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Abstract 

Objective: PRRT2 has been identified as the causative gene for paroxysmal kinesigenic 

dyskinesia (PKD). However, the underlying neural mechanisms are unclear. The aim of 

this study was to explore the effects of PPRT2 on gray matter structural networks in 

PKD. 

Methods: We recruited 51 PKD patients with PRRT2 mutation (PKD-M), 55 PKD 

patients without PRRT2 mutation (PKD-N), and 80 healthy controls (HC). We analyzed 

individual gray matter structural networks based on structural T1-weighted imaging. 

We compared the structural connectome characteristics across groups, and applied a 

support vector machine to classify PKD-M vs PKD-N. 

Results: Relative to PKD-N and HC, PKD-M showed significant decrease in global 

and local efficiency and increase in characteristic path length. Relative to HC, both 

patient groups showed significantly decreased nodal centralities and structural 

connections in right postcentral gyrus, right angular, bilateral thalamus, and left median 

cingulate and paracingulate gyri; relative to both PKD-N and HC, PKD-M showed 

altered (almost all decreased) nodal centralities and structural connections in the 

cortico-basal ganglia-thalamo-cortical network including bilateral supplementary 

motor area, right caudate nucleus and bilateral pallidum. Finally, using the structural 

network matrices to classify individuals as PKD-M vs PKD-N, we achieved 74.3% 

accuracy. 

Conclusions: PKD-M showed a global network pattern of “weaker small-worldness” 

and more extensive local (regional) disturbance in the cortico-basal ganglia-thalamo-

cortical circuit; these PRRT2-related network traits may throw light on how PRRT2 

mutations affect PKD by modulating these networks. Our findings provide insight into 

the neuropathophysiology of PKD.  
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1 INTRODUCTION  

Paroxysmal kinesigenic dyskinesia (PKD) is the commonest hereditary 

paroxysmal movement disorder, characterized by recurrent brief involuntary 

hyperkinesias including dystonia, choreoathetosis, ballismus or a combination of these, 

with preserved consciousness (Bhatia, 2011; Bruno et al., 2004; Ebrahimi-Fakhari, 

Saffari, Westenberger, & Klein, 2015); these typically are triggered by sudden voluntary 

movements and appear more often during stress and anxiety (Ebrahimi-Fakhari, 

Moufawad El Achkar, & Klein, 2018; Ebrahimi-Fakhari et al., 2015). 

Pathophysiological understanding of PKD was advanced considerably by the discovery 

of its association with mutations in the proline-rich transmembrane protein 2 (PRRT2) 

(W. J. Chen et al., 2011). Mutations in PRRT2 are considered the leading cause of PKD 

(Lee et al., 2012; J. Li et al., 2012; Méneret et al., 2012) and considerable efforts have 

been devoted to studies of its normal function and its dysfunction in PKD. 

PRRT2 encodes a neuronal protein highly expressed in the central nervous system, 

with an important role in synapse development and function, especially neuronal 

migration, spinogenesis, synapse formation and maintenance, and neurotransmitter 

release (Liu et al., 2016; Valente et al., 2016; Valtorta, Benfenati, Zara, & Meldolesi, 

2016). Most reported mutations in PRRT2 lead to a truncated or absent protein: at the 

cellular level this affects synaptic neurotransmitter release and neuronal excitability in 

various brain regions (Ebrahimi-Fakhari et al., 2018; Ebrahimi-Fakhari et al., 2015), 

resulting in abnormal activity and functional connectivity (Long et al., 2017; Luo et al., 

2013). However, the neural mechanisms remain under-explored.  

MRI-based brain connectome analysis is a useful way to quantify altered brain 

networks in neuropsychiatric disorders. The main current approaches to the brain 

structural connectome are diffusion tensor imaging (DTI) or structural MRI for white 

matter networks (Iturria-Medina et al., 2007) and structural MRI regional covariance 



analysis for gray matter networks (Tijms, Seriès, Willshaw, & Lawrie, 2012). The 

PRRT2 mutation affects the MRI-based white matter structural network (L. Li et al., 

2020). The DTI-based structural connectome is affected by selection of tractography 

algorithms and poses technical challenges in estimating the connectivity strength of 

long-distance projections (Donahue et al., 2016). A different, technically robust 

approach to gene-related topological organization is to study gray matter structural 

networks: these are genetically heritable (Alexander-Bloch, Giedd, & Bullmore, 2013; 

Elman et al., 2017; Richmond, Johnson, Seal, Allen, & Whittle, 2016) and can identify 

stable phenotypes (Novellino et al., 2019; W. Zhang et al., 2020). A useful feature is 

that, instead of creating a single network of anatomical covariance for a group of 

participants, a similarity-based gray matter network can constructed for each individual, 

providing an opportunity to examine associations of network metrics with behavioral 

characteristics (Tijms et al., 2012). 

In this study, we compared the topological organization of similarity-based gray 

matter structural networks between patients with and without a PRRT2 mutation in 

order to isolate its effect on these networks. We wished to test three hypotheses. (1) 

Given the evidence from white matter network studies of weaker ‘small-world 

organization’ in patients with PRRT2 mutations (L. Li et al., 2020), we hypothesized 

that similar disruptions would also characterize the similarity-based gray matter 

networks. (2) As alterations in the cortico-basal ganglia-thalamo-cortical network have 

been most consistently reported in PKD (Kim, Kim, Kim, Suh, & Koh, 2015; X. Li et 

al., 2021; Zhou et al., 2010), we hypothesized that these regions would show the more 

severe nodal abnormalities in patients with PRRT2 mutations. (3) As we found that gray 

matter morphological network matrices can classify PKD vs HC (X. Li et al., 2021), we 

hypothesized that gray matter structural network matrices could also discriminate 

patients with and without a PRRT2 mutation.  

 



2 MATERIALS AND METHODS  

2.1 Participants 

106 patients with PKD were recruited from 2013-21 in the Department of 

Neurology, West China Hospital of Sichuan University. All were diagnosed according 

to the accepted criteria (Bruno et al., 2004). To exclude secondary PKD, routine MRI, 

electroencephalogram, and laboratory tests including plasma electrolytes, parathyroid 

hormone and ceruloplasmin were conducted. Also excluded were patients with any 

history of alcohol/drug abuse, psychiatric or neurological disorders, or brain lesions on 

routine MRI. After genetic testing, patients were further classified into 2 subgroups: 51 

PKD patients with PRRT2 mutations (PKD-M) and 55 PKD patients with no PRRT2 

mutations (PKD-N). We recruited 80 healthy controls (HCs) matched to the PKD group 

for age, gender and handedness from the local area by poster advertisement. 

Demographic and clinical data are shown in Table 1. Written informed consent was 

obtained from all the participants or their legal guardians. The study was approved by 

the local human research ethics committee. 

2.2 Genetic analysis 

In PKD patients, genomic DNA was extracted from the peripheral blood using a 

standard phenol/chloroform extraction method. Sanger sequencing was used to detect 

PRRT2 mutations using an ABI 3730 automated DNA sequencing system (details in 

Supplementary Materials). The results were used to subdivide the patients into two 

groups: PKD-M and PKD-N. 

2.3 MRI data acquisition 

MRI scans were performed on a 3.0-T MR imaging system (Siemens Trio, 

Erlangen, Germany). The head was stabilized with foam padding. High-resolution 3D 

T1-weighted images were acquired using a magnetization-prepared rapid gradient-echo 

sequence with the following parameters: resolution 1.0 × 1.0 × 1.0 mm; repetition 

time/echo time 1,900/2.26 ms; inversion time 900 ms; flip angle 9°; field of view 256 



× 256 mm2; 176 sagittal slices 1 mm thick; voxel size 1 × 1 × 1 mm3. Total acquisition 

time was 420 s.  

2.4 MRI data preprocessing 

Structural images were preprocessed using the automated quantitative 

morphological analysis technique of voxel-based morphometry (VBM) (Ashburner & 

Friston, 2000) as implemented in Statistical Parametric Mapping version 12 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). First, the MRI data for each 

participant were checked by two neuroradiologists to ensure that there were no scanning 

artifacts or structural abnormalities. Second, the individual structural data were 

segmented into gray matter, white matter and cerebrospinal fluid using the unified 

segmentation tool (Ashburner & Friston, 2005). Next, the resultant gray matter images 

were normalized to the Montreal Neurological Institute coordinate space using a high-

dimensional “Diffeomorphic Anatomical Registration Through Exponential Lie 

Algebra” approach (Ashburner, 2007) and further nonlinearly modulated to compensate 

for spatial normalization effects. Lastly, all modulated GM images were resampled to 

2 × 2 × 2 mm3 voxels and individually smoothed with a 6 mm full-width at half-

maximum (FWHM) Gaussian kernel. The smoothed and modulated GM images went 

on to further analysis. 

2.5 Extraction of gray matter networks 

For each participant similarity-based gray matter structural networks were 

obtained using a completely automated data-driven method (Tijms et al., 2012). The 

network nodes were defined as regions of interest (ROI) corresponding to 3 × 3 × 3 

mm3 cubic voxel cubes, and the network edges as the statistically similar gray matter 

morphology of each pair of cubes, quantified by correlation coefficients. Next, 

weighted networks were constructed after determining a threshold for each individual 

graph with a permutation-based method to ensure a significant similarity (p < 0.05) for 

all individuals (Weese, Rsch, Netsch, Blaffert, & Quist, 1999); only positive similarity 

values survived this threshold. As these similarity-based gray matter structural 



networks can have different sizes, and size per se can effect network properties (van 

Wijk, Stam, & Daffertshofer, 2010), we normalized them using a method (Batalle et al., 

2013) based on the unified Automated Anatomical Labeling (AAL) parcellation 

template (Tzourio-Mazoyer et al., 2002): each cube in the similarity-based network was 

linked to the AAL atlas region to which most of its voxels belonged, so that each subject 

ended up with 90 nodes, corresponding to the 90 brain regions of the AAL atlas. Each 

pair of nodes was considered to be connected with a weight (0-1) defined as the ratio 

of the sum of actual significant correlations to the total possible connections between 

all the other nodes belonging to the two ROIs (excluding self-connections). This yielded 

a 90×90 weighted normalized network of brain structures for each participant.  

2.6 Graph-based Network Analysis 

The topological properties of brain gray matter networks were calculated using 

GRETNA software as in previous studies (J. Wang et al., 2015; Zhang et al., 2011; Zhao 

et al., 2020). We applied a wide range of sparsity (S) thresholds to all the correlation 

matrices to ensure that the threshold networks were estimable for small-worldness with 

sparse properties and had the minimum number of spurious edges. This was determined 

using two criteria: (1) the average node degree (the number of all edges connected to a 

node) of each threshold network degree is > 2log (N) (where N is 90, the number of 

nodes); and (2) the small-world scalar σ of the threshold network of all subjects (as 

defined below) is >1.1 (Watts & Strogatz, 1998). With these criteria, the range of 

threshold was 0.10 < S < 0.34 with an interval of 0.01. For each network metric the area 

under the curve (AUC) across the sparsity parameter S provides a summarized scalar 

for avoiding an arbitrary single threshold selection (He et al., 2009; Zhang et al., 2011).  

Both global and nodal network properties were calculated for the brain networks 

at each sparsity threshold. For global properties: clustering coefficient (Cp), 

characteristic path length (Lp), normalized clustering coefficient (γ), normalized 

characteristic path length (λ), small-worldness (σ), local efficiency (Eloc) and global 

efficiency (Eglob). For nodal properties: nodal efficiency and nodal degree. Details of 

these are provided in Supplementary Materials. 



2.7 Statistical analysis 

2.7.1 Comparison of demographic and clinical variables 

Differences in demographic data among PKD-M, PKD-N, and HC were compared 

by one-way analysis of variance (ANOVA) (age and education years) and chi-square 

test (gender). Differences in demographic data (age, education years, age of onset and 

illness duration) between PKD-M and PKD-N were analyzed with two-sample t test 

using IBM SPSS version 21.0. 

2.7.2 Comparison of network metrics 

Between-group differences in the AUC of network metrics were compared using 

nonparametric permutation tests (10,000 permutations) with a design model of one-way 

ANOVA using GRETNA software followed by post hoc tests using IBM SPSS version 

21.0 (T. Chen et al., 2017; Zhang et al., 2011). To address multiple comparisons of nodal 

metrics, we applied false discovery rate (FDR) in ANOVA and post hoc tests at a 

significance value of 0.05 (Benjamini, Drai, Elmer, Kafkafi, & Golani, 2001). 

2.7.3 Network-based statistical analysis 

Any alteration in regional nodal metrics indicates an alteration in similarity with 

other nodes. We used a network-based statistics (NBS) approach to identify the specific 

altered gray matter correlations associated with nodes showing altered metrics between 

the PKD-M, PKD-N and HC groups (Zalesky, Fornito, & Bullmore, 2010). First, we 

chose nodes that exhibited significant intergroup differences in at least one of the nodal 

centralities (nodal degree and nodal efficiency), and for each participant created a 

connection matrix based on these altered nodes . An NBS approach was then applied to 

define a set of suprathreshold links that included any connected components (p < 0.05, 

FWE-corrected network level). The threshold t value was 3.0 and the number of 

permutations was 10,000.  

2.7.4 Correlations with clinical variables 



After significant group differences were identified in the network metrics, we 

assessed the relationships between altered network metrics and the age of onset and 

illness duration in the two patient groups by using partial correlations with age, gender, 

and education as covariates, using SPSS.  

2.7.5 Support vector machine (SVM) analysis 

To determine how well these measures can distinguish individual PKD patients 

with or without PRRT2 mutations, we applied an SVM analysis using gray matter 

structural network matrices to classify patients in one or the other group. We used the 

SVM implementation from the Scikit-Learn library (Pedregosa et al., 2012) based on 

LIBSVM (Chang & Lin, 2011). The model maps the input data from the training set to 

the feature space using a set of mathematical functions known as kernels (a linear kernel 

was preferred to minimize the risk of overfitting). In this feature space, the model then 

learns the optimum separation surface maximizing the margin between different classes. 

We used a 10-fold stratified cross-validation scheme to assess the reliability of the 

model. The 106 patients were divided into 10 nonoverlapping partitions, each with the 

same proportion of PRRT2 positive and negative. Nine partitions (96 subjects) were 

used as the training set, then the trained model was used to make predictions for the 

remaining partition, the test set (10 subjects). We performed a nested cross-validation 

inside the training set (i.e. 10-fold stratified nested cross-validation) to select the 

optimum C value for the SVM, by performing a grid search in the range of values C = 

10−3, 10−2, 10−1, 100, 101, 102, 103, 104. After selecting the optimum C, an SVM 

trained with the whole training set was used to assess performance on the test set in 

terms of balanced accuracy, specificity, and sensitivity (unbiased estimates, since the 

test set was not part of the training process). As these estimates are the mean values 

calculated on each partition of the cross-validation scheme, to estimate the significance 

for each SVM, a nonparametric permutation test (1,000 permutations) was performed 

to calculate a p value for balanced accuracy (Golland & Fischl, 2003). The code used 

is available at http://github.com/Warvito/integrating-multi-modal-neuroimaging. 



3.RESULTS 

3.1. Demographic and Clinical Characteristics 

The demographic and clinical data are summarized in Table 1. There were no 

significant differences in age and gender between the three groups (P > 0.05). The PKD-

M group showed earlier onset (P = 0.013), longer illness durations (P =0.002), longer 

attack duration (P <0.001) and more tendency for a family history (P <0.001) than 

PKD-N. 

3.2 Global brain network properties 

In the defined threshold range, all patients and controls showed a higher 

normalized clustering coefficient (γ > 1) and similar normalized characteristic path 

length (λ ≈ 1) compared to random reference networks, indicating small-world topology 

(γ/λ > 1) (Figure S1). The ANOVA and post hoc analyses revealed significant 

differences in PKD-M compared to HC (decreased global efficiency (Eglob), decreased 

local efficiency (Eloc), increased characteristic path length (Lp)) and in PKD-M 

compared to PK-N (decreased Eglob increased Lp). There were no significant 

differences in other global topological properties (Table 2 and Figure S2). 

3.3 Nodal brain network properties. 

The ANOVA analyses identified significant differences among the three groups in 

13 regions which showed significant between-group differences in at least one nodal 

metric. In post hoc tests both patient groups, relative to HC, showed decreased nodal 

centralities in right postcentral gyrus, right angular, bilateral thalamus, and left median 

cingulate and paracingulate. In addition, PKD-M showed decreased nodal centralities, 

relative to HC and to PKD-M, in bilateral supplementary motor area, left angular gyrus, 

right caudate nucleus, bilateral pallidum, and right superior temporal gyri (Table 3, 

Figure 1). 

3.4 Structural Connections 



In the NBS analysis, compared with HC, the PKD-N showed a significant 

subnetwork with 4 nodes and 4 connections and the PKD-M a significant subnetwork 

with 12 nodes and 19 connections. Compared with PKD-N, PKD-M showed a 

significant subnetwork with 7 nodes and 12 connections. All connections in these 

subnetworks were decreased and this was more pronounced in PKD-M. These nodes 

involved supplementary motor area, basal ganglia, thalamus, angular gyrus, posterior 

cingulate gyrus, and the temporal lobes (Figure 2).  

3.5 Relationships between topological metrics and clinical variables 

Using age, gender and years of education as covariates in partial correlation 

analysis, we detected no significant correlations between network parameters and age 

of onset or disease duration in either group. 

3.6 Single‑subject classification of patients with or without PRRT2 mutation  

Using gray matter structural network metrics, the mean balanced accuracy of 

classification of patients with and without PRRT2 mutations was 74.3%, with 

sensitivity 80.0% and specificity 68.7% (p < 0.001). 

4 DISCUSSION 

By investigating single-subject gray matter structural networks of PKD patients 

with or without PRRT2 mutation, compared to healthy controls, we have demonstrated 

for the first time PRRT2-related abnormalities in gray matter structural networks in 

PKD. At the global network level, only patients with PRRT2 mutation showed an 

increase in characteristic path length and a decrease in global efficiency and local 

efficiency. At the level of nodal topology, both PKD groups showed decreased nodal 

centralities and structural connections in right postcentral gyrus, right angular, bilateral 

thalamus, and left median cingulate and paracingulate gyri. Patients with PRRT2 

mutations showed additional decreased nodal centralities and structural connections in 

bilateral supplementary motor area, left angular gyrus, right caudate nucleus, and 



bilateral pallidum, and right superior temporal gyrus.. 

Although the genotype–phenotype relationship has not been fully clarified in PKD, 

many studies find a strong relation between PRRT2 mutation and clinical presentation. 

Compared to patients without the mutation, PRRT2 mutation patients have an earlier 

age at onset (as in our sample), and are more likely to have a family history (as in our 

sample); their attacks last longer (as in our sample) and occur more frequently, more 

often combine dystonia and chorea, and are more often bilateral; therapeutically, 

carbamazepine is more effective (Huang et al., 2020; Huang et al., 2015; H. F. Li et al., 

2013; McGovern, Roze, & Counihan, 2018; Tan et al., 2014).  

The small-world topology of normal brain networks reflects an optimal balance 

between local segregation and global integration of information (Deco, Tononi, Boly, 

& Kringelbach, 2015). Graph-based brain network analyses provides a robust way to 

quantify such information integration (reflected by Lp, λ, and Eglob) and segregation 

(reflected by Cp, γ, and Eloc) (Rubinov & Sporns, 2010; Suo et al., 2018). Both PKD 

patients and HCs showed high Cp and low Lp, confirming that their gray matter 

structural networks have a small-world topology. However, relative to PKD-N and HC, 

PKD-M showed higher Lp and lower Eloc and Eglob, implying a shift to “weaker 

small-worldness” with less efficient information processing and transfer. This 

phenomenon has been noted in white matter structural networks (L. Li et al., 2020) and 

in gray matter morphological networks (X. Li et al., 2021) in a study which did not 

distinguish the subtypes. Although the physiological meaning of the structural 

covariance network is not fully understood, it is affected by heredity and environment 

(Alexander-Bloch et al., 2013; Hawrylycz et al., 2012; Kong et al., 2014). PRRT2 is 

highly expressed in the central nervous system and involved in brain development and 

synapse formation, and the PRRT2 expression pattern in the developing mouse brain 

corresponds with the age-dependent development pattern of PKD (J. L. Wang et al., 

2011). All this seems to point to PRRT2 mutation as a key factor affecting the 

topological organization of the gray matter structural covariance network in patients 

with PKD. 



The nodal network analysis helps identify specifically altered brain regions and 

networks. A key system is the cortical-basal ganglia-thalamo-cortical circuit (CBTC), 

important in the control of movement. CBTC dysfunction has been hypothesized to 

play a role in hyperkinetic symptoms, and specifically in PKD [reference?]. The CBTC 

loop originates from the motor cortices including the primary motor cortex, 

supplementary motor area, and lateral premotor cortex; it projects to the somatomotor 

region of the basal ganglia, then to the thalamus, which in turn projects back to the 

motor cortex (Breakefield et al., 2008; Tekin & Cummings, 2002). We found abnormal 

nodal topological organization and structural connections throughout the motor loop of 

the CBTC; in bilateral thalamus, right caudate nucleus, bilateral pallidum and bilateral 

supplementary motor area. The. alteration of nodal properties in right caudate nucleus, 

bilateral pallidum and bilateral supplementary motor only occurred in PRRT2-mutated 

patients, suggesting these are PRRT2-related features. PRRT2 is highly expressed in 

the cortical layers of the cerebral cortex and basal ganglia, involved in brain 

development and synapse formation (W. J. Chen et al., 2011; Ebrahimi-Fakhari et al., 

2015). However, the relationship between the biological changes and alterations in the 

brain network need to be further studied. 

We also found abnormal nodal topological organizations and structural connections 

in right posterior cingulate gyrus, bilateral angular gyrus, left superior temporal gyrus, 

and left median cingulate and paracingulate gyri in patients with PRRT2 mutations. 

Those regions have been considered as key components of the default-mode network 

(DMN) (Buckner, Andrews-Hanna, & Schacter, 2008; Raichle, 2015). Although 

median cingulate and paracingulate gyri abnormalities are not commonly reported in 

PKD, DMN abnormalities have been described and are possibly related to abnormal 

emotional processing (X. Li et al., 2021; Y. Zhang et al., 2020), which could explain 

why PKD symptoms depend on the internal emotional state: anxiety and stress lower 

the threshold for attacks and startle can also trigger the attack. However, nodal 

characteristics in these regions were altered in both PKD patient groups, so DMN 

involvement may be a more general phenomenon in PKD. 



Consistent with our second hypothesis, the accuracy of classification of PKD-N vs 

PKD-M using gray matter structural network matrices was quite high at 74.3%. 

Network imaging biomarkers which can capture brain network structure and the 

phenotypic role of known subsystems have the potential to improve diagnosis of 

neuropsychiatric diseases (Schindlbeck & Eidelberg, 2018; Wen et al., 2017). A recent 

study in schizophrenia suggested that connectome-wide matrices had greater diagnostic 

value than graph-based metrics or preprocessed whole-brain image data (Lei et al., 

2020). Moreover, our earlier study showed that gray matter morphological network 

matrices can identify PKD from controls with a high accuracy (X. Li et al., 2021). Our 

results raise the hope that brain networks based on structural MRI might similarly yield 

a practical marker to distinguish patients with or without PRRT2 mutation. 

Our study has some limitations. First, some patients were treated with antiepileptic 

drugs, as often recommended (Huang et al., 2015), so potential confounding effects of 

medication on brain structural networks cannot be ruled out. Second, the prevalence of 

PRRT2 mutation in patients with PKD ranges from 27% to 65%, indicating that 

PRRT2–negative cases might have additional culprit genes (Tian et al., 2018), which 

should also be considered in future studies. Third, although the spatial resolution of our 

data is comparable with that used in previous gray matter network analyses (Niu et al., 

2018), higher resolution data should be acquired in the future to increase precision .  

In conclusion, this study revealed for the first time that PKD patients with PRRT2 

mutations featured (globally) a “weaker small-worldness” gray matter network 

organization, and (locally) more extensive regional disturbance and structural 

connections in CBTC, suggesting that these are PRRT2-related network traits and that 

PRRT2 mutations affect PKD possibly by modulating such brain networks. These 

finding may help to understand the PRRT2-related neural circuitry involved in PKD. 
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