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a b s t r a c t

In this study, we present a novel nodal integration-based particle finite element method (N-PFEM)
designed for the dynamic analysis of saturated soils. Our approach incorporates the nodal integration
technique into a generalised Hellinger-Reissner (HR) variational principle, creating an implicit PFEM
formulation. To mitigate the volumetric locking issue in low-order elements, we employ a node-based
strain smoothing technique. By discretising field variables at the centre of smoothing cells, we achieve
nodal integration over cells, eliminating the need for sophisticated mapping operations after re-meshing
in the PFEM. We express the discretised governing equations as a min-max optimisation problem, which
is further reformulated as a standard second-order cone programming (SOCP) problem. Stresses, pore
water pressure, and displacements are simultaneously determined using the advanced primal-dual
interior point method. Consequently, our numerical model offers improved accuracy for stresses and
pore water pressure compared to the displacement-based PFEM formulation. Numerical experiments
demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical
behaviour of saturated soils with high accuracy, obviating the need for stabilisation or regularisation
techniques commonly employed in other nodal integration-based PFEM approaches. This work holds
significant implications for the development of robust and accurate numerical tools for studying satu-
rated soil dynamics.
� 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).
1. Introduction

Saturated soil represents a multiphase material comprising a
solid skeleton and fluid occupying voids. The study of saturated soil
dynamics has long been recognised as a challenging problem
(Zienkiewicz and Shiomi, 1984), necessitating the simultaneous
analysis of both solid and fluid phases and their interactions
(Zienkiewicz et al., 1980). Time-dependent processes in saturated
soils (Bjerrum, 1967; Olson, 1998), such as soil consolidation and
the dissipation of pore water pressure, introduce additional
complexity for numerical modelling. This complexity arises from
the need for numerical schemes with appropriate time-stepping
and convergence criteria (Prevost, 1983; Zienkiewicz et al., 1999).
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In situations where soils undergo significant deformation, as
observed in landslides and foundation penetration processes, nu-
merical modelling becomes even more challenging. This is due to
potential issues related to mesh distortion and the evolution of
free-surfaces.

Over the past decades, significant advances have been made in
the development of numerical methods for modelling saturated
soil dynamics under large deformation. These methods include the
Arbitrary Lagrangian-Eulerian method (Sabetamal et al., 2014),
Smoothed Particle Hydrodynamics method (Pastor et al., 2009; Bui
and Nguyen, 2017; Peng et al., 2017), Material Point Method (Zhang
et al., 2009; Bandara and Soga, 2015; Yamaguchi et al., 2020;
Kularathna et al., 2021), and the Particle Finite Element Method
(PFEM) (Monforte et al., 2019; Wang et al., 2021a; Carbonell et al.,
2022; Jin and Yin, 2022), among others. In these studies, the
coupling between the solid skeleton and the pore fluid is described
through either the Biot formulation in a set of governing equations
for the solid-fluid mixture (Zienkiewicz and Shiomi, 1984) or
tion-based particle finite element method (N-PFEM) for modelling
gineering, https://doi.org/10.1016/j.jrmge.2023.11.016
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Fig. 1. Domain of a saturated medium and its boundary partition. St, Su, Sp and Sq
represent the associated surfaces subjected to traction, displacement, pore water
pressure, and fluid flux, respectively.
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through models of interaction forces added to two separate sets of
governing equations for the two phases (Drew, 1983). Due to its
effectiveness and efficiency, the Biot formulation has been widely
adopted in the development of these methods for various practical
applications (Pastor et al., 2009; Zhang et al., 2009; Monforte et al.,
2019; Wang et al., 2021a; Jin and Yin, 2022). While interaction
models can capture more complex coupling processes between
two-phase materials, the computational cost is higher since the
solid and fluid phases are separately simulated (Bandara and Soga,
2015; Bui and Nguyen, 2017). Among these developments, explicit
time integration schemes with conditional stability are most
commonly used, although they are not computationally efficient for
analysing geotechnical problems characterised by low to medium
frequency. Recently, semi-implicit and implicit time integration
schemes have been implemented in these methods to improve the
computational efficiency (Kularathna et al., 2021; Wang et al.,
2021a; Carbonell et al., 2022; Lian et al., 2023).

The PFEM is a hybrid method that combines finite element
analysis with the feature of particle approaches. Originally devel-
oped in the fluid dynamics community to model free-surface flow
and fluid-structure interaction problems (Oñate et al., 2004), the
PFEM has gradually gained recognition in geotechnical community
as well. Various versions of the PFEM have been developed to tackle
large deformation problems in geotechnical engineering applica-
tions. The PFEM has become popular due to its two key features: (i)
it naturally inherits the demonstrated capability of the FEM in
describing the complex nonlinear behaviour of geomaterials, and
(ii) pre-existing FEM codes can be easily extended to incorporate
the particle technique (Oñate et al., 2004; Cremonesi et al., 2011;
Zhang et al., 2013) for large deformation analysis.

Among recent PFEM developments, one important improve-
ment is the adoption of a nodal integration scheme (Zhang et al.,
2018). This scheme eliminates the mapping requirement after the
re-meshing operation inmodelling history-dependent materials, as
all state variables are stored at mesh nodes. Remarkably, in most
developed nodal integration-based PFEM versions, it has been
shown that numerical instabilities may arise in the dynamic anal-
ysis of both single-phase (Jin et al., 2021a; Yuan et al., 2023a) and
two-phase materials (Jin and Yin, 2022; Wang et al., 2023a; Yuan
et al., 2023b) if no stabilisation technique is imposed. For single-
phase materials, instability arises from low-order integration,
known as temporal instability, which has also been observed in
nodal integration-based smoothed FEM (Zhang and Liu, 2010) and
various other mesh-free methods (Belytschko et al., 2000; Chen
et al., 2001). Concerning two-phase materials, the additional inf-
sup condition (Franco and Bathe, 1990) should be fulfilled since
equal order shape functions are used. The introduction of stabili-
sation may involve different techniques or tunable parameters for
multiple problems, for which no universal criteria are available
(Belytschko et al., 2000; Puso et al., 2008; Silva-Valenzuela et al.,
2020; Wei et al., 2020). Furthermore, in some developed nodal
integration-based PFEM versions (Jin and Yin, 2022; Yuan et al.,
2022), explicit or semi-implicit schemes were adopted, which
may be less efficient in simulating long-term geotechnical prob-
lems, such as consolidation settlement in clay.

To circumvent the use of stabilisation techniques and develop an
implicit PFEM version, the second-order cone programming (SOCP)
is considered as a promising solution. The adoption of mixed
variational principles, consolidating all the governing equations
into a single functional, can achieve better accuracy in stress
calculation, compared to displacement-based FEM (Reddy, 2002).
Previous studies have demonstrated that an accurate and efficient
implicit time integration scheme is compatible with the SOCP-
based computational framework (Zhang et al., 2013, 2019, 2023;
Wang et al., 2021a, 2023b; Wang and Lei, 2023). Recently, the
Please cite this article as: Wang L et al., A stable implicit nodal integra
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temporal stability of an implicit nodal integration-based PFEM (N-
PFEM) using SOCP has been validated for dynamic total stress
analysis of single-phase materials (Zhang et al., 2023), and in the
dynamic effective stress analysis of saturated media (Wang et al.,
2023c) without the need for ad-hoc stabilisation techniques.
However, the N-PFEM proposed in the work of Wang et al. (2023c)
is limited to simulating saturated soils in two extreme conditions,
i.e., fully undrained and fully drained circumstances. In other
words, it can only be applied to the limiting scenarios, i.e., short-
term analyses of saturated soils with very low permeability and
long-term analyses where excess pore water pressure is fully
dissipated. It cannot capture water transport in porous media and
its sequential effects on soil deformation. Water transport plays an
important role in many geotechnical problems. One example is soil
consolidation settlement. Another noteworthy scenario involves
the initiation of catastrophic failure, exemplified by the determi-
nation of the timing and mechanisms of landslides (Iverson et al.,
1997; Torres et al., 1998; Berti and Simoni, 2005).

In this study, we further extend the N-PFEM for the coupled
dynamic analysis of saturated media, considering water seepage.
This development is based on the generalised Hellinger-Reissner
(HR) variational principle as proposed in the work of Wang et al.
(2021a). The coupled N-PFEM developed in this study is assessed
by studying a range of challenging geotechnical problems, such as
wave propagation, strip footing, and consolidation, which require
the fulfilments of temporal stability and the inf-sup condition. It is
demonstrated that, while inheriting the advantages of the con-
ventional nodal integration-based PFEM for modelling large
deformation problems, the developed N-PFEM also successfully
reproduces smooth effective stress and pore water pressure fields
without the need for any stabilisation technique.
2. Model description

In this section, the governing equations and solution schemes of
the current numerical model are briefly introduced. More theo-
retical and technical details can be found in our previous studies
(Zhang et al., 2013, 2019, 2022; Wang et al., 2021a,b).
2.1. Governing equations

A two-dimensional (2D) domain, V, comprising saturated
porous media and bounded by a surface S, is considered, as shown
in Fig. 1.

The governing equations for dynamic saturatedmedia are below
(Zienkiewicz et al., 1999; De Boer, 2012):

(a) The equilibrium equation for the mixture
tion-based particle finite element method (N-PFEM) for modelling
gineering, https://doi.org/10.1016/j.jrmge.2023.11.016
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VTðs0 þmpÞþb ¼ r _v ðin VÞ (1)

where sʹ is the effective stress; m is the vector, m ¼ [1,1,0]; p is the
pore water pressure; b is the body force; r is the density; V is the
linear strain-displacement operator; and v is the velocity.

(b) Displacement-strain relation

ε ¼ Vu (2)

where 3is the strain and u is the displacement.

(c) Darcy’s law

Vpþbf �
gf
k
w ¼ rf _v (3)

where rf, gf, and bf are the density, the unit weight, and the body
force of a fluid, respectively; k is the Darcy hydraulic conductivity;
and w is the superficial velocity.

(d) Mass balance equation

VTwþVTv ¼ 0 (4)

where w can be eliminated by substituting Eq. (3) into Eq. (4):

VT k
gf

�
Vpþbf � rf _v

�
þVTv ¼ 0 (5)

(e) Boundary conditions

NTðs’ þmpÞ ¼ t ðon StÞ (6)

u ¼ up ðon SuÞ (7)

p ¼ pp
�
on Sp

�
(8)

NT k
gf

�
Vpþ bf � rf _v

�
þ VTv ¼ qp

�
on Sq

�
(9)

where N is a matrix consisting of components of the outward
normal vector of the boundary; and t, up, pp and qp are the pre-
scribed traction, displacement, pore water pressure and fluid flux,
respectively.

(f) Constitutive equations of elastoplasticity

Fðs0Þ � 0 (10)
Please cite this article as: Wang L et al., A stable implicit nodal integra
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ε ¼ ε
e þ ε

p; εe ¼ Cs’; εp ¼ lVGðs’Þ (11)

where F is the yield function; 3
e and 3

p are the elastic and plastic
strains, respectively; C is the elastic compliance matrix; l is the
plastic multiplier; and G is the plastic potential. The associated flow
rule assumes G¼ F. The incremental forms of Eqs. (10) and (11) with
their complementary conditions can be expressed as

Fðs’Þ � 0
Dε ¼ CDs’ þ DlVFðs’Þ
DlFðs’Þ ¼ 0 ðDl � 0Þ

9=; (12)

The above governing equations are the so-called u-p form
suitable for dynamic analysis of geotechnical problems of low to
medium frequency (Zienkiewicz et al., 1999). The porosity n can be
updated by _n ¼ ð1� nÞV$v, assuming the solid skeleton is
incompressible (De Boer, 2012). The density of the mixture is
calculated as r ¼ nrf þ(1-n)rs, where rs is the density of the solid.
2.2. Time discretisation

Using the q-method (Wood, 1990), the effective stress, velocity,
and pore water pressure are discretised in time as

s0 ¼ q1s
0
nþ1 þ ð1� q1Þs0

n (13)

v ¼ _u ¼ unþ1 � un

Dt
¼ Du

Dt
¼ q2vnþ1 þ ð1� q2Þvn (14)

p ¼ q3pnþ1 þ ð1� q3Þpn (15)

where the subscripts n and nþ1 denote the known and unknown
states; Dt is the time step; and q1, q2 and q3 are the numerical pa-
rameters ranging from 0 to 1. Substituting Eqs (13)e(15) into the
equilibrium Eq. (1) and boundary conditions Eqs. (6) and (9) gives

VTs0
nþ1þ

ð1�q1Þ
q1

VTs0
nþ

q3
q1
VTmpnþ1þ

ð1�q3Þ
q1

VTmpnþ~b¼ rnþ1

(16)

NT
�
s0
nþ1 þ

q3
q1

mpnþ1

�
¼ ~t (17)

NTkq1
gf

�
q3
q1
Vpnþ1 þ ~bf

�
¼ qp (18)

where

~b ¼ 1
q1

bþ ~r
vn
Dt

~r ¼ r

q1q2

rnþ1 ¼ ~r
Du
Dt2

~t ¼ 1
q1

t � 1� q1
q1

NTs0
n �

1� q3
q1

NTmpn

~bf ¼ 1
q1
bf þ

ð1� q3Þ
q1

Vpn � ~rf _v

~rf ¼ rf
q1

9>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>;

(19)

Wang et al. (2021a) demonstrated that the above timemarching
tion-based particle finite element method (N-PFEM) for modelling
gineering, https://doi.org/10.1016/j.jrmge.2023.11.016



L. Wang et al. / Journal of Rock Mechanics and Geotechnical Engineering xxx (xxxx) xxx4
scheme is unconditionally stable for dynamic analysis of saturated
media if q1,2,3 � 0.5. In this study, we use q1 ¼ q2 ¼ q3 ¼ 1 unless
otherwise specified.
2.3. Spatial domain discretisation with nodal integration

Three-node triangular elements are adopted for finite element
discretisation, with a nodal integration scheme implemented over
smoothing cells. This scheme has been demonstrated to be effective
in addressing volumetric locking issues associated with linear el-
ements (Zeng and Liu, 2018; Zhang et al., 2018; Meng et al., 2020).
Following standard finite element notations, the displacement field
u is approximated by
min
Dû

max
ðs0

;r;pÞnþ1

� 1
2
Ds0TCDs0 þ DbuTBT

�
s0
nþ1 þ

q3
q1

mpnþ1

�
� DbuT~f þ DbuTATrnþ1 �

Dt2

2
rTnþ1Drnþ1 �

Dt
2
cT
nþ1Kcnþ1 � DtpTnþ1

~f
q

subject to F
�
s0
nþ1

� � 0

Acnþ1 � Bppnþ1 ¼ ~f
b

(25)
uzNubu (20)

where the hat symbol ‘̂’ represents variables at mesh nodes, and Nu

is the matrix containing the linear interpolation shape functions.
The strain tensor 3over finite elements is then expressed as

ε ¼ VuzBubu
Bu ¼ VNu

�
(21)

Due to the linear shape function, the strain tensor 3is uniform
within each three-node triangular element. Hence, the smoothed
strain at each mesh node can be evaluated as a weighted average of
strain over the smoothing cell (Chen et al., 2001; Liu et al., 2007;
Zeng and Liu, 2018; Zhang et al., 2018; Meng et al., 2020). As
illustrated in Fig. 2, cells are constructed by connecting the centroid
of each triangle to its three mid-edge nodes. The smoothed strain at
the kth node (or the strain across the kth smoothing cell) is

εk ¼ 1

,
As
k

XNs

i¼1

1
3
Ae
i B

e
u;ibue

i (22)

where As
k is the area of the kth smoothing cell Us

k, Ns is the number
of elements contributing to the kth smoothing cell, and Ae

i , B
e
u;i andbue

i are respectively the area, strain gradient matrix and nodal
displacement of the ith linear triangular element involved in the
kth smoothing cell. The relationship between the smoothed strain
and nodal displacement at the kth node can be further expressed as
(Meng et al., 2020):

εk ¼ Bkbuk; (23)

with Bk ¼ ð1 =As
kÞ
PNs

i¼1
1
3A

e
i B

e
u;i being the smoothed strain gradient

matrix.
Other master fields, such as the effective stress s0, the pore

water pressure p, and the dynamic force r, are also assumed uni-
form across each smoothing cell
Please cite this article as: Wang L et al., A stable implicit nodal integra
saturated soil dynamics, Journal of Rock Mechanics and Geotechnical En
s’zs’; rzr; pzp;czc (24)

where the overbar represents the value over the smoothing cell
(also the value at the mesh node associated with this smoothing
cell). For brevity, an intermediate variable c ¼ q3

q1
Vpþ ~bf is intro-

duced (Zhang et al., 2016; Wang et al., 2021a).

2.4. Solution scheme

2.4.1. Optimisation problem
According to the generalised Hellinger-Reissner variational

principle proposed by Wang et al. (2021a), the discretised gov-
erning equations for saturated soil dynamics are equivalent to the
following min-max problem:
The equivalence between this min-max problem and the gov-
erning equations can be verified by taking functional derivatives of
the associated Lagrangian functional (Wang et al., 2021a), as shown
inAppendix A. However, it is noteworthy that, in this study, all the
matrices in the min-max problem (25) are calculated over
smoothing cells, which differs from those in the work ofWang et al.
(2021a), where they were estimated on finite elements. This dif-
ference arises due to the utilisation of nodal integration in this
study. Specifically, the matrices and vectors in the min-max prob-
lem (25) are

C ¼
Z
Us
CdU

BT ¼
Z
Us
ðBkÞ

T
dU

AT ¼
Z
Us
IdU

D ¼
Z
Us
~r�1dU

K ¼
Z
Us

kq1
gf

dU

Bp ¼ q3
q1

Z
Us
ðBkÞ

T
dU

~f
b ¼

Z
Us

~bf dU

f q ¼ q3
q1

Z
Gs
qpdG

~f ¼
Z
Us

~bdUþ
Z
Gs

1
q1

tdG� ð1� q1Þ
q1

BTsn � ð1� q3Þ
q1

BTmpn

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
(26)

where I is an identity matrix, and Us is the smoothing cell.
tion-based particle finite element method (N-PFEM) for modelling
gineering, https://doi.org/10.1016/j.jrmge.2023.11.016



Fig. 2. Schematic of node-based smoothing cells created based on adjacent triangular
elements. Each smoothing cell consists of Ns sub-cells and each sub-cell is one-third of
the corresponding linear triangular element.
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The min-max problem (25) can be further reformulated as a
standard SOCP problemwith different yield criteria, such as Tresca,
MohreCoulomb and Drucker-Prager functions (Zhang et al., 2013,
2019), and the implementation details have been documented by
Wang et al. (2021b). In Appendix B, the reformulated SOCP problem
is presented.

2.4.2. N-PFEM
The PFEM treats mesh nodes as free particles within the

framework of Lagrangian FEM. The evolving computational domain
is identified using the alpha-shape method (Edelsbrunner and
Mücke, 1994; Oñate et al., 2004; Cremonesi et al., 2010): for a
cloud of points with a characteristic length h, an examination is
performed on each point to check whether it is possible to place a
sphere with a radius ah (a is a pre-defined factor usually varying
from 1.2 to 1.6) such that it only contains that point; if possible, the
point is a boundary point; otherwise, it is an internal point. During
the PFEM simulation, the boundary of the computational domain
associated with a new mesh is obtained by removing unnecessary
elements from the mesh generated through Delaunay triangulation
of updated mesh nodes (Cremonesi et al., 2010). However, the
quality of the resulting mesh is usually insufficient for classical FEM
analysis to handle large deformation. Therefore, a re-meshing or
mesh smoothing operation on the identified domain is needed to
ensure mesh quality (Zhang et al., 2013; Cante et al., 2014; Meduri
et al., 2019; Wang et al., 2022). Alternatively, the smoothing tech-
nique employed in smoothed finite element methods can alleviate
Fig. 3. Schematic of the N-PFEM calculation procedures from time step n to nþ1: (a) a
cloud of particles at tn; (b) triangular elements obtained from the alpha-shape method
at tn; (c) constructed node-based smoothing cells at tn; and (d) updated particle po-
sitions at tnþ1.

Please cite this article as: Wang L et al., A stable implicit nodal integra
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this issue by using cells rather than finite elements for spatial
domain discretisation (Yuan et al., 2019; Zhang et al., 2018, 2021,
2022).

In this paper, a nodal integration scheme is introduced into
PFEM for poro-elastoplastic analysis of saturated porous media. The
basic calculation procedures of the developed N-PFEM within each
time step are as follows:

(i) A cloud of particles (vertices) is used to represent the
computational domain (Fig. 3a);

(ii) The alpha-shape method is employed to identify the
computational domain, which also generates a new mesh
through Delaunay triangulation (Fig. 3b);

(iii) Smoothing cells are constructed for each node of triangular
elements (Fig. 3c);

(iv) Incremental finite element analysis is performed;
(v) Field variables at all nodes are updated (e.g. the coordinates

of particles are updated using the resolved incremental dis-
placements, as shown in Fig. 3d).

In procedure (ii), mesh refinements, involving actions such as
node deletion and insertion, are necessary to ensure a high-quality
mesh, as indicated by Meduri et al. (2019). These measures are
particularly essential when addressing situations with profound
deformations, such as those observed in flow-like landslides,
breaking waves, and splashes. Additionally, there is the possibility
of introducing additional nodes to enhance the precision of nu-
merical simulation. It is worth noting that these refinements could
potentially lead to a modification in the total number of nodes,
necessitating variable mapping procedures for the newly added
nodes.

In the proposed N-PFEM, we adopt the infinitesimal strain (Eq.
(2)) with an updated geometry for large deformation analysis. The
use of infinitesimal strain for large deformation analysis has proven
to be effective in geotechnical applications (Hu and Randolph,1998;
Tian et al., 2014; Wang et al., 2015; Kong et al., 2018). Notably, the
PFEM with this strategy has demonstrated its effectiveness in
reproducing large deformational phenomena observed in labora-
tory experiments. Examples include water dam break flow (Zhang
et al., 2019), dry (Zhang et al., 2014) and saturated (Wang et al.,
2021a) granular collapses, and submarine landslide-generated
waves (Zhang et al., 2019, 2022). In these cases, good agreements
were achieved between numerical simulations and experimental
measurements. Its effectiveness will be further demonstrated for
dealing with saturated soil under large deformation through
several benchmarks to be presented in Section 3.

3. Numerical examples

To validate and demonstrate the proposed model for dynamic
analysis of saturated media, numerical simulations are conducted
for four benchmarks. These benchmarks cover both elastic and
elastoplastic scenarios as well as both small and large de-
formations. The first two examples involve simulations where node
positions are not updated, representing small deformation cases. In
contrast, the third and fourth examples utilise the complete N-
PFEM procedures, as outlined in Section 2.4.2, to perform the large
deformation analysis.

3.1. Wave propagation

In this example, we study a typical benchmark for the dynamic
analysis of saturated media (Markert et al., 2010): the wave prop-
agation in a 2D rectangular saturated weightless poroelastic me-
dium. The model setup is shown in Fig. 4a, where a surface load
tion-based particle finite element method (N-PFEM) for modelling
gineering, https://doi.org/10.1016/j.jrmge.2023.11.016



Fig. 4. Wave propagation in a 2D saturated weightless poroelastic medium: (a) model setup; (b) time-load function; (c) displacement at point A compared with results of Markert
et al. (2010) and the NS-PFEM results (Wang et al., 2023a); and (d) pressure at point B compared with results of Markert et al. (2010) and the NS-PFEM results (Wang et al., 2023a).

L. Wang et al. / Journal of Rock Mechanics and Geotechnical Engineering xxx (xxxx) xxx6
with a width Wf ¼ 1 m is applied at the top surface of the domain.
The load obeys the function f(t) ¼ 100sin(25pt)(1-H(t-0.04)) kPa,
where H denotes the Heaviside step function, and lasts for 0.04 s
(Fig. 4b). Material parameters used in this study are the same as
those in the work of Markert et al. (2010): the density of solid
rs ¼ 2000 kg/m3, the density of fluid rf ¼ 1000 kg/m3, porosity
n¼ 0.33, Young’s modulus E¼ 14.5 MPa, Poisson’s ratio n¼ 0.3, and
the Darcy hydraulic conductivity k ¼ 10�2 m/s. The computational
domain is discretised using 16,586 nodes and 32,643 three-node
triangular elements, based on which 16,586 smoothing cells are
constructed. The time step adopted in the simulation is 0.005 s,
facilitating an accurate representation of wave propagation over a
duration of 0.2 s. Consequently, a total of 400 simulation steps are
executed.

Fig. 4c and d presents the evolution history of the displacement
at point A and the pressure at point B obtained from our simulation
(SOCP-L). These results are also compared with the reference so-
lutions from the work of Markert et al. (2010), the standard nodal
integration-based smoothed PFEMwithout stabilisation techniques
from the work of Wang et al. (2023a) (denoted as NS-PFEM), and
the simulation results obtained from the same SOCP-based FE
computational framework reported by Wang et al. (2021a) using
quadratic displacement/linear stress mixed elements (SOCP-Q).
Satisfactory agreements are observed between SOCP-Q, SOCP-L,
and the results of Markert et al. (2010), demonstrating the accuracy
of the proposed nodal integration scheme for the dynamic analysis
of saturatedmedia. As for the NS-PFEM, incorrect results (i.e. wrong
shape of the displacement at A and the oscillation of pore water
pressure at B) are obtained due to the temporal instability-induced
non-physical oscillations, as reported by Wang et al. (2023a). The
slight discrepancy in the displacement obtained from SOCP-L, as
compared to SOCP-Q and the results from thework of Markert et al.
(2010), can be attributed to the utilisation of shape functions one
order lower in the current method. It is worth noting that SOCP-Q
(Wang et al., 2021a) employs quadratic/linear mixed triangular
elements, resulting in a higher number of mesh nodes (i.e. 65,814).
Consequently, SOCP-Q exhibits lower computational efficiency
Please cite this article as: Wang L et al., A stable implicit nodal integra
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compared to the nodal integration-based method developed in our
study (i.e. SOCP-L). This is evident from the computational times of
240 min for SOCP-L and 759 min for SOCP-Q in solving this
benchmark problem, using a Windows 10 Desktop with an Intel i7
CPU @ 3.00 GHz.

To further demonstrate the numerical stability of our proposed
method for dynamic analysis of saturatedmedia, wavefields of pore
water pressure at t ¼ 0.05 s are illustrated in Fig. 5, where the
displacement is scaled by a factor of 250. The simulation results
obtained from the developed SOCP-based method using linear el-
ements and nodal integration (referred to as SOCP-L) are compared
with those from the conventional FE simulation using linear ele-
ments, both with and without stabilisation as described by
Monforte et al. (2019). As can be seen, unphysical oscillation is
present in the conventional FE simulation results when linear el-
ements are used without stabilisation techniques (Fig. 5c). In
contrast, ourmethod demonstrates the ability to generate a smooth
wavefield, as depicted in Fig. 5a, even in the absence of any stabi-
lisation techniques on linear elements. While for the simulation of
this problem using the NS-PFEMmodel (Wang et al., 2023a), severe
numerical noises related to temporal instability are observed if
stabilisation techniques are not applied. Notably, the results ob-
tained from our method exhibit good agreement with those using
the same SOCP-based formulation with quadratic/linear mixed el-
ements (Fig. 5b) and conventional FE simulation with stabilisation
techniques (Fig. 5d).

3.2. Strip footing and long-term consolidation

In this section, the long-term consolidation of both elastic and
elastoplastic saturated soil subjected to footing under small de-
formations is considered. This problem has also been examined in
various previous studies (Jin et al., 2021b; Yuan et al., 2023b). The
model setup is as shown in Fig. 6a, consistent with those in the
work of Manoharan and Dasgupta (1995) and Yuan et al. (2023b).
Material parameters are as follows: the density of solid
rs ¼ 2000 kg/m3, the density of fluid rf ¼ 1000 kg/m3, porosity
tion-based particle finite element method (N-PFEM) for modelling
gineering, https://doi.org/10.1016/j.jrmge.2023.11.016



Fig. 5. Wavefields of pore water pressure at t ¼ 0.05 s calculated by: (a) our nodal integration-based SOCP-L and (b) SOCP-Q methods, in comparison to (c) the conventional FE with
linear elements without stabilisation (Monforte et al., 2019) and (d) with stabilisation (Monforte et al., 2019). The displacement field is scaled by a factor of 250.

Fig. 6. Strip footing on a poroelastic medium: (a) model setup; and (b) time-load function. Note: Tv ¼ 1 corresponds to 4680 d.

Fig. 7. Numerical results of strip footing on poroelastic medium compared with those
of Manoharan and Dasgupta (1995): (a) normalised displacement at points A and B;
and (b) normalised pressure at point A.
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n¼ 0.33, Young’s modulus E¼ 2MPa, Poisson’s ratio n¼ 0.3 and the
Darcy hydraulic conductivity k ¼ 10�5 m/d. Gravity effects are not
included.

To facilitate the analysis, a scaled value of time, Tv, is introduced,
where Tv¼ 1 corresponds to 4680 d. The load with awidth of 3 m is
applied at the top surface and described by a ramp function over a
period of 0.01Tv and then is kept constant, as depicted in Fig. 6b.
The simulation is conducted for a duration of 1000Tv, and it consists
of two stages (Yuan et al., 2023b): the first loading stage (from t¼ 0
to t ¼ 0.01Tv) is simulated using 100 constant time steps, while the
long-term consolidation stage extends until t ¼ 1000Tv with a
constantly increased time step Dt by a factor of 1.1 at each step.

Following the work of Manoharan and Dasgupta (1995), the
displacements are normalised concerning the width of the loadWf,
and pore water pressure is normalised concerning the maximum
value of the load, i.e. 100 kPa. Fig. 7a illustrates the simulation re-
sults for the elastic behaviour of the saturated porous media. It
shows that Points A and B experience rapid settlement during the
loading phase (t � 0.01Tv), followed by gradual deformation due to
consolidation (0.01Tv � t � 100Tv), and finally reach a steady state
after complete dissipation of pore water pressure (t � 100Tv). The
normalised displacements at points A and B agree well with the
independent numerical results reported by Manoharan and
Dasgupta (1995). Additionally, the normalised pore water pres-
sure recorded at point B is nearly consistent with the results re-
ported byManoharan and Dasgupta (1995), as shown in Fig. 7b. The
results of Yuan et al. (2023b) are not presented in this figure since
they exhibit a high degree of similarity to the curves depicted in
Fig. 7a and b.
tion-based particle finite element method (N-PFEM) for modelling
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Fig. 8. Strip footing: (a) normalised displacements at points A and B compared with
the results of Manoharan and Dasgupta (1995) and Sabetamal et al. (2016) for elas-
toplastic case; and (b) normalised pore water pressure at point B compared with the
results of Sabetamal et al. (2016) for elastoplastic case.
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The same numerical configurationwith an elastoplastic medium
is further examined. The associated Mohr-Coulomb yield criterion,
with cohesion c ¼ 10 kPa and friction angle 4 ¼ 20�, is adopted in
this simulation which is in line with that reported by Sabetamal
et al. (2016). The normalised displacement records at points A
and B and normalised pore water pressure records at point A are
presented in Fig. 8a and b, respectively. These results exhibit a high
level of agreement with the results of Manoharan and Dasgupta
(1995) and Sabetamal et al. (2016).
Fig. 9. Numerical results of pore water pressure obtained in this study and those by two v
t ¼ 0.01Tv from this study; (b) elastic analysis without stabilisation at t ¼ 0.01Tv from the s
study of Yuan et al. (2023b); (d) elastoplastic analysis at t ¼ 0.001Tv from this study; (e) elas
elastoplastic analysis with stabilisation at t ¼ 0.001Tv conducted by Jin et al. (2021b); (g)
stabilisation at t ¼ 0.01Tv conducted by Yuan et al. (2023b); and (i) elastoplastic analysis w
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To demonstrate the accuracy of our model, we present the pore
water pressure fields at two specific instants: t ¼ 0.001Tv and
0.01Tv, which have been previously studied in two separate ver-
sions of smoothed PFEM (Jin et al., 2021b; Yuan et al., 2023b). In
Fig. 9, numerical results are comparedwith those obtained from the
smoothed PFEM without and with stabilisation techniques (Jin
et al., 2021b; Yuan et al., 2023b). The numerical solutions from
the present model at the two instants for both elastic and elasto-
plastic analyses are shown in Fig. 9aed and g. These results exhibit
smoother distributions compared to jagged patterns obtained by
the smoothed PFEM without stabilisation techniques (i.e. Fig. 9bee
and h) (Jin et al., 2021b; Yuan et al., 2023b). Notably, when
comparing Fig. 9b with Fig. 9e and h, spurious oscillations are more
pronounced in the elastoplastic analysis for the smoothed PFEM
without stabilisation techniques. In contrast, the present model
accurately captures the realistic pore water pressure field for both
elastic and elastoplastic analyses, similar to the results obtained in
the smoothed PFEM with stabilisation techniques (Jin et al., 2021b;
Yuan et al., 2023b) as shown in Fig. 9cef and i, demonstrating the
numerical stability of our model for elastic and elastoplastic ana-
lyses of saturated media.
3.3. Self-weight consolidation

In this section, the elastic behaviour of a saturated medium
under large deformation is investigated by considering a 2D self-
weight consolidation of a block. This configuration has been pre-
viously studied as a standard benchmark (Zhao and Choo, 2020;
Zheng et al., 2021; Yuan et al., 2022). The elastic block is a rectangle
with a width of 4 m and a height of 2 m. Due to symmetry, a square
with dimensions of 2 m is adopted in the simulation. The model
setup, depicted in Fig. 10a, illustrates the mesh configuration and
boundary conditions. The material parameters used in the work of
Zheng et al. (2021) are adopted in this study: the density of solid
rs ¼ 2650 kg/m3, the density of fluid rf ¼ 1000 kg/m3, the porosity
n ¼ 0.4, the Young’s modulus E ¼ 100 kPa, the Poisson’s ratio
n ¼ 0.3, and the Darcy hydraulic conductivity k ¼ 10�4 m/s. The
gravity acceleration g ¼ 10 m/s2 is applied using a ramp function
over a period of 0.1 s and kept as a constant, as shown in Fig. 10b. A
ersions of smoothed PFEM (Jin et al., 2021b; Yuan et al., 2023b): (a) elastic analysis at
tudy of Yuan et al. (2023b); (c) elastic analysis with stabilisation at t ¼ 0.01Tv from the
toplastic analysis without stabilisation at t ¼ 0.001Tv conducted by Jin et al. (2021b); (f)
elastoplastic analysis at t ¼ 0.01Tv from this study; (h) elastoplastic analysis without
ith stabilisation at t ¼ 0.01Tv conducted by Yuan et al. (2023b).

tion-based particle finite element method (N-PFEM) for modelling
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Fig. 10. 2D self-weight consolidation: (a) model setup; (b) evolution of gravity acceleration; (c) contours of pore water pressure p and the magnitude of displacement u at different
instants; and (d) time history of pore water pressure at points A, B and C, compared with those in the work of Yuan et al. (2022).

Table 1
Model parameters adopted in this study.

Parameter Value

Density of solid, rs (kg/m3) 2700
Density of fluid, rf (kg/m3) 1000
Porosity, n 0.33
Young’s modulus, E (MPa) 9.175
Poisson’s ratio, n 0.316
Darcy hydraulic conductivity, k (m/s) 10e4

Cohesion, c (kPa) 100
Friction angle, 4 (�) 20
Dilation angle, j (�) 0
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constant time step of 0.005 s is used in this simulation for a dura-
tion of 0.5 s.

The numerical results of pore water pressure at three time in-
stants, i.e. t ¼ 0.1 s, 0.3 s and 0.5 s, along with the displacement at
t ¼ 0.5 s, are presented in Fig. 10c. Similar results have been
observed in previous studies (Zheng et al., 2021, 2022; Yuan et al.,
2022), where stabilisation techniques or a fractional step scheme
were employed to ensure accuracy. The pore water pressure at
three monitoring points, denoted as A, B, and C (as illustrated in
Fig. 10a), is compared with the results of Yuan et al. (2022).
Remarkably, these comparisons give good agreements, which
demonstrate the validity and accuracy of our model for elastic
analysis of saturated media under large deformation.
3.4. Vertical cut of a saturated soil block

In this section, a typical example of a poro-elastoplastic medium
involving large deformation (Sanavia et al., 2002; Navas et al., 2018)
is analysed to validate the capability of the proposed model in
handling practical geotechnical problems. The model setup of a
Fig. 11. Model setup for the vertical cut of a saturated soil block.
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rigid footing on a square domain of saturated soil, same as that
studied by Navas et al. (2018), is shown in Fig. 11. The model pa-
rameters are shown in Table 1.

The computational domain is discretised into 31,008 linear
triangular elements with 15,758 nodes, such that the total number
of cells is 15,758. In the study of Navas et al. (2018), a total vertical
displacement of 2 m is imposed on the loading area at a constant
rate of 0.02 m/s. In this study, the load is enforced through an in-
cremental vertical displacement of Duy ¼ �0.02 mwith a time step
of Dt ¼ 1 s, resulting in 100 simulation steps.

The computed pore water pressure field at two instants, t ¼ 50 s
and t ¼ 100 s are first compared with available results. Yuan et al.
(2023b) employed different values of the stabilisation parameter
s to define a stabilising term that is added to the equilibrium
equation of fluid mass, to investigate the performance of a devel-
oped Polynomial-Pressure-Projection technique in stabilising the
pore water pressure field in this challenging example. Since this
problem involves large deformation elastoplastic analysis, the
spurious oscillations in pore water pressure field are more pro-
nounced compared to both large deformation elastic analysis and
small deformation elastoplastic analysis. To alleviate this issue, a
large stabilisation parameter s ¼ 100 was used by Yuan et al.
(2023b). It should be noted that a different value of stabilisation
parameter 10 is used by Yuan et al. (2023b) to stabilise the nu-
merical solution to the problem shown in Section 3.2. While the
present N-PFEM model can capture the smooth distributions of
field variables without using any stabilisation techniques.
tion-based particle finite element method (N-PFEM) for modelling
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Fig. 12. Numerical solutions of pore water pressure: (a) at t ¼ 50 s from this study; (b) at t ¼ 100 s from this study; (c) at t ¼ 50 s from the smoothed PFEM with a stabilisation
parameter of 100; (d) at t ¼ 100 s from the smoothed PFEM with a stabilisation parameter of 100; (e) at t ¼ 100 s from the smoothed PFEM without stabilisation (the stabilisation
parameter is set at 0); and (f) at t ¼ 100 s from the smoothed PFEM with a stabilisation parameter of 10. (cef) are from the work of Yuan et al. (2023b).

Fig. 13. Numerical solutions of equivalent plastic strain at t ¼ 50 s and t ¼ 100 s: (a)
t ¼ 50 s from this study; (b) t ¼ 100 s from this study; (c) t ¼ 50 s from the smoothed
PFEM with a stabilisation parameter of 100 (Yuan et al., 2023b); and (d) t ¼ 100 s from
the smoothed PFEM with a stabilisation parameter of 100 (Yuan et al., 2023b).
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The distributions of pore water pressure calculated from the N-
PFEM at t ¼ 50 s and t ¼ 100 s are on a deformed mesh in Fig. 12a
and b, which agree well with the solution from a smoothed PFEM
model using a stabilisation parameter of 100 shown in Fig. 12c and
d (Yuan et al., 2023b). However, due to the involvement of large
deformations, a slightly jagged distribution can still be observed.
This can be further improved by increasing the level of discretisa-
tion as suggested by Navas et al. (2018). To illustrate the challenges
in capturing stabilised pore water pressure, the computed pore
water pressure fields at t ¼ 100 s obtained using the smoothed
PFEM without stabilisation (i.e. the stabilisation parameter is set at
0) and with a stabilisation parameter of 10 are plotted in Fig. 12e
and f, respectively (Yuan et al., 2023b). These results highlight the
advantage of the proposed nodal integration-based method, since
no stabilisation techniques are required when using linear trian-
gular elements.
Please cite this article as: Wang L et al., A stable implicit nodal integra
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The calculated equivalent plastic strains at t ¼ 50 s and t ¼ 100 s
are also illustrated in Fig. 13a and b, respectively. The captured
shear bands are similar to the ones (Fig. 13c and d) observed by
Yuan et al. (2023b) using the smoothed PFEM with a stabilisation
parameter of 100. The deformed configurations in Fig. 13 depict the
accumulation of plastic strain in narrow zones due to the slip of one
part of soil on the other, which has also been reported in the work
of Navas et al. (2018) and Sanavia et al. (2002). The present results
support the validity of our model for large deformation elasto-
plastic analysis of typical geotechnical problems.

4. Conclusions

To develop an efficient and robust PFEM framework for dynamic
analysis of saturated media in the context of geotechnical engi-
neering applications, a novel nodal integration-based approach
called N-PFEM is proposed. This framework incorporates a nodal
integration technique into a generalised HR variational principle-
derived implicit PFEM formulation. By utilising low-order ele-
ments with a strain smoothing technique, the model can signifi-
cantly reduce the computational cost and eliminate the volumetric
locking issue. Additionally, tedious mapping operations after re-
meshing in the original PFEM are avoided, as all field variables
are evaluated at mesh nodes and nodal integrations are performed
over cells.

It is demonstrated that the proposed HR variational principle-
derived formulation resolves the instability issues observed in
nodal-basedmesh-free methods and other nodal integration-based
PFEM formulations for dynamic saturated soils without the need
for ad-hoc stabilisation techniques. The model is validated against a
series of benchmark problems, exhibiting excellent agreement with
reference solutions. Our work provides a valuable reference for the
development of advanced numerical tools capable of simulating
geotechnical applications involving large deformation and satu-
rated conditions.
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