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Abstract
This paper proposes a decision support system (DSS) for optimizing cargo composition,
and resulting stowage plan, in a containership of a shipping company in collaboration with
en-route ports in the service. Due to considerable growth in transportation over years, an
increasing number of containers are being handled by containerships, and ports consequently.
Trade imbalances between regions and recent disruptions, such as LA/LB/Shanghai port
congestion, blocking of Suez canal, drought in Panama canal, typhoons at ports, COVID-19
restrictions and the lack- and then over-supply of empty containers, have resulted in an accu-
mulation of containers in exporting ports around the world. These factors have underscored
the urgency of sustainability and circular economy within the shipping industry. The demand
for container transportation is higher than the ship capacities in the recent times. In this regard,
it is essential for shipping companies to generate a cargo composition plan for each service
by selecting and transporting containers with relatively high financial returns, while offering
a realistic stowage plan considering ship stability, capacity limitations and port operations.
Ultimately, the selected containers should enable a ship stowage plan which keeps the ship
seaworthy obeying complex stability considerations and minimizes the vessel stay at the
ports, and port carbon emissions consequently, through efficient collaboration with en-route
ports. This study provides a bi-level programming based DSS that selects the set of contain-
ers to be loaded at each port of service and generates a detailed stowage plan considering
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revenue, stowage efficiency and quay crane operational considerations. Numerical experi-
ments indicate that the proposed DSS is capable of returning high-quality solutions within
reasonable solution times for all ship sizes, cargo contents and shipping routes, supporting
the principles of the circular economy in the maritime domain.

Keywords Stowage planning · Shipping cargo mix · Sustainable shipping · Slot allocation ·
Revenue management in shipping · Bi-level programming

1 Introduction

There has been a significant increase in the volume of world trade with an average annual
growth of 3.8% until 2018. The growth rate has dropped to 1.1% in the following year
due to the COVID-19 pandemic and after that it recovered to pre-pandemic levels in 2022.
Containerized transportation is one of the main engines of global trade since containers
are widely used to transport any means of commodity, particularly, 80% of global trade by
volume or 70%by valuewas carried by sea and handled by ports (Unctad, 2020). In 2020, 785
million twenty-foot equivalent units (TEUs) of containers were handled in container ports
worldwide Unctad (2020, p. 14). The increasing demand has driven the shipping industry to
operate larger ships, e.g. ships with more than 23,000 TEU capacity.

The increasing transport demand has also triggered fierce competition between container
liner shipping companies which in return urges companies to maximize revenues and utilize
the vessels as efficiently as possible in each service. In this scope, maximizing cargo income
in a shipping service consistently is paramount for economic sustainability as each container
type has a specific income. The pool of containers available at different ports may not be
suitable for the full utilization of the vessel. Stowage coordinators of a liner shipping company
decide cargo composition, i.e. the number and specifications of containers to be loaded from
each port from a pool of containers accumulated at the port, and generate a ship stowage
plan ensuring that the vessel is utilized to its best with respect to capacity obeying a set of
seaworthiness constraints (Pacino et al., 2011). Cargo composition, also referred as cargo
mix in some studies, impacts the ship berthing times at each port. Cargoes are (un)loaded
by quay cranes at each port. A cargo composition plan aiming to minimize the idle time of
cranes at each port would directly reduce port emissions, and contribute to environmental
sustainability as well.

Due to increasing transportation demand, supply chain disruptions (e.g., port conges-
tions, blocking of Suez canal by a ship, typhoons at ports, COVID-19 restrictions’ impact at
ports and lack- and then over-supply of empty containers worldwide), and trading imbalance
between regions, export containers accumulate at ports around the world and wait to be trans-
ported (Lee and Song, 2017). In this study, we propose a Decision Support System (DSS)
for sustainable cargo composition (cargo mix) for liner companies to maximize shipping
revenue by selecting the most appropriate set of containers to be loaded on the ship at each
port and generating a seaworthy stowage plan in collaboration with each port en-route aiming
to minimize the over-stowage and the port crane idle times (and emissions consequently).

Containerships are designed to transport containers in bays which are the crosswise areas
that divide the vessels into sections from bow to stern. A bay is composed of slots in which
containers are stowed. The basic layout of a container vessel is shown in Fig. 1. The figure
shows how containers are arranged in storage areas called bays along the entire length of the
vessel.
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Fig. 1 Layout of container vessel (source: Christensen and Pacino (2017))

The allocation of ship slot booking requests is mostly based on the first come first served
(FCFS) strategy or determined by an empirical judgment of the value of the customer. How-
ever, the severe imbalance between supply and demand in the container shipping market
which has deepened during the COVID-19 pandemic encourages large container liner ship-
ping companies to seek suitable capacity management models to improve their revenue,
especially on long-haul services. Normally, a container liner shipping company has a wide
variety of customers that can be divided into contractual customers and spot customers.
A contractual customer signs a long-term container shipping contract with the company
for a number of slots. Spot customers are small-scale customers that generally have small
container shipping demand. They include small and medium-sized enterprises, small inter-
national traders and freight forwarders. The shipping company has more leverage on spot
customers in cargo composition decisions. Since both high-profit (e.g. long haul and reefer
containers) and low-profit containers are carried on the same ship, these two types of con-
tainers compete for the ship capacity. Therefore, the shipping company determines the cargo
composition in each service considering container types’ revenue, ship stowage properties
and en-route port attributes. Different freight rates are applied to containers depending on
their destination ports, sizes, and types. The liner companies usually receive higher returns
from long-distance containers. Rates also change depending on the size, such as 20, 40 and
45-ft.

Selecting high-profit containers, however, does not necessarily provide a feasibile service,
higher income or a more sustainable service. The destination, type and size compositions
of containers should enable planners to produce a stowage plan that is seaworthy while
shortening ship berthing duration at ports as much as possible. Two major factors affect
the ship duration at port: Crane operations and over-stowage. When ships get alongside
the jetty, the cranes immediately start unloading and loading operations. The port operator
determines the number of assigned cranes by considering the number of containers to be
loaded/unloaded and the size of the ship. Each crane works at particular bays of the ship. The
significant criterion here is that the work cycle of all cranes should be in synchronization.
Each crane’s starting and finishing time should be close enough not to leave any crane idle
for a long time. Not complying with this criterion results in longer waiting times for ships
at the port, and consequently higher port emissions. Therefore, planners should create a
reliable and sustainable stowage plan in which the containers to be handled at that port
are homogeneously distributed along the ship enabling all cranes work in similar durations.
Meanwhile, if a container must be removed from a stack to retrieve a container underneath
it, the container being removed is said to be overstowing the container being retrieved. The
process of removing an overstowing container to retrieve a container beneath it is called
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shifting. One of the goals of stowage planning is to minimize shifting or, equivalently, to
minimize overstowage since it extends the waiting time at a port.

The main contribution of this paper is of both practical and methodological importance
for a real-life problem that liner companies face. We attempt to incorporate collaborative
features to create a realistic DSS for sustainable cargo composition for liner companies. In
particular, our modeling framework encompasses: (1) Economical return of all containers
by considering ports in a service, (2) Ship stability parameters stemmed from (un)loading of
selected containers, (3) All types of over-stow, and (4) Crane and vessel utility maximization,
and emission reduction, at each port in the service.

For this purpose, we first develop a mixed integer non-linear programming (MINLP)
formulation and a two-stage solution approach which decomposes the original problem into
two mixed integer linear programming (MILP) formulations. In the first stage, we maximize
the total revenue by determining the containers to be transported with minimal over-stow
while ensuring a balancedworkload among the cranes in the ports. In this stage, we determine
the containers that should be allocated to each bay. In the second stage, we generate a detailed
slot-assignment plan whichminimizes the overall trim-moment of the ship. The trim of a ship
can be defined by the angle by which the ship tilts in a container loading condition relative
to its baseline and calculated by the difference between its aft and fore drafts. The trimming
moment is the moment required to change the trim of the ship by one cm.

Next, we compare our two-stage solution methodology with the heuristic approaches
implemented by most liner companies for filtering out the containers with respect to their
revenue. The two data-filtering heuristics used by these companies basically aim at decreasing
the size of the planning problem by sorting and choosing the containers to be loaded at ship at
each port with respect to the net revenue gain. Our numerical results show that our proposed
two-stage solution approach is capable of delivering high-quality solutions within reasonable
times.We also show that ourmethod outperforms the commonly-used data filtering heuristics
with respect to solution quality.

The remainder of this paper is organized as follows: in Sect. 2 we provide a literature
reviewon studies related to capacitymanagement and cargo composition in shipping, stowage
planning, and ship operations at ports. The proposed DSS framework for sustainable cargo
composition is described in Sect. 3. In Sect. 4we provide basic assumptions and preliminaries
related to the problem of interest. We present the mathematical model in Sect. 5. In Sect. 6
we discuss the two-stage solution approach as well as the two container filtering-based data
pre-processing algorithms. Numerical experiments to assess the performance of the proposed
approach is reported in Sect. 7. Conclusions and recommendations for further research are
outlined in Sect. 8.

2 Literature review

Cargo composition problem can be viewed as an integration of capacity management, slot
allocation, cargo selection and stowage planning for a ship in a cyclic shipping service in
collaboration with en-route ports. Therefore, we review studies for each of these components.

2.1 Capacity management and revenuemanagement in shipping

The purpose of shipping revenue management is to maximize revenue growth for a company
by optimizing capacity/service availability and prices based on micro-level forecasting of
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customer behavior. In our work, the capacity and service availability component of revenue
management (RM) are addressed. Therefore, the focus is given on capacity management and
cargo selection in shipping services considering revenues. Meng et al. (2019) has provided
a comprehensive survey on RM in liner shipping services. They reviewed the RM studies
for container liner shipping services and identified valuable future research directions in
container shipping RM. A nested booking limit algorithm for this situation is proposed in
Zurheide and Fischer (2012). In Zurheide and Fischer (2011), a network slot allocationmodel
is proposed to determine booking limits for a liner shipping network considering different
paths in the network, transshipments between services and service segments. Later, Zurheide
and Fischer (2015) discussed three different booking acceptance strategies for liner shipping,
namely booking limits, nested booking limits (NBL) and a newly developed bid-price (BP)
strategy and evaluated their performance in a simulation study reporting that for higher levels
of demand, the NBL and BP strategies outperform a FCFS strategy. Ang et al. (2007) focused
on RM through booking acceptance under shipping capacity but without considering ship
technicalities and stability. Wang et al. (2015) proposed an algorithm for solving the tactical
seasonal liner revenue management problem for a given weekly multi-type shipment demand
pattern in a particular season. The objective is to maximize the container shipping profit (see
e.g. Brouer et al. (2018), Wong et al. (2022) for alternative objectives) for a fixed multi-type
of container demand over a shipping network in a particular season. In their study, Chen et al.
(2016) considered the empty container relocation in revenue management to find an optimal
pricing strategy.

Lee and Song (2017) reviewed the relevant studies and has demonstrated in their study that
pricing is closely related to competition issue, whereas contracting is related to cooperation
issue.Moussawi-Haidar (2014) investigated a single-leg cargo revenuemanagement problem,
in which a two-dimensional cargo capacity is sold through allotment contracts and in the spot
market. In another study Wang and Meng (2021) investigated how to determine the optimal
freight rate of spot containers for each origin and destination (OD) pairs of a shipping network
to maximize the total profit by considering uncertainties of demand volume and remaining
ship capacity (see exemplar OD pairs from tramp shipping in Fagerholt et al. (2013)). Zhao
et al. (2022) studied the assignment of container slots to specific demand types to maximize
the revenue in a shipping network. Similarly, Chen et al.. (2022) focused on container slot
exchange with revenue considerations in a shipping alliance.

2.2 Stowage planning and port operations

Ship operations addressing the efficiency of stowage plans, ship stability and port operations
related topics have attracted many researchers over the last three decades. Recent stowage
planning related studies were reviewed in Twiller et al. (2023) with a focus on ship operations
and in Iris and Pacino (2015) with a focus on container port operations. Bilican et al. (2020)
proposed a two-stage mathematical model and a heuristic algorithm for efficient multi-port
bay planning along with stability parameters such as trim and stress factors. Christensen and
Pacino (2017) proposed a matheuristic algorithm for the cargo composition problem with
block stowage. It also accounts for the draft restrictions at the visited ports and a block stowage
strategy which is the logical partitioning of the vessel into blocks. Each block is then allowed
to host only containers that have the same discharge port. This alternative way of stowing
containers is aimed at improving operations at ports. In a more recent study Christensen et al.
(2019) studied stochastic cargo composition problem with uncertain demand. They analyzed
the cargo composition needed for a liner vessel to maximize its revenue on a given service
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and presented a rolling horizon matheuristic. These studies do not consider the impact of
port operations (e.g. crane operations) on stowage planning and cargo composition unlike
our study.

To integrate port relevant factors, Pacino (2018) presented a mathematical model that
addressed crane utilization along with block stowage strategies. Azevedo et al. (2018) pro-
posed a model which integrates the 3D Stowage Planning (3DSP), crane allocation and crane
scheduling problems. To solve large scale problems, they proposed a combined solution
methodology which incorporates mathematical programming and simulation optimization
methodologies with a genetic algorithm. These stowage planning studies do not consider
the cargo selection decisions unlike our study. Sun et al. (2021) addressed vessel stability
constraints in the quay crane scheduling problem (QCSP) which is essential to improve quay
crane operations in container terminals (Iris et al., 2015). In a more recent study Lee and
Low (2022) presented a constraint programming-based model for the capacity planning of
containerships, considering several operational factors and limitations. The proposed model
seeks to minimize the number of empty TEU slots, the number of re-stows, and the number
of TEUs located in bays that are not covered by cranes.

In some studies, stowage planning is studied solely as a single-port operational problem.
Iris et al. (2018) presented the flexible containership loading problem for a single seaport
container terminal. They integrated the assignment and scheduling of yard vehicles and
container load sequencing with the assignment of specific containers to the vessel positions
as for operative stowage planning (slot planning). They assume liner shipping company
delivers a class-based stowage plan to the port operator and the port conducts the detailed
stowage plan in a collaborative way. They presented mathematical model and a heuristic
algorithm to solve the problem. There are also other studies about designing frameworks for
collaboration between supply chain members (see e.g. Liu et al. (2023)).

This study combines multi-port cargo selection, ship slot allocation and stowage planning
into a cargo composition DSS framework. To the best of our knowledge, there is no such
study that encompasses cargo composition planning, taking into account factors such as cargo
revenues, over-stowage, port crane utilization and ship stability considerations (e.g., trim,
stress factors, and GM) for a shipping route in collaboration with en-route ports. Therefore,
the proposed algorithms and DSS will facilitate the planning and fill a gap in this area.

3 Decision support system general framework

The proposed DSS consists of a two-stage structure in which two MILP formulations are
employed sequentially. In the first level of two-stage programming, the model generates
an initial cargo composition with bay plan by allocating a container to each bay on the
ship from a large pool of containers available at each port by maximizing revenue (from
selected containers’ transportation), minimizing the number of over-stowage and providing
even distribution of containers for better crane utilization (and reduced emissions) at each
port. Depending on the number of available cranes in each port, the first-stage model also
attempts to distribute the containers throughout the bays in such a way that the workload of
each crane is considerably close to each other in each port. This minimizes the idleness of
cranes, and consequently port emissions, since each crane loads/unloads similar number of
containers, thereby shortening ships duration at port. The first stage of theDSS is solved using
all available container as an input. Next, the DSS employs the second level and generates the
final cargo composition with stowage plan by re-assigning containers within their allocated

123



Annals of Operations Research

Fig. 2 General structure of the DSS

bays such that the desired ship stability and seaworthiness is ensured. Figure2 illustrates the
data inputs, decisions, objectives and information flow in the DSS environment.

The developed DSS is designed to run in a cloud environment. The algorithm starts with
the generation of transportation matrix where all available containers of different properties
can be grouped based on their origin and destination ports, type (dry or reefer), size (20-
ft, 40-ft) and their revenue. Transportation matrix includes all the container data currently
available at each port at the time of the model implementation.

4 Assumptions and preliminaries

We now provide key assumptions and preliminaries on concepts related to our problem
description.

4.1 Key assumptions

The problem in this paper seeks to determine the containers to be chosen based on capacity
of the ship. A containership’s cargo space is divided into sections called bays, and each bay
is divided into an on deck and a below deck part by a number of hatch-covers, which are flat,
leak-proof structures. Each sub-section of a bay consists of a row of container stacks divided
into slots that can hold a 20 feet container. A containership transports its cargo between
several ports denoted by i, j ∈ I. Assuming that a ship starts its service from port 1, all
containers bound for the next ports are loaded. At the second port, it discharges all containers
bound for the second port and loads containers to be transported to subsequent ports. This
study can easily address out-of-region demands (e.g. from Asia to Europe), where discharge
is dominant mode in the destination region. Shortly after the ship‘s arrival to the port, a
specific number of cranes that were determined before, are assigned to the ship depending
on the length of the ship and the total number of containers to be loaded and unloaded at the
designated port. Therefore, it is highly likely that there might be different number of cranes

123



Annals of Operations Research

Fig. 3 The trim and trimming moment concepts (source: Bilican et al. (2020))

available at each port. In our model, we respect this flexibility and assume that the number
of cranes at each port may vary.

Considering crane utilization modeling for ports in service, bays are assumed to be dis-
tributed evenly among cranes. In other words, each crane is assigned to a specific part of the
ship such that they work independently on the bays within their segment. In our modeling
framework, one of the objectives is to end up with a balanced workload among the cranes by
assigning an approximately equal number of containers to be loaded and unloaded.

4.2 Preliminaries on container operations and ship characteristics

4.2.1 Trim

The trim occurs when the bow or the aft of the ship is submerged deeper into the water. In
other words, trim is the angle by which the vessel tilts, fore and aft, relative to its baseline.
It can be expressed as the difference between a ship’s aft and fore drafts resulting from the
variation of stern and bow moments. These moments occur at the longitudinal center of
gravity (LCG). Figure3 illustrates the trim and trimming moment concepts on a ship with
two containers of weights W1 and W2 located above points B and C, respectively (Bilican et
al., 2020).

Considering Fig. 3, the bow moment and the aft moment are calculated as Mb = W1dAB
and Ms = W2dAC , respectively, where dAB and dAC are the distances of containers to
the LCG point denoted by A. Therefore, the resulting trimming moment will simply be
Md = W2dAC − W1dAB . The sign of Md indicates the side by which the ship is trimmed.

4.2.2 Container properties

Containers come in 3 different sizes, i.e., 20, 40 and 45 feet long. Their weights range from 5
to 32 tons. Among several types of containers, dry and reefer containers are themost common
ones. In this study, we consider 20 and 40 feet dry and reefer containers. We further assume
that six weight groups, i.e., 5, 10, 15, 20, 25 and 30 tons, exist and each of these containers
is assigned to one of these groups.

4.2.3 Stack weight

Stack weight is the maximum weight of containers that a stack can hold in a vertical pile on
the ship. There might be several stacks in a bay. The sum of the weight limits of all these
stacks yields to bay weight limit in our model.
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Fig. 4 Transversal stability and metacentric height (Adapted from Christensen and Pacino (2017))

4.2.4 Shear force and bendingmoments

Ships are made up of frames that span transversal from bow to stern. These frames support
the hull and give the ship its shape and strength. The structural integrity of a ship is tested by
some external powers exerted by the load (lightshipweight and cargoweight) downwards and
the buoyancy force that the water acts upwards. These two factors form the Shear Force (SF)
and Bending Moment (BM) on the ship, thereby creating stress on its structure, specifically
at the frames. When these two external parallel forces are exerted in opposite directions on a
structure to break it apart, the resulting forces are named as “shear force” which is measured
in tons.

BM, on the other hand, is the amount of bending caused by SF. Consequently, BM and
SF are decisive in the junction of frames. Each frame has limitations in terms of BM and SF
by design, and SF and BM must be kept within these limits at each frame. The easiest way
to remove excessive SF and BM is to evenly distribute the cargo throughout the ship storage
areas, i.e., bays.

In this study, frames and their allowable limits are taken into consideration for BM and SF
calculations. For additional information on the concept of SF and BM, the reader can refer
to Bilican et al. (2020)

4.2.5 Metacentric height

Themetacentric height (GM) is a measurement of the initial static stability of a floating body.
Its value is crucial for ship safety to navigate. For each type of ship, specific GM values are
set at the design phase. GM is calculated as the distance between the center of gravity of a
ship and its metacenter. A larger metacentric height implies greater initial stability against
overturning. The transversal stability is portrayed in Fig. 4.

The metacentre point is determined at the initial design phase of a ship and its exact
position is obtained from ship stability books. In Fig. 4, K represents the keel of the ship.
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Therefore, the distance from K to M, KM, can simply be obtained from the ship stability
book. The only variable point that we can control is the center of gravity denoted by G. The
center of gravity changes according to the cargo distribution scheme and requires detailed
calculation. As long as the exact position of G is determined, the GM distance can be easily
calculated as: GM = KM − KG.

5 Problem formulation

In this section, we provide the MINLP model developed for the above-mentioned problem.
Below we first list the notation for all sets, indices, parameters, and decision variables used
in the formulation.

5.1 General notation

b ∈ B Set of bays
f ∈ F Set of frames

i, i ′, i ′′, j ∈ I Set of ports
k ∈ K Set of container weight groups
c ∈ C Set of container groups (with respect to type, length and revenue), i.e. 1: Dry

20-ft container, 2: Dry 40-ft container, 3: Reefer 20-ft container, 4: Reefer 40-ft
container)

n, n′ ∈ N Set of cranes
b′ ∈ B f Set of bays up to the frame f , B f ⊆ B

Parameters

Rc Revenue value of containers of category c [$]
Cos Cost of stowing a container [$]
Ccr Cost of a single crane movement [$]
Ctm Additional fuel cost per mile resulting from ship stability maintenance [$/(ton

meter× nm)]. This cost is associatedwith the change in the draft. If all containers
are loaded evenly, that iswith 0 trimmingmoment, then amean draft value occurs
in the center. However, if the distribution is not even, fore and/or aft drafts can be
beyond allowable ranges due to large trimming moment values. In such cases,
engineers fill the ballast tanks to keep the drafts within limits and ensure stability.
This implies that the ship takes extra load and attains a higher draft value. This
increased draft actually results in higher fuel consumption.

si j Distance between ports i and j [nm]
Qb

D Dry container capacity of bay b [unit]
Qb

R Reefer container capacity of bay b [unit]
Qb Total container capacity of bay b [unit], i.e., Qb = Qb

D + Qb
R

Ti jck Number of available containers transported from port i to j in weight group k
and category c (for simplicity, containers transported from port i to j are called
as i − j containers) [unit]

n j Number of available cranes at port j [unit]
wk Weight of a container in group k [ton]
db Distance of bay b to the LCG point of the ship [meter]
Sb Stack weight limit of bay b [ton]
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M f ore The maximum moment that ballast tanks at the fore of the LCG can create [ton
meter]

Maf t The maximum moment that ballast tanks at the aft of the LCG can create [ton
meter]

SFmax
f Allowable SF at frame f [ton]

HL
f The light weight of the ship up to frame f [ton]

dL
f The distance from frame f to the longitudinal center of gravity of the lightweight
ship [meters]

dCf The distance from frame f to the longitudinal center of gravity of cargo up to
frame f [meters]

dB
f i The distance from frame f to the longitudinal center of buoyancy of the hull in

port i [meters]
� f i The displacement (or buoyancy) force up to frame f from the bow of the ship

in port i [ton]
β f i The difference between moments created by buoyancy force and lightship up to

frame f . That is, β f i = � f i d B
f i − HL

f d
L
f ,∀ f ∈ F, i ∈ I

BMmax
f Allowable BM at frame f [ton meter]

dlower
keel The distance from CG (center of gravity) of lower bays (under-deck) to the keel

[meters]
dupperkeel The distance from CG (center of gravity) of upper bays (upper-deck) to the keel

[meters]
KGL KG distance of light ship [meter]
KM The distance from keel to metacenter point [meter]

GMLower Allowable minimum GM height [meter]
GMUpper Allowable maximum GM height [meter]

� Displacement of the ship [ton]
�L Displacement of the light ship [ton]
D Number of bays at the fore of LCG point [unit]
U Number of upper-deck or under-deck bays [unit] (we assume that there are the

same number of lower-deck and upper-deck bays)

Decision Variables

xbi jck Integer, number of i − j containers in weight group k and in category c assigned
to bay b [unit]

φb
i Integer, number of over-stows that might occur on a single bay b (either on deck

or under deck bays) at port i [unit]
λbi Integer, number of over-stows that might occur between on deck and under deck

bay b at port i [unit]
ρb
i Integer, number of replicating over-stows that might occur between on deck and

under deck bay b at port i [unit]
γi Integer, the difference between the number of processed containers by one crane

and the average number of processed containers per crane at port i [unit]
Zn
j Integer, number of containers processed by crane n at port j [unit]

Vi Continuous, total weight of containers loaded at port i [ton]
V b
i Continuous, total weight of containers loaded on bay b at port i [ton]

Mi Continuous, actual trimming moment that occurs at port i [ton meter]
Yb
i j Binary, 1 if there is any container in bay b being transported from port i to j

HC
f i Continuous, the cargo weight of the ship up to frame f at port i [ton]
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KGC
i Continuous, KG distance of the cargo on board at port i [meter]

KGFinal
i Continuous, final KG distance of the ship at port i [meter]
GMi Continuous, GM value at port i [meters]

5.2 MINLP formulation

max z =
∑

i∈I

∑

j∈I

∑

c∈C

∑

k∈K

∑

b∈B
Rcx

b
i jck −

∑

i∈I

∑

b∈B
Cos(πb

i + λbi + ρb
i ) −

∑

i∈I
Ccrγi

−
|I |−1∑

i=1

∑

j=i+1

si jC
tmMi (1)

subject to

i∑

i ′=1

|I |∑

j=i+1

∑

k∈K
xbi ′ j1k + 2

i∑

i ′=1

|I |∑

j=i+1

∑

k∈K
xbi ′ j2k ≤ Qb

D ,∀i ∈ I , b ∈ B (2)

i∑

i ′=1

|I |∑

j=i+1

∑

k∈K
xbi ′ j3k + 2

i∑

i ′=1

|I |∑

j=i+1

∑

k∈K
xbi ′ j4k ≤ Qb

R ,∀i ∈ I , b ∈ B (3)
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xbi jck ∈ {0, 1, 2, ...},∀b ∈ B, i, j ∈ I , k ∈ K , c ∈ C (24)

Yb
i j ∈ {0, 1},∀b ∈ B, i, j ∈ I (25)

πb
i , λbi , ρb

i , V b
i ≥ 0,∀b ∈ B, i ∈ I (26)

γi ∈ {0, 1, 2, ...},∀i ∈ I (27)

Mi , Vi , KGC
i ,GMi , KGFinal

i ≥ 0,∀i ∈ I (28)

Hc
f i ≥ 0,∀ f ∈ F, i ∈ I (29)

The objective function (1) has four terms. Each container category has its own value
associated with its profit returns. The first term seeks tomaximize the revenue by determining
the containers to be transported through a selection process based on containers’ revenue.
The second part of the objective aims to minimize the overall cost linked to the occurrence
of over-stows. We assume that the cost of stowing a container, represented by Cos , remains
constant and is already known. For a better understanding of how the decision variables π , λ,
and ρ influence various types of over-stows, please refer to the example illustrated in Fig. 5.

In this particular scenario, each figure corresponds to an individual bay denoted as b, and
the containers being transported from port 1 to 4 (referred to as 1–4 containers) have already
been successfully loaded. However, if we attempt to load containers 2–5, 2–6, 3–5, and 3–6
on top of the existing 1–4 containers within the same bay, over-stows will inevitably occur
(see Fig. 5a).

The decision variable πb
i corresponds to instances of over-stows in bay b ∈ B at port

i ∈ I . These instances can occur in either an upper deck or under deck bay, where the hatch
cover does not need to be lifted, as illustrated in Fig. 5a. On the other hand, Fig. 5b displays
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two overlaid bays, namely the upper and under deck bays, separated by a hatch cover. In this
case, the 1− 4 containers are placed on the under-deck bay. Stowing the 1–5, 1–6, 2–5, 2–6,
3–5, and 3–6 containers on the upper deck bays creates inter-bay over-stows, denoted by λbi ,
for all b ∈ B and i ∈ I .

Finally, in Fig. 5c, the 1–4 containers are positioned on the upper deck bays. Stowing the
2–3, 2–4, 2–5, 2–6, 3–4, 3–5, and 3–6 containers on under deck bays leads to replicating
over-stows, where the over-stow is duplicated at ports 2 and 3. These replicating over-stows
are represented by the decision variable ρb

i , for all b ∈ B and i ∈ I .
The third objective is to minimize disparities in the number of containers loaded/unloaded

by each crane, thereby maximizing crane utility. The cost of a single crane movement is
denoted by Ccr . The integer variable γ represents the difference between the number of
processed containers by a specific crane and the average number of processed containers per
crane at port i [unit]. This equation aims to reduce the gap between the actual and average
processed containers at each port, encouraging cranes to handle a similar or closely matched
number of containers. By achieving this objective, the model not only helps minimize the
duration of the ship’s visit but also reduces idle periods for all cranes.

In the fourth component of the objective function, our goal is to minimize the total addi-
tional fuel cost resulting from ship instability during a tour.We can determine the total weight
of containers to be loaded at port i . When containers are evenly distributed, meaning there
is no trimming moment, this weight leads to an unavoidable increase in the draft. The draft
represents the final and optimal depth at which the ship should sail. Therefore, the operating
cost associated with this draft is inevitable for the agencies. However, if the containers are
not evenly distributed, a certain amount of trimming moment occurs. To rebalance the ship,
engineers perform ballasting operations. This ballast operation adds extra weight to the ship,
resulting in an increase in the existing draft. The model aims to minimize the cost associated
with this increment in the draft value. This cost is calculated for each port prior to departure.
It is important to note that the fixed and known cost associated with the trimming moment is
denoted as Ctm . Additionally, Mi represents the actual trimming moment that occurs at port
i .

Constraints (2) and (3) ensure that the total usage of any bay does not exceed its capacity
in terms of dry and reefer containers respectively. The first part of the constraint focuses on 20
ft. containers, while the latter part considers 40 ft. containers assigned to bay b collectively.
Consequently, this constraint takes into account all containers assigned to bay b ∈ B at each
port and guarantees that the total number of containers does not surpass the capacity of the
corresponding bay. To illustrate, let’s consider a scenario where a container ship visits 6 ports
and is currently at port 2. For a specific bay b, the number of containers loaded at previous
ports (i.e. port 1) and the current port (i.e., port 2) cannot exceed the bay’s capacity. In other
words, the total number of containers loaded at previous ports (e.g., containers 1–3, 1–4, 1–5,
1–6) and the current port (e.g., containers 2–3, 2–4, 2–5, 2–6) must be less than or equal to
the capacity of bay b.

Constraint set (4) ensures that the total number of selected containers does not exceed the
number of total available containers in a given port.

Constraint sets (5) and (6) pertain to the crane utility aspect. In constraint (5), the model
computes the total number of containers assigned to the operational segment of each crane
at every port. Once the total number of containers processed by each crane at each port is
determined, constraint set (6) obtains the deviation of the number of container handled by a
specific crane from the average number of containers processed by a crane in that port.

Constraint set (7) establishes the upper limit for the maximum number of first type over-
stows that can occur on a single bay b ∈ B at port j ∈ I . It defines the upper bound for
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the decision variable πb
j . Similarly, constraint set (8) determines the maximum number of

over-stows that can happen between the upper and under deck bays, separated by a hatch-
cover. It sets the upper limit for the second type of over-stow. In this constraint set, each
bay is examined in conjunction with its upper neighbor deck bay. Therefore, the reference to
b + U in the constraint set signifies the upper neighbor bay of bay b ∈ B.

Constraint set (9) addresses the replicating over-stows depicted in Fig. 5c. It states that if
an upper deck has an available i − j container, loading a container to the under deck at ports
between i + 1 and j − 1 will result in over-stows equal to the number of i − j containers.
Furthermore, this over-stow scenario can replicate itself up to j − (i + 1) times based on the
presence of (i + 1) − ( j − 1) containers.

Constraint set (10) establishes the relationship between xbi jck variables (for 20-ft and 40-ft)

and the binary variable Yb
i j . Additionally, this constraint set, in conjunction with constraint

sets (7)–(9), determine the maximum number of over-stows that can occur on a bay b ∈ B.
More details of these constraints are available in Bilican et al. (2020).

Constraint set (11)computes the cumulative weight of containers onboard the ship. The
weight-carrying capacity of a ship is determined by its displacement. Hence, this constraint
guarantees that the combined weight of containers remains within the limits of the ship’s
displacement.

Constraint set (12) evaluates theweight of each bay following the completion of the loading
and unloading operations, just before the ship departs from the port. Meanwhile, constraint
set (13) computes the trimming moments based on the longitudinal center of gravity (LCG)
of the ship. The distance of each bay to the LCG is provided as a parameter.

Each bay comprises multiple stacks or tiers, with each stack having a distinct weight
capacity that determines themaximumnumber of containers of varyingweights it can accom-
modate. If the total weight of containers assigned to bay b ∈ B exceeds the combined weight
capacity of all stacks in that bay, the slot planning (Parreño et al., 2016) process may become
infeasible. To prevent such a scenario, we calculate the weight capacity of the bay by aggre-
gating the weight capacities of all stacks within that bay, considering their upper or under
deck positions. In this regard, constraint set (14) guarantees that the assigned containers do
not surpass these bay capacities.

In the event of trim on a containership, it becomes necessary for planners to utilize ballast
tanks in order to restore stability. However, for the ballast condition to be effective, the
moment produced by the ballast tanks must surpass the existing trimming moment. Hence,
constraint sets (15) and (16) ensure that the trimming moments stay within acceptable limits,
facilitating their counterbalancing with fore and aft ballast tanks, respectively.

Constraint sets (17)–(19) are dedicated to addressing stress-related considerations. Con-
straint sets (17) and (19) ensure that the shear force and bendingmoment at each frame do not
exceed their allowable thresholds, promoting a uniform weight distribution along the length
of the ship and maintaining stress factors within design levels. Constraint set (18) calculates
the total weight of containers loaded onto the bays up to frame f , while constraint set (19)
calculates the displacement (or buoyancy) force from the bow of the ship up to frame f at
port i , which serves as an input for shear force calculations.

Constraint sets (20)–(23) are implemented tomaintain theGM (metacentric height) within
the permissible limits. However, the computation of the GM value introduces non-linearity
in equations (20) and (21) due to the denominator variable, which represents the total weight
of containers loaded at port i . Lastly, constraint sets (24)–(29) define the domains of the
decision variables.
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Fig. 5 Over-stow instances with a rear view of the ship (Source Bilican et al. (2020))

6 Solution approach

In this section we explain the two-stage formulation approach used in our decision support
system framework. The first stage formulation aims at maximizing the revenue without
accounting for the stability parameters of the containership. This formulation basically
assigns containers to bays such that the total revenue is maximized by maximizing revenue
of transported containers and crane utilities while minimizing the number of over-stows. The
solution obtained from the first stage model is fed into the second stage model as an input
and the second stage formulation seeks to improve the stability of the ship by minimizing the
trimming moment value for each port. In this stage, the model performs inter-bay container
exchanges without deteriorating the optimal objective function value obtained in the first
stage. In other words, it ensures that the revenue obtained in the first stage does not change
while the stability of the ship is improved.

6.1 First stage formulation

max zS1 =
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The objective function (30) has now the first three terms of the objective function (1) and
excludes the termwhich addressed the trimmingmoment of the ship. As discussed previously,
the first term seeks to maximize revenue by determining the containers to be transported to
and from each port. The second term minimizes the cost related to the over-stow instances.
The third termminimizes the cost associated with the differences on the number of containers
loaded/unloaded by each crane. Constraint sets ((31) and (32)) guarantee that the total usage
of any bay is less than or equal to the capacity of that bay for reefer and dry containers
separately. Constraint set (33) ensures that the total number of selected containers does not
exceed the number of total available containers in a given port. Constraint sets (34), (35) and
(36) address the crane utilization. We note that constraint sets (35) and (36) are the linearized
version of the constraint (7). Constraint sets (37)–(40) are over-stow constraints as explained
in Bilican et al. (2020). All types of over stowage are considered in this work. Constraint set
(41) ensures that the total weight of containers does not exceed the displacement of the ship.
Finally, constraint sets (42)–(46) declare variable domains.

6.2 Second stage formulation

Below we define the additional parameters and decision variables used in the second stage of
our model. Recall that the output of the first stage in terms of the number of i − j containers
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in category c assigned to bay b is taken as an input to Stage 2. Therefore, we use the value
of related decision variables of Stage 1 as parameters in Stage 2.
Additional parameters

x̄bi jc = Number of i − j containers (from origin to destination) of category c assigned
to bay b [unit] (obtained from Stage 1)

V̄i = Total weight of containers loaded at port i [ton] (obtained from Stage 1)

Additional decision variables

ybi jck = integer, Number of i − j containers (from origin to destination) in weight
group k and in category c assigned to bay b [unit]

Model
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GMi , Mi , KGFinal
i ≥ 0,∀i ∈ I (63)

HC
f i ≥ 0,∀ f ∈ F, i ∈ I (64)

KGC
i ≥ 0,∀i ∈ I (65)

The objective function (47) minimizes the trimming moment value for each port to avoid
trimmed ship. Constraint set (48) ensures that the optimality obtained in the first level is
maintained. Number of i − j containers in category c assigned to bay b which is obtained
from phase-1 is used as a parameter in this equation. Constraint set (49) calculates the weight
of each bay after loading and unloading operations, prior to leaving the port while (50)
calculates trimming moments according to the longitudinal center of gravity of the ship.
The stack weight limits are considered in (51). Constraint sets (52) and (53) guarantee that
the resultant trimming moment is within the limit that can be corrected by ballast tanks.
Constraint sets (54)–(56) address the stress factors. Constraint sets (57)–(60) ensure that the
GM value is within allowable limits. In these equations, the we overcome non-linearity that
appeared in combined model by simply introducing (Total weight of containers loaded at
port i [ton]) as a parameter, obtained from phase 1. Constraint sets (61)–(65) declare variable
domains.

6.3 Myopic greedy approaches: data pre-processing algorithms

We now describe two myopic but practical algorithms for the cargo composition problem
used by liner shipping companies. A shipping company might try to prioritize containers
with highest revenue. Therefore, these two algorithms select a subset of available containers
based on revenue and run second stage model with the selected containers. For the sake of
fair analysis, we compare our DSS framework with these myopic approaches.

6.3.1 Heuristic-1: Greedy algorithm for sequence of port visits

The first heuristic algorithm basically prioritizes containers with respect to their revenue at
each port considering the port sequence of the shipping service. The revenue from a container
mainly depends on the distance travelled, length, weight, and type of the container. Starting
from the first port, the algorithm selects the best containers (with highest revenue) to fill
the ship capacity. After each selection of a container, the algorithm checks the total weight
of all selected containers to ensure that they do not exceed the deadweight ship capacity, if
deadweight is exceeded, the container is dropped from selection list. Once the first port is
completed, the algorithmmoves to the second port and unload all containers destined for this
port. Then, the algorithm fills the idle ship capacity from the available containers at second
port one by one following the weight constraints. The algorithm continues in this fashion
until the last port and display the final list of containers to be loaded. The final list is the input
data set for mathematical model. The pseudocode for the algorithm is presented in Algorithm
1.

6.3.2 Heuristic-2: Greedy algorithm for all containers in the service

The basic difference of heuristic-2 with the heuristic-1 is that heuristic-2 filters the containers
by considering all available containers instead of following the port sequence. The algorithm
sorts all containers with respect to their revenue and chooses containers starting from the
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Algorithm 1: Greedy algorithm for the given sequence of port visits.

1 Initialization
2 Input:
3 Set of ports, i ∈ I
4 Set of containers at the yard of port i , c ∈ CYi
5 Weight of a container c, wc
6 Ship container capacity: cap
7 Displacement: �
8 Data:
9 Set remaining displacement �rem ← �,

10 Remaining container capacity ca prem ← cap
11 for i = 1 to |I | − 1 do
12 CLi ← {}
13 Sort containers c ∈ CYi with respect to their revenue in decreasing order
14 Let CY i be the sorted list of containers at port i
15 Set c = 1 (container with the highest revenue in CY i )
16 while |CLi | ≤ ca prem and

∑
c∈CLi

wc ≤ �rem do

17 CLi = CLi ∪ {c ∈ CY i }
18 Set c = c + 1
19 end
20 Return CLi
21 Update ca prem and �rem after unloading containers at port i + 1 as:
22 ca prem = ca prem − # of [i − (i + 1)] containers
23 �rem = �rem − weight of [i − (i + 1)] containers
24 end
25 Output: Container List onboard ship CL ← {CL1,CL2, ...CL |I−1|} that represents the set of

container lists prior to departure from each port.

one with the highest revenue. Selected containers are then added to the container list of
corresponding departure ports. After each addition, the algorithm checks the available ship
capacity and deadweight limitations for each port list. If any of the capacity and weight
constraints are violated, the container is simply removed from the list. The pseudocode for
this algorithm is presented in Algorithm 2.

7 Numerical results

7.1 Examplary solution

Prior to discussing the details of our numerical experiments and test problem designs, we find
it useful to present a basic illustrative CSP and its corresponding solution achieved through
MILP.

In this example, we analyze a vessel equipped with 9 bays, each accommodating 20
containers, resulting in a total capacity of 180 containers. Three cranes are assigned to work
on these bays. Each crane is assigned to work on 3 successive bays. The vessel makes stops
at 6 different ports. The availability of containers is specified in Table 1. The first column of
the table indicates the originating port (indexed by i), while the second column represents the
destination port (indexed by j). The third column denotes the container type, dry or reefer and
20-ft or 40-ft (index c). For simplicity, we assume that all containers in this example are of the
20-ft dry container type. The fourth column provides information about the weight groups of
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Algorithm 2: Greedy algorithm for all containers in the service.

1 Initialization
2 Input:
3 Set of ports, i ∈ I
4 Set of containers at the yard of port i , c ∈ CYi
5 Weight of container c, wc
6 Ship container capacity: cap
7 Displacement: �
8 Data:
9 Set remaining displacement at port 1 as: �rem,1 ← �,

10 Remaining container capacity at port 1 as: caprem,1 ← cap
11 Sort all containers c ∈ {CY1,CY2, ...,CY|I−1|} with respect to their revenue in decreasing order
12 Let CY represent the sorted list of all containers
13 Set c = 1 (container with the highest revenue in CY ) for i = 1 to |I | − 1 do
14 CLi ← {}
15 if departure port of container c is i and |CLi | ≤ caprem,i and

∑
c∈CLi

wc ≤ �rem,i then

16 CLi = CLi ∪ {c ∈ CY }
17 for j = i + 1 to |I | do
18 if destination port of container c is j then
19 Update caprem, j and �rem, j after unloading containers at port j as:
20 caprem, j = caprem, j − # of [i − j] containers
21 �rem, j = �rem, j − weight of [i − j] containers
22 end
23 end
24 end
25 Set c = c + 1
26 Return CLi
27 end
28 Output: Container List onboard ship CL ← {CL1,CL2, ...CL |I−1|} that represents the set of

container lists prior to departure from each port.

the containers, which is crucial for considerations related to deadweight and stability (index
k). The fifth column presents the corresponding revenue associated with each container type,
and the final column indicates the quantity of available containers for each type.

In the example problem we assume that there exist 1032 containers readily available at
all ports for transportation to subsequent ports. Furthermore, a deadweight tonnage of 2700
tons is considered. The ship is initially assumed to be empty. In Table 1, many containers are
loaded (i) either at port 1 or port 2 (first/early ports) and unloaded ( j) at ports 4, 5 or 6 (later
ports) as destinations. These features ensure a realistic problem setting.

For illustrative purposes,weonly employed theHeuristic-1 algorithm to solve the problem.
The heuristic algorithm selected 207 containers for transportation to subsequent ports based
on their revenue. The detailed list of containers, along with their respective properties, is
reported in Table 2.

We applied our stage 1 and stage 2 models to this filtered data. In stage 1, our model
produced a bay plan with 0 over-stow instances and $844,293 revenue. The results also
showed that all cranes handled the same amount of containers leading to no idle time and full
efficiency. The outcome of stage 1 is used as input for stage 2 for further stability calculations.
In the second stage, the trimming moment was minimized. The bay plan generated by our
model for port 1 after loading 1− j containers is depicted in Fig. 6. A summary of all results
is provided in Table 3.

123



Annals of Operations Research

Table 1 Example problem data

i j c k Revenue ($) Availability i j c k Revenue ($) Availability

1 2 1 1 183 3 2 5 1 4 4500 14

1 2 1 2 183 3 2 5 1 5 4500 14

1 2 1 3 183 3 2 5 1 6 4500 14

1 2 1 4 183 3 2 6 1 1 4500 14

1 2 1 5 183 3 2 6 1 2 4500 14

1 2 1 6 183 3 2 6 1 3 4500 14

1 3 1 1 353 8 2 6 1 4 4500 14

1 3 1 2 353 8 2 6 1 5 4500 14

1 3 1 3 353 8 2 6 1 6 4500 14

1 3 1 4 353 8 3 4 1 1 4500 14

1 3 1 5 353 8 3 4 1 2 4500 14

1 3 1 6 353 8 3 4 1 3 4500 14

1 4 1 1 4500 15 3 4 1 4 4500 14

1 4 1 2 4500 15 3 4 1 5 4500 14

1 4 1 3 4500 15 3 4 1 6 4500 14

1 4 1 4 4500 15 3 5 1 1 5200 14

1 4 1 5 4500 15 3 5 1 2 5200 14

1 4 1 6 4500 15 3 5 1 3 5200 14

1 5 1 1 5000 15 3 5 1 4 5200 14

1 5 1 2 5000 15 3 5 1 5 5200 14

1 5 1 3 5000 15 3 5 1 6 5200 14

1 5 1 4 5000 15 3 6 1 1 5300 14

1 5 1 5 5000 15 3 6 1 2 5300 14

1 5 1 6 5000 15 3 6 1 3 5300 14

1 6 1 1 5000 15 3 6 1 4 5300 14

1 6 1 2 5000 15 3 6 1 5 5300 14

1 6 1 3 5000 15 3 6 1 6 5300 14

1 6 1 4 5000 15 4 5 1 1 300 7

1 6 1 5 5000 15 4 5 1 2 300 7

1 6 1 6 5000 15 4 5 1 3 300 7

2 3 1 1 1400 15 4 5 1 4 300 7

2 3 1 2 1400 15 4 5 1 5 300 7

2 3 1 3 1400 15 4 5 1 6 300 7

2 3 1 4 1400 7 4 6 1 1 500 7

2 3 1 5 1400 7 4 6 1 2 500 7

2 3 1 6 1400 7 4 6 1 3 500 7

2 4 1 1 4500 14 4 6 1 4 500 7

2 4 1 2 4500 14 4 6 1 5 500 7

2 4 1 3 4500 14 4 6 1 6 500 7

2 4 1 4 4500 14 5 6 1 1 500 7
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Table 1 continued

i j c k Revenue ($) Availability i j c k Revenue ($) Availability

2 4 1 5 4500 14 5 6 1 2 500 7

2 4 1 6 4500 14 5 6 1 3 500 7

2 5 1 1 4500 14 5 6 1 4 500 7

2 5 1 2 4500 14 5 6 1 5 500 7

2 5 1 3 4500 14 5 6 1 6 500 7

Table 2 Heuristic-1 filtered data i j c k Revenue ($) Availability

1 5 1 4 5000 15

1 6 1 6 5000 15

1 6 1 5 5000 15

1 6 1 4 5000 15

1 6 1 3 5000 15

1 6 1 2 5000 15

1 6 1 1 5000 15

1 5 1 6 5000 15

1 5 1 5 5000 15

1 5 1 3 5000 15

1 5 1 1 5000 12

1 4 1 6 4500 3

4 6 1 4 500 1

5 6 1 1 500 7

5 6 1 2 500 7

5 6 1 3 500 7

5 6 1 4 500 7

5 6 1 5 500 7

5 6 1 6 500 7

Table 3 Solution characteristics

Ports Over-stow
instances

Objective
function
value ($)

Crane utility Trim moment values (ton-m) GM values (m)

(# of cont. handled)

1 2 3

1 0 844,293 55 55 55 125 0.75

2 0 0 0 0 125 0.89

3 0 0 0 0 125 1.2

4 0 1 1 1 0 1.2

5 0 38 38 38 0 1.2

6 0 44 44 44 0 0
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Fig. 6 Bay plan at port 1 after loading 1 − j containers

7.2 Experiment design

In this section we compare the performance of our two-stage solution methodology with
the two heuristic approaches that rely on container filtering used by many liner companies
as discussed before. Below we first present the details of our test instances and numerical
results. Next, we discuss our findings.

In order to assess the performance of our DSS that adopts the two-stage formulation, we
have generated 30 test instances (10 instances for each solution approach) with different
ship capacities as 12,000 TEU, 14,000 TEU, 16,000 TEU, 18,000 TEU, and 20,000 TEU. In
order to conduct more extensive trials, we have generated randomized transportation matrix,
all consisting of 112,800 containers. Then, the average of all these results is reflected in the
corresponding tables. We also assumed that the container ship travels through 6 ports and is
expected to load and unload a group of containers at each port by using 3 cranes for 12,000
TEU, 14,000 TEU, 16,000 TEU size instances and 4 cranes for 18,000 TEU, and 20,000
TEU size instances.

The following parameters are fixed for all cases.Cos (cost of stowing a container) andCcr

(cost of a single crane movement) are assumed fixed as 1500 and 150, respectively. Ctm , the
additional fuel cost per mile resulting from ship stability maintenance, is assumed to be 100
$/(ton meter × nm). The distances between ports i and j are determined random uniformly
between 100 and 2000 nautical miles. The other parameters that vary in accordance with the
problem size are reported in Table 4.

We assume that 75–80% of the ship capacity is on spot sale. The spot capacity is divided
into 2 different groups to stow reefer and dry containers. Based on literature, 8–10% of
the ship capacity is reserved for reefer containers. This general rule is followed to generate
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instances in this study. We divide the ship capacities into two different customer requests,
contractual and spot. 20% of the ship’s capacity is assumed to be contractual and this capacity
is excluded from our calculations. The rest of the ship capacity is reserved for spot customers
and is taken into consideration in our experiments.

In our numerical study, all experiments are run by aMicrosoftWindows 10 64-Bit operated
PCwith Intel Core i7 6500UCPU@2.50GHzwith 8GBRAM. TheMILPmodels are imple-
mented in IBM ILOG CPLEX environment and solved with CPLEX 20.1.0 The proposed
heuristic algorithms are coded in Python 3.6 (PyCharm Community 2017.3). For all models,
we use the default optimality gap setting as 0.01% and set the maximum computational time
as 1h as the termination criterion.

We solved the problem by using three approaches as: (1) filtering the containers using
the Filtering Heurisc-1 and solved the problem for remaining containers using the two-
stage formulation, (2) filtering the containers using the Filtering Heuristic-2 and solved the
problem for remaining containers using the two-stage formulation, (3) solving the problem
for all containers using the two-stage formulation. We shortly refer these three approaches
as FH1+2SMILP, FH2+2SMILP, and 2SMILP, respectively.

7.3 Results

Before solving the problem using the two-stage MILP, we first applied the two filtering
heuristics to decrease the number of containers that can be assigned to the containership.
In particular for each TEU size we considered a total of 112,800 containers. The number
of containers after using the two filtering approaches have decreased by more than 90% on
average. The total number of containers and the number of containers obtained after filtering
themwith the heuristics are given in Table5. For instance, the number of containers taken into
account for the largest problem instance (i.e., 20,000 TEU capacity) reduces to the number
of container between 14,000 and 17,000 for the first and 14,500 and 17,500 for the second
filtering heuristic, respectively.

In our numerical experiments, we compare the performance of the two-stage formulation
and the proposed heuristic algorithms in terms of computational time (CPU Time), solution
quality (% optimality gap) and objective function value as depicted in Table 6. For each
approach Table 6 reports the detailed comparison results for each size problem and solution
approach. The results reveal that in terms of CPU time solutions with the filtered data set
can be obtained within a minute for FH1+2SMILP and FH2+2SMILP on average. For the
2SMILP, on the other hand, the CPU times vary between 500 and 4200s and tend to increase
with the problem size. This is an expected result since the 2SMILP uses all container data
as an input which increases the size of the problem drastically. In terms of optimality gaps,
the table reveals that all solutions can be obtained almost with zero gap. Since we use the
defaults optimality gap setting for CPLEX, in some instances it returns a solution within the
0.01% gap in less than 1h.

The last group of columns in Table 6 shows the differences in terms of objective function
value of each approach. In particular, the revenue obtained with the filtered approaches
appear to be very close to each other. In all instances, except 12,000 and 20,000 TEU
capacity, FH2+2SMILP yields a very slightly (around 1%) higher revenue than that of
the FH1+2SMILP. 2SMILP, on the other hand, outperforms these two data-filtering based
approaches within a range of 24–38%. In particular for the 12,000 TEU capacity, it has a
38% better performance than the FH1+2SMILP and FH2+2SMILP. This ratio varies between
24% and 30% for the rest of the instances.
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Table 5 Number of containers considered in each solution approach

Capacity (TEU) 12,000 14,000 16,000 18,000 20,000

Total # of containers 112,800 112,800 112,800 112,800 112,800

Remaining # of
containers for
FH1+2SMILP

6000–8400 8700–11,000 9500–12,500 11,500–14,500 14,000–17,000

Remaining # of
containers for
FH2+2SMILP

6500–8700 9000–11,700 11,000–14,500 13,000–16,000 14,500–17,500

The results imply that it is possible to end up with relatively higher revenues with the
2SMILP approach if the decision maker is willing to spend at most 1h for the container
stowage decisions. This is because, the number of transported containers in 2SMILP is higher
than those in the other data-filtered approaches. However, the higher volume of transported
containers leads to longer port stays, more crane allocations and higher operating costs. In
FH1+2SMILP and FH2+2SMILP, on the other hand, the number of transported containers is
less than that of the 2SMILP which results in skipping some ports. The stay at ports is shorter
and the operating cost might be significantly lower. In that case the liner should consider the
returns and expenses separately on each model and decide accordingly.

Table 7 reports the solution characteristics obtained by each approach. In particular, we
list the total number of transported containers, the number of over-stows, resulting trimming
moments and GM values for each instance. The total number of transported containers are
almost equal for the FH1+2SMILP and FH2+2SMILP approaches. For the 2SMILP, the
number of contains transported is quite more than those of the other two approaches on
average. In all instances all solution approaches yielded 0 over-stows. For the trimming
moments and GM values, the results show that there is no significant difference among the
solution approaches. We also observe that in all six configurations, the stability parameters
(GM and trimming moment) remain within limits.

As for crane utilization, the model produces a ship stowage plan such that all cranes
load/unload similar number of containers at ports. Table 8 displays the details of the crane
utilization at each port.

8 Conclusion

In this study, we approached the problem of container stowage from a revenue maximization
and sustainability perspective while accounting for ship stability and crane utilization. To
achieve this, we first developed aMINLP formulation and then a two-stage solution approach
which decomposes the problem into two MILPs. The first stage model maximizes the total
revenue by determining the containers to be transported while ensuring a balanced workload
among the cranes to reduce port emissions. The second stage generates a container-bay
assignment plan that minimizes the overall trim-moment of the ship and ensures ship stability
in sailing using first stage results.

Our numerical experiments showed that the two-stage methodology which uses all con-
tainer data as an input outperforms the container filtering-based heuristic approaches used
by many liner companies in terms of revenue. Although, as expected, the two-stage for-
mulation returns feasible solutions in short computational times when combined with the
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filtering-based heuristics, it results in considerable losses in terms of revenue. The two-stage
formulation alone, on the other hand, results in a 25–40% increased revenue at the cost of
longer computing times. Considering that the time required to develop effective stowage
plans is measured in hours, our proposed approach has potential to improve the profitability
of liner companies while ensuring ship stability, safety, and efficient crane utilization.

Our study can also easily address cargo compositionwith circular economyconsiderations.
Waste shipment in containers and empty container repositioning are two important circular
economy applications in shipping (Chen et al., 2016;Debnath andSarkar, 2023).Our problem
can generate results for the scenario when containers carrying waste and empty containers
are valued as much as laden containers and our results can be analyzed for policy discussions.

Finally, there are important future research directions arising from our study. Current
work focuses on a single service. Future studies can tackle the cargo composition problem
for several shipping routes in a combined way. That problem would give an opportunity for
integrating cargo routing and ship stowage planning for a set of ships and routes.Alternatively,
the cargo composition problem can be coupled with the revenue management problem to
make pricing decisions in each shipping service.
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