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 This article develops a robot skill learning system with multi-space fusion, simultaneously 

considering motion/stiffness generation and trajectory tracking. To begin with, surface 

electromyography (sEMG) signals from the human arm is captured based on the MYO 

armband to estimate endpoint stiffness. Gaussian Process Regression (GPR) is combined 

with dynamic movement primitive (DMP) to extract more skills features from multi-

demonstrations. Then, the traditional DMP formulation is improved based on the 

Riemannian metric to encode the robot’s quaternions with non-Euclidean properties. 

Furthermore, an adaptive neural network (NN)-based finite-time admittance controller is 

designed to track the trajectory generated by the motion model and to reflect the learned 

stiffness characteristics. In this controller, radial basis function neural network (RBFNN) 

is used to compensate for the uncertainty of the robot dynamics. Finally, experiments are 

performed using the ROKAE collaborative robot, and the results confirm the effectiveness 

of the proposed approach. In summary, the proposed framework is suitable for human-

robot skill transfer method that require simultaneous consideration of position and stiffness 

in Euclidean space and orientation on Riemannian manifolds. 

1. Introduction 

In recent years, robots are becoming ubiquitous with the 

development of robotics and artificial intelligence 

technologies [1]. There is an increasing requirement for robot 

adaptability due to the current market demand for customized 

services and rapid reorganization, always expecting them to 

operate as naturally and smoothly as humans. Therefore, it is 

necessary to develop methods to enhance the learning 

capabilities of robots [2]. Learning from demonstration (LfD) 

[3], a strategy for mapping from example states to actions has 
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attracted significant attention. LfD has the advantages of 

simple and fast demonstration compared with traditional 

manual programming methods, which can significantly reduce 

labor and time costs and play a key role in improving the 

flexibility and intelligence of robots. On the other hand, LfD 

focuses mainly on point-to-point motion trajectory planning, 

but does not consider dynamical skills. Humans benefit from 

the inherent properties of the musculoskeletal system that 

naturally and intuitively balance the relationship between 

interactive force and position [4, 5]. Hogan [6] defined this 

dynamic relationship as an impedance/admittance model and 

applied it to robotics to achieve the compliance characteristics 

exhibited by humans. However, the traditional constant 
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impedance control is not in line with human operation habits, 

which cannot take into account the relationship between 

accuracy of motion and compliance of interaction, so it is an 

effective way to address this problems by equipping the robot 

with human-like variable impedance characteristics [7, 8]. 

The premise of LfD is skill modeling, where the extraction 

of human arm endpoint stiffness is the challenging task, and it 

is also the main factor affecting the performance of human 

interaction with the physical environment [9]. Abu-Dakka et al. 

[10] estimated the stiffness symmetric positive definition (SPD) 

matrix from the collected forces and the robot’s state based on 

the impedance model and the sliding window method. 

However, the force signal usually lags behind the limb action, 

which affects the accuracy of the estimated stiffness. In 

contrast, the sEMG signal contains rich information and the 

signal is generated earlier than the limb action, which is more 

suitable as a decoding signal for arm stiffness information. 

Zeng et al. [11] collected sEMG signals through the MYO 

armband and performed endpoint stiffness estimation based on 

the conservative congruence transformation between the end-

effector stiffness of the human arm and the joint stiffness. A 

simplified geometric model was proposed in [12] to reduce the 

complexity of the endpoint stiffness representation of the 

human arm, where the triangle formed by the human arm was 

modeled to determine the pose of the endpoint stiffness 

ellipsoid and the sEMG signal of the antagonist muscle to 

reflect the volume of the endpoint stiffness ellipsoid. 

There are numerous types of research on robot skill learning, 

including Gaussian mixture model (GMM) [13], DMP [14], 

kernelized movement primitive (KMP) [15], gaussian process 

movement primitive (GP-MP) [16] and compliant movement 

primitive (CMP) [17]. DMP is constructed based on second-

order spring-damped system, which has been widely noticed 

for its robustness to perturbations, convergence to attractors, 

and adaptability to new targets. Some researchers have applied 

DMP to trajectory tracking [18], obstacle avoidance [19], and 

state prediction [20], etc. However, traditional DMP is 

unsuitable for learning multi-demonstration data due to the 

particular structure of the model. Therefore, Yang et al. [21] 

modeled the nonlinear function of the DMP with GMM and its 

estimation was retrieved by Gaussian mixture regression 

(GMR). This modification allows the robot to extract more 

motion features from multi-demonstration and to generate 

motions that synthesize these features. On the other hand, 

traditional DMP also has a dependence on Euclidean spatial 

data, which leads to its inability to directly encode high-

dimensional non-Euclidean skills, such as orientation and 

manipulability of the robot, which need to be represented on 

Riemannian manifolds. Therefore, in recent years, many 

studies [22, 23] have introduced Riemannian manifolds to 

properly represent Riemannian manifold skills and improve 

the learning accuracy. 

Several types of manifolds including: the sphere manifold 

dS , the special orthogonal group ( )SO d  and the special 

Euclidean group ( )3SE  are explored in [18], along with 

some basic operations such as geodesics, logarithmic map and 

exponential map. Ude et al. [24] proposed an improved DMP 

framework with the rotation matrix ( )3SO  and the 

quaternion 
3S  representation, and theoretical and 

experimental analysis showed that the logarithmic map 

defined on the unit quaternion space does not have 

discontinuity boundaries making it easier to use than the 

rotation matrix. Although these methods provide an effective 

way to learn orientation of robots, it would be better if the 

authors could simplify the representation by using Riemannian 

manifold tools and involve endpoint stiffness learning. To 

address this gap, Yu et al. [9] used DMP to learn translational 

motion and stiffness simultaneously to control the robot for 

pumping tasks. However, in real operation of the robot such as 

opening the door and other tasks, both translational and 

rotational motions are required to be considered, which limits 

the application of this method. Therefore, it is necessary to 

combine the Riemannian manifold to refine the formulation of 

the DMP and improve the learning accuracy, while considering 

the variable stiffness properties comprehensively. 

In addition, the combination of DMP and robot control is 

another topic of great interest. Schaal et al. [25] proposed the 

motion control framework incorporating DMP. There is 

always uncertainty in the dynamics model of the robot leading 



 

 

to poor tracking accuracy, while function approximation tools 

such as RBFNN are often used to deal with nonlinear 

properties [26] and have a faster convergence rate. On the other 

hand, many specific tasks nowadays put higher demands on the 

transient response and steady-state accuracy of control 

systems. However, most controllers can only ensure that the 

tracking error is asymptotically stable or consistently and 

eventually bounded stable, which means that as time 

approaches infinity, the error converges asymptotically to zero 

or to a neighborhood near zero. And that usually imposes some 

penalties on the transient performance aspects of the system, 

including a certain amount of overshoot, etc. The finite time 

control (FTC) technique [27, 28] has attracted wide attention 

due to its advantages of faster convergence, stronger resistance 

to disturbance and higher control accuracy. 

Inspired by them, this research designs a robot skill learning 

system with multi-space fusion as shown in Fig. 1. It includes 

a skill generation model and an adaptive neural network-based 

finite-time admittance controller. The proposed framework has 

the following contributions compared to the DMP-based 

trajectory planning and various control methods: 

 
Fig. 1. Diagram of trajectory tracking controller and multi-space 

fusion robot skill learning and generalization. 

1) A method to estimate endpoint stiffness based on sEMG 

signal is proposed, and the estimated stiffness is 

associated with variable admittance controller based on 

the robot dynamic model to maintain both compliance 

and safety in interaction tasks. 

2) A novel robot skill learning framework is proposed. The 

nonlinear forcing term of the traditional DMP is 

approximated using GPR to model multi-demonstrations 

data. The DMP formulation is reconstructed based on the 

3S  Riemannian metric (RM-DMP) to learn, reproduce 

and generalize the orientation properties of the robot 

represented by quaternions. Simultaneous encoding of 

position, orientation and stiffness to transfer human-like 

multi-space skills to the robot. 

3) The FTC, sliding mode control (SMC) and Log-Barrier 

Lyapunov Function (Log-BLF) are integrated on the 

basis of the backstepping control technique to design a 

robot trajectory tracking controller with faster error 

convergence and higher steady-state accuracy. 

The rest of this article is organized as follows: Section 2 

introduces the preliminaries. Section 3 shows the robot skill 

learning method with multi-space fusion of this research. 

Section 4 shows the adaptive neural network-based finite-time 

trajectory tracking control and Section 5 gives the 

experimental results that are obtained by using the 

collaborative robot ER3 Pro developed by ROKAE. Finally, 

Section 6 concludes the research. We summarize key notations 

used throughout this paper in Table 2. 

2. Preliminaries 

2.1. Dynamic movement primitive 

The basic idea of DMP is to construct an “attractor model” 

using a second-order spring-damped system with self-stability, 

and to adjust the final state of the system by changing this 

“attractor” to converge to a specified motion [29]. It can be 

used to represent the evolution of various state variables in 

skill transfer, e.g., position [9] and stiffness [7, 21]. The DMP 

of 1-degree-of-freedom (DOF) discrete trajectory y   is 

defined by the following nonlinear differential equation: 

 ( )( ) ( ) ( )2

0p p g g py y y y y y f x   = − − + −  (1) 

   ( )      0,1       0 1xx x x x = −  =， ，  (2) 

where p   and p   are the designed parameters,    is the 

time scaling parameter, y  is the motion trajectory encoded 



 

 

by DMP, 
0y   and 

gy   are the initial and target positions, 

respectively. And both can be adjusted to achieve trajectory 

generalization according to the task requirements. The phase 

variable x  is determined by the canonical system (CS) of Eq. 

(2), and 0x    is the decay rate. ( )pf x   is the nonlinear 

forcing term composed by N  Gaussian basis functions. 
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where 
ic   and 

ih   are the center and width of the basis 

function ( )i x , respectively. pi  is the learning weight. 

The transform system of Eq. (1) is used to represent the 

motion in each dimension for the learning of multi-

dimensional motion trajectories, and the CS of Eq. (2) is used 

for synchronization. 

2.2. 3S  Riemannian manifold 

Using quaternions to represent the robot’s orientation is a 

relatively common approach currently. However, the set 3S  

composed of it does not belong to the vector space because it 

is not closed under the addition and scalar product, so it is not 

enough to treat and analyze it by the classical Euclidean space 

method. Combining quaternion with Riemannian metrics to 

form Riemannian manifolds is an effective way to solve the 

above problem. A Riemannian manifold M  is a topological 

space whose local behavior is similar to that of the Euclidean 

space 3   as show in Fig. 2. M   is a smooth and 

differentiable manifold with a positive definite metric tensor. 

There exists a locally linearized tangent space pT M  for each 

point pM , yields 

 
3p  :  px y zi j k     = + = + + + S  (5) 

3S  is a unit sphere in 4 . The quaternion conjugation of 

p  is defined as p x y zi j k   = − − − . 

A mapping system is needed to switch between pT M  and 

M  to operate on the tangent space, which is defined by: 

 

Fig. 2. Left: exponential/logarithmic mapping between the 2S  

manifold embedded in 3   and the tangent space. Right: Parallel 

transport of a vector along a geodesic, e  denotes the alignment base. 

The exponential map ( )Exp   : 
 →T M M   maps a 

point 
T M   to a point M  , so that it lies on the 

geodesic starting from 3S  in the direction of  . 
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 

cos ,sin * ,   0
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where “* ” is quaternion multiplication, it is defined by 

 ( ) ( )1 2 1 2 1 2 1 2 2 1 1 2p *p         = − + + + •  (7) 

The logarithmic map ( )Log  : 
→M T M  maps a point 

M  to a point 
T M . 
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where ( ) ( ) 3* , , ,x y zq q i q j q k  = S . 

Another useful operation on manifolds is the parallel 

transport ( ) :→    →T M T M  , which moves elements 

between tangent spaces as a function from   to   on the 

geodesic such that the angle between two elements in the 

tangent space remains constant, thus making the inner product 

conserved [22, 30]. It is given by 

 ( ) e eB R R R B→ → → →  = •  (9) 

where B  contains the direction of the base coordinates at the 

origin, which in the 3S  manifold is given by 
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 ( ) ( )( )sin cos 14R I m u m uu→ = −  + −晻  (11) 
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( )LogeR m → =    with ( )Logm =    is the angle of 

transport. 

2.3. Gaussian process regression 

Gaussian process regression (GPR) is a nonparametric 

regression method based on Bayesian inference [31], which 

predicts output variables by modeling the Gaussian process on 

the input data. Given a set of noise observations 

( ) ,   1, ,i iD x x i M= =I O
  in which ( )i ix x = +GO I

 , 

( )20, n N , GPR is implemented as: 

 ( ) ( ) ( )( ), ,x GP x K x xG I I I  (12) 

where ( ) ( )x E x =   GI
  is mean function, ( ),K x xI I

  is 

the covariance function of the process 
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where ( ) ( )( ) ( )( ),i j i i j jk x x E x x x x  = − −
 
G GI I I I I I

  and 

it is usually defined as ( )
2

2 1
, exp

2
i j f i jk x x x x

L


 
= − − 

 

I I I I
, 

L  is diagonal matrix defined by the length scale and 
2

f  is 

the variance. 

Specify a new set of inputs *x I , and the joint distribution 

of the outputs is given: 
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Then, the conditional probability property of the Gaussian 

distribution is used to evaluate the posterior distribution over 

*xO , yielding a Gaussian 

 ( ) ( )* * *,p x x  NO O  (15) 

with mean and covariance 

 ( ) ( ) ( )( ) ( )( )
1

* * * 2, , nx K x x K x x I x x   
−

= + + −I I I I I O I  (16) 
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1
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−

 = − +I I I I I I I I  (17) 

In practice it is often assumed that 
( )

( )*
0

x

x





 
  =
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 

I

I
. Gaussian 

processes can thus be completely defined by their second order 

statistics. Different mathematical tools can be used to choose 

the appropriate values of the GPR parameters ( ), ,n f L   , 

such as maximizing the marginal likelihood and leave-one-out 

cross-validation [32]. 

3. Robot skill learning method with multi-

space fusion 

3.1. sEMG-based stiffness estimation 

It is effective to modulate the stiffness properties of the robot 

in the workspace by estimating the endpoint stiffness of the 

human tutor’s arm. In this research, the sEMG signals are 

collected from the MYO armband and the envelope is 

extracted from the raw sEMG signals by the following moving 

average technique. 

 ( ) ( )
1

0

1
EMG

W

t t i

i

l A A
W

−

−

=

=   (18) 

where ( )tl A   is the amplitude of the envelope, W   is the 

length of the window function, ( )EMG tA  is the amplitude of 

raw sEMG. Fig. 3 gives an example of extracting envelope. 

 

Fig. 3. The envelope is extracted from the raw sEMG signal. 

Further, it is defined that 
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where 8D =  is the total channels number of the MYO, and 



 

 

  is the mean of the amplitude. c  is the stiffness index, and 

  is the designed parameter. Thus, the mapping between the 

c  and the estimated endpoint stiffness k  is given by: 

 ( )max min mink c k k k= − +  (21) 

 
kK S k=  (22) 

where the range of stiffness is determined by 
maxk  and 

mink , 

kS   is the diagonal matrix that is used to select the axes in 

which the stiffness should be modulated (units of the first three 

elements are N/m, while the last three are Nm/rad). 

3.2. Multi-space dynamic movement primitive 

Given multi-demonstrations  , , ,
, ,

t n t n t n
y y yY =   with 

1, 2, , ;  1, 2, ,
d

t T n N= =  for specific tasks. GPR is used to 

approximate the nonlinear forcing term ( )pf x   of the DMP. 

Simultaneously, alignment of motion data from multi-

demonstrations is usually required. The generalized time 

warping (GTW) [33] algorithm is used to deal with this 

problem in this article. GTW minimizes the following 

objective function: 

 ( ) ( )( )
2

1 1 1

1

2

d d dN N N

GTW i i i j j j i i

i j i

J F YW F Y W F W 
= = =

= − + + 晻  (23) 

where F   and W   are a nonlinear time-transformed 

embedding matrix and a low-dimensional spatial embedding 

matrix, respectively. ( )    and ( )    are regularization 

functions. Eq. (23) shows that GTW will ensure that 
i iF YW•  

is aligned with the other vectors in a least-squares way. 

Further, the traditional DMP formulation is reconstructed 

based on the 3S   Riemannian manifold for encoding robot 

orientation. By defining  
1

,
i i i

zt
=

  as a set of robot’s 

orientation evolution demonstrations. Its 1st- time derivative is 

calculated by 
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The 2nd- time derivative is calculated directly using 

standard Euclidean tools. Thus, a set of orientation learning 

database is constructed as  
1

, , ,
i i i ii i

z z zZ t
=

= . 

The 3S   Riemannian metric-based DMP (RM-DMP) can 

be rewritten as 

 ( )( )( ) ( ) ( )
0 0

2 Log Logo o z z z g z g oz z z z f x   →=  − +  (25) 

where ( )of x   is also modeled by GPR. 
0z   and 

gz   can be 

modified to generalize based on task requirements. 

In the reproduction phase, the following equation is used to 

obtain the imitated orientation. 

 ( ) ( )

( ) ( )( )
0Exp

z z t

z t

z t
z t t t 



→
 
 + =
 
 

 (26) 

Therefore, the traditional DMP, described in Eq. (1), is used 

to encode the robot’s position and stiffness. The RM-DMP, 

described in Eq. (25), is used to encode the robot’s orientation. 

And the synchronization is guaranteed by the same canonical 

system of Eq. (2). 

3.3. Admittance control method 

Robots must adapt to a variety of unknown physical 

environments to be a reliable partner for human, i.e., have 

superior interaction capabilities. Admittance control has been 

proven by many studies [34] to be an effective method to 

ensure stability and safety when robots interact with unknown 

environments. In this research, the following variable 

admittance controller is designed. 
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       

 (27) 

where e eF   is the interaction force/torque between the robot 

and the external environment, which is obtained by the 6-Axis 

sensor. pdK   and pdB   represent the translational stiffness 

matrix and damping matrix of the robot in the workspace, 

respectively. 
odK   and 

odB   represent the rotational stiffness 

matrix and damping matrix, respectively. ( )
3 3

d
K 


   is 

diagonal matrix whose components are learned/generalized by 

the DMP.    is designed positive constant coefficient. 

3

dy   and 3

dz S  are the desired position and orientation, 

learned/generalized by DMP and RM-DMP, respectively. 

3

ry    and 3

rz S   are the command position and 



 

 

orientation, respectively. 3

c   is the angular velocity, and 

the mapping between 
r  and 1st- time derivative of the 

rz  is 

given by 

 
1

0, *
2

r r rz z =  
•

•  (28) 

In summary, 
r

r

y

z

 
 
 

  is derived by substituting 
d

d

y

z

 
 
 

 , 

pd

od

K
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 and 
e

e

F


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 
 

 into the admittance model, which is used 

as the Cartesian input for the subsequent adaptive neural 

network (NN)-based robot trajectory tracking controller. 

4. Adaptive neural network-based finite-time 

trajectory tracking control 

In this section, a novel adaptive neural network (NN)-based 

finite-time control method of robot is proposed to track the 

trajectory learned by the multi-space DMP by considering the 

error convergence rate and the steady-state tracking accuracy. 

4.1. Problem description 

The dynamics model of the robot can be expressed as: 

 ( ) ( ) ( ) ( ), eM q q C q q G q t uq + + + =  (29) 

where 
e

e

e

F
J



 
=  

 

•
, which is the force/torque applied to the 

robot in the workspace. n nM   , n nC    and 1nG   

are the inertia matrix, the Centrifugal force and Coriolis force 

matrix and gravity matrix, respectively. 1nq   , 1nq   

and 1nq    are the joint angle, joint velocity and joint 

acceleration, respectively. m nJ    is the Jacobian matrix, 

m  is the dimension of the workspace and n  is the DOF of 

the robot. 1nu   is the control input. 

Generally, M , C  and G  have uncertain nonlinear terms, 

i.e. 
0M M M= +  , 

0C C C= +   and 
0G G G= +  . 

0M  , 

0C   and 
0G   represent the nominal parts, M  , C   and 

G  represent the other unknown parts. Thus, Eq. (29) can be 

rewritten as: 

 
0 0 0 eM q C G uq + + + +  =  (30) 

where Mq Cq G =  +  +   . It is defined that 

 1 11 1, , nx q x x= =
•

 ,  2 21 2, , nx q x x= =
•

 , Eq. (30) can 

be converted as: 

 
( )

1 2

1

2 0 0 2 0 e

x x

x M u C x G −

=


= − − −  −
 (31) 

The error variable is defined as: 

 1 1

2 2

re x q

e x 

= −


= −

 (32) 

where 
rq   is command joint position, which is obtained by 

performing the inverse kinematic solution for 
r

r

r

y
x

z

 
=  
 

.   

is the virtual control law. 

The Lyapunov function is defined as: 

 
2 2

1 2 2 2
1 1

1 ( )
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2 ( )

n
i ai

i i ai i

b k t
V

b k t e=

=
−

  (33) 

where 
11 1

1

11 2

1  0( ) 1 ( )
,  with  ( )

0  0

ii i

i i

ii i

ee e
b e

e

 


 

−
= + = 


 , 

( )0 1

at

ai ik k k e k−

 = − +   denotes the prescribed performance 

function that determines the error convergence bound. 

Derivation of 
1V  yields: 
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=
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−

 
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−  

 
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


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 (34) 

The virtual control law   is designed as 

 
1 1 1 1 1

a
v r

a

K
K e H K q e

K
 = − − + +  (35) 

where 

( )( ) ( )( )

2 12 1

111
1 1 1

2 22 2

11 1

, , n
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ee
K

b k e b k e
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 
 
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− − 

 

•

 ,

 1, ,a a anK k k=
•

,  1 1 1, ,i nK diag k k= ,  1 11 1, , nH diag h h= . 

Substituting Eq. (35) into Eq. (34). 
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1 11
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  (36) 

Further, the sliding mode surface is defined as: 



 

 

 
1 2s ce e= +  (37) 

It is defined that 

 
2 1

1

2
V V s s= + •  (38) 

Derivation of 
2V  yields: 
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 (39) 

where 111
2 2 2 2 2

1 11 1

, , n

v

a an n

ee
K

k e k e

 
=  

− − 

•

 , 1

0f M −=    is 

the unknown nonlinear term, which is approximated using 

RBFNN *f W  = +•  , where 
*W   is the ideal neural 

network weight,   is the radial basis function, and   is the 

approximation error vector with i i  , 0i   is the upper 

bound of the error.. 

The control input u  is designed as: 

 
 0 2 1 2 2

0 2 0

sign( )

ˆ 

v s

e

u M K ce H K K s s

C x G W

 

 

= − − − − −

+ + ++ •

 (40) 

where  2 21 2, , nH diag h h=  , 
2 1 2 1

1 , ,s nK s s − − =  
•

 , 

2 2 2[ , , ]i nK diag k k= ,   . 

Substituting Eq. (40) into Eq. (39). 
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晻
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1

sign( )

 

n

i i i i i

i

s s s 
=

− + 

 (41) 

4.2. Stability analysis 

Lemma 1. (Young’s Inequality). For ( ) 2,x y  , such 

that: 

 
1

q

p
p q

xy x y
p q

 +  (42) 

where 0 , 1p  , 1q   and ( )( )1 1 1p q− − = . 

Lemma 2. For any variables   and v , and given constants 

1d , 
2d  and 

3d , the following inequality holds: 

 
1

2 1 1 2 1 222 1
3 3

1 2 1 2

d

d d d d d ddd d
v d d v

d d d d

−
+ +

   +
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 (43) 

Lemma 3. For any positive constant nk R  , the following 

inequality holds for any ne R  in the interval e k . 

 log
k k e e

k k e e k k e e


− −

晻

晻 晻
 (44) 

The Lyapunov function is selected as follow: 

 1
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1

2

n
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i

V V W r W−

=

= +  •  (45) 

where  1, , nr diag r r=  is a predetermined positive definite 

diagonal matrix. 

Derivation of V  yields: 
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The adaptive law of Ŵ  is defined as: 

 ˆ ˆ( )i i i i iW r s W = − +  (47) 

where   is positive constant. Thus, Eq. (46) can be rewritten: 
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 (48) 

According to Lemma 1. 
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According to Lemma 2, it is defined 1v = ，
1 1d = − ，
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Additionally, it should be noted that when 0is   , 
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Combined with Lemma 3, Eq. (48) can be rewritten as 
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Further 
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 (52) 

where 
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It should be ensured that ( )( )1
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i n
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1, ,
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1 0   

and 
2 0  . According to [35], there always exists a finite time 

0t   such that ( )
( )1

22 /V


    holds for all  00,t t  . 

Therefore, ( )1 2 2V V V   − −   holds and the closed-loop 

system can be rapidly stabilized in finite time 
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1
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1
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 
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  for all  00,t t  . 

Furthermore, it can be shown that 
0 0t T  . ( )

1

22V


   

holds for 
0t T   . In finite time 

0T  , the internal signal 
1ie  

will converge to the following compact set. 

 ( )
1
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1

22 2

1 1i aie k e


 −  −
  

 (56) 

According to [35], if ( )1 0i aie k  , 1i aie k   for 0t   . 

Therefore, the steady-state trajectory tracking error 
1e  of the 

robot system will converge to within the range of the 

prescribed performance function 
aik   while ensuring the 

convergence speed. 

5. Experiment 

The effectiveness of the proposed method is verified on the 

collaborative robot ER3 Pro developed by ROKAE, and the 

experimental scenario is set to simulate the robot 

learning/generalizing water pouring skill. The hardware 

architecture of the control system is shown in Fig. 4. The host 

computer is constructed on the PREEMPT-Linux system to 

ensure real-time performance. Meanwhile, the human tutor 

wears a MYO armband on the arm to collect sEMG signals. 

The collected sEMG signals are sent to the host computer for 

processing via Bluetooth. The 6-Axis force sensor provides 

real-time force/torque feedback via the Ethernet protocol with 

the control cycle set to 200 (HZ). The electric gripper at the 

end of the robot is used to hold the water bottle. The built-in 

torque control mode allows us to drag the robot directly for 

demonstrations, and the estimated stiffness and robot’s states 

are recorded for analysis of the experimental results. 

In addition, the acquisition process of actual force/torque is 

shown in Fig. 5. Where  B  is the base coordinate system, 

 S   is the sensor coordinate system and  T   is the tool 

coordinate system. Gravity/gravitational torque compensation 



 

 

of the tool based on the raw data collected by the 6-axis force 

sensor is performed to obtain corrected data, which is 

multiplied with the rotation matrix T B

B SR R  to align  T . It is 

worth noting that all variables of the proposed control 

framework are considered under the coordinate system  T . 

 

Fig. 4. The hardware architecture of the control system. 

 

Fig. 5. The acquisition process of actual force/torque. 

5.1. Test of the adaptive NN-based finite-time controller 

In this experiment, the proposed adaptive NN-based finite-

time controller was compared with the traditional PD 

controller, and the desired trajectory was defined as a 

circumferential motion with ( )0.415 0.05 sin 2 10xp t= +   ,

( )( )0.21 0.05 cos 2 10 1yp t= +  −  , ( )0.3 0.05 sin 2 10zp t= +   . 

The controller parameters were selected as follows: 
0 0.2k = , 

0.05k =  , 1a =  , 
1 1 =  , 

2 1 =  , 
1 20ik =  , 

2 10ik =  , 

1 0.01ih =  , 
2 0.01ih =  , 0.6 =  , 2c =  . The trajectory 

tracking performance of both was compared as shown in Fig. 

6, and the Root Mean Square Error (RMSE) was used to 

analyze the trajectory tracking error to quantitatively compare 

the advantages of the designed controller as shown in Fig. 7. It 

was seen that the tracking accuracy of the proposed method is 

higher and the correctness of the aforementioned theoretical 

derivation was verified. 

 

(a) 

 

(b) 

Fig. 6. Trajectory tracking performance comparison of the (a) 

proposed method with (b) traditional PD controller. 

 

(a) 

 

(b) 
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Fig. 7. Trajectory tracking errors comparison of the (a) proposed 

method with (b) traditional PD controller. 

5.2. Test of the multi-space DMP 

1): Demonstration: During this process, the human tutor 

transferred the skill of pouring water to the robot, including the 

adaptation of position, orientation and stiffness. The 

demonstration process decoupled the position and orientation 

of the water pouring skill to facilitate more accurate extraction 

of translational and rotational stiffness while conforming more 

to human operating habits. The tutor demonstrated four water 

pouring tasks. The position and quaternions of the end-effector 

and sEMG signals of the human arm were recorded for 

algorithmic analysis. The minimal and maximal translational 

stiffness values were set as 
min 200k =  (N/m) and 

max 500k =  

(N/m), the values for the rotational stiffness were 
min 10k =  

(Nm/rad), 
max 20k =  (Nm/rad) and 15 = . 

2) Reproduction: The demonstration and reproduction process 

of the water pouring skill as shown in Fig. 8. It is noted that a 

plastic bottle filled with water was used in this case. Fig. 9, Fig. 

10 and Fig. 12 show the reproduction results of the DMP for 

position, translational stiffness and rotational stiffness, 

respectively. Fig. 11 shows the reproduction results of the RM-

DMP for orientation. 

 

(a) 

 

(b) 

Fig. 8. (a) Demonstration. (b) Reproduction. 

 

 

 

Fig. 9. Reproduction results of DMP for position. 

 

Fig. 10. Reproduction results of DMP for translational stiffness. 
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Fig. 11. Reproduction results of RM-DMP for Orientation. 

 

Fig. 12. Reproduction results of DMP for rotational stiffness. 

 

(a)                     (b) 

Fig. 13. Experimental scenario setup. (a) The plastic bottle with less 

water. (b) The glass bottle with less water. 

3) Generalization: One of the advantages of the proposed 

framework was that it allows the robot to flexibly adapt the 

acquired skills, such as the re-adjustment of position, 

orientation and stiffness to a new given situation. In this 

subsection, five different operating conditions were set to 

verify the generalization of the learned skill. 

Subtask 1: The plastic bottle filled with water was used and 

the robot performed the water pouring task with generalized 

position, reproduced orientation and stiffness. 

Subtask 2: The plastic bottle with less water were used, as 

shown in Fig. 13(a). The robot performed the task with 

generalized position, reproduced orientation and stiffness. 

Subtask 3: The experimental setup of this case was same as 

subtask 2 and the robot performed the task with generalized 

position and orientation, as well as reproduced stiffness. 

Subtask 4: The glass bottle with less water were used in this 

case, as shown in Fig. 13(b). The robot performed the task with 

generalized position, orientation and reproduced stiffness. 

Subtask 5: The experimental setup of this case was same as 

subtask 4 and the robot performed the task with generalized 

position, orientation and stiffness. 

For Subtasks 1-5, Fig. 14 shows the reproduced and 

measured positions, and Fig. 15 shows the reproduced and 

measured orientation. Under Subtask 1 condition, the task was 

successful as shown in Fig. 18(a), it indicated that the proposed 

method has good position generalization performance, i.e., 

adaptive for a given new position. However, Subtask 2 was 

failed as shown in Fig. 18(b), which can be explained by the 

fact that it requires the joint generalization of position and 

orientation for such complex operational tasks. Further, 

Subtask 3 was successful as shown in Fig. 18(c). As the 

operating conditions become more complex, i.e. the glass 

bottle is heavier and longer than the plastic one, which 

introduces a larger external force and torque. This leads to jitter 

when the robot executes translational motion and deviates 

from the desired orientation when it executes rotational motion. 

Therefore, Subtask 4 was failed. It can be explained by the fact 

that only position and orientation control cannot handle such 

tasks involving forces, which require adjusting the stiffness 

distribution to compensate for the mass variation of the robot 

end-effector. Therefore, Subtask 5 was successful as shown in 

Fig. 18(d) and the translational and rotational stiffness 

distributions are shown in Fig. 16 and Fig. 17, respectively. 



 

 

 

Fig. 14. Reproduced and measured position. 

 

Fig. 15. Reproduced and measured orientation. 

 

Fig. 16. Generalization of translational stiffness. 

 

Fig. 17. Generalization of rotational stiffness. 

 

(a) Subtask 1     (b) Subtask 2     (c) Subtask 3    (d) Subtask 5 

Fig. 18. Comparison of the water poured by each subtask. 

5.3. Discussion 

For collaborative robots, it is difficult to achieve operation 

skills such as pouring water if only position profile is 

considered, since their motion also involves orientation 

evolution and tend to be perturbed. Our approach has the 

ability to solve this problem by enabling the robot to learn 

motor skills from human demonstrations, including position, 

orientation and stiffness information. 

It should be mentioned that our approach does not include 

the learning of force information. However, it has been verified 

in human motor learning that stiffness and feedforward forces 

are learned separately [36, 37]. Our approach can be extended 

to encode force distribution. Some precision operational tasks 

may require highly accurate force/position control 

performance, in which case the dynamic evolution of the force 

needs to be well encoded and learned. One possible way to 

solve this problem is to add another component based on the 

proposed method to take force information into account. 

A weakness of our approach is the accuracy of the estimated 

stiffness, since so far it is difficult to accurately calculate the 

human arm stiffness based on the sEMG signal. In this article 

we consider the stiffness as a diagonal matrix, and although 

this is sufficient for most tasks, the stiffness distribution may 

not be applicable in the case of more complex tasks. Therefore, 

another direction to improve our approach is to combine 

human upper limb dynamics and demonstration data to 

efficiently learn the complete stiffness. 

6. Conclusions 

In this article, we proposed a novel multi-space skill 

learning framework based on 
3S   manifolds, DMP and 

adaptive finite-time admittance control, which can directly 

learn, reproduce and generalize kinematic/dynamic skills such 

as position, orientation and stiffness. The proposed approach 

can avoid any prior re-parameterization of non-Euclidean data 

such as quaternions and improves the ability of DMP to learn 

for multi-demonstrations based on GPR. The robot can learn 



 

 

human-like motion skills from the demonstrations by human 

tutor with the aim of improving the robot’s ability to perform 

contact tasks while ensuring safe interaction with the 

environment. The proposed framework is evaluated through an 

experimental study. Experimental results on the ROKAE ER3 

Pro 7-DOF collaborative robot executing a water pouring task 

showed the effectiveness of the framework in performing 

contact tasks. It is worth noting that the framework is well 

generalized and easily transferable to other robotic platforms 

and has great potential in applications such as medical robots 

and other service robots that require integrated kinematic and 

dynamic skills. Our future work will focus on improving our 

approach, as described above. 
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