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Abstract—Indoor multiple person tracking is a widely explored
research field. However, publicly available datasets either are
overly simplified or provide solely visual data. To address this
gap, our paper introduces the RAV4D dataset, a novel multimodal
dataset that encompasses data from radar, microphone arrays,
and stereo cameras. This dataset stands out by providing 3D
locations, Euler angles, and Doppler velocities. By integrating
these diverse data types, RAV4D aims to leverage the synergistic
and complementary capabilities of these modalities to enhance
tracking performance. The creation of RAV4D tackles two
primary challenges: sensor calibration and 3D annotation. A
novel calibration target is designed to effectively calibrate the
radar, stereo camera, and microphone array. Additionally, a
visual-guided annotation framework is proposed to address the
challenge of annotating radar data. This framework utilizes
head locations, heading orientation, and depth information from
stereo cameras and radar to establish accurate ground truth for
multimodal tracking trajectories. The dataset is publicly available
at https://zenodo.org/records/10208199.

Index Terms—Multiple Object Tracking, Sensor Fusion,
Speaker Tracking, Radar Tracking

I. INTRODUCTION

Indoor multiple people tracking has emerged as a crucial
technology in various domains, including video conferencing,
human-computer interfaces, and virtual reality. This tech-
nology enables real-time monitoring and analysis of human
movement and behavior, providing valuable insights for a
range of applications. At the heart of indoor multiple people
tracking lies the ability to effectively detect and smoothly
track individuals in complex indoor environments. This task
is accomplished through a combination of sensor modalities,
each contributing its unique strengths.

Cameras stand as the most prevalent sensor modality for
indoor multiple people tracking. Modern visual detection pri-
marily relies on appearance models for both detection and as-
sociation [1]. The high accuracy of visual detectors simplifies
the tracking process, with many algorithms employing a sim-
ple Kalman filter for tracking [2]. However, appearance models
have their limitations and may fail in certain conditions, such
as extreme illuminance, similar appearances, or occlusions.
These scenarios often lead to significant performance drops
in many tracking algorithms. Additionally, visual detection
inherently lacks 3D information and raises privacy concerns.

Microphones, known for their cost-effectiveness and matu-
rity, are widely utilized in indoor settings. By utilizing the
microphone array, we can determine the location of sound
sources in space [3]. A key aspect of this process involves
identifying the Direction of Arrival (DOA) of sound signals,
which is crucial for accurately detecting where a sound is
originating from. Once the DOA is established, advanced
audio enhancement techniques can be implemented in the
specified direction, leading to significant improvements in
audio quality.

Millimeter-wave radars are increasingly used in perception
applications due to their compact size, affordability, and ma-
ture manufacturing [4]. 4D radar sensors are capable of mea-
suring 3D locations, making them practical for consumer-level
people monitoring and tracking applications. Radar sensors
offer advantages over cameras in terms of privacy protection,
3D measurement, and robustness to illumination variations.

Benchmarking the performance of different modalities for
human tracking requires a common dataset. However, current
indoor human perception datasets present several challenges.
Firstly, most are designed for detection tasks and not specif-
ically crafted for multi-object tracking. This design choice
leads to a scarcity of crossing trajectories, which are crucial
for testing advanced tracking algorithms in dynamic scenarios.
Moreover, these datasets typically offer only 2D annotations,
limiting the analysis of activities that involve significant spatial
movement, such as standing up or bending. Another limitation
is the restricted range of modalities. While visual detections
are reliable in standard conditions, they can fall short in
scenarios with extreme illumination, similar appearances, or
occlusions. Such situations reveal the necessity of incorporat-
ing other sensors like microphone arrays and radar, which can
provide essential data not captured visually.

In response to these gaps, our work introduces the multi-
modal dataset RAV4D, which includes data from radar, mi-
crophone arrays, and stereo cameras. This dataset is unique
in providing 3D locations, Euler angles, and Micro-Doppler
velocities, aiming to leverage the synergy and complementary
information of these modalities for robust tracking perfor-
mance. The creation of RAV4D addresses two main chal-
lenges: sensor calibration and 3D annotation. We design a



novel calibration target that effectively calibrates the radar,
stereo camera, and microphone array. Additionally, we tackle
the challenge of annotating radar data with a visual-guided
annotation framework, using stereo camera detections and
depth information to establish ground truth for radar detections
and trajectories.

The remainder of this article is organized as follows: Sec-
tion II reviews related datasets in multiple people tracking
research. Section III details the specifications of the sensors
used and our data recording methods. In section IV, we
discuss the spatial calibration methods for multi-sensor setups.
Section V describes the pre-processing pipeline for each sensor
modality. In section VI, we introduce our visual guided an-
notation pipeline and visualization tool. Section VII analyzes
example scenarios from our dataset. Finally, in section VIII,
we summarize the dataset and discuss potential directions for
future research.

II. RELATED WORKS

In visual detection and tracking, key datasets include the
Multiple Object Tracking (MOT) Challenge [5] for multi-
ple individual tracking and DanceTrack [6] for tracking in
dynamic environments like dancing. However, most research
focuses on 2D detection, often ignoring the complexities of
3D human motion.

In audio-visual tracking, which leverages audio cues to
enhance tracking performance, especially in environments with
occlusions and unrestricted movement, several key datasets
stand out. As detailed in table I, these include the AV 16.3
corpus [7], specifically designed for multiple speaker tracking
and addressing complex scenarios such as overlapping speech.
Additionally, SPEVI [8] provides data for multi-modal people
detection and tracking. AVDIAR [9] offers various multi-
speaker scenarios, and CAV3D [10] is recorded on a co-located
audio-visual platform for 3-D tracking.

Radar sensing for indoor people tracking is limited by a
lack of public datasets, with most research centered on pose
reconstruction using 4D radar. These studies typically involve
stationary subjects, not fully addressing tracking challenges
like varying distances, occlusion, and viewing angles. Some
automotive radar datasets [11], [12] provide the tracking anno-
tation of vehicles in outdoor environments. However, in indoor
settings, human movements are characterized by a higher
degree of flexibility, with increased instances of crossing paths
and occlusions. These dynamics present unique challenges for
radar-based tracking, necessitating more sophisticated algo-
rithms and sensor setups to accurately track human movements
indoors.

III. SENSOR AND DATA RECORDING

A. Data Collection Scenario

The data was collected in a medium-sized meeting room,
as depicted in fig. 1. The room featured a large desk at its
center, surrounded by various other items such as chairs and
a whiteboard. Our sensor suite comprises a stereo camera
positioned at the center of the room’s lower edge, a 4D radar

TABLE I
MULTI-MODAL INDOOR MOT DATASETS

Dataset # Mic # Cam Radar Annot. # Speakers

AV 16.3 [7] 16 3 no 3D 3
AVDIAR [9] 6 2 no 3D 4
AVTRACK [13] 4 1 no 2D 2
SPEVI [8] 2 1 no 2D 2
CAV3D [10] 8 1 no 3D 3

RAV4D 6 2 (stereo) yes 3D 3

sensor in the left corner, and a circular microphone array
placed on the desk.

For the purpose of creating a dynamic and challenging sce-
nario suitable for MOT tasks, we had one to three individuals
moving around the desk, often crossing paths. This scenario
was essential for examining the identity switch issue prevalent
in tracking applications. To enhance sound localization, par-
ticipants were instructed to speak loudly, aiding in the capture
of clear audio data.

B. Sensor Modalities

Our dataset features three sensor modalities: a stereo cam-
era, a 4D FMCW radar, and a circular microphone array.

1) Stereo Camera: The stereo camera in our setup cap-
tures high-resolution images at 960 x 540 pixels resolution,
operating at a frame rate of 30 fps. Alongside visual data,
it generates a synchronized depth map that covers up to 20
meters, maintaining an accuracy range of 0.5% to 2%. The
camera’s field of view extends 110 degrees horizontally and
70 degrees vertically.

2) FMCW Radar: The 4D FMCW radar, operating at 77
GHz with a bandwidth of 750 MHz, is a 4-chip cascaded
MIMO system. It features an array comprising 12 transmit
(TX) and 16 receive (RX) antennas, resulting in a 2D virtual
array with 192 elements. This radar system offers a 0.22m
range resolution and angular resolutions of 1 degree in azimuth
and 2 degrees in elevation. It captures data at a rate of 20 fps.

3) Circular Microphone Array: The microphone array is a
6-element circular design with a diameter of 7 cm. It features
an embedded audio-enhanced front end to improve the SNR.
This array is capable of detecting sound events up to 10 meters
away with an angular resolution of approximately 5 degrees.
It records audio in a 6-channel format at a 16 kHz sampling
rate

IV. MULTI-SENSOR CALIBRATION

Calibration was conducted using a hand-crafted calibration
target, consisting of a corner reflector, a checkerboard pasted
on a clapperboard, as shown in fig. 2. The corner reflector is
detectable by radar as a strong point target. The clapperboard,
orifinally used in filmmaking for synchronizing audio and
video in post-production, is repurposed in our study. We
attached a checkerboard pattern to it, facilitating calibration
for both the camera and microphone array. The checkerboard’s
easily identifiable corner features make it ideal for camera



Fig. 1. Room layout and sensor outputs

calibration. Its attachment to the clapperboard’s flat surface
ensures visibility to the camera. Moreover, the clapperboard’s
distinctive clapping sound provides a reference signal for
calibrating the DoA angle estimated by the microphone array.
The vertical offset between the clapperboard and the corner
reflector was manually measured.

The calibration target was positioned in seven different loca-
tions across the meeting room, varying in height and uniformly
distributed. The world coordinate system’s origin was set at the
room’s left corner. To determine the corner reflector’s position,
we used the ceramic tiles as grid units, placing the reflector
at a tile corner and counting the coordinates, then multiplying
by the tile edge length to obtain the x-y coordinates. The z-
coordinate was directly measured by the ruler.

Following the collection of measurements from the cam-
era, radar, and audio sensors, along with their corresponding
ground truth values, we computed the camera-to-world and
radar-to-world transformation matrices. Additionally, we cal-
ibrated the audio DoA by aligning the estimated angle from
the microphone array with the ground truth angle, determined
by the spatial relationship between the calibration target and
the microphone array’s fixed location.

Fig. 2. Calibration target for microphone, camera and radar

V. PRE-PROCESSING

A. Radar Data Filtering

In this study, we utilize a commercial high-resolution 4D
radar to capture the human motion. This radar can be con-
figured to output the raw radar point cloud produced by the
Constant False Alarm Rate (CFAR) detector. Each point is a 5-
dimensional vector, comprising range, azimuth angel, elevation

angle, Doppler velocity and RCS. In indoor environments,
multi-path propagation often results in significant ’ghost’
objects. However, with the room’s layout available, we can
eliminate these artifacts by defining a 3D Region of Interest
(ROI) corresponding to the room’s dimensions.

Furthermore, with the radar stationed in a fixed position,
we construct an occupancy grid map (OGM) to model the
static environment. This OGM, which offers a more robust
approach compared to direct point representations, is better
suited to tolerate spatial uncertainties in measurements. We
discretize the room ROI into a grid with a cell resolution of
0.1 meters. The static OGM is then built through the temporal
accumulation of static detections, using a fixed count threshold
to identify occupied cells. Subsequent to these steps, we refine
the radar point cloud by removing points that coincide with
the static clutter maps. After this filtering process, we employ
the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) algorithm to cluster the radar detections
into distinct objects and further remove the isolated clutter at
each timestamp.

B. Audio DoA Estimation

For audio DoA estimation, we employ the Steered Response
Power - Phase Transform (SRP-PHAT) method. The algo-
rithm computes a steering vector for each potential direction
through a delay-and-sum beamformer and adopts the PHAT
weighting function. The PHAT function normalizes magnitude
and leverages phase information for correlation calculation.
DoA candidates are then identified from the peaks in the
output power spectrum. Due to computational demands, we
implement this process using a grid cell size of one degree.
Though originally designed for scenarios involving a single
sound source, SRP-PHAT is capable of handling multiple
sources, provided the number of sources is known [14]. Indoor
reverberation often results in noisy outcomes, and silence
periods during movement add further challenges to accurate
DoA estimation. To address these issues, we apply 1D filtering
to remove outliers and use interpolation to fill gaps in the
DoA trajectories. Finally, we transform the measured DoA into
world coordinates, aligning them with the measured location
of the microphone array, as shown in fig. 3.

Fig. 3. DoA estimation: (a) raw DoA estimated by SRP-PHAT (b) smoothed
DoA trajectories of three speakers in the world coordinate



Fig. 4. Visual guided annotation pipeline

C. Head Pose Detection through Stereo Camera

In our study, we represent the human head as a point target
instead of using traditional bounding box representations. The
point target is particularly suited for tracking tasks. This point
target model is particularly well-suited for tracking tasks. We
define the point target as a six-dimensional vector, which
includes the 3D coordinates of the head and its orientation
vector, represented by Euler angles.

To detect the head, we use a pre-trained YOLOv3 detector
[15] to identify the bounding box and calculate the center of
box as the location of the point target. The depth information
for this central point is obtained by projecting it onto the depth
map generated by the stereo camera. It is important to note,
however, that depth maps can sometimes be incomplete, often
producing NaNs (Not a Number) due to a lack of distinctive
features or occlusions. Fortunately, given the high frame rate
of our system, depth measurements are continuous over time.
This continuity allows us to refine the depth measurements
smoothly, thus enhancing the accuracy of the head center’s
depth trajectory. In addition, we predict head orientation using
the WHENet [16], where the Euler angles are regressed by an
additional MLP layer with the head feature map as input.

VI. VISUAL GUIDED TRAJECTORY ANNOTATION

As illustrated in fig. 4, we propose a visual guided annota-
tion framework for trajectories.

Regarding trajectory annotation, the sparse nature of the
radar point cloud presents a challenge in determining a reliable
point representation of a human. The center of a radar cluster
often results in a zig-zag trajectory. To overcome this, we uti-
lize the heads detected by the stereo camera data as the tracked
objects. The 3D location of the head can be determined by the
pixel coordinate in the image plane, the depth, and the intrinsic
parameters of the camera. However, two main challenges arise:
the lack of strict synchronization between the stereo camera
and the radar sensor, and the inaccuracies in depth estimation
by the stereo camera. Factors like calibration inaccuracies,
lens distortion, image noise, and algorithmic limitations can
lead to errors in visual depth measurements. In contrast, the
radar sensor can directly measure spatial information with high
accuracy. Therefore, a fusion algorithm is necessary to correct
the visual depth using radar measurements.

To address these challenges, we design a depth calibration
module that fuses radar and visual depth. First, we convert
radar detections into depth information using extrinsic cal-
ibration information. We then accumulate the radar depth
trajectory for each person and interpolate it to match the
camera’s timestamps. Next, we apply an iterative optimization
module to align the visual depth trajectory with the radar depth
trajectory, treating the time offset and depth scaling parameter
as optimizable variables. After adjusting the visual depth based
on these variables, we smooth the trajectory using both the
corrected visual depth and the radar depth to obtain the fused
depth trajectory. Finally, we compute the 3D trajectory based
on the 2D locations and the depth.

To ensure the precision of our dataset, we develop a GUI
interface to visualize annotations on a frame-by-frame basis,
allowing us to review and correct any missed annotations.

The ground truth in our study is generated according to
the camera timestamps. For radar-centered applications, for
example to study the effect of Doppler information, it be-
comes necessary to interpolate the ground truth trajectory to
align with the radar’s slower detection frame rate. Since our
analysis also includes the estimation of head orientation, this
interpolation process should be conducted in the SE(3) space,
which accounts for both translation and rotation. To facilitate
this, we first convert Euler angles into quaternions and then
apply Spherical Linear Interpolation (Slerp) [17] to achieve
smooth and continuous trajectories for both the head’s position
and its heading angles.

VII. DATASET ANALYSIS

A. Calibration Results

Accurate spatial calibration between radar and camera sys-
tems is fundamental to our visual-guided trajectory annotation
pipeline. In this section, we present the results of this cal-
ibration. Firstly, we project the radar points into the image
view,resulting in a reprojection error of 8.6 pixels, given the
image resolution of 960 x 540. Since our primary focus is on
tracking in world coordinates rather than in the image plane,
we further assessed the reprojection error in world coordinates.

To accomplish this, we apply a transformation matrix to
convert radar detections from radar-centered coordinates into
world coordinates. Similarly, by utilizing the camera’s intrinsic
matrix and depth information, we can project image points



into world coordinates. The calibration results are quantified
by the L2 reprojection error when comparing the radar and
image data against the ground truth. The reprojection errors
are 0.05 meters for the radar data and 0.01 meters for the
camera data, respectively. These figures highlight the precision
of our calibration process.

B. Dataset Contents

Our dataset is designed to encompass a range of scenarios to
thoroughly test tracking algorithms under diverse conditions.
It includes three primary cases, categorized based on the
number of individuals involved: one person, two persons, and
three persons. For each case, we have developed two distinct
scenarios to simulate different lighting conditions: one with
the lights on and the other with the lights off. Within each
scenario, three classes of trajectories of varying complexity
are defined:

• Simple Case (fig. 5 (a)): This case involves individuals
starting from their seats, moving to the front of the
room, and then returning to their seats, all without any
intersections in their paths.

• Normal Case (fig. 5 (b)): In this case, three individuals
cross paths at the front of the room. The individual fol-
lowing the yellow trajectory intersects with the other two
individuals twice, resulting in a total of four crossings.

• Hard Case (fig. 5 (c)): This case presents the most
challenging setup, with each individual crossing paths
with the other two, leading to a total of six crossings.

In addition, our dataset specifically annotates the periods
of crossing to provide a more rigorous test for tracking
algorithms, especially in scenarios involving occlusions. This
comprehensive structure of the dataset is designed to offer a
robust testing ground for evaluating the performance and accu-
racy of various tracking algorithms under different conditions
and complexities.

Fig. 5. Three levels of difficluties: (a) easy (b) normal (c) hard

C. Comparing Visual and Radar Tracking in 3D Space

To compare the performance of radar tracking and visual
tracking. We implemented a basic MOT tracker using an ex-
tended Kalman filter (EKF) for tracking and a global nearest-
neighbor (GNN) algorithm for assignment. The evaluation
metrics selected are MOTA and MOTP, as defined by the

CLEAR MOT metrics [18]. We chose the 3-person, bright,
hard case as our test sequence.

As detailed in Table table II, radar tracking demonstrates
superior performance in both MOTA and MOTP compared
to visual tracking. A higher MOTA score for radar tracking
indicates better overall tracking accuracy, suggesting that
radar tracking is more effective in correctly identifying and
following objects, and encounters fewer errors such as missing
targets or incorrectly tracking irrelevant objects. Additionally,
radar tracking outperforms visual tracking in terms of MOTP.
This indicates that radar tracking not only more reliably detects
and tracks objects but also does so with greater spatial accu-
racy, leading to more precise localization of tracked objects.

TABLE II
TRACKING PERFORMANCE

Methods MOTP (%) MOTA (%)

Visual Tracking 71.412 83.102
Radar Tracking 82.088 87.274

D. Challenges

In our dataset, we address two challenging aspects: varia-
tions in illumination and occlusion scenarios.

1) Illumination Condition: One key aspect we investigate
in our dataset is the influence of illumination changes. Figure 6
presents a scenario where the lights in the meeting room are
turned off, creating a low illumination environment. Despite
the reduction in light, the high dynamic range of our camera
ensures that the overall image quality is still acceptable. The
main challenge arises from extreme lighting contrasts. For
example, bright light from a projector in a dark room can
significantly obstruct the visibility of a person walking in front
of it. Our visual detector performs robustly in strong lighting
perturbations (as demonstrated in fig. 6 (a)) but struggles when
a person’s face is occluded by the texture of slides from
a projector (as depicted in fig. 6 (b)), risking loss of head
detections. These conditions underscore the complexities of
tracking in varied lighting environments and emphasize the
necessity for multi-sensory fusion to achieve reliable tracking.

Fig. 6. Illumination chanllenge in dark scenarios

2) Occlusion Scenario: Occlusion presents a significant
challenge in our dataset, manifesting in two primary forms.
The first type of occlusion is environmental, caused by the
layout and objects within the room. For instance, with the



radar positioned in the left corner, the individual on the left
side of the room is more clearly detected, returning a denser
point cloud. In contrast, the right two individuals, partially
obscured by the table, yield a sparser point cloud. The second
type of occlusion is due to trajectory crossing. As the camera
and radar are located at different positions, occlusions occur
at various angles, affecting the visibility of individuals.

In the first row of fig. 7, figure (b) illustrates a scenario
where two individuals on the right are visually occluded in
the camera’s view, while the radar detections in figure (a)
clearly identify them. Conversely, the second row shows a
situation where two individuals are visible in the camera image
(d) but are occluded in the radar detections (c). The last row
demonstrates a case where occlusions occur simultaneously
in both the image and radar data. In such instances, the
continuous audio DoA becomes instrumental, offering an
alternative method to confirm the presence of individuals who
are occluded in both visual and radar sensors.

Fig. 7. Occlusion cases: (a) visual occlusion (b) radar occlusion (c) both
radar and visual occlusion

VIII. CONCLUSIONS

This paper introduces the RAV4D dataset, a novel multi-
modal dataset that integrates 4D radar, audio, and visual data
to enhance multiple people tracking algorithms in challenging
indoor environments. RAV4D provides high quality 3D an-
notations by overcoming key challenges in sensor calibration
and radar data interpretation. This involved creating a novel

calibration target and devising a visual-guided annotation
framework. The dataset encompasses complex trajectories with
numerous crossings and a variety of challenging scenarios,
such as low illumination conditions and occlusions. These
features establish RAV4D as an invaluable resource for re-
searchers and practitioners aiming to explore and advance the
capabilities of multi-modal sensing in complex indoor settings.
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