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Abstract

For efficiently solving the Reliability-Based Design Optimization (RBDO) problem with multi-modal,
highly nonlinear and expensive-to-evaluate limit state functions (LSFs), a sequential sampling-based Bayesian
active learning method is developed in this work. The penalty function method is embedded to transform the
constrained optimization problem into a non-constrained one to reduce the model complexity. The proposed
method for solving RBDO problems starts by training a Gaussian process (GP) model, in the augmented
space of random and design variables. It is then based on an efficient sampling scheme for simulating the
GP model, the adaptive Bayesian optimization (BO) and Bayesian reliability analysis (BRA) procedures are
combined in a collaborative way for sequentially producing the joint training points. BO driven by expected
improvement (EI) function is used for inferring the global optimum in the design space with global conver-
gence, and the BRA equipped with U function is implemented for inferring the failure probabilities at the
identified design points with the desired accuracy. The superiority of the proposed method is demonstrated
with two numerical and two real-world engineering examples.

Keywords: Reliability-based design optimization; Bayesian optimization; Bayesian reliability analysis;
Acquisition function; Gaussian process simulation

1. Introduction

Design optimization has been widely recognized as a cost-effective design technique of achieving high
performance and reliability with low cost in mechanical engineering, aerospace engineering and civil engi-
neering, etc. Uncertainties are iniquitous during different stages of product development, and failing to
incorporate these uncertainties may result in misleading design configurations [1], this has highlighted the
necessity of developing uncertainty-based design optimization methods. The uncertainty-based design op-
timization problems can be grouped into three types i.e., Reliability-Based Design Optimization (RBDO)
[2], Robust Design Optimization [3] and Expected Life-cycle Cost Optimization [4]. One of the common
challenges for all the above three types of optimization problems is the nested numerical trap, which means
the necessity of optimizing the design parameters in the outer loop, and probabilistic analysis on (a set of)

∗Corresponding author at School of Power and Energy, Northwestern Polytechnical University, Xi’an 710072, China
Email address: pengfeiwei@nwpu.edu.cn (Pengfei Wei)



expensive-to-evaluate simulators in the inner loop. The aim of this work is then to develop a numerically
efficient method for addressing the above challenge, and specifically we focus on the RBDO problem.

For a typical RBDO problem, the available methods can be organized into three groups: approximate
reliability methods, advanced Monte Carlo simulation, and surrogate model methods mostly equipped with
active learning schemes. All these methods have been extended for addressing the RBDO problems in a
double-loop or a single-loop or a decoupling scheme [5]. The approximate reliability methods are mostly
based on searching the Most Probable Point (MPP) of the random variables, which is defined as the point
having the highest probability density value within the failure domain, and typical methods include the First
and Second Order Reliability Methods (FORM and SORM, respectively) [6]. Combined with a double-loop
searching scheme, the FORM method has been extended, and named as Performance Measure Approach
(PMA) for solving the RBDO problem [7]. For bypassing the time-consuming double loop, several single-
loop schemes combined with FORM/SORM has been developed using e.g., the Karush–Kuhn–Tucker (KKT)
optimality conditions [8]. The decoupling approaches driven by FORM/SORM are based on construction of
approximate functional relationship between the reliability index and the design variables (see the Sequential
Optimization and Reliability Assessment (SORA) as an example [9]). Overall, the FORM/SORM based
methods are computationally efficient, but may lack suitability for problems with high-nonlinear constraints
and multi-modal objectives/constraints.

Monte Carlo simulation (MCS), and its extensions, including importance sampling (see e.g., [10]), subset
simulation [11], line sampling [12] and directional (importance) sampling [13], are versatile approaches for
estimating the failure probability as there is a theoretical guarantee of convergence. Plenty of this group of
methods have been extended for RBBO, most of which follow a decoupling scheme. For example, with the
assumption that probability distribution of the random variables depend on the design variables, the subset
simulation approach is copied with the augmented space perspective for estimating the reliability-based
design sensitivity with only one simulation run [14]. This strategy is then extended, based on a weighting
scheme, by using other advanced MCS methods such as line sampling [15] and subset simulation [16], for
directly estimating the function of the failure probability over the design variables the bridge importance
sampling has also been extended, by reusing the samples, for addressing RBBO [17]. In all, the decoupling
strategies based on advanced MCS approaches are more suitable for high-nonlinear problems, but may lack
accuracy efficiency due to the extensive numbers of required samples for convergence.

Motivated by the fast computation requirement for real-world engineering applications, the surrogate
model approaches, especially the Gaussian Process Regression (GPR, or called Kriging) equipped with
active learning, have received the most attention during the decades for RBDO [5]. For examples, for
obtaining the accurate MPPs of the single loop approaches, the enhanced chaos control methods [18] and
the most probable learning function [19] are developed for updating the GPR models of LSFs. In [20], the
importance boundary sampling strengthened by the probability feasible region is developed to improve the
computational efficiency of RBDO. In [21], the Kriging model is updated by the MPPs generated from the
last single loop approach iteration. By converting the RBDO problem into a deterministic optimization
with Kriging model surrogating the constraints, and double loop method can be used to solve it [22]. In
[23], a global RBDO method is proposed by surrogating both objective function and LSF with Kriging, and
using two strategies to evaluate the optimal solution. Zhang et al. [24] propose a decoupled RBDO method
by using double loop Kriging model. Moustapha et al. [25] propose a quantile and Kriging-based RBDO
method, where the probabilistic constraints is transformed into the quantiles constraints of the performance
criteria. The high-dimensional RBDO problem is solved in [26], where the high-dimensional reliability
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analysis method is used to perform reliability analysis, and two strategies are proposed to identify the most
probable region of global solution and update the samples for constraints respectively. In [27], the artificial
neural network based inverse reliability approach and a small-sample simulation technique are combined
with a double loop scheme to solve RBDO. In [28], the comprehensive learning particle swarm optimization
is decoupled with GPR model and performed to solve RBDO problems. Yang et al. [29] propose a Kriging-
based single loop RBDO method, two criteria are developed to judge the activeness of LSFs and the IMPP
is derived to refine the Kriging model. Overall, all the above methods have been proven to be of effective
for specific problems, but making better use of the surrogate model information to address RBDO problem
is still on the way.

During the past few decades, Bayesian numerical methods based on machine learning, such as Bayesian
optimization (BO) [30] and Bayesian cubature (BC) [31], have received explosive developments and special
interests in engineering computation, resulting from its many appealing advantages such as global con-
vergence and quantification of numerical error. With the combination of BO and BC, a fully decoupled
Bayesian method, called Collaborative and Adaptive Bayesian Optimization (CABO), has been developed
for propagating the hybrid uncertainties in our previous work [32, 33], and it shows excellent performance of
global convergence and numerical efficiency for even highly nonlinear and multi-modal problems. The aim
of this work is then to extend CABO for addressing the RBDO problem. For doing this, we first transform
the reliability constrained optimization problem of RBDO into an unconstrained one by the exterior penalty
function method, and establish a GPR model in the augmented space of design and random variables for
replacing the expensive objective or constraints based on an initial training set. Then, the Bayesian Opti-
mization (BO) is implemented in the design variable space for searching the global optimal design site of
the unconstrained optimization problem, and the Bayesian Reliability Analysis (BRA) is implemented in
the random variable space for inferring the posterior estimate for the probabilities of failure at the identified
point of design variables. The EI and U function are embedded into BO and BRA respectively for generating
the next joint training point, where the EI function is evaluated numerically by sampling the posterior GPR
model, and by adding it to the training set, the GPR models will be updated. The proposed method has the
following appealing features. First, an efficient sampling algorithm for simulating the GPR model is intro-
duced for making it applicable for problems with multiple constraints; second, the equivalent transformation
of the constrained problem into a non-constraint one greatly reduces the computational complexity; third,
the BO algorithm applied in the design variable space provides guarantee of global convergence; fourth, the
BRA applied in the random variable space provides guarantee of convergence for the failure probabilities
at the identified optimal points of design variables. The above features of the development are ultimately
illustrated and demonstrated with numerical and engineering examples.

2. Problem Statements

Let x = (x1, x2, · · · , xn) denote n-dimensional independent random input variables whose joint density
function is formulated as f (x|µ) with µ being the mean vector of x, and let d = (d1, d2, · · · , dm) imply the
m-dimensional deterministic interval variables. Let gi (x,d) (i = 1, 2, · · · , nc) denote a set of nc limit state
functions, each of which represents a failure mode. The objective function of a RBDO problem is denoted
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by J (µ,d). With the above notations ready, the RBDO problem is then formulated as:

find (µ,d)

minimize J (µ,d)

subjected to: Pr (gi (x,d) < 0) < p∗fi , i = 1, · · · , nc

µ ∈
[
µL,µU

]
,d ∈

[
dL,dU

] , (1)

where Pr (·) indicates the probabilistic operator, p∗fi is the threshold of failure probability for the i-th failure
mode.

The complexity of the above RBDO problem involves a multidimensional integration with discontinuous
integrand for reliability analysis and a multidimensional optimization under complicated constraints. The
challenges appear as the LSFs can be highly nonlinear, expensive to evaluate, and the optimization problem
can be multi-modal. As has been stated in the introduction, many methods have been developed for solving
this RBDO problem, and the surrogate-based RBDO methods have received the most attention due to its
high efficiency. In this work, the BO and BRA algorithms are combined to develop a new Bayesian algorithm,
called Collaborative and Adaptive Bayesian Optimization (CABO), for searching the global optimal point
for the RBDO problem with the least calls of the limit state functions.

3. Collaborative and Adaptive Bayesian Optimization for RBDO

3.1. Reformulation of RBDO as a non-constrained optimization problem
Basically, the CABO method is based on training GPR models for all the expensive-to-evaluate LSFs

involved in the RBDO problem in the augmented space of the random and design variables, and then
perform non-constrained BO in the marginal space of design variables, and BRA in the marginal space of
the random variables. Thus, before the proposition, we need first to reformulate the RBDO problem as a
non-constrained one, and then introduce the probabilistic transformation to reformulate the LSFs defined
in the augmented space. Generally, there are two ways of treating the constraints for BO, the first strategy
is based on designing a novel acquisition function which can incorporate both the expected improvement
of objective and the compliance to constraints [34], but this strategy may lose its advantage for problems
with multiple constraints. The second strategy is based on first transforming the constrained problem into a
non-constrained one based on e.g., Lagrangian relation [35] and penalty function [36], but this may introduce
pitfall as it is no longer suitable to approximate the objective function with the stationary GPR model. In
this work, the later strategy is utilized, and the pitfall is fixed by an efficient sampling strategy.

Applying the exterior penalty function, the constrained RBDO problem defined by Eq. (1) can be
equivalently reformulated as:

find (µ,d)

minimize F (µ,d) = J (µ,d) + α

(
nc∑
i=1

[
max

(
pfi (µ,d)− p∗fi , 0

)]2)
subjected to: µ ∈

[
µL,µU

]
,d ∈

[
dL,dU

] , (2)

with α > 0 being the penalty factor, and
∑nc

i=1

[
max

(
pfi (µ,d)− p∗fi , 0

)]2
being the penalty term. It
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should be noted that the penalty factor α is a positive algorithm parameter introduced for making a trade-
off between minimization of the objective and compliance to the constraints. Big value of α results in low
tolerance of betraying the constraints, but may also results in low convergence rate, and small value of α
may lead to less compliance to the constraints. Thus, a trade-off need to be made for specifying the value
of α. Based on our experience, setting α as α = |10000min[J(d)]|

mini

[
p∗
fi

] is usually a good choice, and is utilized in

this work.
As has been stated, the LSFs are approximated by the GPR model within the augmented space of both

design variables (µ,d) and the random input variables x. However, given the RBDO formulation displayed
in Eq. (1), the LSFs are only explicitly dependent on x and d, excluding µ. To fill this gap, a probabilistic
transformation needs to be implemented before implementing CABO. As the random variables are assumed
to be independent of each other, we take the individual xk as an example. Let u = (u1, · · · , un) with each el-
ement following a standard normal random variable. Let Fk (xk) denote the cumulative distribution function
of xk, which is assumed to be continuous. Thus, making Φ(uk) = Fk (xk), the inverse transformation can
be formulated as xk = F−1

k (Φ (uk) |µk). For the input vector x, denote the transformation as x = T (u|µ)
for simplicity. Further, denote the joint input variables ω by ω = (u,µ,d), then the gi-function can be
reformulated as Gi (ω) = gi (T (u|µ) ,d), and the failure probability function pfi(µ, d) can be reformulated
as:

pfi (µ,d) = Pr (Gi (ω) < 0) =

∫
Rn

IFi (ω)Φ (u)du, (3)

where IFi
(ω) denotes the indicator function of Gi (ω), and it equals to one if Gi (ω) < 0, otherwise, it equals

to zero. It should be noted that, in case that the design variables do not contain any element of µ, the
above probabilistic transformation is not required.

With the above transformation, the dimension of the uncontrained RBDO problem is n+ n+m, which
may turns the original RBDO problem to a high-dimensional one (larger than 30). For this case, one can
embed the dimension reduction techniques to the proposed method.

3.2. Basic Principles of CABO
As all requirements are settled, the key steps of CABO for RBDO are conceptually summarized as follows.

First, train a GPR model for each gi-function in the joint space of random and design variables (u,µ,d)

based on the training data set Di = {ωk;Gi (ωk)}k=1,··· ,Ni
; second, perform BO to infer the most possible

minimum of F (µ,d) in the subspace of (µ,d), and also search the next training site
(
µ+,d+

)
, by adding

which to the training data, the knowledge on the global minimum point of F (µ,d) can be improved to the
greatest extent; third, implement the adaptive BRA to infer the posterior feature of the failure probability
at the next training point

(
µ+,d+

)
, and also to search the next accompanied training site u+ which results

in the most reduction of the error of estimating the failure probability at the site
(
µ+,d+

)
; forth, denote the

new training point in the augmented space as ω+ =
(
u+,µ+,d+

)
, compute the value of Gi (ω

+) by calling
the gi-functions, and add the new joint training point {ω+;Gi (ω

+)} to the training data set Di, this way to
update the GPR mode; at last, repeat the above procedures until the stopping conditions for both BRA and
BO are satisfied. With the above procedures, the global optimal point of the design variables is correctly
identified by BO in the marginal space (µ,d), and meanwhile, the failure probability values at this global
optimal point are estimated in the marginal space of u with desired accuracy. It should be noted that, for
each iteration, only in the forth step, each gi-function need to be computed for one time, thus total number
of gi-function calls equals to the total number of initial raining points plus the number of iteration, making
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the CABO method numerically efficient in nature. The conceptual framework of the CABO is shown in
Figure 1.

Figure 1: The flowchart of CABO for solving RBDO problem.

As has been revealed by the above description, the key components of the CABO method include:
training the GPR models in the augmented space of ω, performing BO in the margianl space of (µ, d),
and implementing BRA in the marginal space of u. Thus, in what follows, these three key components are
successively presented.

3.2.1. Gaussian process regression and simulation in augmented space
Without loss of generality, we omit the subscript of Gi, and denote the LSF as G (ω). Without knowing

any information on the value of G (ω), a GP model, denoted as Ĝ (ω) ∼ GP (m (ω) , κ (ω,ω′)), is assumed as
a prior for modeling G (ω), where m (ω) and κ (ω,ω′) are the prior mean function and covariance function
respectively. One notes that the selection of the functional forms for prior mean and covariance reflects
the analysts’ prior information on the functional behavior of G(ω). Generally, the mean function m (ω)

can be assumed to be zero, constant or polynomial functions. Thus, the prior mean is formulated as
m (ω) = β⊤b (ω), with b (ω) being the vector of functional basis, and β being the vector of hyper-parameters.
The selection of the prior covariance function κ (ω,ω′) (also called kernel function) can be more important
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as it reflects the behavior (e.g., smoothness) of the fitted GPR model. One can refer to chapter 4 of Ref.
[37] for more details. Without loss of generality, the squared exponential kernel function, which is suitable
for modeling any smooth function, is utilized throughout this work. It is formulated as:

κ (ω,ω′) = σ2
0 exp

(
−1

2
(ω − ω′)Σ−1 (ω − ω′)

T
)
, (4)

with σ2
0 and Σ being the hyper-parameters of the GP model.

Let denote by D = (W,Y) the training data set, with W being a sample matrix of dimension N0×(2n+m)

for ω, and Y is generated by calling the G-function with W, i.e., Y = G (W). Based on the prior Gaussian
assumption on G(w), the column vector Y follows a N0-dimensional Gaussian distribution. Thus, the
likelihood function of D, assumed to be the joint density of Y, is formulated as:

L (D) =
1

(2π)
N0/2 |K|1/2

exp

(
−1

2
(Y −m (W))

⊤ K−1 (Y −m (W))

)
, (5)

where K refers to the covariance matrix computed at the sample points W, i.e., K = κ(W,W). The logarithm
of the above likelihood function can be formulated as:

logL (D) ∝ −1

2
(Y −m (W))

⊤ K−1 (Y −m (W))− 1

2
log |K| , (6)

where m (W) is dependent on the hyper-parameters β, and K is dependent on the hyper-parameters σ2
0

and Σ. Thus, by maximizing logL (D), the values of those hyper-parameters can then be estimated [37].
Then, the posterior mean function, posterior variance function and the posterior covariance function can be
formulated as:

µy (ω) = m (ω) + κ (W,ω)
T K−1 (Y −m (W)) , (7)

σ2
y (ω) = σ2

0 − κ (W,ω)
T K−1κ (W,ω) , (8)

and
covy (ω,ω′) = κ (ω,ω′)− κ (W,ω)

T K−1κ (W,ω′) , (9)

respectively, with κ (W,ω) being a N0-dimensional column vector. The value of mean function µy (ω) at
any unobserved site ω is the mean predictor of G (ω), while the posterior variance σ2

y (ω) measures the
corresponding prediction uncertainty.

To proceed with CABO, we need to generate a set of random samples, denoted by Ĝ(k) (ω) , k = 1, · · · , Ng,
for the posterior Gaussian process ĜD (ω). Here, an efficient sampling strategy, named as “GPR conditioning
sampling scheme”, is applied to simulate ĜD (ω) [38]. Given an unconditional Gaussian process G̃ (ω) ∼
GP (0, κ (ω,ω′)), an auxiliary GP model ĤD (ω) is defined as:

ĤD (ω) = µy (ω)− µ̄y (ω) + G̃ (ω) , (10)

with µ̄y (ω) being formulated as:

µ̄y (ω) = β̃
⊤
b (ω) + κ (W,ω)

T K−1
(
G̃ (W)−Bβ̃

)
, (11)
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where B denotes the matrix of the basis functions b (ω) computed at W, and β̃ =
(
B⊤K−1B

)−1
B⊤K−1G̃ (W).

It can be deduced based on Eq. (10) that, the GP model ĤD (ω) and ĜD (ω) admit the same probability
distribution. Therefore, the samples of ĜD (ω) can be obtained by simulating ĤD (ω), which is equivalent
to simulate the unconditional GP model G̃ (ω). One can refer to [33] for more details.

Let Ĝi(ω) denote the GP model trained for approximating the Gi-function involved in Eq. (2). As revealed
by Eq. (3) and Eq. (2), the failure probability functions pfi (µ,d) for i = 1, · · · , nc and the resulting objective
function F (µ,d) are all functions of Gi (ω). By replacing Gi (ω) with their GPR surrogates Ĝi (ω) in these
expressions, the resultant quantities P̂fi (µ,d) and F̂ (µ,d) are then (non-Gaussian) stochastic processes
over the marginal space of the design variables (µ,d). From the perspective of BO, these stochastic processes
provide fruitful information for inferring the global optimum point. However, the non-Gaussianity as well as
the unavailability of the distribution types and distribution parameters of these stochastic process models,
make it untrivial to implement the BO procedure. Alternatively, we propose to realize the BO inference based
on the sampling strategy. Instead of directly sampling from the stochastic processes P̂fi (µ,d) and F̂ (µ,d),
we propose to first generate functional samples Ĝ(k)

i (ω), with k = 1, 2, · · · , Ng, from Ĝi (ω) using the above-
mentioned “GPR conditioning sampling scheme”, and then numerically compute the corresponding samples
P̂(k)
fi

(µ,d) and F̂ (k) (µ,d) respectively, based on MCS, by replacing Gi (ω) with Ĝ(k)
i (ω). Specifically, based

on a set of Nu samples, denoted as U = {u1; · · · ;uNu
}, generated from the n-dimensional independent

standard Gaussian distribution, the functional samples P̂(k)
fi

(µ,d) and F̂ (k) (µ,d) are estimated by:

P̂(k)
fi

(µ,d) =
1

Nu

Nu∑
j=1

[
Ĝ(k)
i (uj ,µ,d) < 0

]
(12)

and

F̂ (k) (µ,d) = J (µ,d) + α

(
nc∑
i=1

[
max

(
P̂(k)
fi

(µ,d)− p∗fi , 0
)]2)

, (13)

respectively. It should be noted that, the objective function can be assumed to be either a cheap-to-evaluate
or an expensive-to-compute deterministic function, for the former case, its value at any point of the design
variables can be computed with negligible cost, thus does not need to be approximated by a stochastic
process model; while for the latter case, a stochastic process model is required to surrogate it.

Once the samples F̂ (k) (µ,d) are generated, the mean prediction µF (µ,d) of F̂ (µ,d) at any site (µ,d)

is estimated by the mean of the functional samples F̂ (k) (µ,d), i.e.,

µ̄F (µ,d) =
1

Ng

Ng∑
k=1

F̂ (k) (µ,d), (14)

while, the uncertainty of this mean prediction can be quantified by the corresponding variance of the function
samples F̂ (k) (µ,d), i.e.,

σ̄2
F (µ,d) =

1

Ng − 1

Ng∑
k=1

[
F̂ (k) (µ,d)− µ̄F (µ,d)

]2
. (15)

One should note that, all of the above MCS estimators P̂(k)
fi

(µ,d), F̂ (k) (µ,d), µ̄F (µ,d) and σ̄2
F (µ,d) are

unbiased, meaning that, when the sample size Nu and Ng approach infinity, these estimators convergence
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to their true values.
For illustrating the above sampling strategy, a simple numerical example of RBDO with J (d) = (d− 1)

2

and g (x, d) = x (cos (πd) + 1) + d being the objective and LSF respectively, where x follows a standard
normal distribution, d denotes the design variable with support [0, 2] and p∗f is set to be 0.05. Based on
“GPR conditioning sampling scheme” and 15 training samples, a GPR model is trained, and then one
hundred functional samples of which are generated. According to Eq. (12) and (13), one hundred functional
samples for F̂ (d) and P̂f (d) are deduced, as shown in Figure 2, together with the true functions F (d) and
pf (d) for comparison. It is shown that these functional samples show variation, which is adapted from the
uncertainty of the GPR model trained by few samples, and with more training samples being added to the
training set, this kind of variation will be reduced. Although the probability distributions of F̂y and P̂f

cannot be precisely known, these functional samples do provide sufficient information for performing BO in
the subspace of design variables.

Figure 2: Examples of random samples of objective function (left) and failure probability function (right), which are generated by
simulating the GPR model using ”GPR conditioning sampling scheme”. The true objective function and the failure probability
functions are also provided for comparison.

3.2.2. Bayesian optimization in marginal space of design variables
A BO procedure usually involves first training a Bayesian regression model (e.g., a GP model) for ap-

proximating the expensive-to-evaluate objective function, and then sequentially producing training points for
updating the regression model and for actively inferring the global optimal point with given error tolerance.
The performance of a BO procedure is mainly determined by the used acquisition function as it determines
the locations at which to observe the objective function. Many acquisition functions have been developed
for driving BO in the past few decades, and the well-known ones include the probability of improvement
function [39], the expected improvement (EI) function and its many variants [40], the knowledge-gradient
function [41], the Upper confidence bound function [42], and the (predictive) entropy search function [43].
The comparison of these acquisition functions for inferring the next design point are summarized in Table 1.
With the comprehensive consideration, the EI function is used in this work as it is easy to implement and its
global convergence has been demonstrated [44], moreover the UCB function is further used for comparison.
Some other acquisition functions can also be adopted for replacing the EI function.
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Table 1: Acquisition functions for Bayesian optimization.
Acquisition functions Illustration Efficiency

Probability of improvement (PI) The probability of that the objective function value
at x is lower than that of the current best guess High

Expected improvement (EI) The expected improvement of the objective function value
at x compared to that of the current best guess High

Knowledge Gradient (KG) The expected incremental value of a measurement Low
Upper confidence bound (UCB) The confidence bound for achieving optimal regret High
Entropy search (ES) The expected entropy reduction of the posterior distribution Low

The classical EI functions usually admit closed-form expressions since the GP model is trained for
approximating the objective function. However, as has been stated in subsection 3.2, approximating the
objective function F (µ,d) with a GP model is not appropriate due to its non-smoothness. Instead, an
implicit stochastic process model F̂ (µ,d), adapted from the GP models of the LSFs, is used. For this case,
the EI function is formulated as:

LBO (µ,d) = E
(
max

[
µF (µ∗,d∗)− F̂ (µ,d) , 0

])
, (16)

where (µ∗,d∗) denotes the current reference point. Since the distribution types and parameters of F̂ (µ,d)

cannot be explicitly known, the EI function defined by Eq. (16) cannot be explicitly formulated in a closed
form. Instead, with the samples F̂ (k) (µ,d) , k = 1, · · · , Ng of F̂ (µ,d), the value of the EI function at a
point (µ,d) can be numerically estimated by the following estimator:

L̂BO (µ,d) =
1

Ng

Ng∑
k=1

max
[
µ̄F (µ∗,d∗)− F̂ (k) (µ,d) , 0

]
(17)

where mean µ̄F (µ∗,d∗) is computed by Eq. (14). To simplify the calculation, the current reference point
(µ∗,d∗) is obtained by solving the following optimization problem,

(µ∗,d∗) = arg min
(µ∗,d∗)∈W

[µ̄F (µ,d) + rσ̄F (µ,d)] (18)

across the observed locations of (µ,d), where r denotes the degree of risk aversion, which is set to be 1 in
this work. The term max

[
µ̄F (µ∗,d∗)− F̂ (µ,d) , 0

]
in Eq. (16) measures the reduction of the objective

function at (µ,d) compared to the current best guess µ̄F (µ∗,d∗), and is a random variable with randomness
resulted from that of F̂ (µ,d). Therefore, the EI function value at a point (µ,d) measures the expected
reduction of the objective function value at (µ,d) compared to that of the reference points. Thus, adding
the maximum point of the EI function to the training data set for updating the GPR model, it is expected
to improve the knowledge on the true global minimum point of the objective function to the greatest extent.
Motivated by this explanation, the next design point is computed by:(

µ+,d+
)
= argmax L̂BO (µ,d) . (19)

With the estimator in Eq. (17), the EI function has a quasi-analytical expression, and thus its global
maximum point can be easily computed with any heuristic algorithms such as the particle swarm algorithm,
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without requirement of calling the expensive-to-evaluate LSFs.
If the maximum value of the EI function across the full design variable space is found to be very small,

it indicates that no improvement can be obtained, and the global minimum point of the objective function
has been correctly identified with high confidence. Thus, the stopping condition for BO can be formulated
as:

LBO (µ+,d+
)
< ∆BO, (20)

or the normalized one expressed as:

LBO (µ+,d+
)

(max J (µi,di)−min J (µi,di))µi,di∈W
< ∆BO, (21)

where ∆BO denotes the stopping threshold specified in
[
10−3, 10−2

]
.

3.2.3. Bayesian reliability analysis in marginal space of random input variables
Once the next design site

(
µ+,d+

)
in the subspace of design variables is solved by maximizing Eq.

(16), to make the corresponding estimate of failure probability P̂(j)
fi

(µ,d) more accurate for meeting the
given accuracy, the joint design point

(
u+,µ+,d+

)
is needed for enriching the training data set. Many

acquisition functions for searching the design site u+ of failure probability estimation in the subspace of
random variables have been developed, for example, the U function [45] and the expected integrated error
reduction function [46]. The U-function is most commonly used due to its simplicity and effectiveness, thus
is used in this work. Given (µ,d) being fixed at

(
µ+,d+

)
, the U function for Ĝi is defined as:

Ui

(
u,µ+,d+

)
=

| µyi

(
u,µ+,d+

)
|

σyi

(
u,µ+,d+

) , (22)

The value Φ(−Ui) measures the probability of misjudging the sign of Ĝi

(
u,µ+,d+

)
with the posterior mean

µyi

(
u,µ+,d+

)
. The smaller the value of Ui

(
u,µ+,d+

)
, the higher the probability Φ(−Ui). With the

minimum point of U-function being added to Di, the probability of misjudging the sign of µyi

(
u,µ+,d+

)
will be reduced greatly. Based on this statement, the next design point u+ is obtained by choosing the
minimum point of Ui-function among the trained GPR models for nC LSFs in the sample pool U , i.e.,

u+ = argmin
u∈U

min
i∈(1,··· ,nC)

Ui

(
u,µ+,d+

)
. (23)

The above adaptive design strategy terminates when the design site u+ satisfies the following criterion:

COVF
(
µ+,d+

)
=

σ̄F
(
µ+,d+

)
µ̄F
(
µ+,d+

) < ∆BRA, (24)

where COVF denotes the Coefficient of Variation (COV) of F̂
(
µ+,d+

)
, which measures the variation of

F̂
(
µ+,d+

)
with respect to the mean µF

(
µ+,d+

)
, ∆BRA indicates the termination threshold, which, based

on our experience, can be any value in [0.01, 0.05].
Solving Eq. (19) and then Eq. (23), a new design point ω+ =

(
u+,µ+,d+

)
in the augmented space

of design variables and input random variables is obtained. Observing the values of LSFs at this point
by computing y+i = Gi

(
u+,µ+,d+

)
, the training data Di can be enriched, and then based on which, the

corresponding GPR model can be updated. The above processes are repeated until the stopping conditions
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of Eq. (20) and Eq. (24) are both satisfied. It can be seen from the above procedures, only one simulator
call is required for each iteration, indicating the efficiency of the proposed method. And, based on the global
convergence of Bayesian optimization, the proposed method is expected to have good performance on global
convergence.

3.3. Summary of CABO
With all the above three procedures, i.e., the Bayesian regression fitting and simulation in the augmented

space, the BO implemented in the marginal space of the design variables, and the BRA performed in the
marginal space of the random variables, the details and pseudocode are then summarized in Algorithm 1.
As preliminary treatments, the constrained RBDO problem needs first to be transformed to the equivalent
non-constrained optimization problem with target function F(µ,d) formulated by Eq. (2), and if the design
variables involve components of the mean parameters µ of the random variables x, then the nonlinear
probabilistic transformation x = T (u|µ) needs to be implemented to transform the LSF gi(x,d) into Gi(ω)

such that the LSFs are depends on all three kinds of parameters, i.e., ω = (u,µ,d) (see the last paragraph
of subsection 3.1).

With the above pre-treatment done, Algorithm 1 starts by generating an initial training data set Di of
size N0 for training the GPR model Ĝi(ω) in the augmented space of ω. Then, with the GPR conditioning
sampling scheme presented in subsection 3.2, a set of Ng functional samples, denoted as Ĝ(k)

i (ω) with k =

1, · · · , Ng, is generated for each Ĝi(ω). Based on these functional samples, a set of functional samples for the
induced stochastic process of the failure probability function, denoted as P̂(k)

fi
(µ,d) with k = 1, 2, · · · , Ng,

can be computed by Eq. (12) using Nu samples of u. Further, by substituting P̂(k)
fi

(µ,d) into Eq. (13), a set
of functional samples F̂ (k) (µ,d) (k = 1, 2, · · · , Ng) can also be generated for the induced stochastic process
F̂ (µ,d) of the objective function. Using the samples F̂ (k) (µ,d) (k = 1, 2, · · · , Ng), the BO procedure
reported in subsubsection 3.2.2 can be implemented to specify the best guess (µ∗,d∗) of the global optimal
point, the new training point

(
µ+,d+

)
in the marginal space of design variables (µ,d), and also to judge if

the stopping condition of Eq. (21) is satisfied. It is then, by fixing (µ,d) at
(
µ+,d+

)
, the BRA reported

in subsection 3.2.3 is implemented to find the new training point u+ in the marginal space of the random
variables u, and also to judge the stopping conditioning of Eq. (24) for BRA is satisfied. If the stopping
conditions for both BO and BRA are satisfied, the algorithm terminates and produce the global optimal
point as (µ∗,d∗); otherwise, compute the LSF value Gi(w

+) at the joint training point w+ = (u+,µ+,d+),
and add the point (w+,Gi(w

+)) to the training data set Di to update the GPR model, and then also repeat
the BO and then BRA procedures, until the stopping conditions for both BO and BRA are reached.

Based on the above description, the algorithm parameters of CABO need to be pre-specified include the
number N0 of the initial training sample set, the number Ng of the GPR sample set, the number Nu of the
random variable samples, the stopping thresholds ∆BO and ∆BRA, and the penalty factor α. Generally, N0

can be set to be a small value, e.g., 20, if the prior mean is set to be zero or constant, or set to be 2n+m+1

if linear prior mean is assumed for the GPR model. The value of Ng is set based on the principle that
COVF

(
u+,d+

)
needs to be less than a threshold. According to some numerical experiences, it is suitable

to choose Ng in interval [1000, 5000]. The sample size Nu should be set to assure the maximum COV of
failure probability sample P̂(k)

f is less than a given threshold, and it is recommend to set Nu be 100/pf , it is
this requirement making the proposed method not applicable to extreme small failure probability constraints,
e.g., p∗fi < 10−6. This limitation will be fixed in our future work. As has been reported in subsection 3.1,
the penalty factor α can be determined adaptive as α = |10000min[J(d)]|

mini

[
p∗
fi

] . The threshold ∆BO is set to be a
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value between 10−3 and 10−2, and ∆BRA is set to be a value between 0.01 and 0.05, both of which are based
on the error tolerance.

Algorithm 1: CABO method for reliability-based design optimization
Input: Objective function J (µ,d), all of g-function Gi (w) of probabilistic constraints, sample size

Nu, Ng, N0, stopping threshold ∆BO, ∆BRA

Output: The optimal design point µ and d, and the corresponding value of objective function
1 Generate a set of samples U of size Nu by random sampling;
2 Create the initial training set Di of the i-the g-function of size N0 by random sampling. Let

Ntrain = N0;
3 while (1 = 1) do
4 Train or update the GPR model Ĝi (ω) based on training data set Di;
5 Generate a set of Ng samples Ĝ(j)

i (ω) for Ĝi (ω) with j = 1, · · · , Ng by using the GPR
conditioning sampling scheme introduced in subsection 3.2;

6 Find the current best solution (u∗,d∗) by solving Eq. (18) in D;
7 Compute the design site

(
µ+,d+

)
by Eq. (16);

8 Compute the design site u+ by minimizing Eq. (22);
9 if both Eq. (20) and Eq. (24) are satisfied then

10 break while-do;
11 else
12 Compute the value of Gi (ω

+) by calling the simulator, where ω+ =
(
u+,µ+,d+

)
, and let

Ntrain = Ntrain + 1;
13 Add (ω+,Gi (ω

+)) to the training data set Di;
14 end
15 end

It should be noted that, the proposed algorithm can be generally applicable for multi-loop nested coupling
problems, as the main idea of which is independent of the distribution type of random variables u, the number
of probabilistic constraints, and the complexity of objective function.

4. Benchmark study

In this section, two numerical and two engineering examples are used to demonstrate the efficiency and
accuracy of the proposed method by comparing it with four RBDO methods, i.e., PMA [7], SORA [9],
Quantile-based RBDO [25] and HAK-SLA [18], where the number of g-function calls (NOF) is used to
measure the computational efficiencies, while the design point and its corresponding minimum are used to
measure the computational accuracy respectively. The results of PMA, SORA and Quantile-based RBDO
for all examples are given by using the well-known software platform UQLab developed by Prof. Sudret’s
team [47], for HAK-SLA, its results are generated by implementing the codes developed by its authors [18].
It should be noted that, the CABO method is charming compared with the above four RBDO methods, as
it can provide not only the estimators of design point and optimal value but also their corresponding error
measurements, i.e., the coefficient of variation (COV) as given in Eq. (24), which can guarantee estimation
precision.
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4.1. An highly non-linear illustrative example
We first introduce a widely used numerical example to illustrate the CABO method selected from Ref.

[18]. One of the LSFs is highly non-linear, and the RBDO problem is formulated as:

µ∗ = argmin J (µ) = (µ1 − 3.7)
2
+ (µ2 − 4)

2

s.t.:f (µ) = 3− µ1 − µ2 < 0

P (g1(x) = x1 sin (4x1) + 1.1x2 sin (2x2) < 0) < Φ(−2)

P (g2(x) = x1 + x2 − 3 < 0) < Φ(−2)

µ1 ∈ [0, 3.7] , µ2 ∈ [0, 4]

, (25)

where xi follows a normal distribution N
(
µi, 0.1

2
)
, i = 1, 2, µ1 and µ2 are the design variables bounded by

interval [0, 3.7] and [0, 4] respectively. The thresholds of failure probability are all set to be Φ(−2). This
example involves only two design variables, and thus allows us to illustrate the details of the learning process
of CABO in subspace of design variables. The reference optimal design µ = (2.8433, 3.2309) and minimum
J (µ) = 1.3254 are evaluated by a direct double loop methods, where the failure probability is estimated by
MCS with 106 samples, and the global optimal solution is solved by particle swarm optimization algorithm.

Before applying CABO to address the above RBDO problem, the initial size of training samples is set
to be 15, the stopping thresholds ∆BO and ∆BRA corresponding to BO and BRA respectively are specified
as 0.05 and 0.04. With 13 iteration and 13 more training points added to the training set, the CABO
method has successfully satisfied the termination conditions, and the detailed processes of CABO in the
augmented space of design variables (µ1, µ2) are displayed in Figure 3. The reference nephograms of failure
probabilities pf1 (µ1, µ2) and pf2 (µ1, µ2) are computed by MCS with 106 samples, as well as the target
failure probability surfaces pf1 (µ1, µ2) = Φ (−2) and pf2 (µ1, µ2) = Φ (−2). The blue part of the left graph
of Figure 3 represents the training details of satisfying the first probability constraint, and from it we can
seen that all added training points of (µ1, µ2) are located in the feasible domain. The middle graph of Figure
3 displays the training details of approximating the second target failure probability surface near the global
optimal point. The right panel illustrates that the added training points are almost all near the constrained
optimal point (2.8433, 3.2309) of objective function. The above results demonstrate the effectiveness, global
convergence and accuracy of CABO.

The specific results of CABO driven by EI and UCB function, together with SORA, PMA, Quantile-
based RBDO and HAK-SLA, as well as the reference value, are given in Table 2. One also can see that, the
results of SORA and PMA are the same, this probably because the two methods are all implemented with
MPPs. The NOFs required by CABO driven by UCB function and EI function are 33 and 28 respectively,
which are the least among these five RBDO methods, where Quantile-based RBDO and HAK-SLA are
kriging-based RBDO methods, the NOF required by them are quite larger than that of CABO. Besides,
the CABO procedure also provides COV of the objective function F (µ) estimated at the design point. As
shown in Table 2, the COV of F (µ) is far less than 0.0001, it is because the design point (2.8219, 3.2437)

and (2.8302, 3.2383) of CABO are totally in the feasible region determined by the target failure probability
surfaces with high credibility. Therefore, the penalty term of all samples of F̂ (µ) given in Eq. (13) at
(2.8219, 3.2437) and (2.8302, 3.2383) respectively equals to zero, then all samples have the same value as the
original objective function J (2.8219, 3.2437) and J (2.8302, 3.2383), therefore, the COV of F (µ) approaches
to zero. It also can be seen from Table 2, the SORA, PMA and HAK-SLA methods fail to satisfy the failure
probability constraint, which is possible because the non-linearity of this problem is too strong for it.
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Figure 3: The details of the process for generating adaptive design points of CABO in the numerical example.

Table 2: Results of RBDO problem of the numerical example.
Methods µ1 µ2 minimum pf1 pf2 COV NOF
Reference value 2.8433 3.2309 1.3254 0.0227 0 –
SORA 2.8162 3.2770 1.3038 0.0318 0 – 1462
PMA 2.8162 3.2770 1.3038 0.0318 0 – 1497
Quantile-based RBDO 2.8324 3.2384 1.3328 0.0214 0 – 65
HAK-SLA 2.8216 3.2712 1.3027 0.0309 0 – 44
CABO(UCB) 2.8219 3.2437 1.3344 0.0199 0 ≪ 10−4 15+18=33
CABO(EI) 2.8302 3.2383 1.3367 0.0206 0 ≪ 10−4 15+13=28

4.2. Middle-dimensional numerical example
For further illustrating the efficiency of CABO method, a middle-dimensional numerical RBDO example

is used, which is formulated as:

µ∗ = argmin J(µ) = µ1 + µ2 + (µ3 − 1.5)
2
+ µ4 + µ5 + µ6 + µ7 + µ8

+ µ9 + µ10 + µ11 + µ12 + µ13 + (µ14 − 1.28)
2
+ µ15

s.t.:P (g (x) < 0) < 0.005

g (x) =

14∑
i=1

[
(1− xi)

2
+ 100

(
xi+1 − x2

i

)2]− 650

µi ∈ [0, 5, 1.5] , i = 1, · · · , 15

, (26)

where, xi ∼ N
(
µi, 0.03

2
)
, their means are denoted by µ = (µ1, µ2, · · · , µ15), and µi ∈ [0.5, 1.5] , i = 1, · · · , 15

denotes the design variables. The LSF is the well known extended Rosenbrock function [48]. It is assumed
that the objective function J (µ) is easy to compute, and the LSF is expensive-to-estimate and surrogated by
GPR model trained in the augmented space of random and interval variables with 15× 2 = 30 dimensional
inputs. The reference is solved by a double loop scheme, where the MCS with 106 samples is performed to
estimate the failure probability, and particle swarm optimization algorithm is applied to search the global
optimal point.

The CABO is initialized by setting N0 to be 75, ∆BO to be 0.001 and ∆BRA to be 0.02 to solve this
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middle-dimensional numerical RBDO example. With 13 and 10 more training points adaptively produced by
UCB and EI functions of CABO, the stopping conditions for both BO and BRA are reached respectively, and
then the results are reported in Table 3, together with the results generated by SORA, PMA, Quantile-based
RBDO and HAK-SLA, as well as the reference for comparison. As can be seen from Table 3, Quantile-based
RBDO and HAK-SLA methods produce the same results, and do not satisfy the reliability constraints,
it is probably because the dimension or non-linearity of g-function for them is too high. The results of
SORA are too conservative for this problem, through it satisfies the reliability constraints, the estimator
of minimum is too bigger than the reference one. From the view of CABO and PMA, their results are
reasonable and acceptable, the required NOFs of CABO are least, therefore, CABO has high efficiency for
the expensive-to-evaluate simulator. one can also see that the results of CABO equipped with EI function
is better than UCB function demonstrating the superiority of EI for this problem. As shown in Table 3, the
COVs of estimator of failure probability of CABO are far less than 0.0001 indicating that the design pint
has successfully located at the feasible domain with high accuracy.

Table 3: Results of RBDO problem of the high-dimensional numerical example.
Methods Design points (µ1 · · ·µ15) minimum pf COV NOF

Reference
(0.5000, 0.5000, 1.5000, 0.5000, 0.5000,
0.5000, 0.5000, 0.5000, 0.5000, 0.5000,
0.5000, 0.5000, 0.5000, 1.2848, 0.5000)

6.5000 0.005 – –

SORA
(0.5746, 0.5493, 1.4541, 1.2407, 0.5472,
0.5950, 0.5908, 0.5910, 0.5910, 0.5910,
0.5916, 0.5884, 0.5549, 1.4737, 0.5445)

8.1896 0.0034 – 144936

PMA
(0.5000, 0.5000, 1.5000, 0.5000, 0.5000,
0.5000, 0.5000, 0.5000, 0.5000, 0.5000,
0.5000, 0.5000, 0.5000, 1.2873, 0.5000)

6.5001 0.0045 – 45056

Quantile-based RBDO
(0.5000, 0.5000, 1.4995, 0.5000, 0.5000,
0.5000, 0.5000, 0.5000, 0.5000, 0.5000,
0.5000, 0.5000, 0.5000, 1.2800, 0.5000)

6.5000 0.0065 – 190

HAK-SLA
(0.5000, 0.5000, 1.4995, 0.5000, 0.5000,
0.5000, 0.5000, 0.5000, 0.5000, 0.5000,
0.5000, 0.5000, 0.5000, 1.2800, 0.5000)

6.5000 0.0066 – 112

CABO (UCB)
(0.5000, 0.5000, 1.5000, 0.5000, 0.5000,
0.5000, 0.5000, 0.5000, 0.5000, 0.5000,
0.5000, 0.5000, 0.5000, 1.4107, 0.5000)

6.5171 0.0000 ≪ 10−4 75+13=88

CABO (EI)
(0.5000, 0.5000, 1.5000, 0.5000, 0.5000,
0.5000, 0.5000, 0.5000, 0.5000, 0.5000,
0.5000, 0.5000, 0.5000, 1.2839, 0.5000)

6.5000 0.0049 ≪ 10−4 75+10=85

4.3. Journal bearing of air-engine fuel pump
Journal bearing plays an important role in supporting the air-engine fuel pump, its structure is shown

in Figure 4, a well-designed bearing can greatly improve the pump’s service life. In the practical working
environment, geometric dimensioning and cavitation effect possessing aleatory or epistemic uncertainties,
will affect the distribution of lubrication film pressure, and further affect lubricating properties of the journal
bearing. Therefore, it is urgent to perform RBDO for the journal bearing.

Before applying CABO to address this kind of problem, we should build the lubrication model of journal
bearing with the consideration of cavitation. Let θ and y denote the circumferential and axial coordinate of

16



bearing, h denote the film thickness, which is formulated as

h = C (1 + ε cos (θ)) , (27)

where C and ε represent the radial gap and eccentricity ratio of bearing. Let F0 =
∫ h

0
1
ηdy, F1 =

∫ h

0
y
ηdy, and

F2 =
∫ h

0
y2

η dy −
∫ h
0

y
η dy

∫ h
0

y
η dy∫ h

0
1
η dy

with η denoting the viscosity of lubriaction film. Assume that the lubrication
film is in-compressible. The pressure distribution p (θ, y) of film is governed by the generalized Reynolds
equation, which is formulated as

∂

∂x

(
∂p

∂x
F2

)
+

∂

∂z

(
∂p

∂z
F2

)
=

∂

∂x

(
U
F1

F0

)
, (28)

where, U = πRnr

30 denotes the speed of shaft with R and nr denoting its radius and rotate speed respectively.
Because of the convergence and divergence region, cavitation always occur. One of most used cavitation
boundary conditions is JFO boundary conditions given by the following,

p = pc + gβ lnΘ, (29)

where pc, g, β and Θ = ρ
ρc

indicate the cavitation pressure, indicator function of cavitation region, the bulk
modulus of film and the density ratio of film’s density ρ and cavitation density ρc. The pressure distribution
of film is solved by integrating the generalized Reynolds equation, JFO boundary conditions simultaneously
based on finite difference method in a two dimensional grid.

Assume that, the width B, radius R, radial gap C, rotate speed nr, initial viscosity η0 and eccentricity
ratio ε are random variables, and the corresponding distribution information are listed in Table 4, together
with other deterministic parameters. Let x = (B,R,C, n, η, ε). Fixed the above random variables at their
mean, the pressure distribution are displayed in Figure 5. The most important lubricating property of
journal bearing is the load capacity, which is computed by the following formula, i.e.,

F =
√
F 2
ξ + F 2

η

Fξ = −
∫ B

0

∫ 2π

0

p sin θdθdz

Fη = −
∫ B

0

∫ 2π

0

p cos θdθdz

. (30)

If the load capacity F is less than a given threshold denoted by Fmin, the wear will occur and further result
in the failure of bearing. Therefore, the LSF of the journal bearing can be formulated as

g (x) = F (x)− Fmin. (31)

Let µ = (µB , µR, µC) represent the design parameters. Our target is to design the geometric size µ =

(µB , µR, µC) of bearing for saving the cost subjected to reliability constraint. The corresponding RBDO
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problem can be formulated as

µ∗ = argmin
µ∈[µL,µU ]

[
πR2B − π (R− C)

2
B
]

s.t.: P [g (x) < 0] < 0.05[
µL,µU

] , (32)

where µL is [35e-3, 15e-3,0.058e-3], and µU is [39e-3,17e-3,0.062e-3]. Next, we will apply the proposed
method to address the above problem.

Figure 4: The structure of journal bearing and the pressure distribution of dynamic lubrication.

Table 4: Setting of parameters for the journal bearing.
Parameter Distribution type Mean COV Value
Bearing’s width B (mm) Normal µB ∈ [35, 39] 0.005
Bearing’s radius R (mm) Normal µR ∈ [15, 17] 0.005
Radial gap C (mm) Normal µC ∈ [0.058, 0.062] 0.005
Rotate speed nr

(
r ·min−1

)
Normal 8000 0.01

Initial viscosity η0 (Pa · s) Normal 9.78× 10−4 0.01
Eccentricity ratio ε Normal 0.7 0.01
Cavitation pressure pc (Pa) 8000
Bulk modulus of film β (Pa) 5× 108

Density of lubrication film ρ
(
kg/m3

)
779

Threshold of load Fmin (N) 779

For initializing the CABO algorithm for solving this RBDO problem, N0 is set to be 15, ∆BO and
∆BRA are set to be 0.001 and 0.03 respectively. With 17 more training points adaptively being added to the
training samples set, the termination conditions of CABO are reached. Table 5 displays the results of CABO,
together with those generated by SORA, PMA and Quantile-based RBDO. As can be seen from Table 5,
the minimums evaluated by SORA, PMA and CABO are basically consistent, as well as the corresponding
the design points and failure probabilities, meaning that these three methods generate accurate results.
Considering the NOFs and computational time required by the above four RBDO methods, CABO has the
least one illustrating its computational efficiency. Moreover, it can be deduced that the failure probability
estimated by CABO is accurate as the COV is less than 0.0001, as penalty terms of all samples of F (µ) at
the identified design point equal to zero leading the samples to be constant. Based on the above discussion,
it can be indicated that the CABO method is more efficient and accurate to design the journal bearing.
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Figure 5: The results of pressure distribution of film by fixing the random parameters at their mean.

Table 5: Results of RBDO problem of the journal bearing
Methods Design point (µB , µR, µC) minimum pf COV NOF Time (s)
SORA (35.202e-3,15.001e-3,5.8004e-5) 1.5781e-5 0.0482 – 247 14918.8286
PMA (35.202e-3,15.001e-3,5.8004e-5) 1.5781e-5 0.0482 – 651 39474.2020
Quantile-based RBDO (35.694e-3,15.057e-3,5.8428e-5) 1.6121e-5 0.0139 – 60 3648.7634
CABO (35.234e-3,15.000e-3,5.8000e-5) 1.5794e-5 0.0477 ≪ 10−4 15+17=32 2651.7990

4.4. Application to a spacecraft attitude control system
The main task of the spacecraft attitude control system is to overcome various internal and external

disturbances during flight, guarantee its stability, and ensure the variation of the attitude angle and centroid
coordinates meeting the given accuracy. In the process of attitude control system design, it is necessary to
consider the uncertainties existing in pneumatic parameters, engine thrust and mass characteristics [49].

By assuming that the influence of inertia of the engine swing tube of a spacecraft can be ignored, the
linearized small deviation equations of the pitch channel rigid body motion of is formulated as

∆θ̇ =(c2 − c1) θ + c1∆φ+ c3δφ + F̄y

∆ω̇z =b2∆θ − b2∆φ− b1∆ωz − b3δφ + M̄z

∆φ̇ =∆ωz

, (33)

where ∆θ, ∆ωz, ∆ϕ and δϕ indicate the speed dip, pitch rate, pitch angle, and the equivalent swing angle
of tail nozzle respectively, the corresponding rigid body coefficients are given as

c1 =
P + Cα

LqS

mV
, c2 =

g sin θ

V
, c3 =

P

mV

b1 =− Cωz
mzqSL

2

JzV
, b2 = −Cα

mzqSL

Jz
, b3 =

Cδz
mzqSL

Jz

, (34)

where P , V , q, S, L, m and Jz represent the engine thrust, the spacecraft speed, the dynamic pressure, the
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reference area, the reference length, the mass and the moment of inertia respectively, and Cα
L , Cωz

mz, Cα
mz

and Cδz
mz denote the pneumatic parameters.

Figure 6: The structure of the pitching channel attitude control system.

Based on the governing equations of motion in Eq. (33), the transfer function of the spacecraft rigid
body is formulated as

Wb = − b3s+ (b3c1 − b2c1 − b3c2)

s3 + (b1 − c2 + c1) s2 + (b1c1 − b1c2 + b2) s− b2c2
. (35)

The dynamic characters of the servo system of the engine oscillation are approximately replaced by the
inertia units, whose transfer function is given by

Wsf =
1

Tcs+ 1
(36)

with Tc denoting the time constant of the servo system. The control methods applies feedback PD control,
the corresponding transfer function is formulated as

Wc = (a0 + a1s) , (37)

where a0 and a1 represent the static and dynamic gain respectively. Based on the above setting, the transfer
function of the open loop of whole control system is formulated as

W = WsfWbWc. (38)

The structure of pitching channel attitude control system is given in Figure 6.
Let x =

(
Cα

L , C
ωz
mz, C

α
mz, C

δz
mz, a0, a1

)
and µ = (µ0, µ1) denote the random input and design variables,

the corresponding distribution information is displayed in Table 6. Assume that the control system will fail
when the amplitude margin and phase margin are less than the specified thresholds 15 and 50. The task is to
determine the optimal design parameter µ for maximizing the amplitude margin Lc (u,µ) in the conditional
of failure probability constraints in the frequency domain. Therefore, the RBDO problem is formulated as

µ∗ = argmax
µ∈[µL,µU ]

E [Lc (u,µ)]

s.t.: P [Lcd − Lc (u,µ) < 0] < p∗f1 = 0.05

P [γcd − γc (u,µ) < 0] < p∗f2 = 0.05

µ ∈
[
µL,µU

]
, (39)

where µL is [0,0], and µU is [3.1,2.0]. The above RBDO problem contains two LSFs and two reliability
constraints, and its objective function is also related to the LSFs, which is time-consuming to estimate.
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Therefore, SORA, PMA, Quantile-based RBDO and HAK-SLA are inapplicable. Next we use CABO to
addressing this RBDO problem.

Table 6: The information of the pneumatic parameter of the spacecraft control system.
Parameters Distribution type Means Std Ranges
Cα

L Beta 6.4013 0.3201 [5.4411,7.3615]
Cωz

mz Beta -0.1 0.0050 [-0.1150,-0.0850]
Cα

mz Beta -0.2861 0.0143 [-0.3290,-0.2432]
Cδz

mz Beta -0.2792 0.0140 [-0.3211,-0.2373]
a0 Normal µ0 ∈ [0, 3.1] 0.05 –
a1 Normal µ1 ∈ [0, 2.0] 0.05 –

Let the initial size of training set, the stopping threshold ∆BO and ∆BRA be 60, 0.05 and 0.04. The CABO
method stops by adding 36 more training points to the training samples set, and its results are displayed
in Table 7. As can be seen from Table 7, the design point (µ0, µ1) estimated by CABO is (1.5831, 0.5852),
the maximum of the amplitude margin is 14.3643 and the estimators of failure probabilities pf1 and pf2 are
0.0468 and 0.0129 less than the given threshold 0.05. The COV is also far less than 0.0001, based on the
above discussion, it indicates the high accuracy of the proposed CABO.

Table 7: Results of RBDO problem of the spacecraft control system
Methods Design point (µ0, µ1) maximum pf1 pf2 COV NOF
CABO (1.5831, 0.5852) 14.3643 0.0468 0.0179 ≪ 10−4 60+36=96

5. Conclusions

For efficiently solving the double-loop RBDO problem for engineering structures simulated with expensive-
to-evaluate computational models, a sequential sampling-based Bayesian optimization method, called CABO,
has been developed. Using the penalty function method, the constrained RBDO problem is first reformu-
lated as a non-constrained one. Then, by training a GPR model in the joint space of random variables and
design variables, the BO and BRA are collaboratively implemented in the two marginal subspace, and this
way to produce a joint training point in the augmented space. The above active learning procedure makes
it possible for the algorithm to solve the optimization and failure probability estimation in a collaborative
and highly efficient way. Thanking to the global convergence of the BO algorithm, the proposed method
admits global convergence, and benefiting from the posterior features, the failure probability at the optimal
design point can be estimated with desired accuracy. The proposed method is of high accuracy as only one
LSF call is required for each iteration.

From the results of the benchmark studies, it is seen that the proposed method exhibit high efficiency,
robustness and accuracy, and compared with the several other RBDO methods, it also show superiority.
Moreover, the CABO method is applicable to any types of RBDO problem. It should be noted that, the MCS
is employed to estimate the failure probability, which will not suitable to rare reliability analysis problem
due to the large variation of estimates. Therefore, the advanced MCS procedures, such as subset simulation
and line sampling can be integrated into the proposed method, and will be studied in future work.

21



CRediT authorship contribution statement

Fangqi Hong: Conceptualization, Methodology, Writing - Original draft, Software, Visualization.
Pengfei Wei: Supervision, Conceptualization, Methodology, Writing - Reviewing and Editing. Jiangfeng
Fu: Supervision, Writing - Reviewing and Editing. Michael Beer: Supervision, Writing - Reviewing and
Editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgment

This work is supported by the National Natural Science Foundation of China under grant number
72171194, and the Sino-German Mobility Programme under grant number M-0175 (2021–2024).

References

[1] W. Yao, X. Chen, W. Luo, M. Van Tooren, J. Guo, Review of uncertainty-based multidisciplinary design optimization
methods for aerospace vehicles, Progress in Aerospace Sciences 47 (6) (2011) 450–479.

[2] M. A. Valdebenito, G. I. Schuëller, A survey on approaches for reliability-based optimization, Structural and Multidisci-
plinary Optimization 42 (2010) 645–663.

[3] T. Chatterjee, S. Chakraborty, R. Chowdhury, A critical review of surrogate assisted robust design optimization, Archives
of Computational Methods in Engineering 26 (2019) 245–274.

[4] A. A. Taflanidis, J. L. Beck, Life-cycle cost optimal design of passive dissipative devices, Structural Safety 31 (6) (2009)
508–522.

[5] C. Ling, W. Kuo, M. Xie, An overview of adaptive-surrogate-model-assisted methods for reliability-based design optimiza-
tion, IEEE Transactions on Reliability (2022).

[6] B. Low, Form, sorm, and spatial modeling in geotechnical engineering, Structural Safety 49 (2014) 56–64.
[7] B. D. Youn, K. K. Choi, An investigation of nonlinearity of reliability-based design optimization approaches, Journal of

Mechanical Design 126 (3) (2004) 403–411.
[8] I. Lee, K. Choi, L. Du, D. Gorsich, Inverse analysis method using MPP-based dimension reduction for reliability-based

design optimization of nonlinear and multi-dimensional systems, Computer Methods in Applied Mechanics and Engineering
198 (1) (2008) 14–27.

[9] X. Du, W. Chen, Sequential optimization and reliability assessment method for efficient probabilistic design, Journal of
Mechanical Design 126 (2) (2004) 225–233.

[10] I. Papaioannou, C. Papadimitriou, D. Straub, Sequential importance sampling for structural reliability analysis, Structural
Safety 62 (2016) 66–75.

[11] S.-K. Au, J. L. Beck, Estimation of small failure probabilities in high dimensions by subset simulation, Probabilistic
Engineering Mechanics 16 (4) (2001) 263–277.

[12] M. A. Valdebenito, P. Wei, J. Song, M. Beer, M. Broggi, Failure probability estimation of a class of series systems by
multidomain line sampling, Reliability Engineering & System Safety 213 (2021) 107673.

[13] K. Cheng, I. Papaioannou, Z. Lu, X. Zhang, Y. Wang, Rare event estimation with sequential directional importance
sampling, Structural Safety 100 (2023) 102291.

[14] S. Au, Reliability-based design sensitivity by efficient simulation, Computers & structures 83 (14) (2005) 1048–1061.
[15] X. Yuan, M. A. Valdebenito, B. Zhang, M. G. Faes, M. Beer, Efficient decoupling approach for reliability-based optimization

based on augmented line sampling and combination algorithm, Computers & Structures 280 (2023) 107003.
[16] P. Wei, J. Song, S. Bi, M. Broggi, M. Beer, Z. Lu, Z. Yue, Non-intrusive stochastic analysis with parameterized imprecise

probability models: II. reliability and rare events analysis, Mechanical Systems and Signal Processing 126 (2019) 227–247.

22



[17] P. Beaurepaire, H. Jensen, G. Schuëller, M. Valdebenito, Reliability-based optimization using bridge importance sampling,
Probabilistic Engineering Mechanics 34 (2013) 48–57.

[18] M. Yang, D. Zhang, C. Jiang, X. Han, Q. Li, A hybrid adaptive Kriging-based single loop approach for complex reliability-
based design optimization problems, Reliability Engineering & System Safety 215 (2021) 107736.

[19] Z. Meng, Z. Zhang, D. Zhang, D. Yang, An active learning method combining Kriging and accelerated chaotic single
loop approach (AK-ACSLA) for reliability-based design optimization, Computer Methods in Applied Mechanics and
Engineering 357 (2019) 112570.

[20] Z. Wu, Z. Chen, G. Chen, X. Li, C. Jiang, X. Gan, L. Gao, S. Wang, A probability feasible region enhanced important
boundary sampling method for reliability-based design optimization, Structural and Multidisciplinary Optimization 63
(2021) 341–355.

[21] H. Zhang, Y. Aoues, D. Lemosse, E. S. de Cursi, A single-loop approach with adaptive sampling and surrogate Kriging
for reliability-based design optimization, Engineering Optimization 53 (8) (2021) 1450–1466.

[22] Y.-Z. Ma, X.-X. Jin, X.-L. Wu, C. Xu, H.-S. Li, Z.-Z. Zhao, Reliability-based design optimization using adaptive Kriging-A
single-loop strategy and a double-loop one, Reliability Engineering & System Safety 237 (2023) 109386.

[23] Y. Pang, X. Lai, S. Zhang, Y. Wang, L. Yang, X. Song, A Kriging-assisted global reliability-based design optimization
algorithm with a reliability-constrained expected improvement, Applied Mathematical Modelling 121 (2023) 611–630.

[24] X. Zhang, Z. Lu, K. Cheng, Reliability index function approximation based on adaptive double-loop Kriging for reliability-
based design optimization, Reliability Engineering & System Safety 216 (2021) 108020.

[25] M. Moustapha, B. Sudret, J.-M. Bourinet, B. Guillaume, Quantile-based optimization under uncertainties using adaptive
Kriging surrogate models, Structural and Multidisciplinary Optimization 54 (2016) 1403–1421.

[26] M. Li, M. Sadoughi, C. Hu, Z. Hu, A. T. Eshghi, S. Lee, High-dimensional reliability-based design optimization involving
highly nonlinear constraints and computationally expensive simulations, Journal of Mechanical Design 141 (5) (2019)
051402.

[27] D. Lehkỳ, O. Slowik, D. Novák, Reliability-based design: Artificial neural networks and double-loop reliability-based
optimization approaches, Advances in Engineering Software 117 (2018) 123–135.

[28] T. Van Huynh, S. Tangaramvong, B. Do, W. Gao, S. Limkatanyu, Sequential most probable point update combining Gaus-
sian process and comprehensive learning pso for structural reliability-based design optimization, Reliability Engineering
& System Safety 235 (2023) 109164.

[29] M. Yang, D. Zhang, F. Wang, X. Han, Efficient local adaptive Kriging approximation method with single-loop strategy
for reliability-based design optimization, Computer Methods in Applied Mechanics and Engineering 390 (2022) 114462.

[30] P. I. Frazier, A tutorial on Bayesian optimization, arXiv preprint arXiv:1807.02811 (2018).
[31] P. Wei, X. Zhang, M. Beer, Adaptive experiment design for probabilistic integration, Computer Methods in Applied

Mechanics and Engineering 365 (2020) 113035.
[32] P. Wei, F. Hong, K.-K. Phoon, M. Beer, Bounds optimization of model response moments: a twin-engine Bayesian active

learning method, Computational Mechanics 67 (5) (2021) 1273–1292.
[33] F. Hong, P. Wei, J. Song, M. A. Valdebenito, M. G. Faes, M. Beer, Collaborative and adaptive Bayesian optimization for

bounding variances and probabilities under hybrid uncertainties, Computer Methods in Applied Mechanics and Engineering
417 (2023) 116410.

[34] J. Song, Y. Cui, P. Wei, M. A. Valdebenito, W. Zhang, Constrained Bayesian optimization algorithms for estimating
design points in structural reliability analysis, Reliability Engineering & System Safety (2023) 109613.

[35] V. Picheny, R. B. Gramacy, S. Wild, S. Le Digabel, Bayesian optimization under mixed constraints with a slack-variable
augmented lagrangian, Advances in Neural Information Processing Systems 29 (2016).

[36] C. Lu, J. A. Paulson, No-regret Bayesian optimization with unknown equality and inequality constraints using exact
penalty functions, IFAC-PapersOnLine 55 (7) (2022) 895–902.

[37] C. E. Rasmussen, C. Williams, Gaussian processes for machine learning, vol. 1, MIT press 39 (2006) 40–43.
[38] L. Le Gratiet, C. Cannamela, B. Iooss, A Bayesian approach for global sensitivity analysis of (multifidelity) computer

codes, SIAM/ASA Journal on Uncertainty Quantification 2 (1) (2014) 336–363.
[39] J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei, S.-H. Deng, Hyperparameter optimization for machine learning models

based on Bayesian optimization, Journal of Electronic Science and Technology 17 (1) (2019) 26–40.
[40] D. Zhan, H. Xing, Expected improvement for expensive optimization: a review, Journal of Global Optimization 78 (3)

(2020) 507–544.
[41] J. Wu, P. Frazier, The parallel knowledge gradient method for batch Bayesian optimization, Advances in Neural Informa-

tion Processing Systems 29 (2016).
[42] N. Srinivas, A. Krause, S. M. Kakade, M. Seeger, Gaussian process optimization in the bandit setting: No regret and

experimental design, arXiv preprint arXiv:0912.3995 (2009).
[43] J. M. Hernández-Lobato, M. W. Hoffman, Z. Ghahramani, Predictive entropy search for efficient global optimization of

black-box functions, Advances in Neural Information Processing Systems 27 (2014).
[44] E. Vazquez, J. Bect, Convergence properties of the expected improvement algorithm with fixed mean and covariance

functions, Journal of Statistical Planning and inference 140 (11) (2010) 3088–3095.
[45] B. Echard, N. Gayton, M. Lemaire, AK-MCS: an active learning reliability method combining Kriging and Monte Carlo

simulation, Structural Safety 33 (2) (2011) 145–154.
[46] P. Wei, Y. Zheng, J. Fu, Y. Xu, W. Gao, An expected integrated error reduction function for accelerating Bayesian active

learning of failure probability, Reliability Engineering & System Safety 231 (2023) 108971.
[47] S. Marelli, B. Sudret, UQLab: A framework for uncertainty quantification in Matlab, in: Proceeding of the 2nd Conference

on Vulnerability and Risk Analysis and Management (ICVRAM) and the 6th International Symposium on Uncertainty

23



Modeling and Analysis (ISUMA), Liverpool, United Kingdom, 2014, pp. 2554–2563.
[48] F. A. Viana, R. T. Haftka, V. Steffen, Multiple surrogates: how cross-validation errors can help us to obtain the best

predictor, Structural and Multidisciplinary Optimization 39 (2009) 439–457.
[49] K. Yan, Y. Wu, B. Zhang, Z. Zhong, Probability based method for attitude control system parameters design of space

vehicle, Flight Dynamics 39 (1) (2021) 88–94 (translated from Chinese).

24


	Introduction
	Problem Statements
	Collaborative and Adaptive Bayesian Optimization for RBDO
	Reformulation of RBDO as a non-constrained optimization problem
	Basic Principles of CABO
	Gaussian process regression and simulation in augmented space
	Bayesian optimization in marginal space of design variables
	Bayesian reliability analysis in marginal space of random input variables

	Summary of CABO

	Benchmark study
	An highly non-linear illustrative example
	Middle-dimensional numerical example
	Journal bearing of air-engine fuel pump
	Application to a spacecraft attitude control system

	Conclusions

