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Abstract

Functionality is a graph complexity measure that extends a variety of parameters, such as vertex
degree, degeneracy, clique-width, or twin-width. In the present paper, we show that functionality
is bounded for box intersection graphs in R

1, i.e. for interval graphs, and unbounded for box
intersection graphs in R

3. We also study a parameter known as symmetric difference, which is
intermediate between twin-width and functionality, and show that this parameter is unbounded
both for interval graphs and for unit box intersection graphs in R

2.

Keywords: interval graphs; box intersection graphs; graph functionality; symmetric difference;
twin-width

1 Introduction

The notion of graph functionality provides a common generalisation for various graph parameters, such
as maximum vertex degree, degeneracy, clique-width and twin-width, in the sense that boundedness of
any of these parameters implies bounded functionality, but not necessarily vice versa. Originally, this
notion appeared in an implicit form in [22] in the context of graph representation. A formal definition
of graph functionality was introduced in [11], where boundedness or unboundedness of functionality was
shown for a variety of graph classes. In particular, it was proved in [11] that functionality is bounded
for permutation graphs, line graphs and unit interval graphs. However, the question of boundedness
or unboundedness of functionality in the entire class of interval graphs was left open in [11]. In the
present paper we answer this question by showing that the functionality of any interval graph is at
most 8.

We observe that interval graphs are precisely box intersection graphs in R
1 (all definitions can be

found in Section 2Section 2). This observation, together with our result for interval graphs, naturally leads to
the question of boundedness or unboundedness of functionality for box intersection graphs in R

d for
d > 1. We answer this question for d ≥ 3 by showing that in this case the functionality is unbounded.
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We also observe that the result for unit interval graphs proved in [11] is, in fact, stronger than
showing boundedness of functionality in this class. The result deals with a restricted version of
functionality called symmetric difference. This parameter is intermediate between twin-width and
functionality in the sense that bounded twin-width implies bounded symmetric difference, which in
turn implies bounded functionality, but neither of the reverse implications is valid in general. The result
in [11] proves bounded symmetric difference for unit interval graphs. In the present paper, we show
that this result cannot be extended to interval graphs by providing an explicit construction of interval
graphs of unbounded symmetric difference (and hence of unbounded twin-width). Finally, we show
that boundedness of symmetric difference in the class of unit interval graphs, i.e. unit box intersection
graphs in R

1, cannot be extended to unit box intersection graphs in R
2. However, functionality of

unit box intersection graphs in R
2 remains a challenging open question.

The organisation of the paper is as follows. All definitions and notations related to the topic of
the paper can be found in Section 2Section 2.

In Section 3Section 3 we show that the functionality of any interval graph is at most 8. Then, in Section 4Section 4
we prove that the functionality of box intersection graphs in R

3 is unbounded. Finally, in Section 5Section 5 we
focus on the symmetric difference and show that this parameter is unbounded both for interval graphs
and for unit box intersections graphs in R

2. Our proofs are constructive and describe explicitly families
of graphs of unbounded symmetric difference, and hence of unbounded twin-width and clique-width.
Section 6Section 6 concludes the paper with a number of open questions.

2 Preliminaries

For a positive integer k, we denote by [k] the set {1, . . . , k}. All graphs in this paper are finite,
undirected, without loops and multiple edges. The vertex set and the edge set of a graph G are
denoted V (G) and E(G), respectively. The neighbourhood of a vertex x ∈ V (G), denoted N(x), is the
set of vertices of G adjacent to x, and the degree of x, denoted deg(x), is the size of its neighbourhood.
We denote by N [x] the closed neighbourhood of x, that is, the set N(x) ∪ {x}. Two vertices x and y
are twins if N(x) \ {y} = N(y) \ {x}, or, equivalently, if N [x] \ {x, y} = N [y] \ {x, y}. The minimum
vertex degree and the maximum vertex degree in G are denoted by δ(G) and ∆(G), respectively.

Let G be a graph and A = AG the adjacency matrix of G. We say that a vertex y ∈ V (G) is a
function of vertices x1, x2, . . . , xk ∈ V (G)\{y} if there is a Boolean function f of k variables such that
for every vertex z ∈ V (G) different from y, x1, x2, . . . , xk we have A(y, z) = f(A(y, x1), . . . , A(y, xk)).
We observe that every vertex is a function of some other vertices. In particular, every vertex is
a function of its neighbours, for the function f ≡ 0, and a function of its non-neighbours, for the
function f ≡ 1. The minimum k such that y is a function of k other vertices is the functionality of y
and is denoted funG(y), or simply fun(y) if the graph is clear from the context. The functionality of
G is denoted and defined as follows:

fun(G) = max
H

min
y∈V (H)

fun(y),

where the maximum is taken over all induced subgraphs H of G. If in this definition we replace fun(y)
with deg(y), then we obtain the definition of degeneracy. Together with the observation that fun(y) ≤
deg(y), we conclude that functionality of a graph is always bounded from above by its degeneracy. In
particular, bounded degeneracy implies bounded functionality. Similarly, boundedness of some other
graph parameters implies bounded functionality. For clique-width, this was proved in [11] by showing
that in any graph of bounded clique-width, there must exist two vertices whose neighbourhoods
have small symmetric difference. This motivates the study of one more graph parameter, implicitly
introduced in [22], and called the symmetric difference of a graph in [11].

Given a graph G and a pair of vertices x, y in G, let sdG(x, y) (or simply sd(x, y) if the graph is
clear from the context) be the number of vertices different from x and y that are adjacent to exactly
one of x and y. In other words, if x and y are non-adjacent, then sd(x, y) is the size of the symmetric
difference of N(x) and N(y), and if x and y are adjacent, then sd(x, y) is the size of the symmetric
difference of N [x] and N [y]. Then, the symmetric difference of G is denoted by sd(G) and defined to
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be 0 if G is a single-vertex graph, and otherwise

sd(G) = max
H

min
x,y∈V (H)

x 6=y

sd(x, y),

where the maximum is taken over all induced subgraphs H of G with at least two vertices.
If x and y are twins, then sd(x, y) = 0 and the functionality of both vertices is at most 1, i.e. x

and y are functions of each other. More generally, any two vertices x and y are functions of each other
and of the vertices distinguishing them, i.e. fun(x) ≤ sd(x, y) + 1 and fun(y) ≤ sd(x, y) + 1.11 The
above discussion shows that symmetric difference is a parameter intermediate between clique-width
and functionality in the sense that bounded clique-width implies bounded symmetric difference, which
in turn implies bounded functionality.

The recently introduced parameter twin-width [66] lies strictly between clique-width and symmetric
difference, i.e. bounded clique-width implies bounded twin-width, which in turn implies bounded
symmetric difference. Therefore, any construction of graphs of unbounded (i.e. arbitrarily large)
symmetric difference is also of unbounded twin-width and clique-width.

In the present paper, we study functionality and symmetric difference of box intersection graphs.

Definition 2.1. A box in R
d is a solid d-dimensional rectangle with axis-parallel sides. A unit box

is a box with all sides of length 1. A graph G is a box intersection graph in R
d (resp., a unit box

intersection graph in R
d) if each vertex of G can be associated with a box (resp., a unit box) in R

d so
that two vertices of G are adjacent if and only if the corresponding boxes intersect.

Box intersection graphs in R
1 are known as interval graphs, i.e. intersection graphs of intervals on

the real line.

3 Functionality of interval graphs is bounded

Let G be an interval graph with n vertices given together with an interval representation. Without
loss of generality we assume that the endpoints of the intervals are pairwise distinct. This allows us
to label the endpoints of the intervals by numbers from 1 to 2n consecutively from left to right, and
to represent each interval (vertex of G) by a pair of numbers (i, j), where i is the left endpoint and j
is the right endpoint of the interval (and thus i < j). We can therefore represent each interval (vertex
of G) by a point in N

2 above the diagonal {(i, i) | 1 ≤ i ≤ n}.
We denote the vertex of G corresponding to the point (i, j) by vi,j. The Manhattan distance

between two points (i, j) and (p, q) in N
2 is |i − p| + |j − q|. We also define the horizontal distance

between (i, j) and (p, q) to be |i− p|, and the vertical distance between (i, j) and (p, q) to be |j − q|.

Lemma 3.1. If the Manhattan distance between two points (i, j) and (p, q) is k, then the symmetric
difference of vi,j and vp,q is at most k − 2.

Proof. It is easy to check that if a vertex vs,t is in the symmetric difference of the neighbourhoods
of vi,j and vp,q and different from the two vertices, then one of the endpoints of (s, t) belongs to
the interval (min{i, p},max{i, p}) or to the interval (min{j, q},max{j, q}). Since the endpoints of all
intervals are pairwise distinct and the Manhattan distance between (i, j) and (p, q) is k, there could
be at most k − 2 possible vertices vs,t satisfying this property.

Theorem 3.2. The functionality of any interval graph is at most 8.

Proof. Since the class of interval graphs is hereditary, to prove the theorem it suffices to show that
each interval graph contains a vertex of functionality at most 8.

1To see that any two vertices x and y are functions of each other and of the vertices distinguishing them, let us denote
by Z the set of vertices distinguishing x and y, i.e. Z = {z ∈ V (G) \ {x, y} | z is adjacent to exactly one of x and y}.
Then x is a function of {y} ∪ Z, since any vertex v ∈ V (G) \ ({y} ∪ Z) is adjacent to x if and only if v is adjacent to y

(in particular, the vertices in Z are inessential in this function). Similarly, the vertex y is a function of the vertices in
{x} ∪ Z.
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Let G be an interval graph. We use a representation of G by points in N
2 that has been described in

the beginning of the section. All points representing the vertices of G are located above the diagonal
in the [2n] × [2n] area of the integer grid. Each vertical line and each horizontal line in this area
contains at most one vertex of G. We split the 2n horizontal lines in this area into ⌈2n/5⌉ stripes,
each containing 5 consecutive lines, except possibly one stripe containing at most 4 consecutive lines
if 2n is not a multiple of 5. Similarly, we split vertical lines into ⌈2n/5⌉ stripes. The intersection of a
horizontal stripe and a vertical stripe will be called a block.

Assume first that there is a block containing two vertices of G. Then the Manhattan distance
between these two vertices is at most 8 and hence, according to Lemma 3.1Lemma 3.1, the symmetric difference
of these two vertices is at most 6, implying that the functionality of each of them is at most 7.

From now on, we assume that each block contains at most one vertex of G. We call blocks
containing no vertex of G empty. To find a vertex of low functionality, let us start by considering the
case when there exist two consecutive horizontal lines, say Lh and L′

h
, and two consecutive vertical

lines, say Lv and L′
v, such that

• one of the four points in the intersections of these lines (that is, Lh ∩ Lv, Lh ∩ L′
v, L

′
h
∩ Lv, and

L′
h
∩ L′

v) is a vertex of G, say vertex x ∈ Lh ∩ Lv,

• there is a vertex of G above x in the other vertical line L′
v, say vertex y,

• there is a vertex of G to the left of x in the other horizontal line L′
h
, say vertex z.

In this case, we claim that x is a function of y and z. More precisely, a vertex v ∈ V (G) \ {x, y, z} is
adjacent to x if and only if A(v, y) = A(v, z) = 1, where A is the adjacency matrix of G. Indeed, by
construction the four lines contain vertices x, y, z only, and any other vertex v is either adjacent to x,
in which case it is also adjacent to both y and z, or non-adjacent to x, in which case it is non-adjacent
to at least one of y or z.

The requirement that the two vertical lines and the two horizontal lines are consecutive can be
relaxed by asking that x and y are of bounded horizontal distance from each other, while x and z are of
bounded vertical distance from each other, say both distances are at most k, i.e. there are at most k−1
vertical lines between x and y and at most k−1 horizontal lines between x and z. Then the vertical lines
between x and y contain at most k − 1 vertices y1, . . . , yk−1 and the horizontal lines between x and z
contain at most k−1 vertices z1, . . . , zk−1. In this case, x is a function of y, y1, . . . , yk−1, z, z1, . . . , zk−1

for the same reason as above. The only difference is that y1, . . . , yk−1, z1, . . . , zk−1 are inessential
variables of the function, i.e. the function does not depend on them.

To find a vertex x satisfying the above conditions, we introduce the following terminology. The
leftmost non-empty block in any horizontal stripe and the topmost non-empty block in any vertical
stripe will be called marginal blocks.

Let B be a non-empty block and let x be the only vertex of G that belongs to B. If B is not
marginal, then there is a vertex y above x in the same vertical stripe and a vertex z to the left of x
in the same horizontal stripe. In this case, x is a function of y and z and at most 3 vertices in the
vertical lines between x and y and at most 3 vertices in the horizontal lines between x and z, i.e. the
functionality of x is at most 8.

It remains to show that a non-empty non-marginal block does exist. Each horizontal stripe contains
at most one marginal block and each vertical stripe contains at most one marginal block. Therefore,
there are at most 2⌈2n/5⌉ marginal blocks. Since the total number of non-empty blocks is exactly n,
and n > 2⌈2n/5⌉ holds for any n ≥ 9, we conclude that there is at least one non-empty non-marginal
block and hence a vertex of functionality at most 8 for all n ≥ 9. In graphs with at most 8 vertices,
the functionality of each vertex is at most 7.

4 Functionality of box intersection graphs in R
3 is unbounded

Having proved boundedness of functionality for interval graphs, i.e. for box intersection graphs in R
1,

it is natural to ask whether this parameter is bounded for box intersection graphs in R
d for larger

values of d. In the present section, we answer this question in the negative for d ≥ 3. We start with a
helpful lemma, where Kn,m stands for the complete bipartite graph with parts of size n and m.
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Lemma 4.1. Let p ≥ 2 be an integer and let X be a class of K2,p-free triangle-free graphs such that
there exists an increasing function g : N → N, and an infinite sequence of graphs G1, G2, . . . in X with
|V (Gn)| = g(n) such that a(n) := δ(Gn) is in ω(1) and b(n) := ∆(Gn) is in o(g(n)). Then X has
unbounded functionality.

Proof. Suppose towards a contradiction that X and (Gn)n∈N is a class and a sequence, respectively,
as in the statement of the lemma, but X has functionality bounded by k for some constant k.

Let n be a large enough integer such that

δ(Gn) ≥ kp+ 1 and ∆(Gn) ≤
g(n)− k − 2

k + 1
.

Such an n exists by the assumption on the functions a and b. By assumption, there exist vertices
x, y1, y2, . . . , yk ∈ V (Gn) such that x is a function of y1, y2, . . . , yk. To prove the lemma it is enough to
find a pair of vertices u,w distinct from x, y1, y2, . . . , yk such that u is adjacent to x, w is not adjacent
to x, but u,w are not distinguished by y1, y2, . . . , yk (i.e. u and w have the same neighbourhood in
{y1, y2, . . . , yk}). Indeed, this will contradict the assumption that x is a function of y1, y2, . . . , yk.

First, note that since Gn is K2,p-free and triangle-free, x has at most p− 1 neighbours in common
with yi for every i ∈ [k]. Thus, from deg(x) ≥ kp + 1 we conclude that there exists a neighbour u
of x that is distinct from y1, . . . , yk and is not adjacent to any of these vertices. On the other hand,
from ∆(Gn) ≤ g(n)−k−2

k+1 , we conclude that there exists a vertex w that is distinct from x, y1, . . . , yk
and adjacent to none of them.

We denote by Qn the n-dimensional hypercube, and by Q the hereditary closure of hypercubes,
that is, the class of all induced subgraphs of hypercubes. As a corollary of Lemma 4.1Lemma 4.1 we recover a
result from [11].

Corollary 4.2. The class Q has unbounded functionality.

Proof. The corollary follows by applying Lemma 4.1Lemma 4.1 to the sequence Q1, Q2, Q3, . . .. Indeed, every
graph in Q is K2,3-free [88], and the functions a(n) = b(n) = log g(n), where g(n) = 2n, satisfy the
conditions of Lemma 4.1Lemma 4.1.

A bipartite graph G = (P,B,E) is a point-box incidence graph if the vertices in P (which we call
point-vertices) can be associated with points in the Euclidean plane (R2) and the vertices in B (which
we call box-vertices) can be associated with boxes in the plane so that p ∈ P and b ∈ B are adjacent
if and only if the box associated with b contains the point associated with p.

Lemma 4.3. The class of point-box incidence graphs has unbounded functionality.

Proof. To prove the lemma we will show that there is a sequence of point-box incidence graphs (Gn)n∈N
that satisfies the conditions of Lemma 4.1Lemma 4.1.

We will use the construction presented in [44] (see Proposition 3.5 and Lemma 3.3) that was used
to show the existence of K2,2-free point-box incidence graphs with superlinear number of edges. The
minimum and the maximum degrees of the vertices, which are important for applications of Lemma 4.1Lemma 4.1,
were not analysed explicitly in [44]. In order to do this, below we describe the construction in graph
theoretic terms, from which we can easily infer the minimum and the maximum degrees of the graphs.

Let n be a positive integer. We define Hn
1 := (P1, B1, E1) to be the star K1,n with the central

vertex in B1 and n leaves in P1. For every i = 2, . . . , n, we define Hn
i inductively as follows. The graph

Hn
i = (Pi, Bi, Ei) is obtained by taking n vertex-disjoint copies of Hn

i−1, adding |Pi−1| box-vertices to
Bi, and adding a perfect matching between these vertices and the point-vertices of each of the copies
of Hn

i−1.
22 Notice that, if pi and bi denote the number of point- and box-vertices in Hn

i , respectively,
then p1 = n, b1 = 1, and pi = n · pi−1, bi = n · bi−1 + pi−1. From these recurrence relations, it is easy
to deduce that pi = ni and bi = i · ni−1 for all i ∈ {1, . . . , n}. In particular, pn = bn = nn.

2To see that each graph Hn

i is a point-box incidence graph, we provide an informal description of the corresponding
geometric construction. If i ≥ 2 and, by induction hypothesis, Ri−1 is a geometric realisation of Hn

i−1 in which all points
representing point-vertices have different y-coordinates, then a geometric realisation Ri of H

n

i is defined as follows. Take
n disjoint copies of Ri−1 that are translations of Ri−1 along x-axis. In these n copies, every point-vertex of Ri−1 has
n copies and, by assumption, all of them have the same y-coordinate, which is different from the y-coordinates of the

5



Note that each of the graphs Hn
i is K2,2-free. We further observe that every time we add a new

box-vertex its degree is n and it does not change in the subsequent graphs. The degree of every copy
of a point-vertex from Hn

i−1 increases by one in Hn
i , i.e. the degree of every point-vertex in Hn

i is i.
Hence, Gn := Hn

n is a K2,2-free point-box incidence graph with g(n) := 2nn vertices in which every

vertex has degree n ∈ Θ
(

log g(n)
log log g(n)

)

. Applying Lemma 4.1Lemma 4.1 to (Gn)n∈N implies the lemma.

It is known that point-box incidence graphs are box intersection graphs in R
3 (see, e.g., [99]).

Summarising, we derive the main result of this section.

Theorem 4.4. The class of box intersection graphs in R
3 has unbounded functionality.

Clearly, Theorem 4.4Theorem 4.4 implies that the class of box intersection graphs in R
d has unbounded func-

tionality for all d ≥ 3.

5 Symmetric difference is unbounded for the classes of interval graphs

and unit box intersection graphs in R
2

Bonnet et al. showed in [55] that the class of interval graphs has unbounded twin-width based on a
construction of a class of interval graphs that can represent an arbitrary permutation. The construction
relies on the notion of a half graph, that is, a bipartite graph with 2n vertices, n ≥ 1, that admits
a partition of its vertex set into two equally sized independent sets X = {x1, . . . , xn} and Y =
{y1, . . . , yn} such that for all i, j ∈ [n], vertex xi is adjacent to vertex yj if and only if i < j.

Definition 5.1. An ABC graph is any graph G with 3n vertices, n ≥ 1, such that the vertex set of G
can be partitioned into three cliques A, B and C, each of size n, such that there are no edges between
A and C, the edges between A and B form a half graph, and the edges between B and C form a half
graph. More precisely, there exists an order a1, . . . , an for the vertices in A and an order b1, . . . , bn for
the vertices in B such that ai is adjacent to bj if and only if i < j. Similarly, there exists another order
b′1, . . . , b

′
n for the vertices in B and an order c1, . . . , cn for the vertices in C such that b′i is adjacent to

cj if and only if i < j.

It is important to note that the orders b1, . . . , bn and b′1, . . . , b
′
n for the vertices in B are completely

independent from each other. In particular, they may differ.

ABC graphs have been studied in [77], where they have been shown to be of unbounded clique-
width. Bonnet et al. extended this result by showing that the twin-width of ABC graphs is unbounded.
However, the proof in [55] is non-constructive and relies on a counting argument. We now improve this
result in two different ways. First, we extend it by showing that the ABC graphs have unbounded
symmetric difference, which is a stronger conclusion. Second, our proof is constructive and provides
an explicit family of induced subgraphs of ABC graphs with increasing symmetric difference.

Theorem 5.2. The class of ABC graphs has unbounded symmetric difference.

Proof. We will show that for every integer k ≥ 2 there exists a graph Gk that is an induced subgraph
of an ABC graph and such that the symmetric difference of Gk is at least k. The construction is as
follows. The graph Gk consists of three disjoint cliques A, B and C, and some edges between them.
The two cliques A and C are each of size t where t = k3. The clique B has size k4, its vertices
correspond to pairs of integers, and it is partitioned into k2 smaller sets, each of size k2,

B =
⋃

1≤i,j≤k

Bij ,

where the sets Bij are defined as follows:

remaining point-vertices of Ri−1. Thus, we can add |Pi−1| new disjoint boxes such that each of them contains the n

copies of a point-vertex in Ri−1 and no other point-vertices. To obtain Ri, in each of the newly added boxes we shift
point-vertices contained in it vertically so that they all have pairwise distinct y-coordinates and each point stays in the
boxes it belongs to.

6



• B11 = {(pk − q, qk + p) | 1 ≤ p ≤ k , 0 ≤ q ≤ k − 1}

• for all (i, j) ∈ [k]2 \ {(1, 1)}, the set Bij is a translate of the set B11:

Bij = B11 + ((i− 1)k2, (j − 1)k2) = {(x+ (i− 1)k2, y + (j − 1)k2) | (x, y) ∈ B11} .

See Figure 1Figure 1 for an example of Gk for k = 4. Note that for each vertex b = (bx, by) in B, it holds that
1 ≤ bx ≤ t and 1 ≤ by ≤ t. To describe the edges between the cliques A, B and C, we fix an ordering
of the vertices in A and in C as A = {a1, . . . , at} and C = {c1, . . . , ct}, respectively. Then, the edges
between the cliques A, B and C are as follows.

• For every vertex ai ∈ A and every vertex b = (bx, by) ∈ B, vertices ai and b are adjacent if and
only if i < bx.

• For every vertex b = (bx, by) ∈ B and every vertex cj ∈ C, vertices b and cj are adjacent if and
only if by < j.

• There are no edges between A and C.

This completes the description of the graph Gk.
Next, we show that the symmetric difference of Gk is at least k, that is, that for any two distinct

vertices u, v ∈ V (Gk) we have sd(u, v) ≥ k. We distinguish several cases depending on which of the
cliques A, B and C vertices u and v belong to (and taking into account the fact that sd(u, v) = sd(v, u)).

We first observe that for any fixed i ∈ [t], the number of vertices (bx, by) in B with bx = i is k.
Similarly, the number of vertices in B with by = i is also k.

Case 1: u, v ∈ A. Let u = ai and v = aj be any two vertices of A with 1 ≤ i < j ≤ t. By construction
we have that {(bx, by) ∈ B | bx = j} ⊆ N(u) \N(v). Therefore, by the above observation, sd(u, v) ≥ k.

Case 2: u, v ∈ C. Let u = ci and v = cj be any two vertices of C with 1 ≤ i < j ≤ t. Again,
by construction we have that {(bx, by) ∈ B | by = i} ⊆ N(v) \ N(u). Thus, we again obtain that
sd(u, v) ≥ k.

Case 3: u ∈ A and v ∈ C. By construction we have that A \ {u} ⊆ N(u) and (A \ {u}) ∩ N(v) = ∅.
Thus, sd(u, v) ≥ t− 1 = k3 − 1 ≥ k (here we use the assumption that k ≥ 2).

Case 4: u ∈ A and v ∈ B. Let u = ai ∈ A, i ∈ [t], and let v = (bx, by) ∈ B. Note that by definition, no
vertex in A is adjacent to any vertex b ∈ B with the first coordinate equal to 1. As we have already
observed, there are exactly k such vertices in B. Thus, if bx ≥ 2, then, since B is a clique, sd(u, v) ≥ k
and we are done. Therefore, we may assume that bx = 1. But then N(v) ∩A = ∅, while A \ {u} is of
size t− 1 contained in N(u). Thus, we again have that sd(u, v) ≥ t− 1 ≥ k.

Case 5: u ∈ B and v ∈ C. In this case the arguments are similar to those in Case 4. Let u = (bx, by) ∈
B and v = cj ∈ C, j ∈ [t]. No vertex in C is adjacent to any vertex b ∈ B with the second coordinate
equal to t and there are exactly k such vertices in 1. Thus, if by ≤ t − 1, then, since B is a clique,
sd(u, v) ≥ k and we are done. Therefore, we may assume that by = t. But then N(u) ∩ C = ∅, while
C \ {v} is of size t− 1 contained in N(v), and sd(u, v) ≥ k.

Case 6: u, v ∈ B. Let u = (ux, uy) ∈ Bij and v = (vx, vy) ∈ Bi′j′ be two distinct vertices of B. By
construction of the graph Gk, exactly |ux − vx| vertices in A are adjacent to precisely one of u and
v and, similarly, exactly |uy − vy| vertices in C are adjacent to precisely one of u and v. Therefore,
sd(u, v) ≥ k whenever the Manhattan distance |ux − vx|+ |uy − vy| between u and v is at least k. If
|i′ − i| ≥ 2, then |ux − vx| ≥ k2 + 1. Consequently, sd(u, v) ≥ k2 + 1 ≥ k whenever |i′ − i| ≥ 2 and a
similar conclusion holds if |j′ − j| ≥ 2.

We may therefore assume that |i′ − i| ≤ 1 and |j′ − j| ≤ 1. Let us verify that in this case
the Manhattan distance between u and v is at least k. We have u = (x + (i − 1)k2, y + (j − 1)k2)
where x = pk − q and y = qk + p for some 1 ≤ p ≤ k and 0 ≤ q ≤ k − 1 and, similarly, v =
(x′ + (i′ − 1)k2, y′ + (j′ − 1)k2) where x′ = p′k − q′ and y′ = q′k + p′ for some 1 ≤ p′ ≤ k and
0 ≤ q′ ≤ k − 1. We thus have

|ux − vx| = |(i− i′)k2 + (p− p′)k + q′ − q|
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a1 a64

c1

c64

B1,1

B1,2

B1,3

B1,4

B2,1

B2,2

B2,3

B2,4

B3,1

B3,2

B3,3

B3,4

B4,1

B4,2

B4,3

B4,4

Figure 1: A schematic representation of the graph Gk, for k = 4, as defined in Theorem 5.2Theorem 5.2. The
bottom-most vertices belong to the clique A; the right-most vertices belong to the clique C; vertices
on the grid belong to the clique B. For each i ∈ [t], vertex ai (on column i) is adjacent to all the
vertices in B on a column j > i. Similarly, for each i ∈ [t], vertex ci (on row i) is adjacent to all the
vertices in B on a row j < i.

and
|uy − vy| = |(j − j′)k2 + (q − q′)k + p− p′| .

Consider first the case when i′ = i and j′ = j. In this case, the Manhattan distance between u
and v is equal to |(p − p′)k + q′ − q| + |(q − q′)k + p − p′|. If p′ = p then q′ 6= q and the expression
simplifies to (k+1)|q− q′| ≥ k+1. Similarly, if q′ = q then p′ 6= p and the above expression simplifies
to (k + 1)|p − p′| ≥ k + 1. If p′ 6= p and q′ 6= q, then we may assume without loss of generality that
p > p′. Suppose to a contradiction that the Manhattan distance between u and v is less than k, that
is,

|(p − p′)k + q′ − q|+ |(q − q′)k + p− p′| < k .

Since p− p′ ∈ [k− 1] and q′ 6= q, we obtain from the second term on the left side of the inequality that
q − q′ = −1. Thus, we have that q′ > q, and from the first term on the left side of the inequality we
obtain that p− p′ = −1, a contradiction with the assumption that p > p′.

Next, consider the case when i′ 6= i. We may assume without loss of generality that i′ > i, and
hence i′ = i+ 1 (recall that |i′ − i| ≤ 1). The Manhattan distance between u and v is hence equal to
|k2 + (p′ − p)k + (q − q′)| + |(j′ − j)k2 + (q′ − q)k + (p′ − p)|. Suppose for a contradiction that the
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Manhattan distance between u and v is less than k. In that case, we must have that (p′−p) = −(k−1)
and (q−q′) < 0. Recall that |j′−j| ≤ 1. First, if j′−j = 0, we must have that q′−q = 1, but then the
Manhattan distance between u and v is equal to |k2− (k− 1)k− 1|+ |k− (k− 1)| = k, a contradiction.
Second, if j′ − j = 1, then, as (q − q′) < 0, we have that |vy − uy| ≥ k2, a contradiction. Third, if
j′−j = −1, then we must have that (q−q′) = −(k−1). However, in that case the Manhattan distance
between u and v is equal to |k2− (k− 1)k− (k− 1)|+ |− k2+(k− 1)k− (k− 1)| = 1+ |− 2k+1| = 2k,
again a contradiction.

Finally, consider the case when i′ = i and j′ 6= j. Similarly as in the previous case, we may assume
without loss of generality that j′ > j, and hence j′ = j + 1. The Manhattan distance between u and
v is equal to |(p′ − p)k + (q − q′)| + |k2 + (q′ − q)k + (p′ − p)|. Suppose for a contradiction that the
Manhattan distance between u and v is less than k. Similarly as in the previous case, we must have
that (q′ − q) = −(k − 1) and (p′ − p) < 0. Furthermore, we must have p′ − p = −1, since otherwise
the first term |(p′ − p)k + (q − q′)| = |(p′ − p)k + (k − 1)| would exceed k. But then the Manhattan
distance between u and v is equal to | − k + (k − 1)|+ |k2 − (k − 1)k − 1| = k, a contradiction.

Finally, we show that Gk is an induced subgraph of an ABC graph. To this end, we show that it
is possible to add vertices to the clique A and to the clique C so that each of the resulting cliques A′

and C ′ has cardinality equal to the cardinality of B, that is, k4, the edges between A′ and B form a
half graph, the edges between B and C ′ form a half graph and there are no edges between A′ and C ′.

By symmetry, it suffices to show that it is possible to add vertices to the clique C to obtain a
clique C ′ with |C ′| = k4 so that the edges between B and C ′ form a half graph. First, notice that for
every vertex b = (bx, by) in B, its neighbourhood in C depends only on the value of by. Denoting for
each j ∈ [t] by Bj the set of all vertices (bx, by) in B such that by = j, it holds that |Bj| = k. Fix
an arbitrary ordering of the vertices of B as B = {b1, . . . , bk4} such that the vertices in the same part
Bj appear consecutively and the vertices of Bj appear before the vertices of Bj+1, for all j ∈ [t − 1].
It follows from the construction that for every j ∈ [t], the neighbourhood of cj in B equals to the
union

⋃

i<j Bi = {bℓ : ℓ ≤ k × (j − 1)}. In particular, for any two consecutive vertices in C, their
neighbourhoods in B are nested and differ in precisely k vertices. We extend the clique C to a larger
clique C ′ by adding, for each j ∈ [t], a set of k− 1 new vertices c1j , . . . , c

k−1
j such that, writing c0j = cj ,

for each i ∈ {0, . . . , k− 1} the neighbourhood of cij in B equals {bℓ : ℓ ≤ k× (j − 1) + i}. This implies

that the k4 vertices of C ′ all have distinct but comparable neighbourhoods in B, with N(c1) ∩B = ∅
and N(ck−1

t ) ∩ B = B \ {bk4}. In particular, the edges between B and C ′ form a half graph, as
desired.

As observed by Bonnet et al. [55], every ABC graph is an interval graph. Thus, Theorem 5.2Theorem 5.2 implies
the following.

Corollary 5.3. The class of interval graphs has unbounded symmetric difference.

Theorem 5.2Theorem 5.2 has another consequence for the class of unit box intersection graphs in R2.

Proposition 5.4. Every ABC graph is a unit box intersection graph in R
2.

Proof. Bonnet et al. showed in [55], with a proof by picture, that every ABC graph is a unit disk graph.
We adapt their approach (and their figure) to show that every ABC graph is a unit box intersection
graph in R

2. Let G be any ABC graph with 3n vertices, n ≥ 1, with cliques A, B and C, and orderings
a1, . . . , an, b1, . . . , bn, b

′
1, . . . , b

′
n, and c1, . . . , cn as in the definition of ABC graphs. We explain how to

represent G as a unit box intersection graph in R
2; see the right part of Figure 2Figure 2.

Place n unit boxes in R
2 representing vertices of A so that their centers are close to each other and

decreasing in both coordinates, in order a1, . . . , an. Then, place n other unit boxes in R
2 representing

vertices of B above the A-boxes so that their centers are close to each other and the intersections
between A-boxes and B-boxes realise the half graph formed by the edges between A and B, taking
into account the ordering b1, . . . , bn. Note that this imposes constraints on the vertical positions (that
is, values of y-coordinates) of the centers of the B-boxes, but leaves some freedom about shifting the B-
boxes horizontally. Next, place additional n unit boxes in R

2 representing vertices of C to the right of
the boxes representing vertices of B so that the centers of the C-boxes are close to each other, decrease
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in both coordinates, in order c1, . . . , cn, and no C-box intersects any A-box. Finally, if necessary, shift
the B-boxes horizontally so that the intersections between B-boxes and C-boxes realise the half graph
formed by the edges between B and C, taking into account the ordering b′1, . . . , b

′
n.

Theorem 5.2Theorem 5.2 and Proposition 5.4Proposition 5.4 imply the following.

Corollary 5.5. The class of unit box intersection graphs in R
2 has unbounded symmetric difference.

A B C

A

B
C

Figure 2: On the left, an ABC-graph with 15 vertices represented by intervals. On the right, the same
graph, this time represented as a unit box intersection graph in R

2.

6 Conclusion

In this paper we proved a number of results on functionality and symmetric difference of box intersec-
tion graphs. A summary of our results is presented in Table 1Table 1.

R
1

R
2

R
≥3

Symmetric unit box bounded [11] unbounded (Corollary 5.5Corollary 5.5)

difference general unbounded (Corollary 5.3Corollary 5.3)

Functionality

unit box bounded [11] open

general
bounded

open
unbounded

(Theorem 3.2Theorem 3.2) (Theorem 4.4Theorem 4.4)

Table 1: Functionality and symmetric difference of box intersection graphs in R
d.

As indicated in the table, the functionality of box intersection graphs in R
2 remains an open

question. It also remains open whether the functionality is bounded for unit box intersection graphs
in R

d for any fixed d ≥ 2.
Among other classes with unknown behaviour of functionality we distinguish the following two

important extensions of interval graphs: circular-arc graphs and trapezoid graphs.
Finally, we mention one more open problem related to graph functionality: characterisation and

recognition of graphs of small functionality. By definition, vertices of functionality 0 are either isolated
or dominating, and hence graphs of functionality 0 are threshold graphs, i.e. graphs every induced
subgraph of which contains either an isolated or dominating vertex. However, the class of graphs of
functionality at most 1 remains a mystery. It contains

• all forests (as every forest contains a vertex of degree at most 1) and their complements,

• all cographs, as every cograph with at least two vertices contains a pair of twins,
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• all distance hereditary graphs, as every graph in this class can be constructed from a single
vertex by successively adding either a pendant vertex or a twin [33].

Note that the class of graphs of functionality at most 1 is substantially more complex, as it also
contains graphs with anti-twins, i.e. vertices whose neighbourhoods complement each other. Similarly
to twin vertices, anti-twins are functions of each other. More generally, any two vertices are functions
of each other and of the vertices that do not distinguish them.33 This observation gives rise to a new
notion, analogous to symmetric difference, and to a new line of research related to graph functionality.
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