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1. Methods1

1.1. Method of parameter estimation2

We estimate model parameters using a grid search optimisation method.3

Let parameter space P = (α, β, κ) ∈ R3
+. To reduce the search space, we use4

coarse grained grid searches and migration path length (derived from exper-5

imental measurements of cell speed, found here: [1]) to determine parameter6

boundaries within which migration lengths are, for this data-set, realistic.7

For each component of P , we define a lower bound P1 = (α1, β1, κ1) and8

an upper bound Pn = (αn, βn, κn), giving an interval within which to search9

e.g. [α1, αn]. We then discretise the interval into a finite set of m uniformly10
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spaced points producing a ‘grid’ of m3 points over which to calculate an ob-11

jective function, keeping m large whilst maintaining reasonable computation12

time [2].13

We define our objective function as the nondimensional error function ε14

which, for a given parameter set Pa,b,c = (αa, βb, κc), is calculated by Eq.15

(1).16

ε =
N∑
i=1

(θi;sim − θi;exp)2

θ2i;exp
, (1)17

where θi;exp is the ith experimentally derived metric and θi;sim the ith simu-18

lated metric. N is total number of metrics. The goal is to minimise ε within19

our bounded discretised parameter space.20

To illustrate the searching process algorithmically, for a given topography21

T1 and parameter set e.g. Pa,b,c = (αa, βb, κc), we initiate a large number of22

model simulations (chosen arbitrarily but fixed, e.g. 1 × 103) and calculate23

migration metrics for the whole population of cells, each metric giving a dis-24

tribution for the population. For this study, we use orientation angle, θ(◦),25

and migration speed, s (µm/h) - for respective definitions see main article26

Methods 2.2, Eq. (4)-(6). We then use distribution statistics derived from27

experimental study and model simulations to obtain a value for ε, which28

is stored. We then alter the parameter set, e.g. Pa,c,c = (αa, βc, κc), and29

initiate a new simulation, iterating systematically in this manner through a30

predefined range for each parameter. A flow chart illustrating the algorith-31

mic approach is given in Figure 1, where the lower and upper bounds for the32

parameter space are P1 = (α1, β1, κ1) and Pn = (αn, βn, κn) respectively.33
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Figure 1: Flow chart to illustrate the algorithmic approach chosen to conduct the param-
eter grid search for the model. The general approach taken is to hold two parameters
constant whilst iterating through one parameter range, simulating Nc cell paths and cal-
culating ε for each individual parameter set, before incrementally adjusting the originally
held parameters and repeating. To illustrate, in the initial state of the algorithm κ1 and
α1 are held constant whilst migration paths and subsequently ε are simulated for β1, ..., βn.
After the model simulation for βn, the value for α changes, from α1 to α2, with κ1 held
constant whilst we again repeat simulations for β1, ..., βn, and so on until κn is reached and
the algorithm ends. The result is a value for ε for each individual parameter combination
resulting from discretisation of the interval [P1, Pn].
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1.2. Experimental data34

1.2.1. Fibroblast migration behaviour for a linearly ridged topography with35

variable ridge density (µm-scale)36

To parametrise the model we use metric data extracted from an experi-37

mental study published in the journal Biomaterials (for details see [1]). The38

study probed NIH3T3 fibroblast migration on anisotropic substrata with39

precisely fabricated linear topographic features created using capillary force40

lithography (CFL). The method produced a surface pattern of alternating41

parallel ridges and grooves with constant depth (400nm) and ridge width42

(1µm) and variable ridge spacings from 1µm to 9.1µm, spaced in increasing43

100nm increments from densely to sparsely spaced ridges. Cells were seeded44

at low density onto this surface topography to enable individual tracking.45

Fluorescent microscopic images were taken every 15 minutes over 12 hours46

to produce a time-lapse sequence within which to track the paths each cell47

would follow through time.48

To quantify the orientation of cell movement compared to the direction of49

linear topographic surface features, at 14 hours post-culture the authors mea-50

sured the acute angle between the longest axis of the cell, the ‘polarised’ cell51

direction, and groove direction, generating a distribution of ‘polarisation an-52

gles’ for cells across the variable groove widths on the substratum. The53

authors also calculated migration speed between increments for each cell.54

Speeds for each cell were averaged, these average cell speeds were then av-55

eraged by substratum position to give a single average speed for the local56

population.57

The authors found groove-oriented migration was more pronounced in sub-58
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stratum regions of higher ridge density, prompting more linear migration59

paths and smaller standard deviations for polarisation angle distributions.60

Migration also showed a discernible preference towards intermediate groove61

widths, where average migration speed was highest.62

We use metric statistics from the study, polarisation angle standard devi-63

ation, θ∗σ (◦), and average migration speed, s∗µ (µm/h), in the grid search64

optimisation calculation to parametrise our model. In lieu of explicit data65

values, we estimate values directly from the study figures which display θ∗σ66

(◦) and s∗µ (µm/h) for flat and grooved areas of the topography using a pixel67

measurement tool. We present estimated values in Table 1.

Average groove width θ∗σ (◦) s∗µ (µm/h)

Flat (no gradient) 47 28
8.6µm 38 29
6.3µm 20 40
2.6µm 12 34

Table 1: Estimated migration metric data, θ∗σ and s∗µ, for flat and linearly ridged/grooved
(with average groove widths: 8.6µm, 6.3µm and 2.6µm) topographies from Kim et al. [1].

68
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1.3. Migration metrics69

(i) Orientation angle. In the study by Kim et al., the authors approxi-70

mate cell direction by measuring the acute angle between the long axis71

of a cell and groove direction, taken as a single measurement for each72

cell at the end of a time course, this termed the ‘polarisation angle’, θ∗.73

The values θ∗ for every cell in a given locale were accumulated to give a74

distribution of polarisation angles for different regions of the substrate,75

from which a distribution mean, θ∗µ, and standard deviation, θ∗σ, were76

calculated.77

We replicate this for the migration model by introducing an analogous78

angle metric defined as the argument between cell velocity direction79

and groove direction, termed ‘orientation angle’, θ. In-keeping with80

the computation of θ∗, we set the calculation symmetric about direc-81

tions orthogonal to groove direction L and determine the position of82

0◦ to be at both opposing groove directions L and −L. We measure83

θ with positive angles clockwise from the groove direction, keeping the84

angle range acute, −90◦ ≤ θ ≤ 90◦ (see Figure 2).85

(ii) Migration speed. The authors of the Kim et al. study calculated86

migration speed from point-to-point cell trajectories tracked through a87

time-lapse sequence, giving a sequence of point-to-point speeds for each88

cell over time (9 hours at 15 minute intervals). The sequence of speeds89

for each cell was then averaged, and cells grouped by substratum po-90

sition (average groove width) to give distributions by ‘average groove91

width’ from which an average migration speed, s∗µ, was calculated for92

each.93
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To replicate the calculation of s∗µ, we compute migration speed s from94

individual cell displacements as with orientation angles, between incre-95

ments j and j + 1 for every increment for each cell i in a given simula-96

tion, to give a distribution of migration speeds, sij,j+1, from which we97

calculate the mean migration speed, sµ.98

(iii) Mean-squared displacement (MSD). We define the MSD < D2 >99

as the squared distance travelled by each cell during time interval t,100

summed and averaged over the total number of cells Nc to migrate101

during that time interval, given by Eq. (2).102

< D2 >=
1

Nc

Nc∑
i=1

[xi(t)− xi(0)]2, (2)103

where xi(t) is the position of the cell i at time t and xi(0) is the position104

at the start of displacement.105
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Figure 2: Schematic diagram to illustrate the measurement of ‘orientation angle’, θ, for a
sample time increment. θ is measured as the argument between cell velocity v and groove
direction L or −L, dependent on the sign of the ‘vertical’ component v. The calculation
is symmetric about the directions orthogonal to groove direction L, 0◦ at both opposing
groove directions L and −L. θ is measured with positive angles clockwise from the groove
direction, in the range −90◦ ≤ θ ≤ 90◦.

1.4. Numerical implementation106

1.4.1. Topography generation107

To create linear topographies with topographic features comparable to108

those featured in the experimental study from which we extrapolate data (see109

1.2.1), we generate simulated approximations with matched linear feature110

densities using MATLAB. We then test how closely each simulated topog-111

raphy can approximate corresponding migration metrics compared to their112

matched experimental topographies during the fitting procedure.113

The general numerical approach we take to generate the topographies is114

grid-based. We define a ‘substrate’ matrix, tracing the domain boundaries115
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for the topography, and assign a ‘depth’ value to relevant indices in the ma-116

trix corresponding to ridge height. To approximate a ‘flat’ topography (i.e.117

to cell-scale, no significant physical gradients present) we idealise and assume118

no physical gradients are present on the surface, using simply a matrix with119

homogeneous depth values. To approximate linear topographies we use the120

approximation for the flat topography, and, at uniform intervals across all121

columns in the matrix, assign depth values for all indices in each selected122

column, generating linear topographic features up to the domain boundary.123

To mimic the dimensions of the experimentally produced topographies in the124

study by Kim et al. (see 1.2.1), and for simplicity, we choose only one depth125

value thereby producing a binary matrix in which one number represents126

ridge features and the other number groove features each of uniform height127

and depth respectively. To create each of the different linear topographies,128

we vary only ridge density by adjusting their spacing within the matrix.129

We assign spatial units based on fitting the model migration trajectory met-130

rics on trial surfaces to metrics from [1], adjusting dimensions as necessary131

and ensuring boundaries are large enough to accommodate the trajectory132

range. Spatial units were assigned 1×1µm2 to one matrix index. To approx-133

imate topography dimensions in the experimental study, we set ridge spacings134

on three separate topographies to two, six and nine matrix indices (corre-135

sponding to 2µm, 6µm and 9µm), ridges to one matrix index width (1µm),136

assigning a uniform depth of 0.4µm and matrix dimensions 1000 × 1000 in-137

dices (1000× 1000µm2). The result, presented in Figure 3 (a)-(c), is a set of138

three linearly organised topographies with (a) sparse, (b) intermediate and139

(c) high density linear features, with uniform width and depth features.140
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To probe in a general manner how imprecise surface processing might affect141

migration behaviour, we devise a method to progressively introduce ‘noise’ to142

already generated linear topographic features. Our approach is to incremen-143

tally perturb with additive noise the linear feature in the plane orthogonal to144

its long axis direction. The method we use is to draw new index locations for145

the ridge feature from a Gaussian distribution, the mean centred on the axis146

of the linear feature. We vary the level of ‘randomness’ around the linear147

feature with the distribution variance, ρ. When ρ = 0 the arrangement of148

surface gradients are perfectly linear without noise, increasing ρ introduces149

higher levels of randomness to the feature, making it more ‘distorted’ and150

less linear.151

We do this numerically using MATLAB’s pseudo-random number generator152

‘randn’ and round to the nearest integer for index values to assign a depth153

value. We use the same method across the three topographies shown in Fig-154

ure 3 (a)-(c) to incrementally distort their linear features, keeping the range155

for ρ consistent (rather than dependent on feature density). The result, pre-156

sented in Figure 3 (a)-(o), is a set of topographies with sparse (left column),157

intermediate (middle column) and high feature densities (right column) which158

range in organisation from parallel uniform linear features (a)-(c) (ρ = 0) to159

disordered randomly arranged features (m)-(o) (ρ = 10).160
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(a) 9µm spacing. ρ = 0. (b) 6µm spacing. ρ = 0. (c) 2µm spacing. ρ = 0.

(d) 9µm spacing. ρ = 0.2. (e) 6µm spacing. ρ = 0.2. (f) 2µm spacing. ρ = 0.2.

(g) 9µm spacing. ρ = 0.35. (h) 6µm spacing. ρ = 0.35. (i) 2µm spacing. ρ = 0.35.

(j) 9µm spacing. ρ = 0.5. (k) 6µm spacing. ρ = 0.5. (l) 2µm spacing. ρ = 0.5.

(m) 9µm spacing. ρ = 10. (n) 6µm spacing. ρ = 10. (o) 2µm spacing. ρ = 10.

Figure 3: Surface topographies generated using MATLAB, featuring sparse (left), inter-
mediate (middle) and high feature densities (right) ranging in organisation from parallel
uniform linear features (a)-(c) through increasing levels of additive feature noise, deter-
mined by distortion parameter ρ (rows), to disordered randomly arranged features (m)-(o).
Each domain is a 100× 100µm2 perspective of the topography.
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2. Results161

2.1. Parameter estimation162

To estimate individual parameter combinations for the flat topography163

we fit a polynomial function to an identified region of minima and use the164

fitted function to approximate values for β and α. We first define a re-165

gion of minima as that where the error ε is sufficiently small (we choose the166

threshold ε ≤ 0.03 to constrain each parameter space, the choice being oth-167

erwise arbitrary). We then identify mid-point locations of the region across168

β, which we interpret as approximate minima (blue regions in main article169

Figure 2 (a)) and, excluding clear outliers, fit an appropriate polynomial170

function (quartic) to the set of approximate minima using a numerical fit-171

ting tool, (MATLAB’s fit function). We see in the main article Figure 2172

(a) (blue line), the method captures the major β-α relationship present at173

the region of minima and yields reasonable approximate parametrisations for174

model output. We present the polynomial function through minima in main175

article Figure 2 (a), f̂ , in Eq. (3).176

177

f̂(β) = −6.102β4 + 11.79β3 − 5.577β2 + 2.189β − 0.1469, (3)178

where β is a model parameter, and the range f̂(β) gives an approximation179

for α at minima, over the approximate domain 0.06 < β < 1.24.180

By contrast, in main article Figure 2 (b)-(d), we see clearly identifiable pa-181

rameter combinations for β and α at given κ values for each of the linear182

topographies. This persists through ranges for κ for each of the linear to-183

pographies (results not shown). Generally, the ranges for β and α over which184
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these minima occur through κ for the linear topographies are significantly185

smaller than those for the flat topography. To estimate individual parameter186

combinations for these topographies, we constrain ε ≤ 0.025 and take the187

median β value, βη, over the resulting region of minima, choosing α at an188

arbitrary minimum for βη.189

In main article Figure 2 (b), we see minima (for which ε ≤ 0.03, arbitrarily)190

occur over the approximate ranges 0.07 < β < 0.23 and 0.003 < α < 0.1191

for the 9µm groove width topography at κ = 1. Minima persist through an192

approximate range 0.02 < κ < 10 (results not shown). In main article Figure193

2 (c) we see minima occur over the approximate ranges 0.03 < β < 0.079 and194

7.58 × 10−4 < α < 0.01 for the 6µm groove width topography at κ = 0.75.195

Minima persist through an approximate range 0.15 < κ < 5 (results not196

shown). In main article Figure 2 (d), we see minima occur over the approx-197

imate ranges 0.07 < β < 0.13 and 2 × 10−3 < α < 0.01 for the 2µm groove198

width topography at κ = 0.5. Minima persist through an approximate range199

0.15 < κ < 5 (results not shown).200
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