yields:

aj =
(√

2Jxβxe
i(ϕx+ϕx,0)

)j
= (2Jx)

j
2β

j
2
x e

ij(ϕx+ϕx,0) ,

bk =
(√

2Jxβxe
−i(ϕx+ϕx,0)

)k
= (2Jx)

k
2β

k
2
x e

−ik(ϕx+ϕx,0) ,

cl =
(
i
√

2Jyβye
i(ϕy+ϕy,0)

)l
= il(2Jy)

l
2β

l
2
y e

il(ϕy+ϕy,0) ,

dm =
(
i
√

2Jyβye
i(ϕy+ϕy,0)

)m
= im(2Jy)

m
2 β

m
2
y e

−im(ϕy+ϕy,0) .

(A.9)

Combining these terms two by two gives:

ajbk = (2Jx)
j+k
2 β

j+k
2

x ei(j−k)(ϕx+ϕx,0) ,

cldm = il+m(2Jy)
l+m
2 β

l+m
2

y ei(l−m)(ϕy+ϕy,0) .
(A.10)
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By combining them once more, we get:

ajbkcldm = il+m(2Jx)
j+k
2 (2Jy)

l+m
2 β

j+k
2

x β
l+m
2

y ei[(j−k)(ϕx+ϕx,0)+(l−m)(ϕy+ϕy,0)] . (A.11)

After isolating the terms independent of the position s, this is expressed as:

ajbkcldm =il+mβ
j+k
2

x β
l+m
2

y ei[(j−k)ϕx+(l−m)ϕy ]

(2Jx)
j+k
2 (2Jy)

l+m
2 ei[(j−k)ϕx,0+(l−m)ϕy,0] .

(A.12)

Going back to the H form of Eq. (A.8), using the a, b, c, and d terms defined above
and the multinomial expansion rules of Eqs. (A.1) and (A.3), we get for a given element:

H = Re

[
1

2n · n! (Kn + iJn)(a+ b+ c+ d)n
]

= Re

[
1

2n · n! (Kn + iJn)
∑

j+k+l+m=n

n!

j!k!l!m!
ajbkcldm

]

= Re

[
(Kn + iJn)

∑

j+k+l+m=n

1

2j+k+l+m · j!k!l!m!
ajbkcldm

]

= Re

[
(Kn + iJn)

∑

j+k+l+m=n

1

2j+k+l+m · j!k!l!m!

il+mβ
j+k
2

x β
l+m
2

y ei[(j−k)ϕx+(l−m)ϕy ]

(2Jx)
j+k
2 (2Jy)

l+m
2 ei[(j−k)ϕx,0+(l−m)ϕy,0]

]
.

(A.13)

Noting that i is the imaginary unit, the real part of the sum is then directly
influenced by the parity of (l +m). The equation can be rewritten taking this into
account, effectively selecting between the two terms:

Ω(i) =

{
1 if i is even,
0 if i is odd.

(A.14)

And Eq. (A.13) becomes:

H =
∑

j+k+l+m=n

[
KnΩ(l +m) + iJnΩ(l +m+ 1)

2j+k+l+m · j!k!l!m!
il+mβ

j+k
2

x β
l+m
2

y

(2Jx)
j+k
2 (2Jy)

l+m
2 ei[(j−k)(ϕx+ϕx,0)+(l−m)(ϕy+ϕy,0)]

]
.

(A.15)
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One can then define hjklm as

hjklm =
KnΩ(l +m) + iJnΩ(l +m+ 1)

2j+k+l+m · j!k!l!m!
il+mβ

j+k
2

x β
l+m
2

y , (A.16)

which reduces the above to Eq. (A.17):

H =
∑

jklm

hjklm(2Jx)
j+k
2 (2Jy)

l+m
2 ei[(j−k)(ϕx+ϕx,0)+(l−m)(ϕy+ϕy,0)] , (A.17)

where j+k+l+m = n, which corresponds to the form of Eq. (2.45) given in Section 2.3.1.
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APPENDIX B

Element Naming Conventions in the LHC

This appendix details the element naming convention in the Large Hadron Collider
(LHC) and High-Luminosity Large Hadron Collider (HL-LHC). Figure B.1 below
illustrates the established scheme using an example segment of the LHC. A detailed
listing of all LHC element and equipment names can be found at [236].

Figure B.1: Naming scheme in a segment of the LHC [241].

The general structure adheres to the following rules:

1. Each octant is divided into two half-arcs surrounding an insertion.

2. Each octant is also divided into a left side and a right side to said insertion.

3. The center point of some octants is the Interaction Point (IP), with their sur-
rounding region sometimes also referred to as Interaction Region (IR).

From the standpoint of lattice definitions there are eight IPs, although this is merely
for notational convenience. An Interaction Point in the strict sense is a location where
the two beams are made to collide, which only happens in the center of octants 1, 2, 5
and 8 where experiments are located. It is assumed through this document that when
an IP or IR is mentioned, it refers to one of these octants.
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Regardless of hosting an IP, all octants have in common that they host a long
straight section in the middle as part of the insertion. While the arcs can be considered
generally uniform across the LHC, the various long sections differ from octant to octant.

As the base pattern of the LHC arcs is a FODO lattice, the machine can be broken
up into half-cells containing one quadrupole each. As a result each half-cell is assigned
a number such that the ith quadrupole away from the center of its octant is associated
with the ith half-cell. With this in consideration, the general naming convention can be
summarized as:

⟨TYPE⟩⟨SPECIAL⟩.⟨EXTRA⟩⟨HALF_CELL⟩⟨LR⟩⟨OCTANT⟩.B⟨12⟩

In the definition above the various entries are defined as follows:

• TYPE: Entry specifying the type of element. Examples are given in Table B.1.

• SPECIAL: Optional entry which can be used to subtype an element, e.g. H or V
to signify that the element is acting on the horizontal or vertical plane.

• EXTRA: Optional entry used to separate between otherwise identically named
elements in regard to their type and number. E.g. A, B, C to separate between
three bending magnets in the same half-cell.

• LR: Entry specifying which side of the closest IP the element is on. The values
for this entry are either L (left) or R (right).

• OCTANT: Entry specifying the octant the element is a part of. Valid entries are
integers from 1 to 8.

• 12: Optional entry specifying which beam the element is part of. This is either
1 or 2, unless the element is shared between the two beams in which case the
element name ends with the OCTANT entry.

Element Type Prefix

Bending Magnet MB

Quadrupole MQ

Orbit Corrector MCB

BPM BPM

Crab Cavity ACFCA

Drift DRIFT

Table B.1: Example prefixes for different LHC element types. An
extensive list of all elements can be found at [236].

Let us illustrate with examples. The element MQ.25L5.B1 is a quadrupole on
the left side of IP5, in the 25th half-cell counting from IP5 and for beam 1.
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The special identifier can be used in multiple ways. For instance MQML.10R1.B1
is a different type of quadrupole in half-cell 10, on the right side of IP1 for beam 1.
Here the special identifier describes the type of quadrupole. For MCBH.21R5.B1, the
special identifier H signifies that the element is a horizontal orbit corrector (MCB).

In the triplet quadrupoles one can notice for instance elements MQXB.A2L1 and
MQXB.B2L1, the two elements constituting the Q2 triplet quadrupole. In this case
the elements share the same type (MQXB aka middle, single aperture inner triplet
quadrupole), octant, side of IP and half-cell, which is why they make use of the extra
specifiers A and B to tell them apart. For this specific case these two magnets share
a main power supply, but each has an additional power supply for small individual
adjustments. Note that these elements skip the appendage of .B⟨12⟩ as they correspond
to elements common to both beams, which can only happen in the IR. This is due to
the fact that when the two beams are brought to collision they are bound to travel
through the same equipment pieces as they get close to the IP.
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APPENDIX C

Experimental Knobs Designed for the LHC

One can find in this Appendix the full information of the different experimental knobs
that were designed for the LHC. The knobs are reported below as they have been
implemented in the LHC Software Architecture (LSA) framework [242] and used in the
2022 commissioning. In each case, the values correspond to a trim factor of 1 for the
knob, unless indicated otherwise, and scale linearly with the trim factor. These knobs
have been designed for all beam processes of the LHC Run 3 optics as they were at the
time of the 2022 commissioning, for a beam energy of 6800GeV.

C.1 Definitions of the Colinearity Knobs

Table C.1 shows the settings used in LSA to define the colinearity knobs at IR1 and IR5.
These knobs control the skew quadrupole correctors left and right of the Interaction
Point (IP), the MQSX magnets.

Component Value

RQSX3.L1/K1S 10−4

RQSX3.R1/K1S −10−4

(a) Colinearity knob for IR1.

Component Value

RQSX3.L5/K1S 10−4

RQSX3.R5/K1S −10−4

(b) Colinearity knob for IR5.

Table C.1: Definitions of the colinearity knobs for IR1 (left) and IR5
(right) as implemented in LSA.

C.2 Definitions of the Rigid Waist Shift Knobs

Table C.2 shows the settings used in LSA to define the Rigid Waist Shift (RWS) knobs
at IR1 and IR5. These knobs control the triplet magnets left and right of the IP in
order to move all four betatron waists simultaneously. A trim of the RWS acts on the
common powering circuit of the triplets.
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Component Value

MQXA1.L1/K1 −4.388 91× 10−5

MQXA1.R1/K1 −4.388 91× 10−5

MQXB2.L1/K1 4.388 91× 10−5

MQXB2.R1/K1 4.388 91× 10−5

MQXA3.L1/K1 −4.388 91× 10−5

MQXA3.R1/K1 −4.388 91× 10−5

(a) RWS knob for IR1.

Component Value

MQXA1.L5/K1 −4.388 91× 10−5

MQXA1.R5/K1 −4.388 91× 10−5

MQXB2.L5/K1 4.388 91× 10−5

MQXB2.R5/K1 4.388 91× 10−5

MQXA3.L5/K1 −4.388 91× 10−5

MQXA3.R5/K1 −4.388 91× 10−5

(b) RWS knob for IR5.

Table C.2: Definitions of the Rigid Waist Shift knobs for IR1 (left) and
IR5 (right) as implemented in LSA.

C.3 Definitions of the Optics Rematching Knobs

Tables C.3 and C.4 show the settings used in LSA to define the optics rematching knobs
needed after applying the RWS knob, at IR1. Table C.3 gives the settings that rematch
the optics when the IR1 RWS knob is trimmed with a factor of 1, while Table C.4 gives
the settings that rematch the optics when the IR1 RWS knob is applied with a factor
of −1. These knobs control the independent magnets Q4 to Q10 left and right of the
IP for both beams.

Component Beam 1 Value Beam 2 Value

RQ4.L1B[12]/K1 7.351 348× 10−5 3.132 269× 10−7

RQ4.R1B[12]/K1 4.704 082× 10−5 5.434 962× 10−5

RQ5.L1B[12]/K1 −2.142 214× 10−4 1.283 481× 10−4

RQ5.R1B[12]/K1 −2.086 652× 10−4 −1.782 987× 10−5

RQ6.L1B[12]/K1 1.252 269× 10−4 −6.654 750× 10−5

RQ6.R1B[12]/K1 2.181 278× 10−4 4.843 161× 10−5

RQ7.L1B[12]/K1 −1.654 347× 10−5 −6.727 209× 10−6

RQ7.R1B[12]/K1 −2.380 601× 10−5 7.671 464× 10−5

RQ8.L1B[12]/K1 4.701 971× 10−5 −7.422 834× 10−6

RQ8.R1B[12]/K1 −5.166 308× 10−5 2.816 191× 10−5

RQ9.L1B[12]/K1 1.183 309× 10−4 −1.835 947× 10−4

RQ9.R1B[12]/K1 1.395 191× 10−4 −6.844 480× 10−5

RQ10.L1B[12]/K1 −2.470 503× 10−5 −1.415 361× 10−4

RQ10.R1B[12]/K1 −1.960 854× 10−5 −1.257 251× 10−4

Table C.3: Definition of the optics rematching knob for IR1 as imple-
mented in LSA. These settings rematch the optics for a Rigid Waist Shift

knob trimmed with a factor 1.
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Component Beam 1 Value Beam 2 Value

RQ4.L1B[12]/K1 2.890 068× 10−5 5.819 791× 10−5

RQ4.R1B[12]/K1 −3.102 580× 10−5 1.740 345× 10−5

RQ5.L1B[12]/K1 1.794 669× 10−5 −2.591 577× 10−4

RQ5.R1B[12]/K1 2.076 919× 10−4 −5.673 007× 10−5

RQ6.L1B[12]/K1 4.143 969× 10−5 3.008 508× 10−4

RQ6.R1B[12]/K1 −1.848 040× 10−4 −6.006 251× 10−5

RQ7.L1B[12]/K1 5.634 562× 10−5 −3.647 266× 10−5

RQ7.R1B[12]/K1 −8.441 509× 10−6 5.911 061× 10−7

RQ8.L1B[12]/K1 3.582 289× 10−5 −1.783 459× 10−4

RQ8.R1B[12]/K1 1.446 909× 10−4 1.123 520× 10−4

RQ9.L1B[12]/K1 −1.056 186× 10−4 6.796 452× 10−5

RQ9.R1B[12]/K1 −1.686 284× 10−4 1.143 128× 10−4

RQ10.L1B[12]/K1 −8.416 329× 10−5 −1.871 513× 10−5

RQ10.R1B[12]/K1 −4.208 946× 10−5 4.750 863× 10−5

Table C.4: Definition of the optics rematching knob for IR1 as imple-
mented in LSA. These settings rematch the optics for a Rigid Waist Shift

knob trimmed with a factor −1.

Similarly, Tables C.5 and C.6 show the settings used in LSA to define the optics
rematching knobs needed after applying the Rigid Waist Shift knob, at IR5. Table C.5
gives the settings that rematch the optics when the IR5 RWS knob is trimmed with a
factor of 1, while Table C.6 gives the settings that rematch the optics when the IR5
RWS knob is applied with a factor of −1. These knobs control the independent magnets
Q4 to Q10 left and right of the IP for both beams.
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Component Beam 1 Value Beam 2 Value

RQ4.L5B[12]/K1 4.732 644× 10−5 7.708 167× 10−7

RQ4.R5B[12]/K1 2.995 622× 10−5 5.229 277× 10−5

RQ5.L5B[12]/K1 −1.540 577× 10−4 1.320 986× 10−4

RQ5.R5B[12]/K1 −1.541 586× 10−4 −2.507 269× 10−5

RQ6.L5B[12]/K1 8.088 711× 10−5 −7.675 093× 10−5

RQ6.R5B[12]/K1 9.079 173× 10−5 8.686 051× 10−5

RQ7.L5B[12]/K1 −5.050 462× 10−5 6.267 658× 10−6

RQ7.R5B[12]/K1 −2.046 442× 10−5 7.702 426× 10−5

RQ8.L5B[12]/K1 8.284 445× 10−5 1.469 226× 10−5

RQ8.R5B[12]/K1 −1.498 689× 10−5 6.506 405× 10−5

RQ9.L5B[12]/K1 1.330 684× 10−4 −1.746 977× 10−4

RQ9.R5B[12]/K1 1.770 079× 10−4 −7.499 273× 10−5

RQ10.L5B[12]/K1 3.745 423× 10−6 −1.405 645× 10−4

RQ10.R5B[12]/K1 3.122 093 9× 10−5 −1.199 213× 10−4

Table C.5: Definition of the optics rematching knob for IR5 as imple-
mented in LSA. These settings rematch the optics for a Rigid Waist Shift

knob trimmed with a factor 1.

Component Beam 1 Value Beam 2 Value

RQ4.L5B[12]/K1 3.261 927× 10−5 6.393 201× 10−5

RQ4.R5B[12]/K1 −3.059 847× 10−5 2.057 514× 10−5

RQ5.L5B[12]/K1 1.578 156× 10−5 −2.813 483× 10−4

RQ5.R5B[12]/K1 2.063 856× 10−4 −5.432 443× 10−5

RQ6.L5B[12]/K1 2.618 065× 10−5 3.291 553× 10−4

RQ6.R5B[12]/K1 −1.651 558× 10−4 −7.698 741× 10−5

RQ7.L5B[12]/K1 6.293 434× 10−5 −4.279 221× 10−5

RQ7.R5B[12]/K1 −1.308 196× 10−5 1.068 785× 10−5

RQ8.L5B[12]/K1 1.700 830× 10−5 −2.078 329× 10−4

RQ8.R5B[12]/K1 1.206 262× 10−4 1.153 268× 10−4

RQ9.L5B[12]/K1 −9.633 770× 10−5 4.971 278× 10−5

RQ9.R5B[12]/K1 −1.705 114× 10−4 1.199 293× 10−4

RQ10.L5B[12]/K1 −8.920 503× 10−5 −1.382 229× 10−5

RQ10.R5B[12]/K1 −6.293 434× 10−5 4.006 792× 10−5

Table C.6: Definition of the optics rematching knob for IR5 as imple-
mented in LSA. These settings rematch the optics for a Rigid Waist Shift

knob trimmed with a factor −1.
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APPENDIX D

Negative Rigid Waist Shift Measurements

Results shown in Section 4.5 are from measurements in which the Rigid Waist Shift
(RWS) knob was trimmed in with a factor of 1, as defined in Table 4.2. As mentioned in
Appendix C and as can be seen in Fig. 4.9 the knob can be trimmed with an arbitrary
factor, shifting the waist of the beams left or right of the Interaction Point (IP).

Measurements have also been conducted in each Insertion Region (IR) with the
RWS knobs trimmed in with a factor of −1, which we will call a negative RWS. For
these, done under time constraints at the end of experimental shifts, some mistakes were
made in the experimental setups and the data was deemed inconclusive after analysis.
Nonetheless, for completeness these results are included below.

15 10 5 0 5 10
Unit Setting of the Colinearity Knob
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Simulations Measurements

Figure D.1: Measurement scan with a negative RWS done at IR1 for
beam 1 (red) and simulations for the same setup (blue).
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Figure D.1 shows the results of a measurement scan done at IR1 for beam 1 with a
negative RWS. When preparing for this scan an issue was encountered when trimming
in the optics rematching knob. As the knob had been wrongly designed beforehand, it
bypassed the powering limits of the Q6 magnets and thus could only be trimmed in the
machine with a factor 0.7 as the LHC protection system would not allow lower currents.
As a consequence a strong β-beating remained in the machine and cast doubts on the
measurement data. When comparing this measurement to simulations, data suggests
a very large error to be corrected: 8.5 units of the colinearity knob. This data was
discarded when determining corrections.

Figure D.2 shows the results of a measurement scan done at IR1 for beam 2 with
a negative RWS. The same issue as mentioned above was encountered, and the knob
could only be trimmed in the machine with a factor 0.5, resulting once again in a strong
β-beating in the machine during measurements. Comparison with simulations once
again suggested a very large error to be corrected: 16 units of the colinearity knob,
potentially more if the measurement scan was carried on for longer. This data was also
discarded when determining corrections.
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Figure D.2: Measurement scan with a negative RWS done at IR1 for
beam 2 (red) and simulations for the same setup (blue).

Figure D.3 shows the results of a measurement scan done at IR5 for beam 1 with
a negative RWS. During this scan, a mistake was made when trimming the optics
rematching knob: the rematching knob from the previous scan was not trimmed out of
the machine, and as a result a mix of both knobs was present during the measurements.
This led to the experimental setup of the RWS not being properly implemented, and
while the measurement data does not suggest an unbelievable correction as in Fig. D.2,
the failed experimental setup and suspicious shape of the measurements’ |C−| curve led
to this data being discarded when determining corrections.
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Figure D.3: Measurement scan with a negative RWS done at IR5 for
beam 1 (red) and simulations for the same setup (blue).
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Figure D.4: Measurement scan with a negative RWS done at IR5 for
beam 1 (red) and simulations for the same setup (blue).
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Figure D.4 shows the results of a measurement scan done at IR5 for beam 1 with a
negative RWS. For this measurement scan, no mistake was made in the experimental
setup and the data suggests a correction similar to what was found with the scans
presented in Section 4.5.2 (see Table 4.5). The success of this measurement clears some
doubts on the validity of the negative RWS.

Overall, a combination of human mistakes both during the preparation of the
experimental setup and during the measurement scans themselves led to the inconclusive
measurements of Figs. D.1 to D.3.
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APPENDIX E

List of LHC Fills Used for Measurements

One can find in this Appendix the fully detailed list of LHC fills used for the experimental
campaign. In each table, the fill number, measurement date, beam energy at the time
of measurement, optics configuration (β∗ at IR1 and IR5) and the purpose of the
measurement are indicated.

E.1 Fills Used During the LHC Run 2

Table E.1 reports the fills used for the experimental campaign, for measurements taken
during the LHC Run 2. These relate to results presented in Chapter 4 and Chapter 6.

Fill # Date Energy IR[15] β∗ Purpose

6537 2018/04/10 6.5TeV 30 cm Phase Error Analyses
7493 2018/12/02 6.37TeV 50 cm Colinearity Knob MD

Table E.1: List of the LHC fills used in the experimental campaign,
during the LHC Run 2.

E.2 Fills Used During the 2021 Beam Tests

Table E.2 reports the fills used for the experimental campaign, for measurements taken
during the LHC 2021 beam tests. These relate to results presented in Chapter 4.

Fill # Date Energy IR[15] β∗ Purpose

7504 2021/10/20 450GeV 11m SbS Corrections Calculations
7509 2021/10/22 450GeV 11m SbS Corrections Trim

Table E.2: List of the LHC fills used in the experimental campaign,
during the LHC 2021 beam tests.
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E.3 Fills Used During the LHC Run 3 2022 Commissioning

Table E.3 reports the fills used for the experimental campaign, for measurements
taken during the LHC Run 3 2022 commissioning. These relate to results presented in
Chapter 4.

Fill # Date Energy IR[15] β∗ Purpose

7595 2022/05/09 6.8TeV 30 cm SbS Corrections Refinement
7598 2022/05/10 6.8TeV 30 cm IR5 Rigid Waist Shift
7682 2022/06/01 6.8TeV 30 cm IR1 Rigid Waist Shift

Table E.3: List of the LHC fills used in the experimental campaign,
during the LHC 2022 commissioning.

E.4 Fills Used During the LHC 2022 Physics Run

Table E.4 reports the fills used for the experimental campaign, for measurements taken
during the LHC 2022 physics run. These relate to results presented in Chapter 4.

Fill # Date Energy IR[15] β∗ Purpose

8067 2022/07/29 6.8TeV 30 cm IR1 & IR5 RWS Corrections Trim
8072 2022/07/30 6.8TeV 42 cm IR1 & IR5 RWS Corrections Trim
8222 2022/10/02 6.8TeV 30 cm IR1 & IR5 Colin Knob Carry Over
8256 2022/10/12 6.8TeV 30 cm IR1 Colin Knob Carry Over

Table E.4: List of the LHC fills used in the experimental campaign,
during the LHC 2022 physics Run.
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APPENDIX F

Software Developments

In parallel to other works presented in this document, a substantial effort was put
into software development to improve both analysis and simulation tools. Below is
shown the main software development work done over the course of this PhD. For each
software the main contributions are listed and references are provided.

JobSubmitter [243]. Developed with J. Dilly and M. Hofer , JobSubmitter is a
Python package for easily submitting parametrized studies to the HPC queuing system
HTCondor [244] used at CERN. It has quickly been adopted by colleagues due to its
simplicity and efficiency.

Omc3 [187]. The omc3 Python package is our main optics analysis and correction
software, developed by most members of the OMC team. Many contributions were
made in the form of bug fixes, maintenance, translation of old codes to the new version,
implementation of new methods or improvements to existing ones, documentation,
testing and implementation of CI/CD pipelines.

OMC Documentation [245]. Together with J. Dilly , we created a website for the OMC
team to serve as a wiki, resource collection and entrypoint for team members. It compiles
information about the physics behind the OMC activities, experimental procedures,
documentation and guides on the team’s software, and resources for newcomers.

PyhDToolkit [246]. Initially designed for personal use, PyhDToolkit is a Python
package for efficient simulation and visualization with the cpymad [247] and MAD-
X [59] codes. It is the software used for all results in this thesis. Its core functionality
was extracted into the lightweight cpymadtools [248] package, which has been adopted
by colleagues for its clean and efficient API.

PyLHC [249]. Developed with J. Dilly and M. Hofer , PyLHC is a Python package
holding various complementary scripts and modules to our other softwares. Contribu-
tions include knob extraction scripts, data conversion functionality between database
and simulation codes formats, and quick analysis of specific measurements.

https://orcid.org/0000-0001-7864-5448
https://orcid.org/0000-0001-6173-0232
https://orcid.org/0000-0001-7864-5448
https://orcid.org/0000-0001-7864-5448
https://orcid.org/0000-0001-6173-0232
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Pyrws [190]. Created for the Large Hadron Collider (LHC) Run 3 commissioning of
2022, pyrws is a Python package to design Rigid Waist Shift configurations and knobs
for any given LHC optics. It was used to prepare the experimental setup leading to the
main work in this thesis, described in Chapter 4 and in Appendix C.

Tfs-Pandas [250]. The tfs-pandas Python package is a workhorse of our codes used
to handle the Table Format System (TFS) files output by both our simulation codes
and analysis software. Significant effort was put into a complete rewrite of the package,
speeding up its operation by up to a factor of 100 times, as well as into the addition of
quality-of-life features and tests for robustness. This package is very often downloaded
as its use is widespread.

Turn-by-Turn [251]. The turn-by-turn Python package handles measurement data
from different formats corresponding to various machines. A contribution was made
in the form of the extraction of this functionality from old codes and rewriting it to
produce a clean API.
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