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Abstract 

Posttraumatic stress symptoms (PTSS) and posttraumatic growth (PTG) are common 

co-occurring psychological responses following exposure to traumatic events (such as 

the COVID-19 pandemic), and their mutual relationship remains unclear. This study 

aimed to explore this relationship from a neuroscience perspective by examining the 

shared and/or distinct brain structural markers between PTSS and PTG. Structural 

magnetic resonance imaging scans were performed on 115 general college students 

before the COVID-19 pandemic, and follow-up PTSS and PTG measurements were 

collected during the period of community-level outbreaks. Behavioral correlation 

analyses found no significant relationship between PTSS and PTG. Importantly, whole-

brain correlation analysis and predictive analysis revealed that higher PTSS was 

positively associated with increased gray matter volume (GMV) in the medial 

prefrontal cortex/dorsal anterior cingulate cortex; in contrast, higher PTG was 

negatively associated with decreased GMV in the left dorsolateral prefrontal cortex; 

these findings persisted even when controlling for each other (i.e., PTG/PTSS). This 

study advances our understanding of the neurobiological basis of PTSS and PTG, and 

suggests that they are be distinct psychological constructs with different 

neuroanatomical features. This may have implications for targeted brain interventions 

to reduce PTSS and increase PTG during life-stressful events. 

Keywords: COVID-19, posttraumatic stress symptoms, posttraumatic growth, voxel-

based morphometry, prefrontal cortex. 

  



Introduction 

The COVID-19 pandemic has been a serious global health emergency with a 

profound impact on public mental health (Holmes et al., 2020; Pfefferbaum & North, 

2020; T. Wu et al., 2021). It can be considered a traumatic ‘event’ implying a threat of 

death or severe injury and evokes many psychological reactions, such as fear, anxiety 

and depression (Murata et al., 2021; Shanahan et al., 2022). As a common and negative 

psychological reaction following the pandemic (Vindegaard & Benros, 2020), 

posttraumatic stress symptoms/disorder (PTSS/PTSD) is characterized by intrusions, 

avoidance, hyperarousal and emotional numbing (Diagnostic and Statistical Manual of 

Mental Disorders: DSM-5™, 5th ed, 2013). There is increasing evidence of 

PTSS/PTSD not only in those facing higher levels of exposure to the disease, such as 

survivors of COVID-19 or healthcare workers (Carmassi et al., 2020; Tu et al., 2021), 

but also in the general population (Rossi et al., 2020; C. Wang et al., 2020), which has 

important implications for public mental health (Brooks et al., 2020). Nevertheless, 

similar to many other traumatic events, the COVID-19 pandemic can also lead to 

positive psychological reactions such as posttraumatic growth (PTG) (Chi et al., 2020; 

Mo et al., 2021), which refers to the experience of positive psychological change 

resulting from the struggle with challenging life crises or stressful events (Richard G. 

Tedeschi & Calhoun, 2004b).  

Because PTSS and PTG often coexist in individuals experiencing trauma (Dekel, 

Ein-Dor, & Solomon, 2012; Pietrzak, Tsai, & Southwick, 2021; Z. Wu, Xu, & Sui, 2016; 

Zhen & Zhou, 2022), studies have attempted to elucidate the relationships between 



them. These have yielded inconsistent and heterogeneous results: some studies report a 

positive correlation between PTG and PTSS (Groarke et al., 2017; Jin, Xu, & Liu, 2014; 

Solomon & Dekel, 2007), some a negative correlation (K. Wu, Zhang, Liu, Zhou, & 

Wei, 2015; Z. Wu et al., 2016), and others find no correlation (Cordova, Cunningham, 

Carlson, & Andrykowski, 2001; Shand, Cowlishaw, Brooker, Burney, & Ricciardelli, 

2015; Wei, Han, Zhang, Hannak, & Liu, 2017); there is some evidence for an inverted 

“U” association, suggesting that there may be an optimal intermediate level of PTSS 

that strengthens PTG (Levine, Laufer, Hamama-Raz, Stein, & Solomon, 2008; 

Shakespeare-Finch & Lurie-Beck, 2014; Tsai, El-Gabalawy, Sledge, Southwick, & 

Pietrzak, 2015). These inconsistent findings may be caused by factors such as diverse 

sample characteristics, heterogeneity with regard to trauma type and severity, and 

different measurements and study methods (Chen et al., 2019; Marziliano, Tuman, & 

Moyer, 2020; Shakespeare-Finch & Lurie-Beck, 2014; Shand et al., 2015). A more 

general factor is the limited reproducibility of current psychological science (Nosek et 

al., 2022) and in particular the proneness of behavioral self-reported tests to 

methodological bias (Podsakoff, MacKenzie, Lee, & Podsakoff, 2003). Potential clarity 

may result from neuroscience approaches, in which brain data are used to explore the 

underlying neurobiological substrates of individual differences in human cognitions, 

affects and behaviors (Foulkes & Blakemore, 2018; Genon, Eickhoff, & Kharabian, 

2022). We sought to elucidate the relationship of PTSS and PTG from a neuroscience 

perspective by examining the common and/or specific neuroanatomical markers, based 

on structural magnetic resonance imaging (SMRI), between PTSS and PTG related to 



COVID-19 pandemic 

Previous structural neuroimaging studies have offered insights into the neural 

mechanisms underlying PTSD/PTSS, implicating particularly prefrontal-limbic 

circuitry. Numerous meta-analyses of PTSD have found gray matter alterations in 

regions of prefrontal cortex (PFC) including the medial PFC (MPFC), anterior cingulate 

cortex (ACC) and superior frontal gyrus (SFG) (Bromis, Calem, Reinders, Williams, & 

Kempton, 2018; Kühn & Gallinat, 2013; Li et al., 2014; Li, Zhang, et al., 2022; Meng 

et al., 2016; Serra-Blasco et al., 2021). Also reported in PTSD are abnormalities of 

limbic structures, such as smaller volume in hippocampus and amygdala (Bromis et al., 

2018; Kitayama, Vaccarino, Kutner, Weiss, & Bremner, 2005; Logue et al., 2018). 

Furthermore, these prefrontal-limbic structural alterations are predictive for differences 

and severity of PTSS among different populations (Balters et al., 2021; Carrion, Weems, 

Richert, Hoffman, & Reiss, 2010; Karl et al., 2006), suggesting that PTSS may be a 

nonclinical manifestation of PTSD. 

The neuroanatomy of PTG is less well studied. To our knowledge, only one study 

has examined links with brain structure, finding that in individuals who experienced 

the East Japan Great Earthquake, PTG levels were positively associated with increased 

gray matter volume (GMV) in the right dorsolateral prefrontal cortex (DLPFC) relative 

to measurements made 3 months pre-earthquake (Nakagawa et al., 2016). A functional 

near-infrared spectroscopy study using an ‘emotional’ picture stimulus found that 

individuals with higher PTG showed increased activation in the left DLPFC (Wei, Han, 

Zhang, Hannak, Dai, et al., 2017). A resting-state functional magnetic resonance 



imaging study based on independent component analysis reported a positive association 

of PTG with the DLPFC spontaneous activity (Fujisawa et al., 2015). 

We performed SMRI scanning on each participant before the COVID-19 pandemic, 

and then collected the COVID-related PTSS and PTG data after the onset of epidemic 

outbreak. An optimized and standardized voxel-based morphometry (VBM) approach 

was employed to estimate regional GMV (Ashburner & Friston, 2000), a well-validated 

and popular parameter characterizing the gray matter morphology, which has been 

widely used to investigate the neurobiological bases of human cognitions, affects, 

personalities and behaviors (Kanai & Rees, 2011; X. Liu et al., 2021; Pan et al., 2021). 

First, behavioral correlation analyses were conducted to explore the relations between 

PTSS and PTG during the COVID-19 pandemic. Then whole-brain correlation analyses 

and prediction analyses were performed to identify the brain regions whose GMV 

linked with PTSS and PTG respectively. Considering the literature, we hypothesised 

that PTSS would be linked with GMV in the prefrontal-limbic brain regions (e.g., 

MPFC, ACC, SFG, hippocampus and amygdala), while DLPFC volume might predict 

individual differences in PTG. Because no study has yet examined the neural link 

between PTSS and PTG, our conjunction analyses were exploratory. 

Methods 

Participants 

A total of 151 general individuals who had no history of psychiatric or neurological 

diseases were recruited from a larger project aimed at investigating the 

neuropsychology of personality and mental health (Lai et al., 2022; Suo et al., 2022). 



These participants had completed pre-pandemic brain scanning from October 2019 to 

January 2020 (T1, prior to the declaration of emergency state and nationwide lockdown 

in China). All participants were re-contacted for the second stage of posttraumatic 

behavioral evaluations during the initial outbreak and the peak from February to April 

2020 (T2, the most severe pandemic period in China), and 127 participants responded 

and completed the examinations. Among them, 12 participants were excluded for 

failing to pass the bogus items that are either obvious or ridiculous. Thus, 115 

participants (66 females, mean age = 22.37, standard deviation = 2.08) were included 

in the subsequent data analyses. Notably, no participants tested positive on COVID-19 

PCR testing at T2. The study protocol was approved by the local research ethics 

committee of West China Hospital of Sichuan University and written informed consent 

was obtained from each participant for each stage in accordance with the Declaration 

of Helsinki. 

Behavioral measures 

Impact of Event Scale-Revised (IES-R). To evaluate individuals’ levels of PTSS we 

used the IES-R, a widely used instrument for assessing subjective distress caused by 

traumatic events (Creamer, Bell, & Failla, 2003). The IES-R contains 22 items and three 

subscales (8 items for intrusions, 8 for avoidance, and 6 for hyperarousal). Each 

participant was asked to identify a specific stressful life event (in this case the COVID-

19 pandemic) and indicate how much they were distressed or bothered by each 

difficulty listed. Items are rated on a 5-point Likert scale ranging from 1 (“not at all”) 

to 5 (“extremely”), with a higher score representing more severe PTSS. The Chinese 



version of the IES-R has been well-validated and widely used for investigating 

pandemic-specific PTSS (Peng et al., 2020; C. Wang et al., 2020). In the present sample, 

Cronbach's α for IES-R was 0.89, indicating satisfactory internal reliability. 

Post-traumatic Growth Inventory (PTGI). To measure individual differences in 

PTG we adopted the Chinese version (Ho, Chan, & Ho, 2004) of PTGI  (R. G. 

Tedeschi & Calhoun, 1996). The PTGI is a multidimensional measurement with 21 

items across 5 aspects, including new possibilities (5 items), relating to others (7 items), 

personal strength (4 items), spiritual change (2 items), and appreciation of life (3 items), 

and uses a 6-point Likert scale with response format ranging from 1 to 6. The total score 

of all items represents the PTGI score, a higher score indicating a higher level of PTG. 

The Chinese version of the PTGI exhibits good reliability and validity for assessing 

PTG related to COVID-19 (Li, Mao, et al., 2022; Yan et al., 2021). In the present sample 

Cronbach’s α for PTGI was 0.97, indicating excellent internal reliability . 

MRI data acquisition and preprocessing 

Data acquisition. The SMRI data was acquired using a 3.0 T Siemens-Trio Erlangen 

scanner with a 12-channel head coil. High-resolution T1-weighted anatomical images 

were obtained by a rapid gradient-echo planar imaging sequence with the following 

parameters: 176 slices, voxel size 1 × 1 × 1 mm3, matrix size 256 × 256, slice thickness 

1 mm, flip angle 9 degrees, inversion time 900 ms, repetition time 1900 ms, echo time 

2.26 ms. 

Data preprocessing. Image preprocessing was performed in MATLAB (r2013b) 

using the automated Computational Anatomy Toolbox (CAT12, http://dbm. neuro.uni-



jena.de/cat12/) based on Statistical Parametric Mapping (SPM12, Wellcome 

Department of Imaging Neuroscience, London, UK). Images were reoriented to the 

anterior commissure in SPM12 for better registration, then segmented into gray matter, 

white matter, cerebrospinal fluid probability maps and background using the ICBM 

Tissue Probabilistic Atlases in SPM12. Diffeomorphic Anatomical Registration 

Through Exponentiated Lie algebra (DARTEL) in SPM12 was used to perform 

morphological and anatomical registration, normalization, and modulation analysis 

(Ashburner, 2007). Gray matter images were aligned and resampled to 1.5 × 1.5 × 1.5 

mm3 and then normalized to Montreal Neurological Institute (MNI152) space; the 

inverse Jacobian matrix of the local transformation was used to modulate the segmented 

gray matter to retain the volume measurement. Finally, an 8-mm full-width at half-

maximum Gaussian kernel was used to smooth the modulated GMV images. 

Statistical analyses 

Behavioral analyses. Using the IBM SPSS Statistics 22.0, descriptive statistics and 

bivariate correlation coefficients were calculated for study measures, and independent 

samples t-tests were conducted to examine the sex differences. 

GMV-behavior correlation analyses. Whole-brain voxel-wise correlation analyses 

were performed to explore brain areas in which GMV was associated with PTSS and 

PTG. The IES-R or PTGI scores were considered the variable of interest and age, sex 

and total intracranial volume (TIV) controlling variables. An absolute threshold 

masking of 0.2 was applied to remove the edge effect near the gray and white matter 

boundaries. The Gaussian random field approach was used to determine the regions of 



significance (Worsley, Evans, Marrett, & Neelin, 1992), taking a threshold of p < 0.001 

at the voxel level and p < 0.05 at the cluster level, which is a reliable correction method 

for VBM data (Qiu et al., 2018; S. Wang et al., 2020). 

Prediction analyses. The robustness of the association between PTSS/PTG and 

identified GMV was assessed using a balanced four-fold cross-validation procedure 

using a machine learning method (Evans et al., 2015; Lai, Wang, Zhao, Qiu, & Gong, 

2020; Supekar et al., 2013). GMV data of the significant regions obtained from the 

whole-brain correlation analysis were extracted, then randomly divided into four 

subsets. A linear regression model using the data of three subsets was used to predict 

the fourth. Specifically, GMV of the identified cluster was entered into the linear 

regression model that predicted the PTSS/PTG scores to evaluate predictive ability by 

correlations of the predicted values with the observed values, r(predicted, observed). 

Repeating this for the four different set choices yielded the mean value rfinal (predicted, 

observed). To check its statistical significance an established nonparametric testing 

procedure in MATLAB (r2013b) was conducted by generating 5000 surrogate datasets 

(Lai et al., 2020; Wang et al., 2018). 

Results 

Behavioral characteristics of PTSS and PTG during the pandemic 

Table 1 shows the descriptive statistics of the study measures. There were no sex 

differences in PTSS (t [113] = 1.20, p = 0.232) or PTG (t [113] = 0.05, p = 0.962). 

Participants’ age was negatively correlated with PTG (r = -0.20, p = 0.029), but not with 

PTSS (r = -0.02, p = 0.821). TIV was not correlated with PTG (r = -0.06, p = 0.504) or 



PTSS (r = -0.10, p = 0.283). Importantly, we observed no significant association 

between PTSS and PTG (r = 0.10, p = 0.292), or after adjusting for sex, age and TIV (r 

= 0.10, p = 0.311). 

Brain structures related to PTSS and PTG during the pandemic 

In whole-brain correlation analysis, after controlling for sex, age and TIV, PTSS was 

positively associated with GMV in the left MPFC extending to dorsal ACC 

(MPFC/dACC; r = 0.34, p < 0.001; Table 2 and Figure 1); PTG was negatively 

associated with GMV in the left DLPFC (from middle frontal gyrus extending to 

superior frontal gyrus; r = -0.36, p < 0.001; Table 2 and Figure 2). 

Checking the robustness of these relationships, PTSS was stably predicted by GMV 

of the left MPFC/dACC [r(predicted, observed) = 0.31, p < 0.001]; PTG was stably predicted 

by GMV of the left DLPFC [r(predicted, observed) = 0.32, p < 0.001], after adjusting for sex, 

age and TIV. 

To check their specificity, including PTG as an additional controlling variable, PTSS 

was still associated with GMV in the left MPFC/dACC (r = 0.34, p < 0.001; Table 2); 

including PTSS as an additional controlling variable, PTG was still associated with 

GMV in the left DLPFC (r = -0.36, p < 0.001; Table 2). Adjusting for PTG as well as 

sex, age and TIV, PTSS was still stably predicted by GMV in the left MPFC/dACC 

[r(predicted, observed) = 0.31, p < 0.001]; adjusting for PTSS, sex, age and TIV, PTG was still 

stably predicted by GMV in the left DLPFC [r(predicted, observed) = 0.32, p < 0.001]. 

Discussion 



This prospective study investigated the relation between PTSS and PTG in the 

circumstances of the COVID-19 pandemic from the neuroanatomical perspective. 

Behaviorally, there was no significant association between PTSS and PTG. 

Neuroanatomically, higher PTSS was positively associated with increased GMV in the 

left MPFC/dACC, while higher PTG was negatively associated with decreased GMV 

in the left DLPFC; and each of these findings remained unchanged when controlling 

for the other. Our study is the first to point out that PTSS and PTG are related to, and 

thus presumably supported, by distinct brain structures; they seem to be relatively 

independent psychological constructs with different underlying neurobiology. We now 

discuss the implications in more detail. 

 The lack of behavioral association between PTSS and PTG fits with previous findings 

(Cordova et al., 2001; Shand et al., 2015). This relationship is known to be affected by 

factors such as trauma exposure levels, trauma type and age (A. N. Liu, Wang, Li, Gong, 

& Liu, 2017; Shakespeare-Finch & Lurie-Beck, 2014; Shand et al., 2015); for example, 

compared to higher levels of trauma exposure, a lower level may weaken the 

association of PTSS and PTG (Wei, Han, Zhang, Hannak, & Liu, 2017), which may be 

why it is stronger in survivors of natural disaster than in health professionals who assist 

trauma survivors (Shakespeare-Finch & Lurie-Beck, 2014); furthermore the association 

of PTSS and PTG is stronger in children than in adults (Shakespeare-Finch & Lurie-

Beck, 2014). Note that our participants were healthy young adults and their trauma 

exposure levels were relatively low. 

The positive association between PTSS and GMV in left MPFC/dACC is consistent 



with studies showing increased GMV (Zhang, Zhang, Wang, & Zhang, 2018) and 

cortical thickness (Li, Zhang, et al., 2022) of the MPFC/dACC in PTSD patients in 

relative to healthy controls. As a core component of the default-mode network, 

MPFC/dACC is related to self-referential processing, inhibition control, and top-down 

emotion regulation (Alexandra Kredlow, Fenster, Laurent, Ressler, & Phelps, 2022; 

Patel, Spreng, Shin, & Girard, 2012). Neurocircuitry models of PTSD posit that 

MPFC/dACC fails to inhibit the amygdala, resulting in attentional bias to threats, 

increased fear responses and deficits in top-down emotion regulation (Elzinga & 

Bremner, 2002; Rauch, Shin, & Phelps, 2006). Functional neuroimaging studies in 

PTSS find increased activation in the MPFC/dACC during relevant tasks, suggesting a 

failing attempt at compensatory suppression of adverse emotional responses (Carrion, 

Garrett, Menon, Weems, & Reiss, 2008; Garrett et al., 2012), and our positive 

correlation between PTSS and left MPFC/dACC GMV may be the structural 

manifestation of this (Herringa, Phillips, Fournier, Kronhaus, & Germain, 2013; Jeong 

et al., 2021). 

The negative association between PTG and GMV in left DLPFC is consistent with 

studies showing an association of PTG with alteration in DLPFC structure (Nakagawa 

et al., 2016) and function (Fujisawa et al., 2015; Wei, Han, Zhang, Hannak, Dai, et al., 

2017). The DLPFC sends afferent projections to subcortical structures such as striatum, 

hippocampus and amygdala, and is involved in higher-order cognitive processes such 

as conscious decision-making and cognitive control, as well as emotional regulation 

(Badre & Wagner, 2004; Kanske, Heissler, Schönfelder, Bongers, & Wessa, 2011; 



Krawczyk, 2002; MacDonald, Cohen, Stenger, & Carter, 2000). This aligns with the 

neurocircuitry model of PTG, which highlights the role of higher-order cognitive 

processing in individuals struggling with challenging life circumstances (Richard G. 

Tedeschi & Calhoun, 2004a). Lower PTSD symptom severity and better recovery and 

resilience have been linked with DLPFC activation and morphology (Aupperle et al., 

2012; Lyoo et al., 2011). Repetitive transcranial magnetic stimulation of left DLPFC 

decreases core PTSD symptoms (avoidance and re-experiencing) and benefits mood 

(Boggio et al., 2010). If the DLPFC is indeed involved in positive psychological 

changes in individuals experiencing trauma, the negative association between between 

PTG and left DLPFC GMV may reflect increased myelination and synaptic pruning 

(Paus, 2005; Sowell, Thompson, Tessner, & Toga, 2001). This is supported by reports 

that the volume of left DLPFC is negatively correlated with positive psychological 

constructs such as ‘grit’ personality (Wang et al., 2018), social well-being (Kong, Hu, 

Xue, Song, & Liu, 2015) and elevation tendency (G. Liu et al., 2018). 

Our research has several limitations. First, the subjects are normal young adults, so 

the results are not necessarily applicable to other populations such as children and 

elderly, and individuals directly exposed to the pandemic (e.g. frontline healthcare 

workers, or COVID-19 patients). Second, we only performed MRI scan and behavioral 

measures once before and during the pandemic. A longitudinal design with brain and 

behavioral measurements at multiple time points will be needed to test and extend our 

results. Third, we adopted the single index of the GMV as the measure of brain structure 

in the present study, and identified only one cortical region related to PTSS and PTG 



respectively. Future research may explore the relationship more fully using other 

structural approaches (e.g. cortical surface area and cortical thickness) combined with 

functional methods (e.g. resting-state functional activity and connectivity). 

Conclusions 

In conclusion, this prospective study demonstrates that the pre-pandemic brain gray 

matter structures can distinguish COVID-related PTSS and PTG after the onset of the 

pandemic, revealing that higher PTSS is linked to larger GMV in the left MPFC/dACC, 

while higher PTG is linked to smaller GMV in the left DLPFC. These findings advance 

our understanding of the neurobiological basis of PTSS and PTG, and help to elucidate 

their relationship. They may also be valuable in suggesting potential brain regions for 

targeted interventions such as transcranial direct current stimulation (Valero-Cabré, 

Amengual, Stengel, Pascual-Leone, & Coubard, 2017) aimed at decreasing PTSS and 

increasing PTG in individuals experiencing major trauma events. 
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Figure legends 

Figure 1. Regional GMV related to PTSS. (A) Brain image showing that PTSS is 

positively linked with GMV in the left MPFC after adjusting for sex, age and TIV. (B) 

Scatter plots showing the correlation between PTSS and left MPFC volume. 

Abbreviations: GMV, gray matter volume; MPFC, medial prefrontal cortex; PTSS, 

post-traumatic stress symptoms 

 

 

 

  



Figure 2. Regional GMV related to PTG. (A) Brain image showing that PTG is 

negatively linked with GMV in the left DLPFC after adjusting for sex, age and TIV. 

(B) Scatter plots depicting the correlation between PTG and left DLPFC volume. 

Abbreviations: DLPFC, dorsolateral prefrontal cortex; GMV, gray matter volume; PTG, 

post-traumatic growth. 

 

 



Table 1. Study variables (N =115; 66 female, 49 male) 

Variable Mean SD Minimum Maximum 

Age (y) 22.4 2.1 19 27 

TIV (ml)                 1478 123 1251 1778 

PTSS 28.9 7.3 22 60 

PTG 62.8 23.3 21 121 

Abbreviations: N = number; PTSS = post-traumatic stress symptoms; PTG = post-traumatic 

growth; TIV = total intracranial volume.



Table 2. Brain regions where gray matter volume is significantly related to PTSS and PTG 

Posttraumatic  

response 

Controlling 

variables 

Brain region No. of 

voxels 

BA Peak t score Peak MNI coordinates 

X Y Z 

PTSS 

Age, sex and TIV Left MPFC 203 BA6/32 3.75 -10 45 18 

Age, sex, TIV and PTG Left MPFC 222 BA6/32 3.76 -11 45 18 

PTG 

Age, sex and TIV Left DLPFC 248 BA8/9 - 4.31 -21 23 45 

Age, sex, TIV and PTSS Left DLPFC 234 BA8/9 - 4.27 -21 23 45 

Abbreviations: BA, Brodmann area; DLPFC, dorsolateral prefrontal cortex; MPFC, medial prefrontal cortex; MNI, Montreal 

Neurological Institute; PTG, post-traumatic growth; PTSS, post-traumatic stress symptoms; TIV, total intracranial volume. 

 


