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Abstract

Scribble annotations have recently become popular in video salient object detec-

tion. Previous methods only focus on utilizing shallow feature consistency for

more integral predictions. However, there is potential for consistency between

cross-frame deep features to be used to help regularize saliency predictions bet-

ter. Besides, we have observed that leveraging saliency predictions as pseudo-

supervision signals yields notable improvements in extracting both intra-frame

and cross-frame deep features. This, in turn, leads to more precise and detailed

object structural information. Thus, we propose a cross-frame feature-saliency

mutual reinforcing training process to assist scribble annotations for integral

video saliency predictions. Specifically, we design a cross-frame feature regular-

ization head, which leverages intra-frame and cross-frame deep feature consis-

tency to regularize saliency predictions as auxiliary supervision. Then, to help

obtain more accurate feature consistency, we design a cross-frame saliency regu-

larization head, where predicted saliency values are used as pseudo-supervision

signals to acquire better feature consistency. In this way, our cross-frame fea-
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ture and saliency regularization heads can benefit from each other to help the

network learn more accurately. Extensive experiments show that our method

can achieve better performances than the previous best methods. Our source

code will be publicly released.

Keywords: Video salient object detection, Scribble annotations, Cross-frame

feature Consistency, Cross-frame Saliency Consistency

1. Introduction

Video salient object detection (VSOD) aims to detect and segment the most

attractive objects in a video sequence. Different from salient object detection

(SOD), which detects the salient objects in static images [1, 2, 3, 4, 5, 6, 7, 8, 9],

VSOD needs to track the detected salient objects through all the frames. With5

the advances in neural networks, many fully supervised VSOD models [10, 11,

12, 13, 14] have achieved impressive performances and widely applied to different

video processing tasks, such as video compression [15, 16], video object segmen-

tation [17, 18, 19, 20], and video captioning [21, 22] by providing foreground

and background indications. However, pixel-level annotations are required in10

such models, which are time-consuming and labor-intensive.

To reduce massive resources for pixel-level annotations, scribble annota-

tions [23, 24, 25, 26, 27, 28] are gaining popularity due to their flexibility and

efficiency. However, it is difficult for scribble annotations to provide integral

object structure information since they only cover a small portion of the ob-15

ject. To get more accurate object structure and boundaries, previous meth-

ods [29, 30, 31] explore various target clues. For example, Zhao et al. [29]

design an appearance-motion fusion module to acquire enhanced fused features

from frames and optical flows to mine comprehensive target features. Besides,

Gao et al. [30, 31] use shallow features (e.g., RGB and position information)20

to propagate the annotations to unlabeled regions for integral target predic-

tions. However, current methods only leverage shallow feature consistency on

predictions as regularization, as illustrated in Fig. 1 (a). The fact that the con-
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Figure 1: (a) General pipeline only uses intra-frame shallow features as auxiliary supervision.

(b) Our cross-frame feature-saliency mutual reinforcing (CFMR) training process uses deep

features (both intra-frame and cross-frame features), saliency predictions, and shallow features

as supervision. (c) Feature visualization.

sistency between deep features (both intra-frame and cross-frame features) can

help regularize saliency predictions has not been explored yet.25

Although we find that the deep features possess much semantic information,

some noise still exists, as shown in the third column of Fig. 1 (c). If we can in-

troduce new supervision on the deep feature consistency of the same class pixels,

the noise can be reduced, and the performance can be further enhanced. Con-

sidering this, we hypothesize that the saliency predictions can serve as valuable30

pseudo-supervision signals to assist the network in learning feature consistency

relationships since they can provide more target object structural information

than scribbles. Thus, we argue that better saliency predictions can help pro-

mote better deep feature consistency. Meanwhile, better feature consistency can

help produce more integral saliency predictions.35
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To achieve this goal on weakly supervised VSOD (WSVSOD) with scribble

annotations, we propose a Cross-frame Feature-saliency Mutual Reinforcing

(CFMR) training process, where deep features and saliency predictions are used

to supervise each other as demonstrated in Fig. 1 (b). Specifically, we design

a cross-frame feature regularization head and a cross-frame saliency regulariza-40

tion head to realize this mutual reinforcing process. In our cross-frame feature

regularization head, a cross-frame feature regularization (CFR) loss is designed

to supervise saliency predictions, where both intra-frame and cross-frame deep

feature consistency are utilized as criteria. On the other hand, our cross-frame

saliency regularization head devotes to acquiring better feature representations.45

Specifically, we design a cross-frame saliency regularization (CSR) loss to make

deep features belonging to the same salient object close to each other. Thus, the

predicted saliency map is deployed to supervise deep feature consistency in turn.

Similar to our CFR loss, we also involve cross-frame information as assistance to

mine temporal context for more regularization in our CSR loss. As illustrated50

in Fig. 1 (c) (’w/ CFMR’), with the help of our CFMR, the background noise

can be suppressed, and more relative target features can be aggregated. In

this way, the mutual interaction of our cross-frame feature regularization head

and cross-frame saliency regularization head can reinforce the network to learn

comprehensive object structure information in a more accurate direction.55

Overall, our contributions can be summarized as follows:

• We propose a Cross-frame Feature-saliency Mutual Reinforcing (CFMR)

training process, including a cross-frame feature regularization head and

a cross-frame saliency regularization head, to help learn comprehensive

object structure information for scribble-supervised video salient object60

detection.

• We propose a cross-frame feature regularization (CFR) loss, where both

intra-frame and cross-frame deep feature consistency are deployed to help

supervise saliency predictions. Besides, we design a cross-frame saliency

regularization (CSR) loss to help build a more accurate deep feature con-65
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sistency relationship. With the mutual interaction of our CFR loss and

CSR loss, the network can learn more precisely for better saliency predic-

tions.

• Our approach achieves new state-of-the-art performance, outperforming

previous works on six widely used benchmarks. For instance, on SegV270

dataset [32], a gain of 2.7% for structure-based metric (Sα), 4.8% for

maximum F-measure (Fβ) and 0.8% for Mean Absolute Error (MAE) is

obtained.

2. Related work

2.1. Fully-supervised video salient object detection75

The last decade has witnessed significant improvements for fully super-

vised VSOD methods [33, 12, 10, 34]. According to how to explore tempo-

ral information, they can be divided into two types: convLSTM-based meth-

ods [12, 35, 29, 36, 37] and optical-flow-based methods [10, 11, 17, 38]. Wang

et al. [39] are the first to propose a deep learning model for VSOD. Song et80

al. [36] propose a dilated bidirectional convLSTM to learn spatio-temporal in-

formation for long sequences. Fan et al. [12] develop a saliency shift-aware con-

vLSTM to acquire temporal information. Moreover, Wang et al. [37] augment

the CNN-LSTM architecture with a supervised attention mechanism to enable

fast end-to-end saliency learning. Then, for optical-flow-based methods, Li et85

al. [10] design the motion saliency sub-network to aggregate optical flow with ap-

pearance information. In contrast to existing methodologies, CoSTFormer [40]

integrates long-local and short-global spatial-temporal contexts through the uti-

lization of two complementary transformer branches. A combination of these

two branches enables explicit modeling of spatial-temporal relationships across90

various frames. Although such approaches achieve remarkable success in VSOD,

they heavily rely on fully pixel-level annotations, which are time-consuming and

notoriously expensive. To alleviate the high reliance on per-pixel labeling, we

focus on WSVSOD with scribble annotations in this paper.
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2.2. Weakly-supervised video salient object detection95

In recent years, some works [29, 30] have explored deep learning methods

in WSVSOD. Zhao et al. [29] come up with two re-labeled scribble datasets

(DAVIS-S and DAVSOD-S) based on fixation-guided scribble annotations and

design an appearance-motion fusion module to acquire enhanced fused features

from frames and optical flows. Ma et al. [41] propose a novel two-step strategy100

for their model. In the initial step, they employ diverse strategies, including the

Itti model [42], CAM [43], super-pixel [44] and DenseCRF [45] to generate four

distinct pseudo-labels for each frame across all video datasets. Subsequently,

they introduce various loss functions, namely edge loss, pseudo-label loss, self-

supervised loss, and fusion loss, to effectively train their model using the pseudo-105

labels generated in the previous step. It can be inferred from the aforementioned

pipeline that their focus primarily lies on individual frames within a video se-

quence while neglecting the cross-frame connections. In contrast, our approach

incorporates two cross-frame heads that consider both intra-frame and cross-

frame pixel relationships. Gao et al. [30] use a transformer-based module and110

shallow features (e.g., RGB and position information) to propagate the scribble

labels to unlabeled regions for integral target predictions. However, only shallow

feature consistency is leveraged as regularization on saliency predictions. We

argue that the consistency between deep features can also be used to help mine

more comprehensive target predictions.115

2.3. Weakly-supervised salient object detection

To alleviate the cost of labeling, many works [46, 31, 47] use weakly super-

vised or unsupervised approaches to detect salient objects. Zhang et al. [46]

present the first weakly supervised SOD method where an auxiliary edge de-

tection network is designed to enforce boundaries of predicted saliency. Yu et120

al. [31] design an AGGM module and a self-consistent mechanism to regularize

the saliency map of different scales. Piao et al. [44] use class activation scores

from class activation maps (CAMs) as clues to avoid the negative impacts of

a single label. Gao et al. [48] use a transformer-based model and propose a
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non-salient object suppression technique to explicitly filter out the non-salient125

objects with point annotation as supervision. Moreover, Li et al. [49] introduce

a mutual information optimization method to explicitly model the contribution

of RGB and depth for weakly-supervised RGB-D saliency detection. However,

such methods cannot be directly used in VSOD due to the lack of temporal

information. In this paper, scribble-supervised VSOD is studied.130

3. Methodology

3.1. Overview

For simplicity, we explain our method through one video sequence in the

training dataset, which is denoted as I = {In}Nn=1, where In is the sequence

frame and N is the total number of the sequence. Scribble annotations are135

only provided in the training dataset. The overall framework of our approach is

illustrated in Fig. 2. We first generate a pseudo current frame Ĩn by combining

the previous frame In−1 and the optical flow OFn−1. Then, the pseudo current

frame Ĩn and current frame In are input to the encoder for deep feature maps

f̃n and fn respectively. Next, the deep features are transmitted to the video140

saliency network [29] to predict the corresponding video saliency maps ỹn and

yn. After that, the pseudo current frame Ĩn, current frame In, the deep features

(f̃n and fn) and predictions (yn−1 and yn) are sent to our cross-frame feature

regularization head (Sect. 3.2.) and cross-frame saliency regularization head

(Sect. 3.3) to conduct our CFMR training process. Meanwhile, the cross-frame145

saliency consistency (CSC) loss (Sect. 3.4), which optimizes the consistency

between the predicted ỹn and yn, is applied as assistant supervision.

3.2. Cross-frame Feature Regularization Head

As mentioned before, it is difficult for VSOD networks to learn the ob-

ject structure information solely relying on scribble annotations. Thus, our

cross-frame feature regularization head aims to realize the feature consistency

regularization on saliency predictions as auxiliary supervision. With this reg-

ularization, the scribble supervision information can be expanded to unlabeled
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Figure 2: Our cross-frame feature-saliency mutual reinforcing (CFMR) training process and

two regularization heads. First, a pseudo current frame Ĩn is generated using the previous

frame In−1 and the optical flow OFn−1. Then, the pseudo current Ĩn, current frame In are

input to an encoder for deep semantic features f̃n and fn. The features are transmitted to

the video saliency network (VSNET) to predict the corresponding saliency prediction ỹn and

yn. Our cross-frame feature regularization head uses intra-frame and cross-frame feature con-

sistency to help supervise saliency predictions. Our cross-frame saliency regularization head

uses image information and saliency maps to supervise feature maps in turn. Additionally,

Lcsc is deployed to assist the two heads.

pixels to involve more pixels for training. Specifically, we design a CFR loss in

our cross-frame feature regularization head based on the assumption that pixels

of the current frame sharing similar features should have similar saliency values,

and if pixels from different frames share similar features, they should also have

similar saliency values. In this way, both spatial and temporal contexts can be

harvested for abundant feature consistency relationships. However, it is diffi-

cult to obtain position relationships across different frames directly, we consider

projecting the previous frame to the current frame with the help of optical flow:

Ĩn = P(In−1, OFn−1), (1)
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where P(·) means the mapping process and we utilize the model from RAFT [50]

to achieve this mapping process. RAFT [50] can estimate the optical flow be-150

tween video frames by creating multi-scale 4D correlation volumes for all pairs

of pixels, and iteratively updating a flow field through a recurrent unit that per-

forms lookups on the correlation volumes. By leveraging the excellent optical

flow estimation capability of RAFT [50], a high quality pseudo current frame

can be generated. Then, the generated pseudo current frame Ĩn, which con-155

tains the original feature information of the previous frame In−1, is used for the

cross-frame consistency in the following operations. With this mapping process,

the moving position relationship can be well utilized for temporal information,

and the feature consistency regularization between adjacent frames can be easily

obtained.160

We follow previous work [31] to define the pair-wise saliency similarity as:

Dy(yi, yj) = ∥yi − yj∥, (2)

where ∥ · ∥ is the L1 distance, yi and yj are the saliency prediction of pixel i and

j in the current frame.

For computation efficiency, instead of computing the pair-wise relationship

between all pixel pairs, we choose to compute the similarity of a reference point

i with its adjacent points in a k×k kernel. For simplicity, we remove the super-

script n in the following equations. Then, our cross-frame feature regularization

loss (Lcfr) is in the form of:

Lcfr =
1

M

M∑
i=1

∑
j∈Wi

(K1 (i, j)Dy(yi, yj))︸ ︷︷ ︸
current−frame

+
1

M

M∑
i=1

∑
j∈W̃i

(K2 (i, j)Dy(yi, ỹj))

︸ ︷︷ ︸
cross−frame

,

(3)

where Wi means the region belonging to a k × k kernel around pixel i. W̃i

means the same position region in the pseudo current frame. M means the
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total number of pixels of the frame. ỹj is the saliency prediction of pixel j in165

the pseudo current frame. K1(·) and K2(·) are the corresponding current-frame

feature consistency and cross-frame feature consistency functions.

Considering the network cannot provide accurate saliency predictions ini-

tially, we also use shallow information (i.e., RGB and position information)

to help establish the feature consistency to supervise the saliency consistency.

Therefore, the current feature consistency function follows the definition:

K1(i, j) = e
−∥pi−pj∥2

2δ2p · e
−∥ri−rj∥2

2δ2r · e
−∥fi−fj∥2

2δ2f , (4)

where ∥ · ∥2 denotes the squared L2 distance, pi and pj denote the position of

pixel i and pixel j. Variables ri and rj denote the RGB information of pixel

i and j, and fi and fj denote the deep semantic features of pixel i and j.170

Variables {δp, δr, δf} are the hyper-parameters for the scale of the three pair-

wise similarities and are set to {6, 0.1, 50}. Note that the features are regarded

as non-gradient values here. In this way, Eq. (4) can help leverage shallow

feature consistency and deep feature consistency within the current frame.

Similarly, the cross-frame feature consistency function is defined as:

K2(i, j) = e
−∥pi−p̃j∥2

2δ2p · e
−∥ri−r̃j∥2

2δ2r · e
−∥fi−f̃j∥2

2δ2f , (5)

where p̃j , r̃j and f̃j are position, RGB information and feature for pixel j in the175

generated pseudo current frame. In Eq. (5), by choosing to compute the pair-

wise similarity between pixel i and pixels around the same position of pixel i but

in the pseudo current frame, the temporal information can be taken advantage

of for more comprehensive feature consistency.

Our cross-frame feature regularization loss (Lcfr) enforces similar pixels in180

the same kernel region to share consistent saliency scores. It can further assist

scribble annotations by propagating labeled points to the whole frame during

training and help the network learn integral and smooth salient regions with

limited labels. Moreover, with the auxiliary of both the actual current frame

and the pseudo current frame, our Lcfr can help the network learn in both185

spatial and temporal perspectives.
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3.3. Cross-frame Saliency Regularization Head

Our cross-frame saliency regularization head is designed to improve the net-

work’s ability to learn precise feature consistency, as the third column of Fig. 1

(c) shows that much noise still persists in the deep features. To suppress the

noise, we design a cross-frame saliency regularization loss using saliency pre-

dictions as pseudo-supervision signals to help CFR loss with correct feature

consistency. Similar to our CFR loss, we argue that pixels from the same or

different frames sharing similar saliency values tend to have similar features.

We define the pair-wise feature consistency as:

Df (fi, fj) = ∥fi − fj∥, (6)

where fi and fj are the feature vectors of pixel i and pixel j in the current

frame.

We experimentally find that trivially using all the predicted saliency values

from adjacent frames will cause performance degeneration. Thus, we only collect

pixels with confident saliency values both in the foreground and background to

help provide the cross-frame saliency consistency as follows:

Bn
f = {pixel i| i ∈ In, yi > τf}, (7)

Bn
g = {pixel i| i ∈ In, yi < τg}, (8)

where Bn
f is the set of pixels with confident saliency values in the foreground190

and Bn
g is the set of pixels with low saliency values in the background. τf and

τg are hyper-parameters.

Selected pixel set Bn is the union of sets Bn
f and Bn

g .

Bn = Bn
f

⋃
Bn

g , (9)

Then, similar to CFR loss, our cross-frame saliency regularization loss (Lcsr)

11



for a reference pixel i with a region of k × k kernel can be defined as:

Lcsr =
1

M

M∑
i=1

∑
j∈Wi

(K ′
1 (i, j)Df (f

n
i , f

n
j ))︸ ︷︷ ︸

current−frame

+
1

|Bn|
∑
i∈Bn

∑
j∈Ŵ ′

i

(K ′
2 (i, j)Df (f

n
i , f

n−1
j ))

︸ ︷︷ ︸
cross−frame

,

(10)

where K ′
1(·) and K ′

2(·) are the corresponding current-frame saliency consistency

and cross-frame saliency consistency functions. Here Ŵ ′
i means the pixels that

satisfy the following condition:

Ŵ ′
i = Ŵi

⋂
Bn−1, (11)

where Ŵi means the region with the same position as Wi in the previous frame.

The current-frame saliency consistency function is of the form:

K ′
1(i, j) = e

−
∥pn

i −pn
j ∥

2

2δ′2p · e
−

∥rni −rnj ∥2

2δ′2r · e
−

∥yn
i −yn

j ∥2

2δ′2y ,
(12)

where pi and pj denote the position, ri and rj denote the RGB information, yi

and yj denote the predicted saliency values in the current frame, and {δ′p, δ′r, δ′y}195

are the hyper-parameters for the scale of the three kinds of pair-wise similar-

ities and are set to {6, 0.1, 0.1}. In Eq. (12), we also use shallow features to

complement predicted saliency consistency.

The cross-frame saliency consistency function is defined as:

K ′
2(i, j) = e

−
∥pn

i −pn−1
j ∥2

2δ′2p · e
−

∥rni −rn−1
j ∥2

2δ′2r · e
−

∥yn
i −yn−1

j ∥2

2δ′2y ,
(13)

where rn−1
j and yn−1

j are the previous frame’s RGB information and saliency

predictions. With Eq. (13), the feature consistency can also be supervised with200

temporal information.

Overall, the cross-frame feature regularization and cross-frame saliency reg-

ularization heads in our CFMR can be reinforced by each other. Specifically,

better saliency supervision provides a more accurate feature relationship for the

12



cross-frame saliency regularization head. On the other hand, a more accurate205

feature relationship facilitates to the production of better saliency predictions

in turn. Thus, with such a CFMR training process, the network can learn more

comprehensive object structure information for better final predictions.

3.4. Cross-frame Saliency Consistency Loss

To realize the cross-frame feature regularization in our cross-frame feature

regularization head, we use the optical flow to map the previous frame to a

pseudo current frame for temporal consistency. However, noise often exists in

the optical flow, and the network will be misguided in the wrong direction.

Therefore, we design a cross-frame saliency consistency (CSC) loss to regularize

the training process based on the assumption that the predicted saliency results

of the pseudo current frame and actual current frame should be consistent. Our

CSC loss (Lcsc) can be defined as:

Lcsc =
1

M

∑
γ
1− SSIM(y, ỹ)

2
+ (1− γ)|y − ỹ|, (14)

where y and ỹ are the predicted saliency maps of the actual current frame and210

the pseudo current frame, respectively. M is the total number of pixels in one

frame. SSIM(·) denotes the single scale SSIM [51] to measure the structure con-

sistency of the two predicted saliency maps. γ is a hyper-parameter to balance

our CSC loss. With Eq. (14), the network can encode more accurate tempo-

ral information for object structure information and generate better features of215

both the actual current frame and the pseudo current frame.

3.5. Loss Function

We follow the WSVSOD pipeline during the network training process [29,

30]. First, we pretrain the model on a static scribble annotated dataset S-

DUTS [46], partial cross-entropy loss Lpce is used during this process, which

can be mathematically expressed as follows:

Lpce =
∑
i∈Ỹ

−ŷi log yi − (1− ŷi) log(1− yi), (15)

13



where ŷ denotes the groundtruth, y is the predicted values and Ỹ is the set of

labeled pixels via scribble annotations. To learn appearance-sensitive features,

two additional losses: gated structure-aware loss Lg and edge loss Le proposed

in [46] are also used. The pretrain loss Lpretrain is a combination of them:

Lpretrain = Lpce + Lg + Le, (16)

Then, the network will be finetuned on scribble-labeled video datasets, namely

DAVIS-S and DAVSOD-S [29]. The overall loss Lfinetune is defined as:

Lfinetune = Lpretrain + Lcfmr. (17)

Note here, Lcfmr is the final loss function of our CFMR training process and

is defined as:

Lcfmr = λ1Lcfr + λ2Lcsr + λ3Lcsc, (18)

where λ1, λ2, λ3 are loss weights.

4. Experiment

4.1. Implementation Details220

We use the previous scribble-annotated WSVSOD prediction network in [29]

as our backbone. The hyper-parameters {λ1, λ2, λ3} in Eq. (18) are set to {0.05,

0.01, 0.05}, respectively. The kernel sizes in our CFR loss and CSR loss are set to

5. The γ = 0.85 in Eq. (14) and the threshold to choose confidence pixels {τf , τg
} are set to {0.9, 0.1}. We use Adam as an optimizer to pretrain our model for 30225

epochs first and then finetune our model for 25 epochs. The learning rate is set

to 1e-4 for both the pretrain and finetune processes. The batch size is set to one,

and the length of frames per batch is set to four. We conduct training on DAVIS-

S [29] and DAVSOD-S [29]. Subsequently, to assess the generalization capability

of our proposed method, we performed testing on six publicly available datasets230

separately, namely VOS [52], DAVIS [53], DAVSOD [12], FBMS [54], SegV2 [32]

and ViSal [55]. During testing, we uniformly resize each frame to 256 × 256

14



Table 1: Comparison with previous state-of-the-art methods on six widely used benchmarks.

The best results in weakly supervised methods are marked in red and the second-best ones

in blue. ↑ & ↓ denote that larger and smaller are better, respectively. ‘*’ denotes DenseCRF

is utilized in the method. The epoch for the VOS dataset is set to 20 since it will overfit the

noise caused by the low quality of optical flow.

Metric

Fully Supervised Methods Weakly Supervised Methods

EGNet

[56]

SCRN

[57]

PoolNet

[58]

FCNS

[39]

PDB

[36]

MGA

[10]

RCRNet

[59]

SSAV

[12]

PCSA

[60]

TENet

[11]

DCFNET

[61]

SSOD

[46]

GF

[55]

SAG

[62]

WSVSOD

[29]

CFMR

(Ours)

MPLA−Net∗

[41]

CFMR∗

(Ours)

SegV2

Sα ↑ 0.845 0.817 0.782 - 0.864 0.880 0.843 0.849 0.866 0.868 0.893 0.733 0.699 0.719 0.804 0.831 0.836 0.848

Fβ ↑ 0.774 0.760 0.704 - 0.808 0.829 0.782 0.797 0.811 0.810 0.837 0.664 0.592 0.634 0.738 0.786 0.778 0.802

MAE↓ 0.024 0.025 0.025 - 0.024 0.027 0.035 0.023 0.024 0.025 0.014 0.039 0.091 0.081 0.033 0.025 0.032 0.022

DAVIS

Sα ↑ 0.829 0.879 0.854 0.794 0.882 0.910 0.886 0.892 0.902 0.905 0.914 0.795 0.688 0.676 0.828 0.851 0.855 0.867

Fβ ↑ 0.768 0.847 0.815 0.708 0.855 0.892 0.848 0.860 0.880 0.881 0.900 0.734 0.569 0.515 0.779 0.814 0.814 0.828

MAE↓ 0.057 0.029 0.038 0.061 0.028 0.023 0.027 0.028 0.022 0.017 0.016 0.044 0.100 0.103 0.037 0.031 0.033 0.028

DAVSOD

Sα ↑ 0.719 0.745 0.702 0.657 0.698 0.741 0.741 0.755 0.741 0.779 0.755 0.672 0.553 0.565 0.705 0.720 0.723 0.737

Fβ ↑ 0.604 0.652 0.592 0.521 0.572 0.643 0.654 0.659 0.656 0.697 0.660 0.556 0.334 0.37 0.605 0.626 0.658 0.646

MAE ↓ 0.101 0.085 0.089 0.129 0.116 0.083 0.087 0.084 0.086 0.070 0.074 0.101 0.167 0.184 0.103 0.089 0.091 0.085

FBMS

Sα ↑ 0.878 0.876 0.839 0.794 0.851 0.908 0.872 0.879 0.868 0.916 - 0.747 0.651 0.659 0.778 0.783 - 0.798

Fβ ↑ 0.848 0.861 0.830 0.759 0.821 0.903 0.859 0.865 0.837 0.915 - 0.727 0.571 0.564 0.786 0.787 - 0.802

MAE↓ 0.044 0.039 0.060 0.091 0.064 0.027 0.053 0.040 0.040 0.024 - 0.083 0.160 0.161 0.072 0.069 - 0.065

ViSal

Sα ↑ 0.946 0.948 0.902 0.881 0.907 0.940 0.922 0.942 0.946 0.949 0.952 0.853 0.757 0.749 0.857 0.864 0.890 0.883

Fβ ↑ 0.941 0.946 0.891 0.852 0.888 0.936 0.907 0.938 0.941 0.949 0.953 0.831 0.683 0.688 0.831 0.848 0.881 0.869

MAE↓ 0.015 0.017 0.025 0.048 0.032 0.017 0.026 0.021 0.017 0.012 0.010 0.038 0.107 0.105 0.041 0.039 0.033 0.035

VOS

Sα ↑ 0.793 0.825 0.773 0.76 0.818 0.791 0.873 0.786 0.828 0.845 - 0.682 0.615 0.619 0.750 0.751 0.768 0.768

Fβ ↑ 0.698 0.749 0.709 0.675 0.742 0.734 0.833 0.704 0.747 0.781 - 0.648 0.506 0.482 0.666 0.677 0.721 0.696

MAE↓ 0.082 0.067 0.082 0.099 0.078 0.075 0.051 0.091 0.065 0.052 - 0.106 0.162 0.172 0.091 0.092 0.084 0.088

and then feed it to the model to predict the final saliency maps without any

post-processing following previous work [29]. Additionally, we also provide the

results utilizing the DenseCRF [45] method in Tab. 1 for comparison purposes.235

The average processing time for analyzing a single frame within a sequence is

0.041s. All the experiments are implemented on one 24G NVIDIA TITAN RTX.

4.2. Dataset and Evaluation Metrics

Datasets. We follow the WSVSOD [29, 30] pipeline during the network

training process using the same datasets. The model is first pretrained on240

static scribble datasets S-DUTS [46], and then finetuned on DAVIS-S [29] and

DAVSOD-S [29]. We evaluate our model on six popular benchmarks: DAVSOD [12],

VOS [52], DAVIS [53], ViSal [55], SegV2 [32], FBMS [54] to verify our method.

Evaluation Metrics. We use three metrics to evaluate the model: structure-

based metric Sα, maximum F-measure (Fβ), and Mean Absolute Error (MAE).
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Figure 3: Qualitative comparison with different methods. MGA [10], SSAV [12], PCSA [60],

TENet [11], DCFNET [61] are fully supervised methods, WSVSOD [29] and our CFMR are

weakly supervised methods.

Sα [63] focuses on evaluating the structure of saliency maps and is defined as:

Sα = ηSo + (1− η)Sr, (19)

where η is usually set to 0.5, So is object-aware similarity and Sr is region-aware

similarity [63]. The F-measure considers both precision and recall, which are

combined as:

Fβ =
(1 + β2)× Precision×Recall

β2 × Precision+Recall
, (20)

where β2 is set to 0.3 [64].

Quantitative Comparison. In Tab. 1, we present the results of our245

method and the benchmark methods. It is evident that our method outper-

forms all other weakly supervised or unsupervised methods by a large margin

on six datasets, except for MPLA-Net [41]. However, it is important to note

that MPLA-Net [41] incorporates post-processing techniques, such as Dense-

CRF [45] and utilizes additional models such as the Itti model [42], CAM [43],250

super-pixel [44], to generate refined pseudo labels and eliminate noisy regions.

In contrast, our method does not rely on any post-processing techniques or does
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not employ additional models. Notably, when we integrate the DenseCRF [45]

post-processing approach, our method achieves superior results compared to

MPLA-Net on most datasets as illustrated in Tab. 1. Moreover, MPLA-Net255

is directly trained using five video datasets, namely SegV2 [32], ViSal [55],

DAVIS [53], VOS [52], and DAVSOD [12], whereas our model undergoes initial

pretraining on the image dataset S-DUTS [46] followed by finetuning on two

video datasets, namely DAVIS-S [29] and DAVSOD-S [29] following previous

work [29]. Therefore, the domain gap between these video datasets affects the260

results in ViSal and VOS of our method. Our method also demonstrates com-

petitive performance even compared to some fully supervised methods, such as

FCNS [39], EGNet [56] on DAVIS and DAVSOD datasets.

Qualitative Comparison. We demonstrate some visualization samples

of our predicted video saliency maps in Fig. 3. We choose five representative265

frames, including various scenes from two popular datasets, DAVIS [53] and

DAVSOD [12]. It is obvious that ours are smoother than the previous best

weakly supervised method WSVSOD [29], even in the case of noisy background

like row 3 in Fig. 3. Moreover, our method can predict better video saliency

maps than previous state-of-the-art fully supervised methods (SSAV [12], PCSA [60],270

TENET [11]) in the case of complicated scenes like row 4 and 5 in Fig. 3.

4.3. Ablation Studies

In this section, we conduct our ablation studies on the DAVIS and DAVSOD

datasets and use training with only Lpretrain as our baseline. In Tab. 2, we first

conduct experiments on different loss functions of our method. Our method275

obtains the best performance using all the losses compared to the baseline. As

listed in Tab. 2, each proposed loss function is crucial for our CFMR. Our Lcfr

can obtain a gain of 1.3% for Sα and 2.4% for Fβ compared to the baseline and

Lcsr can obtain a gain of 0.9% for Sα and 1.6% for Fβ compared to the baseline

on DAVIS dataset. Then, a combination of them can improve the performance280

by 2.1% for Sα and 3.5% for Fβ . Finally, with the help of our Lcsc, we can

obtain the performance of 0.851 for Sα and 0.814 for Fβ , which is the new
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Table 2: Ablation study for the influence of different loss functions. ‘Base.’ means using

baseline.

Base. Lcfr Lcsr Lcsc

DAVIS DAVSOD

Sα Fβ Sα Fβ

✓ 0.827 0.772 0.701 0.599

✓ ✓ 0.840 0.796 0.713 0.618

✓ ✓ 0.836 0.788 0.708 0.607

✓ ✓ ✓ 0.848 0.807 0.717 0.622

✓ ✓ ✓ ✓ 0.851 0.814 0.720 0.626

Table 3: Analysis of performances with different consistency parts of Lcfr and Lcsr losses on

DAVIS and DAVSOD datasets.

Base. Cur-fra Cro-fra
DAVIS DAVSOD

Sα Fβ Sα Fβ

✓ 0.827 0.772 0.701 0.599

✓ ✓ 0.837 0.791 0.710 0.613

✓ ✓ 0.834 0.785 0.706 0.609

✓ ✓ ✓ 0.840 0.796 0.713 0.618

(a) Ablation study for different parts of Lcfr

on DAVIS and DAVSOD datasets. ‘Base.’

means using baseline. ‘Cur-fra’ means using

only the current-frame consistency in Lcfr and

‘Cro-fra’ means using only the cross-frame con-

sistency in Lcfr.

Base. Cur-fra Cro-fra
DAVIS DAVSOD

Sα Fβ Sα Fβ

✓ 0.827 0.772 0.701 0.599

✓ ✓ 0.833 0.783 0.707 0.604

✓ ✓ 0.831 0.779 0.705 0.605

✓ ✓ ✓ 0.836 0.788 0.708 0.607

(b) Ablation study for different parts of Lcsr

on DAVIS and DAVSOD datasets. ‘Base.’

means using baseline. ‘Cur-fra’ means using

only the current-frame consistency in Lcsr and

‘Cro-fra’ means using only the cross-frame con-

sistency in Lcsr.

state-of-the-art performance and such performance illustrates the effectiveness

of our CFMR. The results obtained on the DAVSOD dataset further illustrate

the similar effectiveness of various loss functions employed in our method.285

Impact of different consistency parts on CFR and CSR losses. In

Tab. 3a, we conduct an ablation study for the influence of the current-frame

and cross-frame parts of our CFR loss compared to the baseline. Specifically,

the performance is increased by 1.0% for Sα and 1.9% for Fβ with just the

current-frame part on the DAVIS dataset. On the other hand, with only the290

cross-frame part, there are increments of about 0.7% for Sα and 1.3% for Fβ

on the DAVIS dataset. This phenomenon can prove the effectiveness of these
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Table 4: Analysis of performances with different regularization information of Lcfr and Lcsr

losses on DAVIS and DAVSOD datasets.

Base. Shallow Deep
DAVIS DAVSOD

Sα Fβ Sα Fβ

✓ 0.827 0.772 0.701 0.599

✓ ✓ 0.836 0.790 0.709 0.614

✓ ✓ 0.833 0.782 0.705 0.608

✓ ✓ ✓ 0.840 0.796 0.713 0.618

(a) Ablation study for the impact of differ-

ent regularization information on Lcfr loss.

‘Base.’ means using baseline. ‘Shallow’

means using shallow features. ‘Deep’ means

using deep features.

Base. Shallow Saliency
DAVIS DAVSOD

Sα Fβ Sα Fβ

✓ 0.827 0.772 0.701 0.599

✓ ✓ 0.833 0.785 0.706 0.604

✓ ✓ 0.830 0.781 0.704 0.604

✓ ✓ ✓ 0.836 0.788 0.708 0.607

(b) Ablation study for the impact of differ-

ent regularization information on Lcsr. ‘Base.’

means using baseline. ‘Shallow’ means using

shallow feature values in Lcsr. ‘Saliency’ means

using saliency predictions in Lcsr.

two parts. Finally, combining these two parts can improve the final results to

0.840 for Sα and 0.796 for Fβ , which verifies that the two parts can leverage

each other for better performance. The results achieved through the DAVSOD295

experiments exhibit a similar trend to those derived from the DAVIS dataset,

which further reinforces the effectiveness of the components encompassing the

Lcfr loss, namely the current-frame and cross-frame consistency parts.

We can acquire a similar trend of results in CSR loss from Tab. 3b, the

performance is increased by 0.6% for Sα and 1.1% for Fβ with just the current-300

frame part on the DAVIS dataset. On the other hand, with only the cross-frame

part, there are increments of about 0.4% for Sα and 0.7% for Fβ on the DAVIS

dataset. This phenomenon can prove the effectiveness of these two parts in

CSR loss. Finally, combining these two parts can improve the final results to

0.836 for Sα and 0.788 for Fβ , which verifies that the two parts can leverage305

each other for better performance. The results from DAVSOD dataset provide

further evidence supporting the efficacy of both the current-frame and cross-

frame consistency components within the Lcsr loss function.

Impact of different regularization information on Lcfr and Lcsr

losses. Tab. 4a shows the influence of shallow and deep features in our CFR310

loss. It can be found that shallow features can bring increments of 0.9% for Sα
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Table 5: Ablation study for SSIM in the Lcsc loss.

SSIM
DAVIS DAVSOD

Sα Fβ Sα Fβ

w/o 0.844 0.814 0.717 0.625

w/ 0.851 0.814 0.720 0.626

and 1.8% for Fβ on the DAVIS dataset. Deep features can improve by 0.6% for

Sα and 1.0% for Fβ on the DAVIS dataset. Finally, their combination acquires

the highest results, illustrating that the balance of shallow and deep features

can provide better regularization for WSVSOD. Moreover, the results obtained315

from the DAVSOD dataset offer additional support for the effectiveness of both

shallow and deep features in the Lcfr loss function.

We also conduct experiments on the influence of shallow feature and saliency

values of our CSR loss by comparing with the results of adding different reg-

ularization information separately to the baseline as shown in Tab. 4b. It can320

be found that with only saliency prediction for regularization, the improvement

is limited for Sα but can improve the Fβ by 0.9%. This may be caused by

the noise in the initial predictions, which may lead the network trained in the

wrong direction. However, with the balance between shallow information and

saliency predictions, we can obtain the highest results of 0.836 for Sα and 0.788325

for Fβ on the DAVIS dataset. This illustrates that leveraging shallow informa-

tion and saliency predictions can help regularize the feature consistency to help

the network mine more comprehensive target features. In addition, the results

derived from the analysis of the DAVSOD dataset provide additional evidence

indicating the effectiveness of shallow features and saliency values within the330

Lcsr loss function.

Impact of SSIM. We also evaluate the impact of SSIM in the CSC loss by

just taking SSIM away from Eq. (14), and the results in DAVIS and DAVSOD

datasets are shown in Tab. 5. It can be seen that SSIM can help provide better

prediction structural consistency.335

Impact of kernel size. We conduct the ablation study on the choice of k in
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Table 6: Ablation study for the impact of kernel size k in Lcfr loss and Lcsr loss.

kernel size Sα Fβ

3 0.838 0.801

5 0.848 0.807

7 0.842 0.804

Table 7: Analysis of performances with different thresholds in the Lcsr loss on DAVIS.

τf Sα Fβ

0.8 0.832 0.782

0.9 0.836 0.788

0.95 0.833 0.784

(a) Ablation study for τf

in the Lcsr loss.

τg Sα Fβ

0.05 0.833 0.785

0.1 0.836 0.788

0.2 0.835 0.787

(b) Ablation study for τg

in the Lcsr loss.

our CFR loss and CSR loss in Tab. 6. We find that both a smaller k and a larger

k will lead to a slight decline in performance compared with k = 5. Additionally,

a larger k will take more computing resources. Thus, we choose k = 5 for our

CFMR to aggregate sufficient consistency relationship with efficiency.340

Impact of τf and τg. In the Lcsr loss, τf and τg serve as threshold values

that establish upper and lower bounds for selecting pixels with confident saliency

values both in the foreground and background to help provide the cross-frame

saliency consistency. The results are shown in Tab. 7a and Tab. 7b. In Tab. 7a,

the highest result is obtained when τf is set to 0.9. A higher τf will filter out345

some pixels belonging to the saliency object and a lower τf may incorporate

background noise. Both of them result in a decline in the performance. The

results presented in Tab. 7b indicate the impact of τg in the Lcsr loss. Compared

to τf , τg is less sensitive, and the optimal performance is attained when τg is

set to 0.1.350

Limitation and Failure Cases. In this section, we discuss the limitations

and failure cases of our proposed method as illustrated in Fig. 4. As can be

seen from the figure, our method is capable of accurately locating the salient

object in a video frame. However, in situations where there are occlusions,
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Frame Our result Groundtruth

Figure 4: Visualization of failure cases. In occlusion situations, our method may encounter

difficulties in precisely delineating the boundaries of occluded regions, which can result in

inaccurate salient object prediction.

our method may encounter challenges in effectively delineating the boundary of355

occlusion positions. This is indeed a significant challenge in the VSOD task,

and as a future direction, we intend to explore more approaches to alleviate

such a problem.

5. Conclusion

In this paper, we propose a CFMR training process realized by a cross-frame360

feature regularization head and a cross-frame saliency regularization head to

mitigate the issue of incomplete object structure caused by scribble annota-

tions. A CFR loss is designed in our cross-frame feature regularization head to

assist scribble annotations for better saliency predictions. Meanwhile, consid-

ering deep features fail to provide sufficient consistency due to scribble anno-365

tations, we design a CSR loss in our cross-frame saliency regularization head

to promote feature consistency quality by using saliency maps as supervision.

In this way, the mutual interaction of these two heads can reinforce the net-

work to learn comprehensive object structure information in a more accurate

direction. Extensive experiments illustrate our method outperforms the existing370

state-of-the-art WSVSOD method.
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