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1 Introduction

Unlike the European counterparts, early exercise allows American option holders to optimally

exercise their positions early, before the maturity date of options, based on the favourable

movement of underlying asset. Hence, optimal early exercises might contain important in-

formation about holders’ expectation on future underlying asset value paths. Nevertheless,

although well-explored in the theoretical literature, there has not been much empirical research

showing the implications of such exercises on options or underlying asset markets.1

In this paper, we find that early exercises of a plain-vanilla put play significant role in

predicting the cross-section of underlying stock returns. Why can we expect such predictability

using put early exercises? To answer this question and motivate our study, we rely on several

theoretical works. For instance, under the Black-Scholes (1973) framework, Carr et al. (1992)

derive the value of an American put as its equivalent European value plus the early exercise

premium of that put. Importantly, the early exercise premium in Carr et al. (1992) can be

described as the product of the risk-free rate, put strike price and the probability that the

underlying asset value would go below the optimal put early exercise threshold.2 Under a

generalized mixed jump-diffusion process, Pham (1997) essentially shows a similar expression

for the put premium.3 These two studies therefore indicate that various asset and option

characteristics (such as option moneyness, time-to-maturity, underlying asset volatility or

stochastic nature of the volatility) can shift the continuous asset value path below the optimal

early exercise threshold. Interestingly, these studies further point that any discontinuous jumps
1The empirical trend could be due to the fact that while we need both American and equivalent European

options to examine the impact of early exercises, exchange-traded options are overwhelmingly American.
Nonetheless, relying on put-call parity to create synthetic European put, Aretz and Gazi (2023), for instance,
show that optimal early exercises have important implications on American put returns.

2Optimal put early exercise threshold comprises a set of highest underlying asset values at each time point,
before the put matures, at which the put is optimal to exercise early.

3The value of put early exercise premium in Pham (1997) comes from two channels. While, the first channel
is essentially the same as the premium derived under Carr et al. (1992), there is a second channel, looking at
the impact on the premium if the asset value bounces back from the early exercise to the continuation region.
However, the impact of this latter channel is negligible, as pointed out in Pham (1997).
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in the asset value can also trigger optimal early exercises as jumps (more specifically, negative

jumps) have the ability to move that value below the optimal threshold.

Under the Black-Scholes based geometric Brownian motion (GBM) world, options are

considered as redundant assets. Hence, put early exercises coming from the GBM-related factors,

such as moneyness, time-to-maturity and asset volatility, should not carry any information

about underlying asset’s future movement. Nevertheless, as Carr et al. (1992) and Pham (1997)

point, both stochastic volatility (SV) and discontinuous jumps can also drive the early exercise

premium of the put, specifically, the part of the premium in excess of the GBM-world. As both

these factors show predictability in the asset pricing literature (see Yan (2011), Baltussen et

al. (2018) and Dierkes et al. (2023), for instance), they can thus induce any predictive power

of the put early exercise premium we document in this paper.

We next conduct a simulation exercise using Longstaff and Schwartz’s (2001) method

and separately under a GBM, a SV, and a SV with asset-value jumps (SVJ) process for the

underlying asset value paths to see the pattern of the put early exercise premium with SV and

discontinuous jumps. While doing so, we also explore whether these two factors can play any

role in explaining the implied volatility spread (“IV Spread”) of equivalent American calls and

puts,4 which is a common option-based stock return predictor in the literature (see Bali and

Hovakimian (2009), Cremers and Weinbaum (2010) and An et al. (2014), among many others).

The motivation of such exercise comes from a recent study of Campbell et al. (2023) which,

using a three-period Cox-Ross-Rubinstein (CRR; 1979) based binomial model,5 shows that

put early exercise premiums are negatively related with IV spreads due to the sensitivity of the

American put with time-varying volatility. Our approach broadens the idea of Campbell et al.

(2023) as we explore that same relationship through parameters directly linked with SV, with

plausible parameter values from the literature and under a rigorous simulation setting. More

importantly, we also examine the role of discontinuous jumps on the theoretical relationship
4Literature defines IV spread as the difference in equivalent call and put implied volatilities.
5CRR model considers a discretized version of the stochastic processes for underlying asset value paths.
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between the IV spread and the put premium.

Using volatility-of-variance (“VoV”) as a measure for the SV, and mean jump-size and

jump-intensity as measures for asset-value jumps, our simulation exercise offers three stylized

facts. First, although both SV and jumps can drive the magnitude of a put’s early exercise

premium, in excess of its GBM-world premium (“Excess Premium”), in line with the theory,

the impact is significantly stronger for the mean jump-size than any other parameters. Second,

put premiums are always negatively associated with IV spreads in the presence of SV and/or

jumps, extending Campbell et al. (2023). And third, in a world with SV and/or jumps, the

excess put premium monotonically falls (rises) with a higher SV (jumps). Both VoV and jumps

are negatively related with future stock returns in the literature. Hence, if we observe a return

predictability for excess premiums (IV spreads) and if that predictability comes from the SV,

we would expect a positive (negative) association between excess premiums (IV spreads) and

future stock returns. In contrast, if that same predictability is driven by jumps, there should

be a negative (positive) relation between excess premiums (IV spreads) and future returns.

In our empirical work, we use exchange-traded American options written on single-stocks

not paying any cash within options’ maturity periods (“zero-dividend stocks”). We start by

calculating the premiums and the IV spread for each individual option in our sample. To

calculate the excess premium, we first recall that the total put early exercise premium is the

difference between the traded American put price and its equivalent European price. We

can however decompose that total premium into its components by simultaneously adding

and subtracting the equivalent theoretical American put price under the GBM world. In

that case, the excess premium would be the difference between the traded American put

price and its equivalent GBM-world price, while the GBM premium would be the difference

between that GBM-world price and its equivalent European price. Following OptionMetrics,

we calculate the price of an American put under the GBM world using the CRR model. We

finally calculate the IV spread as the difference in equivalent call and put implied volatilities;
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both taken from OptionMetrics.

Armed with option-level premiums and IV spreads, we proceed to calculate the variables at

the stock level. To obtain the premiums for a particular stock, we first weight each put written

on that stock by put’s outstanding open interest. The stock-level premiums are then the

open-interest-weighted averages of the individual put premiums. To calculate the stock-level

IV spread, we however sum the open interests of each equivalent call-put pair written on the

stock, and then weight the individual option-level IV spreads based on this sum. The IV spread

for a stock is the sum-of-open-interests-weighted average of its option-level IV spreads.

In our empirical work, we find that excess put early exercise premiums can significantly

predict both equal and value-weighted future stock returns. The predictability, however, is

negative; the “High–Low” spread portfolio univariately sorted on excess premiums, for example,

generates an equal (value) weighted mean excess return of −1.18% (−0.70%) per month, with

a t-statistic of −7.25 (−3.87). The negative relation further indicates that excess premiums

might derive the predictability from stock-price jumps, and not from the SV, in line with our

simulations. Indeed, double portfolio sort exercise using excess premiums and an ex-ante left-tail

variation measure from Bollerslev and Todorov (2011) confirms that is the case. While the

“High–Low” portfolio sorted on excess premiums at the “Low” jumps, for instance, generates an

equal-weighted mean excess return of −0.51% per month, that same return is much higher (in

absolute term), of −2.38%, at the “High” jumps. In contrast, the double sort exercise with the

VoV measure from Baltussen et al. (2018) does not show such variation.

Although our double portfolio sorts establish a link between the return predictability of

excess premiums and jumps, recalling our theoretical simulations, we however realize that

the mean jump-size, and not the jump-intensity, is the main driver for any excess premium

dynamics. Hence, we should be able to explain excess premium’s return predictability using

jumps better with a mean jump-size proxy, rather than any overall left-tail measure. To this

end, we follow Yan (2011) and use the IV slope measure as a proxy for the mean jump-size.
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We find that the excess premium is highly correlated with this proxy; mean cross-sectional

correlation between these two is around 60%. More interestingly, when we decompose the excess

premium into a jump and a non-jump part, the non-jump part does not show any predictability,

suggesting that excess premiums mainly derive predictive power from their ability to capture

jump-size of the underlying stock, in complete agreement with our simulations.

We finally explore whether a jump-based explanation possess any merit in the return

predictability of IV spreads shown in the literature. Doing such is interesting because while

documenting that predictability, the literature is mostly divided on its source. For instance,

although Campbell et al. (2023) indicate that IV spreads predicting stock returns is due to the

spread capturing the time-varying volatility effect on American put early exercises, Cremers and

Weinbaum (2010) suggest an informational route − from options to the stock market − flowing

from informed investors. Conversely, Goncalves-Pinto et al. (2020) highlight a stock mispricing

channel, while Hiraki and Skiadopolous (2023) identify a market friction channel. In contrast,

our simulation exercise offers direct evidence that jumps can theoretically induce both excess

premiums and IV spreads, and can create a mechanical relationship between these two. In our

data sample, the mean cross-sectional correlation between IV spreads and excess premiums

is −76%, consistent with the jump-based explanation. Importantly, when we orthogonalize IV

spreads from the effect of excess premiums, the orthogonalized part loses its predictive power,

suggesting that the excess premium, and ultimately jumps, play key role in explaining the

return predictability in IV spreads. Our evidence on excess premiums’ predictability, and the

role of jumps in explaining both excess premiums’ and IV spreads’ predictive power survive

even if we control for those alternative channels mentioned in the literature.

Our work adds to the empirical strand of literature studying the implications of option-based

variables on future stock returns. Cremers and Weinbaum (2010) and An et al. (2014) show the

return predictability using option-implied volatilities and IV spreads. In Bali and Hovakimian

(2009), the predictor variable is the difference between stock’s realized and implied volatilities.
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In contrast, Conrad et al. (2013), Chordia et al. (2021) and Alexiou and Rompolis (2022) show

that option-implied moments can also predict future returns. We contribute to this literature

by identifying a new predictor: the excess put early exercise premium. We show that the return

predictability for this premium is derived from its ability to capture large asset-value shocks.

Indeed, by linking the predictability with jumps, we further complement the long-standing

literature showing that various jump dynamics, including the systematic and idiosyncratic part

of those dynamics, are priced in the stock market (see, e.g, Yan (2011), Cremers et al. (2015),

Lu and Murray (2019) and Kapadia and Zekhnini (2019)).6 We also contribute by looking into

the drivers of IV spreads’ return predictability. Our work differs from the previous literature as

we look into the jump-based explanation for this predictability.

Finally, our work shares the same spirit with Valkanov et al. (2022) in showing that early

exercises contain valuable information about future underlying asset value paths. Nevertheless,

the predictability in Valkanov et al. (2022) is for daily index returns, using the total premium of

index calls. In contrast, we present the cross-sectional predictability, using the excess premium

of single-stock puts. Additionally, the finding in Valkanov et al. (2022) is based on the ability

of call premiums to capture investors’ dividend expectations, while our excess put premiums

derive the predictability from their ability to capture jumps in underlying stocks.

We organise the paper as follows. Section 2 discusses our simulation exercise, while Section 3

offers the data and methodology. In section 4, we document our empirical evidence. Section 5

finally concludes.

2 Simulation Exercise

In this section, we offer a Monte-Carlo based simulation evidence to show that variations in

jumps and SV can theoretically drive the early exercise premium of a put and the IV spread

of an equivalent American call-put pair.
6For a review of the current development in jump literature, see, for instance, Dierkes et al. (2023).
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2.1 Calculating the Early Exercise Premium and the IV Spread

We rely on Longstaff and Schwartz’s (2001) least squares Monte-Carlo (LSM) method to

simulate the underlying asset value paths, and then calculate the American values using those

paths. To simulate the asset value paths assuming no dividend (“non-dividend asset”), we

separately undertake a GBM process, a SV process from Heston (1993) and a SVJ process

from Bates (1996). Under the risk-neutral Q-probability measure, we can, for instance, write

the instantaneous asset return and asset variance paths using the SVJ process as follows:

dSt

St

= (r − λ˜̄µ)dt +
√

VtdW̃ S
t +

[
eJ̃S

t − 1
]

dÑt, (1)

dVt = κ̃(θ̃ − Vt)dt + σV

√
VtdW̃ V

t , (2)

where St and Vt are, respectively, the value of the underlying asset and its variance at time

t, r the risk-free rate, θ the long-term mean unconditional variance, κ the mean reversion speed

for the instantaneous variance process, and σV the volatility of this variance process. W S
t and

W V
t are separate Brownian motions, respectively for the asset return and its variance process,

with corr(dW S
t , dW V

t ) = ρ. Lastly, Nt is an independent Poisson process with a constant

jump-intensity λ and random jumps JS
t , where JS

t is normally distributed, as JS
t ∼ N(µS, σ2

S),

and µ̄ = eµS+σ2
S/2 − 1. Tildes (˜) over the parameters highlight that those values are drawn

from the Q-measure. Importantly, SVJ also nests other lower dimension processes: by setting

the λ to zero, for instance, SVJ collapses to the SV process. In addition to that, by setting the

κ and σV also equal to zero, SVJ further collapses to the GBM process.

To calculate the value of an American put under risk-neutral pricing framework, we then

undertake the backward iteration approach from Longstaff and Schwartz (2001), and first

identify the time-points at which the put can be optimal to early exercise, before its expiration.

We start with put’s maturity payoffs from all sample paths, max(K − ST , 0), where max is

a maximum operator, K the strike price and ST the path-specific Q-measured underlying
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asset value at put maturity T . We next move back one time step, to T − 1, where we run

a OLS regression with discounted maturity payoffs on a higher-order polynomial function

of underlying asset values from T − 1.7 We, however, only include observations from the

in-the-money (ITM) paths to run this regression. At T − 1, the path-specific continuation

values are then simply the fitted values from the regression. Optimal early exercise occurs

at T − 1 if the early exercise payoff from a path at that time-point exceeds the continuation

value. We continue in the same fashion, moving from T − 1 to T − 2, to T − 3, until we

reach the initial time t, always calculating the continuation value and comparing that value

with the early exercise payoff to spot the optimal early exercise point at each time and path.

Consequently, American put value is the mean of either discounted earliest exercise (if there

are early exercises for a path), or maturity payoffs (if no such exercise) at t.

Unlike the American put, we however rely on closed-form solutions from Black-Scholes

(1973), Heston (1993), and Bates (1996) to calculate the values of a European put, respectively,

under a GBM, a SV, and a SVJ process. For American call, we recall that an American call

written on a non-dividend asset is the same as a European call as it should not be exercised

early, in accordance with Merton (1973). Hence, we also calculate the values of American call

using closed-form solutions, same as the European call.

We next calculate the early exercise premium as the difference between the equivalent

(same underlying asset, strike price and time-to-maturity) American and European put values.

To measure the excess premium for an American put, we take the difference between its

premium under the SV or SVJ world and its equivalent GBM-world premium. We further scale

the premiums by their corresponding GBM-world American put values. Finally, to calculate

the IV spread for an equivalent American call-put pair, we take their values under a specific

stochastic process and transform them into their equivalent Black-Scholes IVs. The IV spread

under that process is then simply the difference between the IVs of these two options.
7Following Longstaff and Schwartz (2001), we use up until the third-order Laguerre polynomials of the

underlying asset value as regressors of this regression.
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The base values of our simulations include: initial underlying asset value, S0 of 50, option

strike price, K of 50, risk-free rate, r of 3%, initial underlying asset volatility,
√

Vt of 20%, and

option time-to-maturity, T of 30 days. As we conduct our empirical tests using single-stock

options, we rely on Pollastri et al. (2023) for SV and SVJ parameter values, which calibrates

these values from single-stocks in the S&P 500.8 Accordingly, we set the mean reversion

speed, κ as 5.50, volatility-of-variance, σV as 40%, correlation coefficient, ρ as −0.25, annual

jump-intensity, λ as 3.5, mean jump-size, µS as −3%, and jump-volatility, σS as 6%, based

on the median values of these parameters from Pollastri et al. (2023). We however separately

change the σV (as a measure for SV), and the µS and λ (as measures for jumps) from their

2.5th to 97.5th percentile values to see their effects on the early exercise premiums and IV

spread. More specifically, we change σV from 20% to 60%, µS from 1% to −8% and λ from 1

to 6, all in small increments. Each of our simulation is based on five million asset value paths

and on a daily frequency for the time interval.

2.2 The Premiums and the Spread with Stochastic Volatility and Jumps

Figure 1 shows the patterns of the put early exercise premiums and the IV spread of an

equivalent American option pair, respectively, across the ranges of σV (Panel A), µS (Panel B)

and λ (Panel C) parameter values. In Panel A (Panels B and C), we include the premium under

the GBM world, along with the excess premium under the SV (SVJ) world. In all three panels,

we show the dynamics of the premiums and the spread for at-the-money (ATM; strike-to-stock

price ratio of 1.05) options only, while leaving that dynamics for in-the-money (ITM; 1.05)

and out-of-the-money (OTM; 0.95) options for the internet appendix (IA).
8While Pollastri et al. (2023) calibrate parameters under the P-measure, we require Q-measure equivalents

of those parameters to calculate our option values. We therefore follow Cox et al. (1985), Bates (1996) and Pan
(2002), and transform the P-measured values into their Q-equivalents using the change of measure relations
described in those papers. Accordingly, we set σQ

V = σP
V , ρQ = ρP and κQ = κP + γ(σP

V )2, for instance, where
γ is a variance risk premium parameter. We choose γ = −4 in accordance with Ang et al. (2006).
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Figure 1: Early Exercise Premiums and IV Spreads Across Parameters The figure plots GBM-world
put early exercise premiums (dashed black), plus SV (in Panel A) or SVJ-world (in Panels B and C) excess premiums
(solid black) and IV spreads (solid blue) across σV , µS and λ parameters. In each panel, we put parameter values
on the x-axis, while set the premiums on the first (left) and IV spreads on the second (right) y-axes. We describe
basecase values of the parameters in Section 2.1.

The figure first point that the early exercise premium of a put under the SV or SVJ world

is usually lower than that premium under the equivalent GBM world. This is because put

becomes more valuable during the high-marginal utility state, state when the underlying asset

value is low, stochastic volatility tends to be high and downward jumps are more likely to

occur. Hence, with a low initial asset volatility level, both SV and jumps shift the optimal

put early exercise boundary below the equivalent GBM boundary (see, e.g., Amin (1993) and

Medvedev and Scaillet (2010)), making American put holders to early exercise less in a SV or

SVJ world, and thus pay a lower premium, compared to the equivalent GBM world. Therefore,

with a low initial volatility, we would, in general, expect a negative excess premium of the put

in the SV and SVJ worlds.

Furthermore, excess premiums and IV spreads are always negatively related, confirming

the finding in Campbell et al. (2023), but under a more general setting than their three-period

binomial world with time-varying volatility. Although, both SV and jumps have impacts on

the magnitudes of the excess premium and IV spread, the impacts, however, are the opposite.

A higher level of SV decreases (increases) the size of the excess premium (IV spread), whereas

higher asset-value jumps increase (decrease) the size of that premium (IV spread). For a 30-day
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ATM put with 20% underlying-asset volatility, the excess premium, for instance, decreases

from −0.07% to −0.42% as we move from 20% to 60% σV level (see, Panel A), while that

same premium increases from −0.61% to 0.22% as we increase µS (in absolute term) from 1%

to −8% (see, Panel B). Hence, for a plausible range of parameter values, the effect of jumps

on excess premiums seems to be significantly more pronounced than the effect of SV (0.59%

Vs. 0.35%, in this case, both in absolute terms). The pattern holds even if we look at their

impacts on IV spreads (0.15% Vs. 0.07%).

How do we explain the opposing patterns for excess premiums in the presence of SV and

jumps? With the SV, a higher volatility shifts the early exercise boundary further downward,

lowering the premium with the volatility. With jumps, however, although the boundary is lower,

due to the martingale restriction, asset value drift now needs to be higher compared to an

equivalent GBM drift, indicating that in a world with jumps, asset value would recover faster

after a downward jump compared to the GBM world. This makes jumps rare but desirable

events for American put holders as they can now early exercise at a lower asset value, induced

by the jump, before that value recovers. And, as the jump magnitude becomes higher, higher

is the drift adjustment and asset value recovery speed, making put holders even more willing

to early exercise at the jump-induced lower value, and thus pay a higher premium.

With jumps, a key question still remains: how do excess premiums and IV spreads behave

with different jump dynamics? As Dierkes et al. (2023) point, asset-value jumps can have varying

implications depending on the sources of left-tail variation. Accordingly, in our simulation

exercise, although jumps are, in general, related to excess premiums and IV spreads, both

the premium and the spread show more drastic change with mean jump-size µS, than jump-

intensity λ, highlighting that the former has more pronounced impact on premiums and spreads.

For instance, while the change in excess premiums for a low-to-high µS is 0.59%, that change

is only 0.28% for a low-to-high λ (compare Panels B and C).

In the internet appendix, we further explore the dynamics of the excess premium and the
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IV spread. For instance, in Section IA.1, we show that the patterns of the premium and the

spread with the SV and jumps still remain even if we look for a different moneyness options,

or the options has a longer time-to-maturity, or its underlying has a higher volatility.

The fact that σV , µS and λ can induce early exercise premiums and IV spreads has

important implications. Both σV and asset-value jumps show negative predictability in the

stock return literature (see, Yan (2011) and Baltussen et al. (2018), for instance). Our simulation

evidence suggests that excess premium (IV spread) is positively (negatively) related with

jumps, while negatively (positively), albeit weakly, related with σV . Hence, if we document

return predictability for excess premiums (IV spreads) and if that predictability is driven

by the SV, we would expect a positive (negative) relationship between excess premiums (IV

spreads) and future stock returns. In contrast, if that same predictability is driven by jumps,

excess premiums (IV spreads) should be negatively (positively) related with future returns.

Recent literature, nevertheless, shows a positive return predictability for IV spreads (see,

Cremers and Weinbaum (2010), An et al. (2014), for instance), hinting that any predictability

for excess premiums might be negative, and jumps could be the main driver for both of these

predictability. We explore this in greater details in the empirical section.

3 Data and Empirical Methodology

In this section, we describe our data sources and filters, and discuss how we calculate the early

exercise premiums of a put and the IV spread of an equivalent American option pair, both at

the option and the stock level.

3.1 Data Sources and Filters

We obtain daily data from the beginning of January 1996 until the end of April 2016 on

American options written on zero-dividend stocks, on the stocks underlying the options, and
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on the term structure of the risk-free rate from the OptionMetrics IvyDB database. We also

extract implied volatilities for our option sample from this database. Market data on the

underlying stocks comes from CRSP, firm fundamental data comes from Compustat, and data

on the asset pricing factors are from Kenneth French’s and Lu Zhang’s websites.9 Finally, data

on the daily-cost-to-borrow scores (DCBS), which is a proxy for stock short-sale constraints,

comes from the IHS Markit database.

We impose filters on our option data similar to those imposed in the related literature, such

as Cremers and Weinbaum (2010). Specifically, we exclude an option pair from the observation

month if either the call or put of this pair has zero open interest, missing IV, zero bid price

or a price that violates the standard arbitrage bounds (for instance, an American call must

lie in-between the maximum of zero and equivalent long forward, and the stock price) at the

start of the return generation month. We also exclude observations where start-of-month time

value of the put falls below $1 to avoid any market micro-structure issues. Our final sample

consists of options with the strike-to-stock price ratio (“Moneyness”) of in-between 0.90 and

1.10, and with time-to-maturity starting from two weeks up-until three months.

We include a list of all stock and option based explanatory variables used in our study and

their definitions in Table A.1 of the Appendix with our main paper.

3.2 Decomposition of the Early Exercise Premium

To decompose the total put early exercise premium (“Total Premium”) into its components,

we first recall that the total premium for an exchange-traded American put is the difference

between the market price of that put and its equivalent European price:

EEP total
i,j = P A,mkt

i,j − P E,mkt
i,j , (3)

9https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html and https://global-
q.org/index.html. We are grateful to Kenneth French and Lu Zhang for making the data available.
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where EEP total
i,j and P A,mkt

i,j are respectively the total premium and the market price of an

exchange-traded American put i written on stock j with strike price K and time-to-maturity

T ; P E,mkt
i,j the market price of the European put written on the same stock with the same

strike price and time-to-maturity.

By simultaneously adding and subtracting the equivalent GBM-world theoretical American

put price, we can rewrite the Equation (3) as follows:

EEP total
i,j =

(
P A,mkt

i,j − P A,GBM
i,j

)
+

(
P A,GBM

i,j − P E,mkt
i,j

)
, (4)

where P A,GBM
i,j is the GBM-world price of the American put i written on stock j with strike

price K and time-to-maturity T . The first part of the Equation (4) shows the excess element

of put’s total premium not explained under the GBM world (“Excess Premium”), while the

second part constitutes its GBM-world premium (“GBM Premium”).

3.3 Calculating the Premiums and the IV Spread

As pointed out in Equation (4), we require the GBM-world theoretical American put price to

single out the excess premium. We follow the OptionMetrics and calculate this theoretical

price using the CRR-based binomial option pricing model and assuming a discretized GBM

world. In the CRR framework, underlying asset price can move ‘up’ or ‘down’ at each discrete

sub-interval (t, t + 1) over a total number of periods N within option’s time-to-maturity T .

The asset value at the end of t + 1 can be one of the following:

Sj,t+1(u) = Sj,t × exp

σj

√
T

N

 , (5)

Sj,t+1(d) = Sj,t × exp

−σj

√
T

N

 , (6)
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where Sj,t+1(u) and Sj,t+1(d) are, respectively, the up and down values of the underlying asset

j at the end of the sub-interval (t, t + 1); Sj,t the asset value at the start of the sub-interval;

and σj the constant underlying-asset volatility.

To calculate the price of the American put at the initial time, we first set the expiration-day

price of the put same as its maturity payoff, max (K − Sj,T , 0). Then, starting from that

expiration day, we recursively set the put price at the start of each sub-interval as either the

put early exercise payoff at that point (if there is early exercise), or the discounted, risk-neutral

probability-weighted value calculated from the end-of-subinterval put prices from the ‘up’ and

‘down’ state (if there is no such exercise):

P A,GBM
i,j,t =


[
πQP A,GBM

i,j,t+1 (u) + (1 − πQ)P A,GBM
i,j,t+1 (d)

]
exp

−rf

√
T

N

 , or

K − Sj,t,

(7)

until we reach at t = 0. Here, πQ is the risk-neutral probability of the ‘up’ state; P A,GBM
i,j,t+1 (u)

and P A,GBM
i,j,t+1 (d) are American put prices at the ‘up’ and ‘down’ state, respectively; and rf is

the risk-free rate.

We calculate the theoretical American price for each sampled put observation using the

exact same strike price, time-to-maturity and underlying-stock volatility estimates as in our

empirical data for that put and employing N = 5000.10 To estimate the stock volatility, we

take the standard deviation from stock’s daily return data over a twelve-month rolling period.

Additionally, as shown in Equation (4), we further require exchange-traded equivalent

European put prices to calculate the total premium and also the GBM-world premium. However,

as exchange-traded single-stock options are exclusively American, there is no market price

for equivalent European options. To address this issue, we again rely on Merton’s (1973)
10OptionMetrics IvyDB US manual highlights that the CRR model becomes exceedingly accurate as the

number of time period N goes to 1000. Given that, our choice of N = 5000 should give us an accurate
representation of the theoretical American put price under the GBM world.
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insight that an American call written on a zero-dividend asset is equivalent to a European call.

We then synthetically create European puts from put-call parity, using a portfolio long the

American (i.e. equivalent European) call, long an investment of the discounted strike price in

the risk-free asset, and short the underlying stock. We can thus write,

P synE
i,j = CA,mkt

i,j − Sj + Ke−rf T , (8)

where P synE
i,j and CA,mkt

i,j are, respectively, the prices of synthetic European put and exchange-

traded American call, both written on stock j with strike price K and time-to-maturity T .

Armed with the option prices, we next follow Equations (3) and (4) above and calculate

different option-level early exercise premiums as,

EEP total
i,j = P A,mkt

i,j − P synE
i,j , (9)

EEP excess
i,j = P A,mkt

i,j − P A,GBM
i,j , (10)

EEP GBM
i,j = P A,GBM

i,j − P synE
i,j , (11)

where EEP excess
i,j and EEP GBM

i,j are the excess and GBM-world put early exercise premiums,

respectively, of an American put i written on stock j with strike price K and maturity T .

Finally, the IV spread for each American option-pair is the difference between the implied

volatilities of equivalent American call and put, written on the same underlying stock, with

the same strike price and time-to-maturity. We write the option-level IV spread as,

IV Sprdi,j = IV C,A
i,j − IV P,A

i,j , (12)

where IV Sprdi,j is the IV spread for an exchange-traded equivalent American call-put pair

i written on stock j with strike price K and time-to-maturity T ; IV C,A
i,j and IV P,A

i,j are,

respectively, the implied volatilities of that call and put.
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Equipped with option-level IV spreads, we can now calculate the IV spread for a stock.

To calculate stock-level spreads, we follow the literature and take a weighted-average of the

option-level IV spreads for each stock where weights are calculated as the relative call plus

put open interests of the option-pairs:

IV Sprdj =
Z∑

i=1
(wi,j × IV Sprdi,j) , (13)

where IV Sprdj is the implied volatility spread for stock j and wi,j the option-pair weights.

The weights are calculated as wi,j = OIC
i,j+OIP

i,j∑Z

i=1 OIC
i,j+OIP

i,j

where OI is option’s open interest and Z

the number of option pairs written on a particular stock.

We follow a similar procedure to calculate the stock-level early exercise premiums, although

as all three premiums are put based premiums, we weight option-level premiums using the

relative open interest of the American put only:

EEP total
j =

Z∑
i=1

(
wP

i,j × EEP total
i,j

)
, (14)

EEP excess
j =

Z∑
i=1

(
wP

i,j × EEP excess
i,j

)
, (15)

EEP GBM
j =

Z∑
i=1

(
wP

i,j × EEP GBM
i,j

)
, (16)

where EEP total
j , EEP excess

j and EEP GBM
j are the weighted-average total, excess and GBM-

world premiums for stock j, respectively; and wP
i,j the put weights calculated as wP

i,j = OIP
i,j∑Z

i=1 OIP
i,j

.

4 Empirical Results

In this section, we present our main empirical evidence on whether the excess put early exercise

premium can predict future stock returns, and discuss the source of this predictability. We

begin with descriptive statistics of our option-specific variables, calculated at the stock level,
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and pre-formation characteristics for the stock portfolios sorted on the stock-level excess

premium. We then provide the results from various portfolio sorts and Fama and MacBeth

(1973) regressions studying the relationship between excess premiums, IV spreads and future

stock returns, while controlling for a range of factors and alternative explanations.

4.1 Option Variable Characteristics

Table 1 reports descriptive statistics for excess and GBM-world early exercise premiums and IV

spreads (columns (1)-(3)); option moneyness, defined as the ratio of strike-to-underlying-stock

price, and days-to-maturity ((4) and (5), respectively); and open interests for calls and puts ((6)

and (7), respectively), all calculated at their corresponding stock level. We take observations

at the end of each calendar month. We first match option-level observation-pairs for columns

(1) to (3) along the moneyness and maturity dimensions so that each pair in one column is

associated with exactly one pair in other columns with identical moneyness and maturity. We

further match observation-pairs at the stock level so that each equivalent pair in any of these

three columns represent the same underlying stock. With the exception of the t-statistic, the

descriptive statistics are calculated each sample month and then averaged over time.

Table 1 About Here

Table 1 first suggests that for an average American put in our sample, the GBM-world early

exercise premium is more than double the size of the excess premium. Excess premiums, for

instance, are 0.93% (t-statistic: 3.85) of the exchange-traded American put price, on average,

compared to the average of 2.06% (t-statistic: 13.70) for GBM-world premiums, suggesting

that most part of the typical put early exercise premium comes from GBM-world factors.

Importantly however, excess premiums have significantly more variations, as shown by their

standard deviation and percentiles. In contrast, GBM premiums only display a negligible
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volatility. Additionally, while both excess and GBM-world premiums are significantly positive,

on average, IV spreads for equivalent American option pairs are significantly negative, in

complete agreement with our simulation evidence.

Further looking at the percentiles we observe that, while GBM premiums are only positive,

excess premiums in our sample can range from negative to positive. The positive values

for GBM premiums highlight that American put prices should always be greater than their

equivalent European counterparts under the GBM world, conforming Merton’s (1973) insight.

In contrast, the varying signs for excess premiums are in line with the jump-based explanation

for that premium we establish in our simulation work. We return to this point later.

The moneyness and days-to-maturity statistics, respectively, in columns (4) and (5) suggest

that the average option pair for a stock is close to ATM and is less than two months away

from the maturity. Additionally, with respect to the open interests for calls and puts, there

are disproportions between these two, across different percentiles. Overall, exchange-traded

American calls have higher open interests compared to their equivalent put counterparts.

4.2 Preformation Stock Portfolio Characteristics

To begin our empirical analysis, we form stock portfolios by sorting on stock-level excess

premiums. At the end of each sample month t − 1, we sort the universe of stocks in our

sample into quintile portfolios according to those premiums. Table 2 reports mean values for

different pre-formation characteristics of these portfolios evaluated at or over month t − 1. The

bottom quintile (“Low”) contains stocks with low excess premiums, while the top (“High”)

contains stocks with high premiums. With the exception of the lagged monthly stock return,

the numbers in Table 2 are time series averages of the equal-weighted monthly cross-sectional

means. For the lagged return, we report both equal-weighted and market value-weighted means.

Table 2 About Here
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Table 2 shows that stocks with lower market capitalization and higher book-to-market

are located in the “High” portfolio. Consequently, these stocks also have the highest bid-ask

spread and Amihud illiquidity measures. Average betas and closing stock prices show little

variation, while idiosyncratic volatility remains essentially unchanged across the portfolios.

Both equal and value-weighted monthly average lagged returns near-monotonically increase

across the portfolios. The equal-weighted returns, for instance, calculated over month t − 1,

increase from 1.21% to 3.51% per month, respectively, from the “Low” to the “High” portfolio.

While showing whether excess premiums can predict future stock returns, we control for

these pre-formation characteristics, plus a number of other characteristics, to ensure that our

predictability results are not driven by all these features.

4.3 Does The Excess Premium Predict Future Stock Returns?

We next turn our attention to investigating the ability of the excess premium to predict stock

returns. To do this, we first conduct univariate portfolio sorts using stock-level excess premiums

as follows. At the end of sample month t − 1, we split the stock universe into quintile portfolios

based on the excess premium. The bottom (“Low”) quintile contains stocks with low values

of the premium, on which the portfolios are formed, while the top (“High”) contains stocks

with high values of the premium. We also form a “High−Low” spread portfolio that is long

the top quintile and short the bottom quintile. We then hold the portfolios over month t and

report both equal-weighted (Panel A) and value-weighted returns (Panel B), in excess of the

three-month Treasury Bill rate, from the portfolio sort. We further report the monthly average

intercept terms (the αs) from regressing the portfolio returns on common risk factors from

the market model, the Fama and French (1993)-Carhart (1997) four-factor model (FFC), the

Fama and French (2015) five-factor model (FF5), the Hou et al. (2015) q-factor model (HXZq)

and the Hou et al. (2021) augmented q-factor model (HMXZq5).11

11The four factors in the FFC are the market, size and book-to-market factors from Fama and French (1993)
and the momentum factor from Carhart (1997), while the FF5 includes the three factors from Fama and French
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Table 3 About Here

Table 3 offers the univariate portfolio sort results using excess put early exercise premiums.

From the table, we observe that future stock returns decrease as the excess premium increases.

Indeed, a strategy that is long the “High” portfolio and short the “Low” portfolio delivers a very

significant equal-weighted average monthly excess return of −1.18% (t-statistic: −7.25; see the

column labelled “High−Low” in Panel A). Additionally, the value-weighted average monthly

excess return for that same portfolio is also statistically significant, of −0.70% (t-statistic:

−3.87; see the “High−Low” column in Panel B).

Risk-adjusted αs for the “High−Low” portfolios are also statistically significant regardless

of the model we use, and are occasionally higher than the raw returns. For instance, the

equal-weighted mean monthly α under the FF5 model is a significant −1.21% (t-statistic:

−9.31) for the “High−Low” portfolio; the αs are also of similar orders of magnitude for the

value-weighted returns. These results therefore suggest that our findings are not due to the

failure to adequately control for the usual asset pricing risk factors.

For brevity, we only report the results with the equal-weighting scheme in our subsequent

analyses. However, we would like to highlight that all our results still hold under the value-

weighting scheme and are qualitatively similar to their equal-weighting counterparts.

Overall, this section offers clear evidence that stock-level excess put premiums can predict

underlying stock returns on a monthly horizon. Importantly, the nature of this predictability,

i.e. the negative relation between excess premiums and future returns, motivates us to explore

the role that jumps could play in this predictability. In our simulation exercise, asset-value

jumps are positively linked with excess premiums, while jumps are also negatively priced in

future stock returns (see, e.g., Yan (2011) and Dierkes et al. (2023)). Hence, excess premiums

predicting stock returns might be due to those premiums capturing the jump dynamics in the

(1993) along with a profitability and an investment factor. In contrast, the HXZq includes the market, size,
investment and return-on-equity factors whereas the HMXZq5 extends the HXZq with an expected growth factor.
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underlying stock price. We explore this plausibility in the next section.

4.4 The Role of Jumps

While the results in Section 4.3 provide encouraging evidence that excess premiums can predict

stock returns, an important question still remains: how do we explain this predictability?

Our simulation work hinges toward suggesting that jumps and SV can drive the variation in

excess premiums. Hence, to test whether these two fundamental sources of asset-value shocks

can explain the predictability in excess premiums, we first undertake two bivariate portfolio

sorts, separately using either a jump or a SV measure, and the excess premium as sorting

variables. As a proxy for jumps, we use the option-implied (Q-measured) left-tail variation

measure (“JumpLT”) from Bollerslev and Todorov (2011),12 while we follow Baltussen et

al. (2018) in calculating the volatility-of-variance (“VoV”) measure which captures the SV

effect. At the end of each sample month t − 1, we first separately split the stock universe into

quintile portfolios according to each sorting variable and create 5 × 5 = 25 independent but

bivariately sorted portfolios. The bottom quintile for each sort contains stocks with low factor

values (“Low”), while the top contains stocks with high values (“High”). We also form a spread

portfolio long the top and short the bottom quintile (“High−Low”) along the excess premium

dimension. We then hold the portfolios over month t and calculate returns on these portfolios.

Table 4 About Here

Table 4 reports our bivariate sort results. In Panel A, we conduct the sort using JumpLT

and excess premium as sorting variables, while in Panel B, we replace JumpLT with VoV.

Looking at the results in Panel A, we observe a variable pattern in monthly average stock

returns across excess premium-sorted portfolios depending on whether we sort the premiums
12As Dierkes et al. (2023) show, JumpLT measure (known as BT11Q in Dierkes et al. (2023)) performs

the best among its peers in capturing a range of future jump-dynamics, and also future returns.
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at lower or higher JumpLT levels. Average excess returns on the “High−Low” spread portfolio,

for instance, show almost a fivefold increase, from −0.51% (t-statistic: −2.46) to −2.38%

(t-statistic: −4.25), respectively from the “Low” to “High” JumpLT levels. In contrast, the

“High−Low” portfolios sorted at different VoV levels do not show such variation. Average

excess return of the spread portfolio, for instance, is −1.14% at the “Low” VoV level, which is

similar to the −1.05% return of that same portfolio at the “High” VoV level. Accordingly, our

bivariate portfolio sort exercise points that jumps play the main role in explaining the stock

return predictability of excess premiums we observe in our sample data.13

Although the bivariate portfolio sort establishes a link between ex-ante jumps and the

predictability in excess premiums, the jump proxy in that sort is an overall left-tail variation

measure,hence can vary with the change in both jump-size µS and jump-intensity λ. Importantly

however, our simulation evidence suggests that the change in µS, rather than λ, mainly drives

the excess premium dynamics. To this end, we follow Yan (2011) and Cremers et al. (2015),

and calculate a µS proxy (“JumpSize”) from the IV slope, using IVs of 30-day OTM put

and ATM call, both taken from the IV surface. Interestingly, excess premiums and JumpSize

are highly positively correlated, consistent with our simulations, with a mean cross-sectional

correlation of around 63%. We next conduct univariate portfolio sort exercise in Table 5 where

we independently sort stocks using orthogonalized excess premium variable, disentangled

from the effect of JumpSize (Panel A). To explore further, we decompose JumpSize into its

systematic and idiosyncratic parts, separately orthogonalize excess premiums from either of

these two, and then conduct another sort exercise (Panel B).

Following Yan (2011), to decompose the JumpSize into its systematic and idiosyncratic

components, we run a twelve-month rolling window regression as: JumpSizei,t−1 = zi +

βiJumpSizeS&P 500,t−1 + ϵi,t−1, where JumpSizei,t−1 and JumpSizeS&P 500,t−1 are the mean
13Although our theory suggests ex-ante jumps, we further conduct the same bivariate sort (unreported)

separately using two realized jump proxies: expected shortfall in Artzner et al. (1999) and P-measured left-tail
in Atilgan et al. (2020). The inference from those sorts is exactly the same as the bivariate sort with JumpLT .
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jump-size proxy measures for stock i and S&P500, respectively, at the end of month t−1. Then,

the fitted and the residual values from this regression are, respectively, the systematic and

idiosyncratic components of JumpSize for each stock. Finally, to orthogonalize a variable from

another, we run cross sectional regression for each sample month t−1 as: var1 = α1+β1var2+ϵ1,

where var1 and var2 are the variables in their original forms, α1 and β1 the regression parameters

and ϵ1 the orthogonalized part of var1, independent from the effect of var2 on var1.

At the end of month t − 1, we separately split stocks into quintile portfolios based on each

sorting variable, same as the excess premium sort in Table 3. We also form a “High–Low”

spread portfolio for each sort which is long the top and short the bottom quintile. We hold all

portfolios over month t and then calculate their returns.

Table 5 About Here

Panel A of Table 5 first shows that, consistent with the prior literature, future stock

returns decrease as the JumpSize increases. Furthermore, although excess premiums are

negatively related with future returns, once we control for the impact of JumpSize in excess

premiums, that relationship severely weakens. The “High–Low” spread portfolio, sorted on the

orthogonalized excess premium and independent from the JumpSize, for instance, produces

a mean monthly excess return of −0.43% (t-statistic: −1.80). This is significantly lower (in

absolute term) than the −1.18% (t-statistic: −7.25) mean return for that same portfolio when

sorted on the non-orthogonalized excess premium. Further looking into Panel B, we observe

that the predictability of excess premiums is mainly driven by the idiosyncratic component of

JumpSize, while the systematic component only plays a minor role. Altogether, the results in

these two panels provide further evidence that mean jump-size µS plays the prominent role in

explaining excess premium’s return predictability.

In Panel C, we finally evaluate whether excess premiums, and ultimately the presence of

jumps, can play any part in explaining the prediction power of IV spreads that prior literature
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documents. As mentioned earlier, literature is mostly divided on the source of IV spreads’

stock return predictability. Studies, for instance, have indicated that the predicability might

arise due to the trading activities of informed investors, or IV spreads capturing the temporary

mispricing of the underlying stock, or market frictions (see, Cremers and Weinbaum (2010),

Goncalves-Pinto et al. (2020) and Hiraki and Skiadopoulos (2023), for instance). Contrary

to these, we seek for a jump-based explanation for IV spreads’ predictability. Our simulation

evidence suggests negative associations between IV spreads and excess premiums, and between

IV spreads and µS. Indeed, in our sample data, IV spreads are highly negatively correlated

with these two, with the mean cross-sectional correlations for the pairs ranging from 79% to

80%. More importantly, once we orthogonalize IV spreads from the impact of excess premiums

or JumpSize, IV spreads significantly lose the predictive power. The “High–Low” spread

portfolio in Table 5, for instance, sorted on non-orthogonalized IV spreads, generates a mean

excess return of 1.29% (t-statistic: 7.50), in line with the previous literature. In comparison,

when we do the sort based on the orthogonalized IV spread variable, independent from the

effect of excess premium, that same spread portfolio only provides a 0.53% (t-statistic: 2.61)

mean return. The pattern is also very similar even when we orthogonalize the IV spread from

the JumpSize, instead of the excess premium.

Taken altogether, the results in this section strongly suggest that jumps, more specifically

mean asset-value jump-size µS, play an important role in explaining the ability of the excess

premium and IV spread to predict stock returns.

4.5 Alternative Hypotheses

We next examine several alternative hypotheses for the predictability of excess premiums and

IV spreads. Doing so, we test whether the findings we document in Section 4.4 still prevail under

these hypotheses. We first check whether informed trading can explain our results. As Cremers

and Weinbaum (2010) point, informed traders, having access to the private information, first
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trade in the options, ahead of the stock market. Hence, information might appear in options

first, and then lead to the stocks. This explains why put-call parity deviations, in the guise of

IV spreads, can predict stock returns in Cremers and Weinbaum (2010). As put-call parity

deviations can be linked with option early exercises, a natural question to ask is whether the

return predictability for excess premiums can also be explained by informed trading.

Following Shang (2017), we create a sub-sample of options only including observations

with zero trading volumes, keeping in mind that if informed trading explains our results we

should not find the patterns we observe in Table 5 for this sub-sample. We then repeat the

analysis in Table 5, but only for our main sorting variables, on this sample. The results from

this analysis are presented in Panel A of Table 6.

Table 6 About Here

Panel A shows that even when the sample solely consists of options with zero trading volume,

our previous inferences persist. For instance, the “High–Low” spread portfolio formed from

the excess premium sort still produces a mean monthly excess return of −1.17% (t-statistic:

−6.13). The IV spread remains positively related with stock returns, conforming with Shang

(2017) and Goncalves-Pinto et al. (2020). Furthermore, when we orthogonalize IV spreads

from excess premiums and then conduct the IV spread sort, the spread portfolio produces

a mean return of only 0.54% (t-statistic: 2.04), significantly lower than the mean return of

1.30% (t-statistic: 5.58) under the non-orthogonalized IV spread sort.

We next test whether mispricing due to stock price pressure can explain our results.

Goncalves-Pinto et al. (2020) show that price pressure, driven by interim liquidity shock in

the stock, can shift the stock price away from its option-implied value. Hence, price pressure

can lead to a deviation in put-call parity relation (thus, might relate to early exercises) for an

equivalent option pair written on that stock and can generate IV spread for that pair. Once

that temporary shock dissipates, stock price reverts back to its fundamental value. In the mean
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time, the IV spread (and potentially, early exercises), generated by the short-term mispricing,

can display predictability of stock returns. To control for the temporary price pressure effect,

we follow Goncalves-Pinto et al. (2020) and skip a day from return generation, that is, we

only start cumulating stock returns from the second day after portfolio formation. The reason

behind this set-up, as indicated by Goncalves-Pinto et al. (2020), is that if our results are

driven by the temporary shock due to price pressure, we should not observe significant returns

for our spread portfolios if we skip the first day. We examine this in Panel B.

Looking at the results in Panel B, we note that although the first-day return accounts for

a sizable proportion, we still have significant mean returns of −0.64% (t-statistic: −4.12) and

0.69% (t-statistic: 4.30) for spread portfolios, sorted separately on the excess premium and the

IV spread, respectively, even when we skip the first day. Importantly, the excess premium (and

its embedded jump effect) yet explains a significant part of IV spreads’ return predictability.

Orthogonalizing from the excess premium, IV spread sort, for instance, only generates a

marginally significant mean return of 0.37% (t-statistic: 1.88) for the spread portfolio.14

We finally investigate whether our results are due to frictions in the stock market. Hiraki

and Skiadopoulos (2023) show that IV spreads can change in the presence of transaction costs

of the underlying stock. As investors demand compensation for their exposure to frictions, this

could ultimately lead to IV spreads predicting stock returns. Similarly, Jensen and Pedersen

(2016) and Figlewski (2022) show that investors can change their optimal early exercise

decisions in the presence of stock short selling constraints and/or transaction costs. To test

this friction-based channel, we create sub-samples based on either scaled bid-ask spreads of

the stock (Panel C) or stock DCBS (Panel D). While bid-ask spreads work as a proxy for stock

liquidity, DCBS highlight short sale constraints of the stock. As Jensen and Pedersen (2016)

point, stocks with DCBS greater than five are hard-to-short stocks. Using bid-ask spreads,

we first create two stock sub-samples: one where bid-ask spreads are lower than the median
14In an alternative test, we further check whether our results survive controlling for a longer-term mispricing

proxy from Stambaugh et al. (2015). The results, in that case, are in complete agreement with Panel B results.
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spread (“Liquid Stocks”), and the other with spreads higher than the median spread (“Illiquid

Stocks”). We further create two sub-samples based on DCBS. In one, we include all stocks

with available DCBS and in other, we exclude stocks with DCBS greater than five. We next

conduct the portfolio sort exercise using each sub-sample and report their results.

The results in Panels C and D highlight that although return predictabilities of the excess

premium and the IV spread are stronger with comparatively illiquid and hard-to-short stocks,

we still have significant predictive ability for the liquid and easy-to-short stocks. In the liquid

stock sample, for instance, the “High–Low” portfolios sorted on the excess premium and the

IV spread respectively generate mean excess returns of −0.70% (t-statistic: −4.04) and 0.80%

(t-statistic: 4.68) (see Panel C1). Once again, if we orthogonalize the IV spread from excess

premium and then conduct the sort with the orthogonalized IV spread, the spread portfolio

becomes insignificant, with a mean return of only 0.03% (t-statistic: 0.13).

4.6 Fama-MacBeth (FM; 1973) Regressions

We further run FM regressions to see whether a number of commonly used cross-sectional

stock-related factors can explain the apparent return predictability we document in Tables 3

and 5. In particular, we control for stock characteristics such as firm size, the book-to-market

ratio, stock’s beta, its idiosyncratic volatility, momentum, reversal, bid-ask spread and Amihud

(2002) illiquidity measure of the stock. We also control for the price pressure and friction

proxies, respectively, from Goncalves-Pinto et al. (2020) and Hiraki and Skiadopoulos (2023).

As these proxies are highly correlated with the IV spread, and hence with the excess premium,

we orthogonalize them and only include the orthogonalized parts in our regressions. We

finally control for the JumpSize and VoV measures to observe the impact of these two in the

regressions. In Table 7, we first present mean cross-sectional correlations for all variable pairs
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used in the regressions. We then report the regression results in Table 8.

Table 7 About Here

Table 8 About Here

FM regressions further confirm our earlier portfolio-sort findings. For instance, even after

controlling for various stock characteristics, while excluding the JumpSize, the relationship

between the excess premium and stock returns remains negative and significant. Once we

include the JumpSize in the regression, that relationship, nevertheless, disappears. Taken

altogether, the results in this section strongly suggest that excess premiums can significantly

predict stock returns and such predictability is primarily driven by their ability to capture

mean jump-size in the underlying stock. Other factors only have secondary effect on that

predictability.

We also conduct a number of robustness tests in Sections IA.4 − IA.7 of our internet

appendix. More specifically, we check whether our results survive when we group options into

various moneyness and maturity categories, whether our findings are due to the choice of

calculating the GBM-world American put price under CRR method, whether an alternative

definition of the stock-level excess premium can impede the findings, whether our results are

due to separate closing times for stock and option markets,15 whether the results survive in a

sample created from liquid-only options with positive trade volumes, plus a number of further

checks. Our empirical results still remain intact even after all these supplementary tests.

5 Concluding Remarks

We investigate whether option early exercises contain significant information about future

underlying stock price movements. More specifically, we show that the early exercise premium
15The options market closes two minutes after the stock market.
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of single-stock American put, in excess of its equivalent GBM-world premium, can negatively

predict both value and equal-weighted cross-sectional future stock returns. Looking for the

source of this predictability, our simulation evidence first suggests a positive relationship

between asset-value jumps, especially, mean jump-size and excess premium of a put. Further

evidence negatively relates jump-size with the IV spread of an equivalent American option

pair, implying a negative association between the excess premium and IV spread, induced by

jumps. Prior literature shows that mean jump-size is negatively priced in future stock returns

(see, e.g., Yan (2011)). Hence, based on our simulations, we make a conjecture that jumps

might help us to understand the negative (positive) relationship between excess premium

(IV spread) and future returns that we document in this paper (previous literature, such as

Cremers and Weinbaum (2010), documents). Using a barrage of empirical tests and robustness

checks, we show that jumps indeed play the key role in explaining both predictability.
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Table 1: Descriptive Statistics for the Option Variables
The table presents descriptive statistics on the month-end spreads between exchange-traded American puts and their
equivalent GBM-world theoretical American puts under the CRR scheme (“Excess Premium”; column (1)), between
theoretical American puts and equivalent synthetic European puts (“GBM Premium”; (2)), and between equivalent
Black-Scholes based American call and put implied volatilities (“IV Spread”; (3)), all calculated at the stock level
from corresponding single-stock options using option open-interest weights. Both premiums are scaled by the traded
American put price. The table further reports the stock-level average moneyness ((4)) and time-to-maturity ((5)),
calculated from their corresponding option-level statistics, along with the stock-level average open interests, measured
as the average number of option contracts outstanding, separately for American calls and puts written on the stock
((6) and (7), respectively). The descriptive statistics include the mean, the standard deviation (StDev), the t-statistic
of the mean (Mean/StdErr), several percentiles, and the number of observations at the stock and option levels (Obs
(Stocks) and Obs (Options), respectively). The observation-pairs used in columns (1)-(3) are matched, so that each
pair corresponds to the same underlying stock. At the option level, we calculate moneyness as the ratio of option
strike-to-stock price and measure time-to-maturity in calendar days. With the exception of the t-statistic, each
statistic is calculated as the time-series average of respective cross-sectional statistics.

Excess GBM IV Money- Maturity Open Open
Premium Premium Spread ness Time Interest Interest

(in %) (in %) (in %) (K/S) (in days) (Call) (Put)

(1) (2) (3) (4) (5) (6) (7)

Mean 0.93 2.06 −1.47 1.00 50 1,111 831
StdDev 10.71 1.31 6.15 0.03 18 3,002 2,903
Mean/StdErr [3.85] [13.70] [−11.48]
Percentile 1 −26.55 0.82 −23.39 0.92 19 3 2
Percentile 5 −12.88 0.99 −9.63 0.95 20 14 8
Quartile 1 −3.69 1.35 −2.55 0.98 39 89 49
Median 0.16 1.79 −0.64 1.00 49 306 181
Quartile 3 4.63 2.52 0.80 1.01 60 951 630
Percentile 95 17.64 3.93 4.35 1.05 80 4,503 3,272
Percentile 99 36.25 6.03 9.78 1.08 80 13,306 10,329
Obs (Stocks) 932 932 932 932 932 932 932
Obs (Options) 3,814 3,814 3,814 3,814 3,814 3,814 3,814
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Table 2: Average Preformation Characteristics of Portfolios Sorted on the Excess
Put Early Exercise Premium
The table presents preformation characteristics of the stock portfolios sorted on the stock-level excess put early
exercise premium (“Excess Premium”). See the caption of Table 1 for the definition of excess premium. At the
end of each sample month t, we first sort stocks into portfolios according to the quintile breakpoints of the excess
premium. We then calculate relevant stock-related characteristics for the stocks within each portfolio based on
information available at time t and report their portfolio averages. The stock characteristics include: market
capitalization of the stocks (Market Size); their book-value-to-market-size ratio (B/M); their beta, calculated
over the prior 60 months from the market model (CAPM Beta); both equal and value-weighted portfolio returns
over month t − 1 to t (Lag Monthly Returns); stock idiosyncratic volatility, calculated as the standard deviation
of the residuals from Fama-French (1993)-Carhart (1997) regression model (FFC) estimated over the prior year;
closing price of the stocks; their bid-ask spreads, measured as the percentage of the closing price; and Amihud
(2002) stock illiquidity measure, calculated as the absolute stock return divided by its dollar volume.

1 (Low) 2 3 4 5 (High)

Market Size (in $MN) 8,755 9,409 8,866 7,651 4,995
B/M 0.94 0.78 0.83 0.98 1.16
CAPM Beta 1.25 1.32 1.33 1.29 1.19
Lag Monthly Return (in %, EW) 1.21 1.04 1.26 1.94 3.51
Lag Monthly Return (in %, VW) 1.37 1.13 1.40 1.93 3.32
Stock Idiosyncratic Volatility 0.37 0.38 0.38 0.38 0.37
Closing Price 53.55 45.13 42.90 43.24 45.28
Bid-Ask Spread (in %) 0.43 0.35 0.36 0.41 0.51
Amihud (in multiple of 10,000) 0.37 0.28 0.29 0.35 0.52
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Table 3: Excess Returns and Alphas from Excess Premium-Sorted Portfolios
The table presents the equal-weighted (Panel A) and market-value weighted (Panel B) mean returns and risk-adjusted
αs of the stock portfolios (both in %), in excess of the three-month Treasury Bill rate, univariately sorted on the
stock-level excess put early exercise premium (“Excess Premium”). See the caption of Table 1 for the definition of
excess premium. We calculate αs as the intercept estimated from: the market model (MKT), where portfolio excess
returns are regressed on the market factor; the Fama-French (1993)-Carhart (1997) four-factor model (FFC), where
excess returns are regressed on the market, size, book-to-market and momentum factors; the Fama and French (2015)
five-factor model (FF5), where excess returns are regressed on the market, size, book-to-market, profitability and
investment factors; the Hou et al. (2015) q-factor model (HXZq), where excess returns are regressed on the market,
size, investment and return-on-equity factors; and the Hou et al. (2021) augmented q-factor model (HMXZq5), where
excess returns are regressed on the HXZq factors, plus the expected growth factor. At the end of month t−1, we sort
stocks into portfolios according to the quintile breakpoints of the excess premium. We also form a spread portfolio
long the top and short the bottom quintile (“High−Low”) and hold all portfolios over month t. Observations in
both panels are matched, so that all correspond to the same underlying stock at t − 1. The numbers in square
parentheses are Newey and West (1987) t-statistics, calculated using a twelve-month lag length.

1 (Low) 2 3 4 5 (High) High−Low

Panel A: Equal-Weighted Evidence

Excess Return 0.91 0.67 0.46 0.25 −0.27 −1.18
[2.17] [1.50] [1.02] [0.58] [−0.67] [−7.25]

αMKT 0.15 −0.12 −0.33 −0.50 −0.95 −1.11
[0.80] [−0.57] [−1.69] [−2.84] [−5.60] [−8.38]

αF F C 0.22 −0.03 −0.28 −0.46 −0.95 −1.17
[1.89] [−0.22] [−2.50] [−4.07] [−8.51] [−9.35]

αF F 5 0.38 0.22 −0.10 −0.30 −0.84 −1.21
[3.24] [1.96] [−0.94] [−2.69] [−7.38] [−9.31]

αHXZq 0.95 0.71 0.56 0.30 −0.32 −1.28
[2.07] [1.47] [1.17] [0.67] [−0.79] [−8.90]

αHMXZq5 0.90 0.71 0.53 0.32 −0.34 −1.24
[1.85] [1.38] [1.03] [0.66] [−0.77] [−8.15]

Panel B: Value-Weighted Evidence

Excess Return 0.82 0.66 0.47 0.41 0.13 −0.70
[2.09] [1.61] [1.15] [1.04] [0.32] [−3.87]

αMKT 0.19 0.00 −0.21 −0.21 −0.46 −0.65
[1.40] [0.01] [−1.72] [−1.96] [−3.94] [−3.59]

αF F C 0.28 0.08 −0.17 −0.24 −0.51 −0.79
[2.21] [0.64] [−1.54] [−2.20] [−4.34] [−4.62]

αF F 5 0.35 0.24 −0.02 −0.20 −0.48 −0.83
[2.62] [1.98] [−0.21] [−1.79] [−3.94] [−4.63]

αHXZq 0.81 0.71 0.53 0.43 0.06 −0.75
[2.16] [1.85] [1.35] [1.22] [0.17] [−3.95]

αHMXZq5 0.84 0.84 0.56 0.43 0.11 −0.73
[2.11] [2.06] [1.36] [1.14] [0.31] [−3.60]
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Table 4: Independent Double Portfolio Sort Exercise
The table presents the mean percentage returns of equal-weighted stock portfolios, in excess of the three-month
Treasury Bill rate, double-sorted on the excess put early exercise premium (“Excess Premium”) and either a
left-tail variation measure (“JumpLT”; Panel A) or the volatility-of-variance (“VoV”; Panel B), all measured at
the stock level. See the caption of Table 1 for the definition of excess premium. While we use OTM put prices
to compute the JumpLT , based on Bollerslev and Todorov (2011), we calculate the VoV from option implied
volatilities, following Baltussen et al. (2018). At the end of each sample month t − 1, we first separately sort
stocks into portfolios according to the quintile breakpoints of excess premium and JumpLT (VoV), and then
create 5×5 = 25 independently double-sorted portfolios. We also form spread portfolios long the top and short
the bottom quintile (“High−Low”) along the excess premium dimension and hold all portfolios over month t.
Observations on the sorting variables are matched, so that they correspond to the same underlying stock at t − 1.
The numbers in square parentheses are Newey and West (1987) t-statistics with a twelve-month lag length.

Panel A: Sort Variables - Excess Premium and JumpLT

Excess Premium

JumpLT 1 (Low) 2 3 4 5 (High) High–Low

1 (Low) 1.14 0.96 0.69 0.50 0.63 −0.51
[3.61] [3.13] [2.15] [1.59] [1.65] [−2.46]

2 1.01 1.15 0.74 0.39 0.34 −0.67
[2.50] [2.73] [1.90] [1.03] [0.83] [−2.08]

3 0.77 0.92 0.56 0.42 0.16 −0.61
[1.53] [1.83] [1.11] [0.81] [0.33] [−2.30]

4 0.40 0.50 0.55 0.48 −0.09 −0.49
[0.71] [0.76] [0.88] [0.80] [−0.17] [−1.70]

5 (High) 0.65 −0.37 −0.53 −0.87 −1.74 −2.38
[0.83] [−0.48] [−0.66] [−1.23] [−2.63] [−4.25]

Panel B: Sort Variables - Excess Premium and VoV

Excess Premium

VoV 1 (Low) 2 3 4 5 (High) High–Low

1 (Low) 1.00 0.86 0.82 0.41 −0.14 −1.14
[2.23] [2.03] [1.98] [0.98] [−0.28] [−4.14]

2 1.02 0.96 0.51 0.22 −0.15 −1.17
[2.42] [2.12] [1.10] [0.52] [−0.35] [−5.51]

3 0.88 0.67 0.38 0.50 −0.31 −1.18
[2.12] [1.49] [0.75] [1.07] [−0.76] [−7.66]

4 0.99 0.45 0.21 0.22 −0.27 −1.26
[2.19] [0.92] [0.44] [0.49] [−0.59] [−4.36]

5 (High) 0.67 0.46 0.17 −0.31 −0.38 −1.05
[1.43] [0.92] [0.31] [−0.60] [−0.91] [−3.60]
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Table 5: Univariate Portfolio Sort Exercise
The table presents the excess mean percentage returns of equal-weighted stock portfolios, univariately sorted
on a mean jump-size proxy (“JumpSize”) from Yan (2011) and left-tail variation measure (“JumpLT”) from
Bollerslev and Todorov (2011), on systematic (“JumpSizesys”) and idiosyncratic (“JumpSizeidio”) components
of the JumpSize, on excess put early exercise premium (“Excess Premium”) and implied volatility spread (“IV
Spread”), and on several orthogonalized variables. In Panels A and B, we check the jump-based explanation for
excess premiums, while in Panel C, we test that same explanation for IV spreads. See the caption of Table 1 for
the definitions of excess premium and IV spread. We denote the orthogonalized variables with an ε superscript and
include the variable they are orthogonalized from in their parentheses. At the end of month t−1, we separately sort
stocks into portfolios according to the quintile breakpoints of each sorting variable. We also form a spread portfolio
long the top and short the bottom quintile (“High−Low”) and hold all portfolios over month t. Observations on
the sorting variables are matched, so that all correspond to the same underlying stock at t − 1. The numbers in
square parentheses are Newey and West (1987) t-statistics with a twelve-month lag length.

1 (Low) 2 3 4 5 (High) High−Low

Panel A: Jumps and Excess Premiums

JumpSize 0.86 0.70 0.55 0.21 −0.30 −1.16
[2.21] [1.81] [1.33] [0.47] [−0.59] [−5.40]

JumpLT 0.79 0.73 0.56 0.36 −0.69 −1.48
[2.54] [1.96] [1.18] [0.64] [−1.00] [−2.72]

Excess Premium 0.91 0.67 0.46 0.25 −0.27 −1.18
[2.17] [1.50] [1.02] [0.58] [−0.67] [−7.25]

Excess Premiumε(JumpSize) 0.47 0.58 0.54 0.39 0.04 −0.43
[0.93] [1.23] [1.24] [0.98] [0.12] [−1.80]

Excess Premiumε(JumpLT ) 0.72 0.66 0.47 0.25 −0.20 −0.92
[1.65] [1.42] [1.03] [0.57] [−0.50] [−5.01]

Panel B: Systematic Vs. Idiosyncratic Jump-Size and Excess Premiums

JumpSizesys 0.61 0.74 0.62 0.46 0.14 −0.48
[1.54] [1.95] [1.54] [1.01] [0.26] [−2.06]

JumpSizeidio 0.92 0.76 0.67 0.41 −0.20 −1.12
[2.16] [1.87] [1.61] [0.99] [−0.40] [−5.62]

Excess Premiumε(JumpSizesys) 0.86 0.87 0.55 0.42 −0.13 −0.99
[2.01] [1.82] [1.24] [1.02] [−0.31] [−5.71]

Excess Premiumε(JumpSizeidio) 0.66 0.74 0.50 0.50 0.16 −0.50
[1.41] [1.62] [1.19] [1.19] [0.42] [−2.46]

Panel C: Jumps and IV Spreads

IV Spread −0.46 0.22 0.63 0.78 0.84 1.29
[−0.99] [0.51] [1.54] [1.90] [1.95] [7.50]

IV Spreadε(Excess Premium) −0.04 0.39 0.52 0.66 0.49 0.53
[−0.09] [0.82] [1.27] [1.72] [1.29] [2.61]

IV Spreadε (JumpSize) −0.05 0.33 0.64 0.59 0.51 0.56
[−0.13] [0.84] [1.65] [1.34] [0.96] [2.67]
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Table 6: Alternative Hypotheses for Excess Premium and IV Spread Predictability
The table presents the mean excess percentage returns of equal-weighted stock portfolios, univariately sorted on the
excess premium, the IV spread and an orthogonalized IV spread variable, all measured at the stock level. See the
caption of Table 1 for the definitions of excess premium and IV spread. We denote the orthogonalized variables with
an ε superscript and include the variable they are orthogonalized from in their parentheses. At the end of month
t − 1, we sort stocks into portfolios according to the quintile breakpoints of each of the three sorting variables. We
also form a spread portfolio long the top and short the bottom quintile (“High−Low”) and hold all portfolios over
month t. We first conduct the sort exercise using variables exclusively formed from zero trading volume observations
for both calls and puts (Panel A). We next return to our standard definition and calculate the sorting variables
from all option observations. We then use these variables to form stock portfolios, but only start generating returns
from the second day after portfolio formation (Panel B). We further conduct portfolio sorts for sub-samples based
on whether the underlying stock is liquid or illiquid (Panel C), and for sub-samples formed on stock short sale
constraints (Panel D). We calculate stock liquidity from stock bid-ask spreads, scaled by the closing price, while
we use stock Daily-Cost-to-Borrow Scores (DCBS) to proxy for its short sale constraints. The numbers in square
parentheses are Newey and West (1987) t-statistics with a twelve-month lag length.

1 (Low) 2 3 4 5 (High) High−Low

Panel A: Sample With Only Zero Option Trade Volume Observations

Excess Premium 0.96 0.94 0.46 0.43 −0.21 −1.17
[2.28] [2.03] [0.97] [0.98] [−0.53] [−6.13]

IV Spread −0.33 0.37 0.68 0.87 0.97 1.30
[−0.71] [0.80] [1.63] [1.97] [2.31] [5.58]

IV Spreadε(Excess Premium) 0.10 0.33 0.74 0.76 0.64 0.54
[0.19] [0.73] [1.71] [1.88] [1.62] [2.04]

Panel B: Excluding First Day Returns

Excess Premium 0.53 0.47 0.36 0.27 −0.11 −0.64
[1.39] [1.17] [0.90] [0.71] [−0.31] [−4.12]

IV Spread −0.24 0.21 0.51 0.58 0.45 0.69
[−0.60] [0.54] [1.43] [1.59] [1.13] [4.30]

IV Spreadε(Excess Premium) −0.01 0.29 0.37 0.51 0.36 0.37
[−0.03] [0.70] [1.04] [1.50] [1.02] [1.88]

Panel C: Conditioning on the Stock Liquidity

Panel C1: Liquid Stocks

Excess Premium 0.91 0.87 0.52 0.44 0.21 −0.70
[1.97] [1.70] [1.00] [0.93] [0.48] [−4.04]

IV Spread 0.09 0.53 0.61 0.83 0.89 0.80
[0.17] [1.05] [1.32] [1.76] [1.95] [4.68]

IV Spreadε(Excess Premium) 0.51 0.61 0.60 0.71 0.54 0.03
[0.87] [1.10] [1.26] [1.70] [1.38] [0.13]

Panel C2: Illiquid Stocks

Excess Premium 0.91 0.43 0.35 −0.08 −0.63 −1.53
[2.33] [0.99] [0.86] [−0.18] [−1.51] [−7.00]

IV Spread −0.88 −0.04 0.44 0.56 0.89 1.76
[−1.93] [−0.09] [1.13] [1.43] [2.10] [7.09]

IV Spreadε(Excess Premium) −0.54 0.16 0.42 0.48 0.46 1.00
[−1.17] [0.37] [1.07] [1.25] [1.17] [4.08]

(continued on next page)
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Table 6: Alternative Hypotheses for Excess Premium and IV Spread Predictability
(Cont.)

1 (Low) 2 3 4 5 (High) High−Low

Panel D: Conditioning on Stock Short Sale Constraints

Panel D1: With All Available DCBS

Excess Premium 0.81 0.73 0.66 0.55 −0.06 −0.87
[1.72] [1.50] [1.44] [1.13] [−0.12] [−6.95]

IV Spread −0.07 0.48 0.70 0.74 0.83 0.90
[−0.12] [1.02] [1.58] [1.56] [1.76] [6.06]

IV Spreadε(Excess Premium) 0.20 0.58 0.60 0.73 0.60 0.41
[0.37] [1.13] [1.24] [1.58] [1.36] [2.03]

Panel D2: Excluding Stocks with DCBS > 5

Excess Premium 0.82 0.73 0.64 0.63 0.21 −0.61
[1.74] [1.50] [1.38] [1.31] [0.42] [−5.36]

IV Spread 0.16 0.58 0.70 0.73 0.85 0.69
[0.30] [1.26] [1.61] [1.53] [1.78] [5.01]

IV Spreadε(Excess Premium) 0.46 0.61 0.58 0.76 0.62 0.16
[0.90] [1.19] [1.21] [1.66] [1.39] [0.88]
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Table 8: Fama-MacBeth (1973) Regressions
The table presents the results of Fama-MacBeth (1973) regressions in which the dependent variable is the excess
stock returns over month t. The first regression (column (1)) includes the IV spread as the main explanatory variable
along with control variables capturing various stock characteristics. The second one ((2)) replaces the IV spread with
the excess put early exercise premium (ExPrem) and an orthogonalized part of the IV spread (IVSpreadε) which is
independent from the impact of excess premiums on IV spreads. The third regression ((3)) adds the orthogonalized
parts of the price pressure (DOTSε) and friction (CFERε) measures respectively from Goncalves-Pinto et al. (2020)
and Hiraki and Skiadopoulos (2023), both independent from the impacts of excess premiums and IVSpreadεs on their
corresponding original measures. The fourth regression ((4)) adds the volatility-of-variance (VoV) from Baltussen
et al. (2018) while the fifth ((5)) further includes the ex-ante mean jump-size (JumpSize) from Yan (2011). The
control variables include: size, the book-to-market ratio (BM), the beta of the stock, idiosyncratic volatility (IdioVol),
momentum, reversal, stock bid-ask spread and the Amihud (2002) stock illiquidity measure. See the captions of Tables 1
and 7 for the definitions of all independent variables. Independent variables are measured at the stock level and dated
t − 1. The numbers in square parentheses are Newey and West (1987) t-statistics with a twelve-month lag length.

Regression Models:

(1) (2) (3) (4) (5)

ExPrem −0.34 −0.36 −0.35 −0.17
[−5.98] [−5.90] [−6.16] [−1.59]

IVSpread 0.73
[5.42]

IVSpreadε 0.73 0.71 0.74 0.22
[2.61] [2.38] [2.69] [0.86]

JumpSize −0.55
[−2.07]

VoV −0.16 −0.13
[−1.21] [−0.98]

DOTSε 0.12 0.12 0.10
[2.40] [2.32] [1.84]

CFERε −0.23 −0.18 −0.17
[−0.69] [−0.55] [−0.52]

Size −0.11 −0.12 −0.11 −0.10 −0.10
[−1.64] [−1.80] [−1.64] [−1.47] [−1.46]

BM 0.57 0.21 0.04 0.30 0.33
[1.33] [0.47] [0.08] [0.69] [0.75]

Beta 0.13 0.04 −0.02 0.14 0.13
[0.06] [0.02] [−0.01] [0.06] [0.06]

IdioVol −0.12 −0.12 −0.12 −0.11 −0.10
[−3.28] [−3.26] [−3.16] [−2.96] [−2.79]

Momentum 0.96 0.93 0.87 0.70 0.64
[0.34] [0.33] [0.31] [0.25] [0.23]

Reversal −0.34 −0.38 −0.26 −0.31 −0.33
[−0.44] [−0.50] [−0.34] [−0.40] [−0.43]

BidAsk −0.11 −0.11 −0.11 −0.11 −0.12
[−2.64] [−2.65] [−2.59] [−2.59] [−2.66]

Amihud −0.50 −0.38 −0.17 −0.19 −0.19
[−0.40] [−0.31] [−0.14] [−0.16] [−0.17]

Intercept 2.68 2.82 2.71 2.55 2.57
[2.45] [2.55] [2.41] [2.23] [2.26]
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Internet Appendix:
Early Exercise, Implied Volatility Spread and Future

Stock Return: Jumps Bind Them All

This internet appendix includes supplementary simulation evidence and empirical test results to

further support the analysis of our main paper. In Section IA.1, we undertake the Monte-Carlo based

simulation exercise once again to show that excess premiums (IV spreads) still demonstrate positive

(negative) trend with the mean jump-size µS even when option moneyness is different, option has

a longer time-to-maturity or the underlying asset has a higher initial volatility. In Section IA.2,

we show the suitability of the IV slope-based µS proxy that we employ in our empirical works.

In Section IA.3, we repeat our main univariate portfolio sort exercise, but with the GBM-world

early exercise premium and also with the total premium, instead of the excess premium. In Section

IA.4, we show that our evidence for excess premiums’ stock return predictability do not vary across

different time periods in our sample, while in Section IA.5, we also validate our main empirical

results under different sort-styles. In Section IA.6, we examine whether our results survive when we

group options into various moneyness and maturity categories. Finally, in Section IA.7, we conduct

an additional set of robustness checks to further strengthen our empirical findings.

IA.1 Simulations Under Different Moneyness, Maturity and Asset

Volatility Levels

In the simulations of our main paper (see Section 2), we observe theoretical patterns of excess

premium and IV spread across SV and SVJ parameters while assuming an ATM-only options, with
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30 days-to-maturity and a 20% initial underlying asset volatility level. In this section, we explore

whether those patterns still remain under a varying moneyness, maturity or asset volatility. To this

end, we repeat our Longstaff-Schwartz (2001) based exercise either with a different moneyness level

(Figure IA.1), or with a longer maturity or a higher asset volatility level (Figure IA.2), while keeping

all other parameter values same as their basecases described in Section 2.2 of the main paper. In

Figure IA.1, we show the results for ITM (strike-to-stock price ratio = 1.05; Panel A) and OTM

(0.95; Panel B) options, while in Figure IA.2, the results are for the options with 60 days-to-maturity

(Panel A) and with a 40% initial underlying asset volatility (Panel B). In sub-panels 1 of both

figures, we show the excess premium and IV spread under the SV-world and across the σV , while in

sub-panels 2 and 3, we show those two under the SVJ-world and across the µS and λ, respectively.

In all figures, we calculate excess premium as the percentage of GBM-world American put value.

Figure IA.1: Excess Premiums and IV Spreads With Different Option Moneyness The figure plots
simulated excess premiums (solid black) and IV spreads (solid blue) across σV , µS and λ parameters for ITM (Panel A)
and OTM (Panel B) options. In each sub-panel, we put parameter values on the x-axis, while set excess premiums on
the left and IV spreads on the right y-axes. We describe basecase parameter values in Section 2.2 of our main paper.

Figures IA.1 and IA.2 reveal that both excess premium and IV spread follow similar patterns with
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σV , µS and λ regardless of option moneyness and time-to-maturity. For an ITM or OTM options,

and also for an ATM with 60 days-to-maturity, the excess premium (IV spread) is still positively

(negatively) related with µS and λ,1 while negatively (positively) related with σV . Furthermore, the

magnitude is also comparable. For instance, for a 60-day ATM put, excess premium increases from

−0.67% to 0.43% as we increase the mean jump-size µS from 1% to −8% (in absolute term). For

that same increase in µS , excess premium for a 30-day ATM put increases from −0.61% to 0.35%

(see, Panel B of Figure 1 in our main paper).

Figure IA.2: Excess Premiums and IV Spreads With Longer Maturity or Higher Asset Volatility
The figure plots simulated excess premiums (solid black) and IV spreads (solid blue) across σV , µS and λ parameters
for options with a longer time-to-maturity (60-Day; Panel A) and a higher underlying asset volatility (40%; Panel B).
In each sub-panel, we put parameter values on the x-axis, while set excess premiums on the left and IV spreads on the
right y-axes. We describe the basecase parameter values in Section 2.2 of our main paper.

Finally, Panel B of Figure IA.2 shows that excess premium (IV spread) follows a similar increasing

(decreasing) trend with µS while a decreasing (increasing) trend with σV even when the initial

underlying asset volatility is higher. Nevertheless, the magnitude of these changes is attenuated
1The only exception, in this case, is the excess premium and IV spread dynamics with jump-intensity λ for a 30-day

ITM options with 20% initial asset volatility level (see Panel A3 in Figure IA.1).
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when we compare them to their lower-volatility counterparts. With λ, the changes in both premiums

and spreads are mostly flat with a higher volatility level.

Altogether, this section confirms that the patterns we observe in Figure 1 of our main paper can

also be seen with different option moneyness, maturity or underlying asset volatility level.

IA.2 Suitability of the Empirical Mean Jump-Size Proxy

Following Yan (2011), in our main paper, we rely on the implied volatility difference between an

OTM put and an equivalent ATM call (“IV Slope”), both with 30 days-to-maturity, as our proxy

measure for the mean jump-size parameter µS . In this section, we further confirm, via theoretical

simulations, whether that IV slope truly reflects the change in µS .

Figure IA.3: IV Slopes Plotted Against the Mean Jump-Size The figure plots the simulated IV slopes from
30-day maturity options across the mean jump-size µS under the SVJ model. We put µS on the x-axis, while keeping
the IV slope on the y-axis. We describe the basecase parameter values for simulations in Section 2.2 of our main paper.

For 30-day maturity options, Figure IA.3 shows that IV slopes clearly relate with the mean

jump-size with a steep gradient of around 0.26. The figure thus points that the slope, highlighted in

Yan (2011), remains a very good proxy of the mean jump-size in theory.
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IA.3 Return Predictability With the Total and the GBM Premium

In Section 3.2 of the main paper, we show how we decompose the total early exercise premium of a

put into its excess and GBM-world premium parts. Although the excess premium became our main

predictor variable throughout the paper, we can however consider the total premium as a proxy

of that excess premium. As options are redundant assets under the GBM world (see Coval and

Shumway (2001), for instance), any early exercise under this world should not carry any information

about the future underlying stock price movement. Given that the total premium also embeds the

GBM-world premium, the total premium would hence become a noisy proxy of the excess premium.

To test the conjecture that GBM-world premiums should not predict future returns and also to

check whether total premiums have any predictability, we undertake a univariate portfolio sort

exercise in this section. Similar to our univariate sorts in the main paper, at the end of each sample

month t − 1, we separately sort stock-level total and GBM-world premiums into quintile portfolios.

We also form “High–Low” spread portfolios along each sort dimension. We hold all portfolios over

month t and report both their equal-weighted and value-weighted mean excess returns.

Table IA.1 About Here

Table IA.1 reports the results from this portfolio sort exercise. From the table, we observe that

although the total premium is a noisy proxy, it can still significantly predict future stock returns.

The equal (value) weighted excess mean return for the “High–Low” portfolio, for instance, sorted

on the total premium stands at −1.18% (−0.63%) with a t-statistic of −7.01 (−3.46). In contrast,

when sorted on the GBM-world premium, the spread portfolio return becomes insignificant, in line

with our conjecture.

Additionally, when calculating American option IVs, Optionmetrics employs the CRR model

which already includes the early exercises induced under the GBM world.2 Hence, while the excess

premium of an American put and the IV spread of an equivalent American option pair can be
2See the 2023 IvyDB US Reference Manual from OptionMetrics.
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related (recall our simulation exercise and empirical evidence from the main paper), the GBM-world

premium should not show any significant association with the IV spread. Indeed, we find that is the

case. The mean cross-sectional correlation between the GBM-world premium and the IV spread

stands at around 6% in our data sample, considerably lower and in opposite direction than the

correlation between excess premium and the spread (see Table 7 of the main paper).

Overall, this section provides further evidence that any excess part of the total premium mainly

drives the return predictability that we document in the main paper. The predictive ability of the

GBM premium is insignificant.

IA.4 Portfolio Sort Exercise Across Different Time Periods

We next test whether excess premiums’ stock return predictability that we show in our main paper

varies over time. As Cremers and Weinbaum (2010) suggest, the predictability of IV spreads declines

in the recent time due to less stock mispricing and lower informed trading activities during this

period. Our simulation exercise in Section 2.2 and main empirical evidence show a link between

the IV spread and the excess premium. Hence, any decline in IV spreads’ return predictive power

over time should also translate to a decline in excess premiums’ predictability if informed trading or

mispricing is the channel. To check this, we conduct separate univariate portfolio sort exercise in

Table IA.2 using the excess premium over two sub-periods: for the 1996-2008 and for the 2008-2016

period. Same as before, we sort the stock universe into quintile portfolios and create a “High–low”

spread portfolio at the end of the sample month t − 1 of a sub-period. We hold all portfolios over

month t and calculate their equal and value-weighted excess mean returns.

Table IA.2 About Here

The table clearly highlights that excess premiums’ return predictability does not diminish with

time. During the 1996-2008 period, the mean excess return for the equal-weighted “High–Low”
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spread portfolio, for instance, is −1.17% (t-statistic: −5.35), which remains very similar, to −1.20%

(t-statistic: −5.04), during the 2008-2016 period. Consequently, the results here provides further

support to our empirical evidence in Section 4.5 that the predictive ability of excess premiums are

not primarily driven by investors’ informed trading activities or mispricing of the underlying stocks.

IA.5 Tercile and Decile Portfolio Sort Exercise

In Table IA.3, we further investigate whether sorting the stock universe based on the tercile or

decile breakpoints of the excess premium can change the results of our main paper. To this end,

we again conduct the univariate portfolio sort exercise using excess premiums. However, instead of

sorting the stocks into quintile portfolios at the end of each sample month t − 1, we sort them into

either tercile (Panel A) or decile (Panel B) portfolios. We further create the “High–Low” spread

portfolio along each sort dimension. We finally hold all portfolios over month t and calculate their

equal-weighted and value-weighted mean excess returns.

Table IA.3 About Here

The table suggests that our main empirical evidence with excess premiums’ return predictability

is not driven by our choice of the sorting style. For instance, the mean excess returns for the

equal-weighted “High–Low” spread portfolio from the tercile and decile sorts are −1.01% (t-statistic:

−7.00) and −1.44% (t-statistic: −6.02), respectively. These returns are comparable to the −1.18%

(t-statistic: −7.25) return for that same portfolio under the quintile portfolio sort (compare Table

IA.3 with Table 3 from the main paper).

IA.6 Option Moneyness and Time-to-Maturity

In the empirical tests of our main paper, we calculate the stock-level excess premium using put open

interest as the weighting variable, regardless of the individual put’s moneyness and time-to-maturity.
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Here, we examine whether our findings on the ability of excess premiums to predict stock returns

are driven by any specific moneyness and/or time-to-maturity. The simulation evidence in Sections 2

and IA.1 suggest that mean jump-size µS can drive the excess premium for puts from various

moneyness and/or maturity categories. Hence, if µS is the main driver, we should expect return

predictability for excess premiums calculated from different moneyness and time-to-maturity puts,

not just from puts in one category. At the end of each sample month t − 1, we split put observations

into double-sorted portfolios according to their moneyness and time-to-maturity. Specifically, we

first sort the puts into ITM, ATM and OTM portfolios.3 Within each portfolio, we further split puts

according to whether their time-to-maturity lies below or above 45 days. The intersection yields

the double-sorted portfolios. We then use observations from each of these portfolios to calculate

stock-level excess premiums, from which we form quintile portfolios and hold them over month t.

Table IA.4 About Here

The results in Table IA.4 suggest that excess premiums calculated from different moneyness-

maturity put observations can significantly predict the cross section of future stock returns. For

instance, when we calculate excess premiums from ATM puts with less than 45 days-to-maturity

(Panel B), and then conduct the sort, the average excess return for the “High−Low” portfolio stands

at −1.19% (t-statistic: −5.83). In contrast, when we calculate those premiums from ITM puts with

that same maturity (Panel A), the spread portfolio still remains significant, with a mean of −2.03%

(t-statistic: −3.50).The results in the table thus suggest that the predictive ability of the excess

premium is not confined to puts from any specific moneyness-maturity portfolio, in line with the

jump-based explanation for this predictability.
3We define a put as ITM if its strike-to-stock ratio is greater than 1.05. A put is treated as ATM if this ratio is in

between 0.95 and 1.05, and as OTM if the ratio is less than 0.95.
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IA.7 Further Robustness Checks

We finally conduct additional tests in Table IA.5 to show the robustness of our main empirical results.

We start by examining whether the findings are due to our choice of calculating the GBM-world

American put price under the CRR method. To address this, we calculate the excess premium as the

difference in exchange-traded American put price and its equivalent theoretical GBM-world price,

where we compute the theoretical price using either Longstaff and Schwartz’s (2001) LSM (following

Section 2) or the Finite Difference method (Panel A). We also examine whether option liquidity

can impact our results and conduct our empirical test using a sub-sample made only from positive

trade volume option observations (Panel B). We further check whether an alternative definition

of the stock-level excess premium and IV spread can impede the return predictability in our main

results. To this end, we follow Shang (2017) and calculate weighted average stock-level premiums

using the dollar value of open interest rather than the number of contracts outstanding (Panel C).

We further check whether our findings are driven by the separate closing times for stock and option

markets. This nonsynchronicity issue, as shown in the literature (see, for example, Battalio and

Schultz (2006)), can drive violations of put-call parity in the market, thereby allowing for wider

implied volatility spreads and excess premiums for exchange-traded American options. To control

for the nonsynchronicity issue, we sort stocks into portfolios at the end of each month t − 1, but only

start cumulating returns from the next day, thus avoiding the overnight return from the holding

month return (Panel D). We finally examine whether the predictability we find is persistent by

using a two-month holding period for the portfolios (Panel E).

Table IA.5 About Here

The results in Panel A suggests that the predictive ability of excess premiums is not due to

our reliance on the CRR method. Using either the LSM or FD method, the mean return for the

excess premium-sorted “High−Low” portfolio, for instance, remains virtually identical to the −1.18%
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return for that same portfolio under the CRR method. The difference in their t-statistics is also

negligible (compare with Table 3 from the main paper). Furthermore, using only the positive trade

volume option observations or utilizing the dollar value of open interests to calculate option-level

weights also does not change our earlier empirical evidence. We observe a mean monthly spread

portfolio return of −1.19% (t-statistic: −7.40), for instance, when using the dollar value of open

interests (see Panel C). Besides, our results are not due to the nonsynchronicity between stock and

options market closures. Excluding the overnight returns still delivers a mean return of −1.17% per

month (t-statistic: −7.26) on the “High−Low” portfolio when sorting on the excess premium (see

Panel D). Finally, the results in Panel E indicate that the return predictability we document, to

some extent, extends beyond the one-month holding horizon for our main tests, providing further

evidence that short-term mispricing is not the main driver for the predictability.
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Table IA.1: Excess Returns from GBM and Total Premium-Sorted Portfolios
The table presents the equal-weighted (Panel A) and market-value weighted (Panel B) excess mean returns (both in %)
sorted univariately and separately on the total put early exercise premium (Total Premium) and also on the premium under
the GBM-world (GBM Premium). See the caption of Table 1 from the main paper for the definitions of these premiums. At
the end of month t − 1, we separately sort stocks into portfolios according to the quintile breakpoints of the premiums. We
also form a spread portfolio long the top and short the bottom quintile (“High−Low”) for each sort and hold all portfolios
over month t. Observations are matched across both premiums and in both panels, so that all correspond to the same
underlying stock at t − 1. The numbers in square parentheses are Newey and West (1987) t-statistics, calculated using a
twelve-month lag length.

1 (Low) 2 3 4 5 (High) High−Low

Panel A: Equal-Weighted Evidence

Total Premium 0.91 0.64 0.51 0.23 −0.27 −1.18
[2.16] [1.39] [1.16] [0.54] [−0.66] [−7.01]

GBM Premium 0.23 0.37 0.49 0.30 0.55 0.32
[0.47] [0.87] [1.21] [0.68] [1.23] [1.60]

Panel B: Value-Weighted Evidence

Total Premium 0.80 0.68 0.49 0.37 0.18 −0.63
[2.02] [1.66] [1.21] [0.93] [0.44] [−3.46]

GBM Premium 0.29 0.25 0.27 0.48 0.74 0.45
[0.53] [0.59] [0.67] [1.22] [1.94] [1.64]
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Table IA.2: Excess Premium Sort Exercise Over Different Periods
The table presents the equal-weighted (Panel A) and market-value weighted (Panel B) excess mean returns (both in %)
univariately sorted on the stock-level excess put early exercise premium (“Excess Premium”) over different time periods.
See the caption of Table 1 from the main paper for the definition of excess premium. At the end of month t − 1 within each
period, we sort stocks into portfolios according to the quintile breakpoints of the excess premium. We also form spread
portfolios long the top and short the bottom quintile (“High−Low”) and hold all portfolios over month t. Observations in
both panels within a time-period are matched, so that all correspond to the same underlying stock at t − 1. The numbers
in square parentheses are Newey and West (1987) t-statistics, calculated using a twelve-month lag length.

1 (Low) 2 3 4 5 (High) High−Low

Panel A: Equal-Weighted Evidence

1996-2008 0.56 0.25 0.00 −0.20 −0.61 −1.17
[0.91] [0.38] [0.00] [−0.31] [−1.04] [−5.35]

2009-2016 1.52 1.42 1.28 1.06 0.33 −1.20
[3.61] [3.14] [2.33] [2.15] [0.60] [−5.04]

Panel B: Value-Weighted Evidence

1996-2008 0.44 0.31 0.09 −0.04 −0.22 −0.66
[0.74] [0.50] [0.15] [−0.06] [−0.38] [−2.82]

2009-2016 1.51 1.27 1.15 1.20 0.74 −0.77
[3.61] [3.38] [2.63] [3.25] [1.90] [−3.04]
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Table IA.3: Excess Premium - Tercile and Decile Portfolio Sorts
The table presents the equal-weighted (EW) and market-value weighted (VW) excess mean returns (both in %) univariately
sorted on the stock-level excess put early exercise premium (“Excess Premium”). See the caption of Table 1 from the main
paper for the definition of excess premium. At the end of month t − 1, we sort stocks into portfolios according to either the
tercile (Panel A) or the decile (Panel B) breakpoints of the excess premium. We also form spread portfolios long the top and
short the bottom tercile/decile (“High−Low”) and hold all portfolios over month t. Observations are matched across the
weighting schemes, so that all correspond to the same underlying stock at t − 1. The numbers in square parentheses are
Newey and West (1987) t-statistics, calculated using a twelve-month lag length.

Panel A: Tercile Portfolio Sort

Low 2 High High–Low

EW 0.86 0.48 −0.16 −1.01
[2.01] [1.09] [−0.38] [−7.00]

VW 0.84 0.46 0.17 −0.67
[2.18] [1.14] [0.41] [−4.71]

Panel B: Decile Portfolio Sort

Low 2 3 4 5 6 7 8 9 High High–Low

EW 0.92 0.89 0.76 0.59 0.39 0.53 0.43 0.08 −0.03 −0.52 −1.44
[2.26] [2.05] [1.69] [1.29] [0.83] [1.19] [0.98] [0.18] [−0.07] [−1.19] [−6.02]

VW 0.83 0.85 0.88 0.47 0.60 0.40 0.50 0.25 0.15 0.07 −0.75
[2.29] [1.99] [2.17] [1.02] [1.45] [0.95] [1.32] [0.60] [0.38] [0.18] [−3.45]
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Table IA.4: Excess Premium - Controlling for Moneyness and Time-to-Maturity
The table presents the mean excess percentage returns of equal-weighted stock portfolios sorted on the excess put early
exercise premium (“Excess Premium”), measured at the stock level. See the caption of Table 1 from the main paper for the
definition of excess premium. We calculate a number of excess premiums for each individual stock using option observations
from various moneyness and time-to-maturity categories. At the end of each sample month t − 1, we first sort options into
portfolios according to whether their strike-to-stock price ratio (“moneyness”) lies above 1.05 (Panel A), between 0.95 and
1.05 (Panel B), or below 0.95 (Panel C). Within each moneyness portfolio, we next sort them into portfolios according to
whether their days-to-maturity are below or over 45 days. For each stock, we then use option observations from each of these
moneyness and time-to-maturity-sorted portfolios separately to calculate stock-level excess premiums. We finally sort stocks
into portfolios separately according to the quintile breakpoints of each version. We also form separate spread portfolios
long the top and short the bottom quintile (“High−Low”) and hold all portfolios over month t. The numbers in square
parentheses are Newey and West (1987) t-statistics with a twelve-month lag length.

Days-to-Maturity (DTM) 1 (Low) 2 3 4 5 (High) High−Low

Panel A: In-The-Money (Strike-to-Stock Price > 1.05)

DTM ≤ 45 0.54 0.53 0.12 0.42 −1.49 −2.03
[0.74] [0.87] [0.18] [0.64] [−2.52] [−3.50]

45 < DTM ≤ 90 0.64 0.44 0.46 0.05 −0.61 −1.25
[1.17] [0.84] [0.86] [0.09] [−1.17] [−3.93]

Panel B: At-The-Money (Strike-to-Stock Price 0.95 to 1.05)

DTM ≤ 45 0.94 0.60 0.38 0.29 −0.26 −1.19
[2.25] [1.28] [0.78] [0.62] [−0.65] [−5.83]

45 < DTM ≤ 90 0.87 0.46 0.50 0.32 −0.27 −1.13
[2.05] [0.97] [1.08] [0.72] [−0.64] [−7.29]

Panel C: Out-Of-The-Money (Strike-to-Stock Price < 0.95)

DTM ≤ 45 0.52 0.37 0.42 0.16 −0.92 −1.45
[0.83] [0.59] [0.57] [0.27] [−1.70] [−4.77]

45 < DTM ≤ 90 0.54 0.41 0.52 0.15 −0.64 −1.18
[1.09] [0.79] [0.95] [0.28] [−1.32] [−4.22]
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Table IA.5: Additional Robustness Tests
The table presents the mean excess percentage returns of equal-weighted stock portfolios, univariately sorted on the stock-level
excess premium (in all panels), and also on the IV spread and an orthogonalized IV spread variable denoted with an ε
superscript (Panels B to E). See the caption of Table 1 from the main paper for the definition of excess premium and IV
spread. At the end of month t − 1, we sort stocks into portfolios according to the quintile breakpoints of the sorting variables.
We also form a spread portfolio long the top and short the bottom quintile (“High−Low”) and hold all portfolios over month t.
We first rely on either the Longstaff and Schwartz (2001) least squares Monte-Carlo (LSM) scheme or the finite difference (FD)
scheme to calculate the GBM-world theoretical American put price and the subsequent excess premium at the option and
stock level (Panel A). We next return to the original definition for option-level sorting variables, but calculate their stock-level
counterparts only using positive trade volume options (Panel B) We further use dollar value of open interests as weights to
calculate stock-level sorting variables (Panel C). We again use open-interest-weights for the sorting variables but cumulate
stock returns for each portfolio from the next day rather than from the portfolio formation day, thus excluding the overnight
return (Panel D). We finally show the returns for the portfolios over the second month after portfolio formation (Panel E).
The numbers in square parentheses are Newey and West (1987) t-statistics with a twelve-month lag length.

1 (Low) 2 3 4 5 (High) High−Low

Panel A: Theoretical American Put Price Under Alternative Numerical Schemes

Excess Premium [LSM] 0.90 0.67 0.46 0.25 −0.27 −1.17
[2.14] [1.53] [1.02] [0.58] [−0.67] [−6.91]

Excess Premium [FD] 0.91 0.69 0.45 0.23 −0.26 −1.17
[2.19] [1.54] [1.00] [0.53] [−0.64] [−7.02]

Panel B: Sample with Only Positive Option Trade Volume Observations

Excess Premium 0.90 0.46 0.29 0.26 −0.59 −1.49
[1.88] [0.87] [0.53] [0.54] [−1.29] [−7.40]

IV Spread −0.72 0.22 0.45 0.63 0.73 1.45
[−1.43] [0.42] [0.88] [1.34] [1.49] [7.15]

IV Spreadε(Excess Premium) −0.32 0.38 0.50 0.43 0.31 0.63
[−0.62] [0.63] [0.98] [1.01] [0.70] [3.26]

Panel C: Using Dollar ($) Open Interest Weights

Excess Premium 0.91 0.64 0.49 0.26 −0.28 −1.19
[2.25] [1.40] [1.07] [0.60] [−0.70] [−7.40]

IV Spread −0.45 0.24 0.58 0.78 0.86 1.30
[−0.97] [0.54] [1.41] [1.90] [2.01] [7.44]

IV Spreadε(Excess Premium) −0.09 0.45 0.49 0.70 0.47 0.56
[−0.17] [0.93] [1.16] [1.81] [1.25] [2.83]

Panel D: Excluding Overnight Returns

Excess Premium 0.91 0.67 0.46 0.25 −0.27 −1.17
[2.17] [1.50] [1.02] [0.58] [−0.66] [−7.26]

IV Spread −0.45 0.22 0.63 0.78 0.83 1.29
[−0.98] [0.51] [1.55] [1.90] [1.95] [7.54]

IV Spreadε(Excess Premium) −0.03 0.39 0.52 0.66 0.49 0.52
[−0.06] [0.82] [1.27] [1.72] [1.29] [2.57]

Panel E: Return Predictability on the Second Month

Excess Premium 0.50 0.52 0.36 0.52 0.21 −0.30
[1.20] [1.17] [0.78] [1.27] [0.53] [−2.16]

IV Spread 0.07 0.51 0.57 0.62 0.34 0.27
[0.17] [1.20] [1.41] [1.47] [0.78] [2.12]

IV Spreadε(Excess Premium) 0.16 0.52 0.43 0.58 0.43 0.27
[0.33] [1.12] [1.03] [1.51] [1.10] [1.47]
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