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Whole-genome resource sequences 
of 57 indigenous Ethiopian goats
Shumuye Belay  1,2,3 ✉, Gurja Belay2 ✉, Helen Nigussie2, Han Jian-Lin  4, Abdulfatai Tijjani3, 
Abulgasim M. Ahbara  5,6, Getinet M. Tarekegn5,7, Helina S. Woldekiros8, Siobhan Mor3,9, 
Keith Dobney10,11, Ophelie Lebrasseur10, Olivier Hanotte3,12 & Joram M. Mwacharo5,13 ✉

Domestic goats are distributed worldwide, with approximately 35% of the one billion world goat 
population occurring in Africa. Ethiopia has 52.5 million goats, ~99.9% of which are considered 
indigenous landraces deriving from animals introduced to the Horn of Africa in the distant past by 
nomadic herders. They have continued to be managed by smallholder farmers and semi-mobile 
pastoralists throughout the region. We report here 57 goat genomes from 12 Ethiopian goat 
populations sampled from different agro-climates. The data were generated through sequencing DNA 
samples on the Illumina NovaSeq 6000 platform at a mean depth of 9.71x and 150 bp pair-end reads. 
In total, ~2 terabytes of raw data were generated, and 99.8% of the clean reads mapped successfully 
against the goat reference genome assembly at a coverage of 99.6%. About 24.76 million SNPs were 
generated. These SNPs can be used to study the population structure and genome dynamics of goats at 
the country, regional, and global levels to shed light on the species’ evolutionary trajectory.

Background & Summary
Archaeological evidence indicates that all domestic goats (Capra hircus) derive from the wild bezoar (Capra 
aegagrus) that was domesticated in the central Iranian Zagros Mountains and/or Southeastern Anatolia about 
10,000 years ago, making them the first livestock animal to be herded by early farmers1,2. The world has a pop-
ulation of more than one billion domestic goats3 and some 576 breeds4. Asia and Africa are ranked first and 
second with 59.4% and 35.0%, of the world’s goat population, respectively5, whilst Ethiopia is ranked second 
in Africa after Nigeria (https://www.statista.com/statistics/1290087/goat-population-in-africa-by-country/). 
An estimated 52.5 million goats are found in Ethiopia, and nearly all (99.9%) are indigenous genotypes reared 
by smallholder sedentary agro-pastoral farmers and pastoralists6. These indigenous goats are known for their 
adaptive resilience to diverse environments and production systems7,8. Because of their ease of management, 
and minimal initial capital investment, indigenous goats are preferred by smallholder farmers and pastoralists in 
contrast to cattle. In addition, their socio-economic, nutritional, and cultural significance means that indigenous 
goats are essential household assets to most African communities.

Although indigenous goats are a significant genetic resource to most agricultural households in Africa and 
the majority of developing countries, their genetic improvement has been hindered by their lack of systematic 
characterisation at the phenotypic and genetic levels.

Africa is home to a large genomic reservoir of indigenous goat populations of diverse phenotypes (see Breeds 
| DAGRIS (cgiar.org). While previous research has been undertaken on the genetics of African indigenous goats 
using microsatellite9–18 and SNP microarray genotypes19–23, relatively few studies have been conducted on these 
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breeds using whole-genome sequencing (WGS) information. For example, for the African continent, WGS 
are only publicly available in the vargoats database (https://www.goatgenome.org/vargoats.html) including for 
Ethiopia (73 genome sequences of eight breeds)24, Morocco (44 genome sequences from three breeds)25, Kenya (15 
sequences from two breeds), Madagascar (35 sequences from four breeds), Mali (36 sequences from six breeds), 
Malawi (24 sequences from five breeds), Mozambique (23 sequences from five breeds), Tanzania (39 sequences 
from five breeds), Uganda (three sequences from one breed), Zimbabwe (20 sequences from two breeds) and 
Nigeria (three sequences from two breeds) (https://ncbi.nlm.nih.gov/). These publicly accessible genome data are 
important for (i) studying population-level genetic diversity and structure, (ii) understanding domestication and 
evolutionary history, (iii) detecting adaptation selective sweeps, and (iv) discovering variants (SNPs, structural 
variants, causative mutations e.t.c.) to address goat breeding challenges and boost goat farming in the continent.

Our study presents new WGS data of 57 indigenous Ethiopian goats from 12 populations, comprising ~2 
Tb of raw sequence data. It is by far the most representative dataset of whole genome sequences for goats found 
in any African country considering a high number of breeds from highly diverse agro-ecosystems. This data 
includes ~24.76 million usable SNPs that passed rigorous quality control filters, of which approximately 30% are 
novel. This is a valuable addition of genomic resources to the caprine biological repository in the continent and 
the globe. It provides an opportunity to detect potential novel SNPs compared to the 50 K SNP chip array previ-
ously reported in African goat populations19–23. It also provides a new avenue that facilitates better understanding 
of salient genomic features (e.g., genes, coding sequence, regulatory regions, pseudogenes, repeat sequences) and/
or uncover candidate genomic regions controlling traits of production, reproduction, and adaptive significance. 
Moreover, the resource can be used to identify (albeit tentatively) opportunities and threats of genetic diversity, 
which can be used as baseline information to design strategic options for future sustainable utilization of the spe-
cies. However, ensuring high-quality data with representative samples and performing accurate quality control 
procedures is of critical importance before one can proceed with mapping against reference genome assemblies, 
and making the data accessible to the public and opening the door to further research. In this article we present 
the entire process we used to achieve accurate quality control measurements and procedures from raw data to 
the final variant call format (VCF) file generation while minimising false positives and detecting true variants.

Methods
Sample collection, dna extraction and quality control. Genomic DNA was extracted from the whole 
blood of 57 genetically not unrelated individuals (only one individual was sampled per flock)23,26, of 12 indige-
nous Ethiopian goat populations from diverse agro-eco-climatic zones (Fig. 1, Table 1). The working hypothesis 
was that these 12 indigenous goat populations are adapted to their production environments’, agroecological and 
climatic conditions and thus represent distinct genetic units. The genomic DNA was whole-genome sequenced at 
a depth of ~10x and read length of 150 bp paired-end following library construction, on the Illumina 1.9 NovaSeq 
6000 platform (https://en,novogene.com/services/reserachservices/genome-sequencing/whole-genome-se-
quencing-wgs/). The initial base call files were converted into FASTQ files in the sequencing library prior to 
quality pruning using the bcl2fastq software27. The sequencing company performed the first stage QC of the 
FASTQ files using their in-house software. Secondary QC of the generated fasta.gz files was performed using 
the FASTQC package (v0.11.5)28. The output files (fastqc.zip) were then aggregated in one directory and a single 
report was generated and used to visualize and screen biases, and assess the overall sequence quality using the 
MultiQC package (v1.8)29.

Genomic alignment and variant calling. After ascertaining sequence quality, the paired-end reads were 
aligned to the goat reference genome assembly (ARS1; GenBank accession number GCA_001704415.1) using the 
Burrows-Wheeler Alignment tool (BWA-MEM v 0.7.17)30 for variant identification. The BAM files were sorted 
and indexed using SAMtools v1.831. The function “MarkDuplicates” executed in Picard tool v2.18.2 (http://picard.
sourceforge.net) was used to mark and discard flagged duplicates. After removing the duplicates, Base Quality 
Score Recalibration (BQSR), a data pre-processing step executed in GATK v3.8-1-0-gf15c1c3ef32, was used to 
estimate the accuracy of each base call and detect systematic errors arising from the sequencing process and 

Fig. 1 Map of the study areas representing the geographic distributions of indigenous Ethiopian goat populations 
based on: (a) Elevation, and (b) Agro-ecological zones and climatic conditions. Abbreviations: HHG= Hararghe 
Highland Goats, LESG=Long Ear Somali goats, SESG=Short Ear Somali goats, and WGG= Woyto-Guji goats.
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generate recalibrated BAM files. The GVCF files for each sample were generated using the GATK HaplotypeCaller 
from the recalibrated BAM files. Finally, joint genotyping was performed and a single VCF file containing SNP 
and INDEL variants produced (Fig. 2).

Variant filtration and genotype refinement. Variant Quality Score Recalibration (VQSR) step was 
performed using the knownSites of the ARS1.0 Ensembl version 99 (https://e99.ensembl.org/capra_hircus) and 
filtered out the bad and good variants using the GATK. Variant call annotations such as Read Depth, Quality of 
Depth, Fisher Strand Test, Mapping Quality Score, Mapping Quality Rank Sum Test, Read Position Rank Sum 
Test Statistic, StrandOddsRatio Test, mode SNP and the VQSRTranchesSNP90.00 to 100.00 were used. Using the 
ApplyRecalibration (ApplyVQSR) in GATK, a tranche sensitivity threshold of 99.0% was used to filter the vari-
ants. Finally, post-processing was conducted to remove variants failing the GATK filtering parameter thresholds 
and biallelic SNPs were extracted using ‘SelectVariants’ function with option “–selectType SNP-restrictAllelesTo 
BIALLELIC” as presented in Fig. 2. Here, only biallelic SNPs that passed filtration and can be used in downstream 
analysis are presented.

Data records
Whole-genome sequence data (FASTQ format) from 57 Ethiopian goat samples representing 12 popula-
tions analyzed herein have been deposited in NCBI under Sequence Read Archive (SRA) accession number 
SRP46427933.

Technical Validation
Quality control for raw reads. The Phred quality score is commonly used as a measure of the quality of 
the base-calls generated by automated DNA sequencing34,35. It is calculated with the formula36: Q = −10Log10

(E) 
where “Q” represents the base quality value, and “E” the error rate of the base recognition. The commonly used 
Phred-scaled base quality scores range between 2 and 40, with variations in the range depending on the origin of 
the sequence data36. A higher Phred score indicates a higher probability that a given base-call is correct, while the 
opposite is true. In our study, we used a Phred scaled score of 30 indicating the likelihood of an incorrect base-call 
once every 1000 bases equivalent to a precision rate of 99.9%. The raw bases of a sample ranged from 28.77 Gb 
to 44.43 Gb (mean ± SD = 34.97 ± 3.46 Gb), out of which 93–95% (mean ± SD = 94 ± 0.44%) of the samples had 
Phred scaled quality score of 30 (Fig. 3).

A depth coverage of greater than 4.4x has the power to identify novel variant calls. On the contrary, higher 
false-positive variants are amplified when the depth of coverage is lower than 4.4x37,38. In this study, the depth of 
coverage ranged from 8.38x to 11x (mean ± SD = 9.71x ± 0.60) (Fig. 3), which is an ideal depth for identifying 
variants accurately and achieved ~99.6% genome coverage and ~99.8% mapping success rate against the ARS1.0 
goat reference genome assembly.

Following the quality checks, we gathered the fasta.gz report for the 114 read samples (read 1 and 2) and run 
the MultiQC to generate a single report and identify good and bad samples. The report indicated that all the 
samples passed the QC parameters, such as base sequence quality score, sequence duplication level and per base 
N content, and confirmed the high-quality of our sequences (Fig. 4). For example, the level of duplication and 
unique sequence reads ranged from 16 to 20% and 80 to 84%, respectively (Fig. 4a). The low level of duplicated 
reads (<20%) indicate a high level of coverage of the target sequences. In contrast, higher values will show some 
kind of enrichment bias, such as arising from PCR artefacts, and/or biological duplicates28. However, all the QC 
parameters were assigned green signals, indicating high-quality sequencing standard. Out of the 114 reads gen-
erated, only 15 R2 reads showed warning signals (orange colour) of overrepresented sequences. However, these 
slightly abnormal reads have very low likelihood of affecting the quality of the SNPs and subsequent analysis. 

S. No Population No Region (s) District (s) Altitude (m) Latitude Longitude Rainfall (mm) Tem. (°C)

1 Abergelle 4 TA TAZ 900–1,800 13.20° 38.96° 370–700 21–4148

2 Afar 5 Afar Melka-Werer −125–2,870 11.94° 40.35° 92–673 27–4149

3 Arsi-Bale 5 Oromia Arsi-Bekoji 2,780 (mean) 7.52° 39.25° 1,098 (mean) 7–1950

4 Ambo 5 Oromia Meta-Robi 1,376–2,904 9.33° 38.19° 750–1,300 15–3151

5 Gonder 3 Amhara Lay-Armachiho 1,550–1,800 12.40° 37.45° 711.8- 1822 13–2852

6 HHG 5 Oromia Hirna 1,300–2,450 8.98° 41.27° 990–1,010 14–2653

7 Keffa 5 SWEPR Tepi and Sheka 900–2,700 9.12° 32.42° 1,559 (mean) 15.5–29.754

8 LESG 5 Somali Filtu 200–1,500 5.25° 40.93° 400–600 25–4055

9 SESG 5 Somali Kebri-Beyah 950–1,350 9.12° 43.18° 500–700 22.5–32.556

10 Agew 5 Amhara Addis-Kidame 2,400 (mean) 11.13° 36.86° 2,379 (mean) 11–2557

11 Gumuz 5 Benshangul Pawe 1,500–2,500 11.33° 36.35° 500–1,800 27.5058(mean)

12 WGG 5 SNNPR Konso 600–2,100 5.23° 37.43° 400–1,000 12–3359

Table 1. Samples of the Ethiopian indigenous goat populations based on their geographic and climatic 
distributions. SNNPR = Southern Nations, Nationalities, and Peoples Region, SWEPR = Southwest Ethiopia 
Peoples’ Region, TA = Tigray and Amhara, TAZ = Tanqua-Abergelle and Zuquala, SESG = Short eared Somali 
Goat, LESG = Long eared Somali Goat, Central highland goat (also called Ambo), HHG = Hararghe Highland 
Goats, WGG = Woyto-Guji Goats, Tem. = Temperature.
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Generally, R2 reads have lower sequence quality compared to R1 reads38,39. This observation has been attributed 
to the fraction of the fragment length (>500 nucleotides) in the library independent of the tissue source, library 
type or sequencer model39.

The per base sequence content or heatmap of the distribution pattern of the four nucleotides (A, T, G, C) are 
flagged by a warning signal (Fig. 4g). In a random library, the normal expectation is that all four bases would 
be equally (25% of each base) and stably represented across all reads. This, however, is rarely the case as some 
genomes are either GC or AT rich. At the beginning of our sequences and taking the 2 bp position as an example, 
the difference between A and T, and G and C bases was 15.1% and 0.7%, respectively, indicating a biased distri-
bution of the four nucleotides. If the difference between A and T, or G and C, in any position is greater than 10%, 
the per base sequence content will show a warning signal, while a fail signal will result if it is greater than 20%28. In 
Illumina platforms, the beginning and end of reads are more prone to low quality, which results in higher chances 
of false-positive calls40. However, from 10 to 150 bp and taking positions 25–29 bp in our sequences as an exam-
ple, the difference between A and T, and G and C bases was 0.3% and 0.1%, respectively, which is lower than 10%.

Fig. 2 The overall workflow of the quality control procedure and parameters used across all the stages of DNA 
sequencing (data pre-processing, variant discovery, and callset refinement).

Fig. 3 Boxplots showing the size of raw bases, Phred quality scores (Q30), and depth of coverage of the 57 indigenous 
Ethiopian goat genomes.

https://doi.org/10.1038/s41597-024-02973-2
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Nevertheless, the overall heatmap depicting the distribution of the four nucleotides shows a slightly abnor-
mal pattern but reasonable bases calls. This, however, has a low likelihood of affecting downstream analysis. This 
study observed no failed reads (no red signals) and unrecognized bases (N bases). The data can thus be used 
without QC procedures aimed at either removing adapters and/or poor-quality reads.

The per sequence GC content is another QC metric that is used to assess the quality of the length of each 
sequence38. Generally, the GC content differs across species and genomic region40. A normal random library 
typically has, more-or-less, a normal GC distribution content for all reads. An abnormal distribution could 
imply either a contaminated library or some systematic biase28. However, the GC plot of our data (Fig. 4d) is 
not a perfect normal distribution, and it is therefore not surprising that it is assigned a warning signal for all 
the 114 samples. This will however not affect the subsequent analysis. In this study, the mean GC content per 
sequence was 42.93%. If the GC content deviates from the average GC content by more than 5% and 10%, it 
results in a warning and failed signal, respectively28. The average GC content of the sequences generated herein 
approximates that reported in the animal kingdom (41.2%)41, and the goat reference genome assembly (42.7%)42 
but is lower than the value reported for archaea (44.88%), bacteria (50.76%), and fungi (47.96%)41. Naturally, 
mycobacterial DNA is GC rich and more stable than that of mammalians.

Fig. 4 Quality control outputs of the high-throughput sequencing data of the 114 samples combined using the 
MultiQC package: (a) Unique and duplicated sequence counts, (b) Mean quality value across each base position in 
the read, (c) Per Sequence quality scores, (d) Per Sequence GC content, (e) Sequences duplication levels, (f) Per base 
N content, (g) Per Base sequence content (heatmap of the four nucleotide distributions: A, T, G, C), and (h) Adapter 
content.
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SNP Quality control. Following joint genotyping with GenotypeGVCFs, a total of 26.99 million markers 
were identified in the sex and autosomal chromosomes, including multiallelic SNPs. VQSR filtering was applied 
to remain with the actual variants. Further filtration was applied to the dataset using ApplyVQSR with a threshold 
value of 99.0%, indicating that we accept that 1.0% of the variants in the truth set may be incorrect. Following 
this filtration and the post-processing filtrations, 24.76 million autosomal biallelic SNPs were retained across the  
57 samples. These were used to investigate population level genomic diversity, structure, and dynamics.

The total number of SNPs and annotated variants are presented in Supplementary Table 1. On average, 
13.78 million SNPs, 1.65 million indels and 3.07 million novel variants were detected with no significant dif-
ferences being observed between populations. These SNPs were annotated and an average of ~0.8% exonic, 
~45% intronic, ~41% intergenic, ~9% Up/Downstream and other small variants were detected (Supplementary 
Table 1).

The sequencing depth, base quality scores, GC content, duplication rates, base sequence content etc., are 
efficient and accurate QC filtering parameters for raw read sequence data. Unlike these QC parameters, the 
transition/ transversion (Ti/Tv), and heterozygous/nonreference-homozygous (het/hom), ratios cannot be used 
directly to filter individual SNPs but can rather be used to measure the overall SNP quality for high-throughput 
sequence data43.

In actual sequencing data, the Ti and Tv ratio is frequently above 0.543. Inter-species comparisons44 and 
previous sequencing projects agree on a Ti/Tv ratio of ∼2.0–2.1 for genome-wide datasets45 while the expected 
values for this ratio for known and new variants are 2.10 and 2.07, respectively but a value of up to 2.444 but 
not exceeding 4.038,43 is acceptable. A significant deviation from the expected values could indicate artefactual 
variants resulting in biased estimates. Following VQSR filtration with the default tranche sensitivity threshold 

Fig. 5 Quality control parameters using SNP data. (a) Tranches plot generated by VariantRecalibrator (VQSR). 
In this plot, the x-axis indicates the number of putative novel variants called true- and false-positive variants. 
In contrast, the y-axis shows two quality metrics: novel transition to transversion (Ti/Tv) ratio and the overall 
truth sensitivity, TPs= True-positives (the called variants in our callset and also present in the truth dataset), 
and FPs=False-positives (the called variants in our callset but not present in the truth dataset), (b) Nucleotide 
base substitution taking place in each goat population, and (c) Heterozygous/non-reference-homozygous  
(het/hom) ratio in each goat population.
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values (100.0, 99.9, 99.0 and 90.0%), the Ti/Tv ratio for our sequences ranged between 1.8 and 2.26 before the 
final filtration (Fig. 5a). Further filtration using ApplyRecalibration, with the tranche sensitivity threshold of 
99.0% and restricting the alleles into biallelic SNPs, raised the ratio to 2.39 for the final SNP dataset. However, 
the Ti/Tv ratio varies with the genomic region (e.g. intronic, intergenic, exonic) but is not or is little affected by 
population ancestry43. Additionally, in each Ethiopian goat population, the transition mutation is more than 
twice the transversion mutations (Fig. 5b). However, the effects of the former on amino acid substitution are less 
detrimental than the latter46.

Similarly, under Hardy-Weinberg equilibrium assumptions, the expected value for the het/hom ratio in 
human WGS is estimated to be 2.040. Population ancestry can affect the het/hom ratio but has not been observed 
to vary across the genome43. In our study, the het/hom ratio ranged from 1.26 in Agew to 1.48 in Afar goats 
(Fig. 5c). These ratios do not deviate much from that reported in humans (2.0) and is thus a good indicator of 
the quality of the sequences.

The SNP density is another important parameter for assessing sequence quality (Supplementary Table 2). 
A high SNP frequency, for example, two SNPs within 10 bp genomic distance, or within a short region of the 
genome, could indicate false-positive calls, possibly due to indels40. In our analysis, the SNP density and var-
iant distribution for each chromosome were determined using VCFtools (v0.1.15) with the command line “–
SNPdensity1000.” This command counted the number of variants found in each chromosome within a 1000 bp 
window size and the mean and standard deviation of the SNP density was computed using R software (v4.1.0)47. 
The tidyverse package in R was used to group and visualize the SNP density for each chromosome. The highest 
(11.42 ± 6.6 per kb) and lowest (8.66 ± 6.2 per kb) SNP density (mean one SNP in 0.01 kb) was observed in 
chromosome 28 and 18, respectively, which confirms the high-quality of our sequences.

code availability
The steps from quality control to variant calling and refinement are presented below.

1. FASTQC (v0.11.5): code for quality control for high throughput sequence data

fastqc -t 8 /my_sample_R1. fastq.gz
fastqc -t 8 /my_sample_R2. fastq.gz

2. MulitQC (v1.8): Consolidate all the samples using “multiqc.”
3. BWA-mem (0.7.17); code for mapping raw reads

RGID = “ID_my_sample”, RGSM = “ID” bwa mem -t 8 -k 32 -M -R @RG\\tID: ${RGID}\\tLB:${RGSM}\\
tPL:ILLUMINA\\tSM:${RGSM}${REF} ${input}/${RGID}.R1.fastq.gz ${input}/${RGID}.R2.fastq.gz | samtools 
view -bS - > ${my_sample}.bam

4. Samtools (v1.8): code for sorting and indexing bam files

samtools sort ${my_sample}. bam > ${my_sample}.sorted.bam
samtools index ${my_sample}. sorted.bam -@ 8

5. Picard (v2.18.2): code for marking duplicate reads:

java -Xmx8G -jar ${picard}/picard.jar MarkDuplicates I = ${my_sample}.sorted.bam
o = ${my_sample}_dedup.bam M = ${my_sample}_dedup.metrics.txt
TMP_DIR = ${KNOWNVAR}/tmp
MAX_FILE_HANDLES_FOR_READ_ENDS_MAP = 4000
OPTICAL_DUPLICATE_PIXEL_DISTANCE = 2500
CREATE_INDEX = true VALIDATION_STRINGENCY = LENIENT

# To calculate the total number of clean reads, mapped and unmapped reads

samtools flagstat ${my_sample}_dedup.bam > ${my_sample}_dedup.flagstat.txt

6. GATK (v3.8-1-0-gf15c1c3ef): codes for Base Quality Score Recalibration (BQSR) steps

 # BQSR applies machine learning and builds a mode of covariation (true variation and artifacts) based on 
the input data and set of known variants as training resources and truth sets.

java -Xmx80G -jar ${GATK} -T BaseRecalibrator -R ${REF}
-I ${my-sample}_dedup.bam -knownSites ${KNOWNVAR}
-o ${my_sample}_recal_table

#Apply the recalibration to your sequence data

java -Xmx80G -jar ${GATK} -T PrintReads -R ${REF}
-I ${my_sample}_dedup.bam -BQSR ${my_sample}_drecal_table
-o ${my_sample}_recal.bam

https://doi.org/10.1038/s41597-024-02973-2
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7. GATK (v3.8-1-0-gf15c1c3ef):Codes for variant calling in GVCF mode by HaplotypeCaller

java -Xmx80G -jar ${GATK}
-T HaplotypeCaller
-R ${REF}
-I ${my_sample}_recal.bam
--genotyping_mode DISCOVERY
--emitRefConfidence GVCF
--variant_index_type LINEAR
--variant_index_parameter 128000
-stand_call_conf 30
-o ${my_sample}_g.vcf.gz

8. GATK (v3.8-1-0-gf15c1c3ef): Joint genotyping for all individual VCF samples
# Use either --variant or -V options

java -d64 -Xmx48g -jar ${GenomeAnalysisTK.jar}
-T GenotypeGVCFs -R ${REF}
--variant my_sample_g.vcf.gz --variant my_sample1_g.vcf.gz --variant my_sample2_g.vcf.gz
--dbsnp ${KNOWNVAR}
-o allsample_joint.vcf.gz

9. GATK (v3.8-1-0-gf15c1c3ef): Code for VQSR steps

 java -d64 -Xmx48g -jar ${GenomeAnalysisTK.jar} -T VariantRecalibrator -R ${REF} -input ${allsample_
joint}. vcf.gz
-resource: dbSNP, known = false, training = true, truth = true, prior = 15.0${TRUEVAR}
-resource: dbSNP, known = true, training = false, truth = false, prior = 2.0${KNOWNVAR}
-an DP -an QD -an MQRankSum -an ReadPosRankSum -an FS -an SOR -mode SNP
-tranche 100.0 -tranche 99.9 -tranche 99.0 -tranche 90.0
-recalFile ${allsample_joint)_recalibrate_SNP.recal
-tranchesFile ${allsample_joint}_recalibrate_SNP.tranches
-rscriptFile ${allsample_joint}_recalibrate_SNP_plots.R

#Apply the SNP recalibration model to the variant call sets using ApplyRecalibration GATK walker.

 java -d64 -Xmx48g -Djava.io.tmpdir = ${allsample_joint.vcf}/javatempdir -jar ${GenomeAnalysisTK.jar} 
-T ApplyRecalibration -R ${REF}
-input ${allsample_joint). vcf.gz
--ts_filter_level 99.0 -mode SNP
-tranchesFile ${allsample_joint}_recalibrate_SNP.tranches
-recalFile ${allsample_joint}_recalibrate_SNP.recal
-o ${allsample_joint}_snp_VQSR_ApplyRecal_filtered.vcf.gz

 #Post-processing to remove variants failing the GATK filtering parameters and restricting the alleles into 
biallelic markers only.

java -d64 -Xmx48g -jar ${GenomeAnalysisTK.jar} -R ${REF}
-T SelectVariants
--variant ${allsample_joint} _snp_VQSR_ApplyRecal_filtered.vcf.gz
-o ${final_filtered}. vcf.gz
-selectType SNP
-env -ef
-restrictAllelesTo BIALLELIC
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