
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 1

Enabling Deep Learning-based Physical-layer Secret
Key Generation for FDD-OFDM Systems in

Multi-Environments
Xinwei Zhang, Guyue Li, Member, IEEE, Junqing Zhang, Member, IEEE, Linning Peng, Member, IEEE,

Aiqun Hu, Senior Member, IEEE and Xianbin Wang, Fellow, IEEE

Abstract—Deep learning-based physical-layer secret key gen-
eration (PKG) has been used to overcome the imperfect up-
link/downlink channel reciprocity in frequency division duplex-
ing (FDD) orthogonal frequency division multiplexing (OFDM)
systems. However, existing efforts have focused on key generation
for users in a specific environment where the training samples
and test samples follow the same distribution, which is unrealistic
for real-world applications. This paper formulates the PKG
problem in multiple environments as a learning-based problem
by learning the knowledge such as data and models from
known environments to generate keys quickly and efficiently
in multiple new environments. Specifically, we propose deep
transfer learning (DTL) and meta-learning-based channel feature
mapping algorithms for key generation. The two algorithms use
different training methods to pre-train the model in the known
environments, and then quickly adapt and deploy the model to
new environments. Simulation and experimental results show that
compared with the methods without adaptation, the DTL and
meta-learning algorithms both can improve the performance of
generated keys. In addition, the complexity analysis shows that
the meta-learning algorithm can achieve better performance than
the DTL algorithm with less cost.

Index Terms—Physical-layer security, secret key generation,
frequency division duplexing, deep transfer learning, meta-
learning.

Manuscript received xxx; revised xxx; accepted xxx. Date of publication
xxx; date of current version xxx. This work was supported in part by the
National Key R&D Program of China (No. 2022YFB2902202); in part by
the National Natural Science Foundation of China (No. 62171121, No.
U22A2001); in part by the National Natural Science Foundation of Jiangsu
Province, China (No. BK20211160). The work of J. Zhang was in part
supported by the UK Engineering and Physical Sciences Research Council
(EPSRC) New Investigator Award under grant ID EP/V027697/1. For the
purpose of open access, the authors have applied a Creative Commons
Attribution (CC BY) licence to any Accepted Manuscript version arising.
The review of this paper was coordinated by xxx. (Corresponding author:
Guyue Li)

Xinwei Zhang, Guyue Li, and Linning Peng are with the School of Cyber
Science and Engineering, Southeast University, Nanjing 210096, China (e-
mail: xwzhang1998@gmail.com, guyuelee@seu.edu.cn, pengln@seu.edu.cn).

Junqing Zhang is with the Department of Electrical Engineering and
Electronics, University of Liverpool, Liverpool L69 3GJ, U.K. (e-mail:
junqing.zhang@liverpool.ac.uk).

Aiqun Hu is with the School of Information Science and Engineering, and
National Mobile Communications Research Laboratory, Southeast University,
Nanjing 210096, China (e-mail: aqhu@seu.edu.cn).

Guyue Li, Linning Peng and Aiqun Hu are also with the Purple Mountain
Laboratories for Network and Communication Security, Nanjing 210096,
China.

Xianbin Wang is with the Department of Electrical and Computer En-
gineering, Western University, London, ON N6A 5B9, Canada (e-mail:
xianbin.wang@uwo.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier xxx

I. INTRODUCTION

DUE to the broadcast nature of radio signal propagation,
wireless networks are vulnerable to various attacks such

as eavesdropping, impersonating, and tampering [1]. Tradi-
tional security mechanisms, particularly public key cryptogra-
phy, are facing many problems such as difficulty in key distri-
bution and poor scalability in large-scale networks with limited
resources, which make it difficult to meet the security needs of
future wireless communications [2]. In recent years, physical-
layer secret key generation (PKG) has gradually become a
research hotspot of wireless security. From the perspective of
information theory, PKG provides a new security mechanism,
which greatly simplifies the distribution and management of
keys [2], [3].

PKG techniques realize real-time sharing and coordination
of random security keys by exploiting the channel reciprocity
of uplink and downlink features [2], [4]. Channel reciprocity
means that both communicating parties can obtain highly
similar channel characteristics, which determines whether the
communicating parties can generate consistent keys. Different
channel features, such as received signal strength (RSS),
channel state information (CSI), channel gain, etc., are widely
used for PKG [2]. In time division duplexing (TDD) systems,
as both the uplink and downlink transmissions operate in
the same carrier frequency band, and the channel features
observed by both communication parties are highly reciprocal.
However, in frequency division duplexing (FDD) systems,
since the uplink and downlink are operated in different bands,
the channel parameters observed by the two parties involved
may be completely different, thus can not be directly used
for key generation. Therefore, the majority of the existing
studies focus on PKG in TDD systems and the research on
PKG in FDD systems is limited. However, it has profound
research value and practical significance to develop effective
PKG solutions for FDD systems since FDD is the primary
duplexing technique for cellular communications [5], [6].

A. Related Work

In recent years, there have been some studies on the PKG
in FDD systems, which can be categorized into model-based
and deep learning-based approaches.

Model-based methods aim to extract frequency-independent
channel features or construct a reciprocal feature. Specifi-
cally, the work in [7], [8] proposed to extract the frequency-

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2

independent channel parameters (such as arriving angle, delay
and covariance matrix eigenvalues). However, these methods
have many limitations, such as large bandwidth or special
configuration of the antenna array [9]. Besides, A framework
for constructing reciprocal channels via path separation, ad-
justment and reconstruction is proposed in [4], but it is diffi-
cult to separate the channel paths accurately in the complex
multi-path environment. Some works proposed to construct
reciprocal channels by additional reverse channel training
and feedback, called the loopback-based methods [10], [11].
However, these methods not only increase the complexity of
channel detection but also increase the possibility of eaves-
dropping [12].

Due to its excellent performance, deep learning has also
been introduced into the field of PKG in FDD systems [13]–
[17]. In FDD systems, deep learning-based approaches have
been used to construct reciprocal features for key generation
with the help of the feature mapping function between uplink
and downlink transmissions assisted by deep learning. Since
the uplink and downlink channels pass through the same
propagation path and scattering clusters, it is experimentally
shown in [9] that there is a transformation function that can
map the channel to the underlying path. Furthermore, prior
works have shown that it is possible to infer downlink channels
from uplink channels [18]–[20]. These works inspire efforts
to apply deep learning for FDD-based key generation by
constructing reciprocal features via deep learning. In [17],
it is proved that in a given environment, when the channel
mapping function of possible user locations to antennas is
bijective, there exists a feature mapping function that can
map one frequency band features to another frequency band
features, and the channel feature mapping function can be
obtained by a simple deep learning model. This conclusion
provides a theoretical basis for introducing deep learning into
key generation for FDD-based OFDM systems [13], [14], [16],
[17]. A boundary equilibrium generative adversarial network
(BEGAN) and an encoder-decoder-based convolutional neural
network were proposed to predict downlink CSI and key
generation [14], [16]. Furthermore, a complex-valued neural
network (CVNet) was proposed to improve the performance
of generated keys [13].

Compared with conventional model-based PKG techniques
(e.g. [4], [7], [8], [10], [11]), deep learning-based key gen-
eration methods are not limited to channel models and
can achieve excellent performance. However, existing deep
learning-based approaches only consider a given wireless envi-
ronment and the deep learning model only can learn the feature
mapping function in this specific environment. In practice,
users may experience different new environments. Existing
machine learning techniques require data collection and model
training for each communication environment, leading to a
large number of training resources and training data, which is
difficult to be used in real-world applications. Therefore, how
to quickly adapt the deep learning model to new environments
for feature mapping and key generation with low cost is a new
challenge that needs to be addressed.

Deep transfer learning (DTL) [21] and meta-learning [22],
[23] are effective ways that can solve the problem of inappli-

cability of the deep learning model caused by environmental
changes. DTL uses the knowledge of source tasks to improve
the performance of target tasks and is a promising machine
learning technology that can solve similar tasks with limited
labeled data. Meta-learning aims to improve the ability to
adapt or generalize to new tasks and environments that have
never been encountered during the training stage by training in
multiple learning tasks. They have been widely used in many
areas to solve the problem of performance degradation of deep
learning models due to environmental changes, e.g., channel
feedback [24], beam prediction [25], downlink channel pre-
diction [26], Beamforming Optimization [27] etc, but still not
applied to the field of PKG.

B. Main Contributions

Inspired by these works, this paper introduces DTL and
meta-learning into the field of PKG to improve channel
reciprocity for achieving the fast and efficient key generation
of FDD-OFDM systems in multi-environments. In our work,
we focus on generating high-performance keys and adopting
optimal neural network architectures and training strategies.
First, we formulate the key generation in multi-environments
as a learning-based problem, i.e., using the knowledge from
known (source) environments to learn the deep learning model
in the new (target) environments more efficiently. Then we
propose DTL-based and meta-learning-based feature mapping
algorithms to achieve key generation for FDD systems in
multi-environments and verify the performance of the pro-
posed algorithm with sufficient simulation and experimental
data. To the best knowledge of the authors, this is the
first work focusing on deep learning-based key generation
for FDD-OFDM systems in multi-environments. Our major
contributions are summarized as follows.

• We propose a DTL-based channel feature mapping algo-
rithm for physical layer key generation in FDD-OFDM
systems. This algorithm pre-trains the model using the
datasets from source environments and then fine-tunes the
pre-trained model using a small number of samples from
the new environment, after which this fine-tuned model
can be used for key generation in the new environment.
The algorithm can be fine-tuned on the model of the
current systems without needing a pre-training process,
allowing for seamless integration into the existing system.

• To better leverage knowledge from known channel en-
vironments, we propose a meta-learning-based feature
mapping algorithm for key generation in FDD-OFDM
systems. This algorithm performs intra-task and cross-
task learning in multiple tasks (each task represents the
key generation in a given environment) to obtain the best
model initialization parameters, allowing for fast model
adaptation in new environments.

• We analyze channel differences in different environments,
and give a theoretical analysis of the DTL and meta-
learning algorithms. The results show that the data dis-
tribution in different environments is almost different,
which is the cause of the better performance of the meta-
learning algorithm.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 3

• We verify the proposed algorithms in an outdoor scenario
using a ray tracing simulator Wireless InSite. The results
show the DTL and meta-learning algorithms can both
improve the performance of generated keys in new envi-
ronments. In addition, complexity analysis shows that the
meta-learning algorithm can achieve better performance
with less time cost compared with the DTL algorithm.

• A practical GNURadio and USRP-based FDD-OFDM
wireless key generation prototype is developed. We col-
lect data in both indoor and outdoor scenarios and for the
first time validate the performance of the deep learning-
powered FDD-OFDM key generation method using real-
world data. We further verified through real experiments
that the proposed algorithm can significantly reduce the
key error rate (KER) of the key generated in the new
environment. To the best of the author’s knowledge, there
are currently no works in related fields that use data in
real-life environments for verification.

The rest of this paper is structured as follows. The deep
learning-based key generation for FDD-OFDM systems is
introduced in Section II. In Section III, we formulate the
PKG in multi-environments as a learning-based problem and
give an algorithm overview. The DTL and meta-learning-based
feature mapping algorithms for key generation are presented
in Section IV and Section V. The DTL and meta-learning are
analyzed theoretically in Section VI. The simulation results
for evaluating the performance of the generated keys and the
complexity analysis are provided in Section VII. In Section
VIII, we built a platform and verified the performance of
the algorithm in a real environment, which is followed by
conclusions in Section IX.

II. PRELIMINARY: DEEP LEARNING-POWERED
FDD-OFDM KEY GENERATION

A. Overview
We consider the FDD-OFDM system, where the BS (Alice)

and user (Bob) are equipped with a single antenna and operate
in the FDD mode. Alice and Bob simultaneously transmit sig-
nals on different carrier frequencies, fdl and ful, respectively.
The channel impulse response (CIR) can be defined as follows:

h(f, τ) =

N−1∑
n=0

αne
−j2πfτn+jϕnδ(τ − τn), (1)

where f is the carrier frequency, N is the total number of
paths, αn is the magnitude of the nth path, which is influenced
by the distance dn between Alice and Bob, the scattering
environment and the carrier frequency f . τn = dn

c is the delay
of the nth path, where c is the speed of light. ϕn is the phase
shift of the nth path, which is determined by the scatterer
material and wave incident/impinging angles at the scatterer.

In FDD-OFDM systems, the channel frequency response
(CFR) of the lth sub-carrier can be expressed as

H(f, l) =

N−1∑
n=0

αne
−j2πfτn+jϕne−j2πnfl , (2)

where fl is the frequency of the lth subcarrier relative to the
center frequency f . The CFR of frequency f can be defined as

CSI
Estimation

CSI
Estimation

Feature
Extraction

Feature
Extraction

Feature
Mapping

Key
Establishment

Key
Establishment

Alice

Bob

xB
A

ĤB

ĤA
xA

xB

fdl ful

!
0

 1
…

 1
 0

 1
…

!
0

 1
…

 1
 0

 1
…

KB

KA

xB
A = F(Ωe,xA)

Fig. 1: Deep learning-based key generation for FDD-OFDM
systems.

the 1×L channel vector H(f) = {H(f, 0), ...,H(f, L− 1)},
where L is the total number of sub-carrier. As shown in (2),
the amplitude and phase of wireless channel H(f) are in-
fluenced by their frequencies. Therefore, extracting reciprocal
channel features for key generation in FDD-OFDM systems
is challenging.

Deep learning has been introduced for PKG in FDD-OFDM
systems recently [13], [14], [16], [17]. This type of method
uses deep learning techniques to map the uplink features to
the downlink features, so that both parties can obtain the
downlink features at the same time. As shown in Fig. 1, the
deep learning-based key generation contains the following four
steps.

B. CSI Estimation

Alice and Bob simultaneously send OFDM pilot signals
to each other at carrier frequencies fdl and ful, and then
independently estimate the channel CFR based on the received
pilot signals, expressed as{

ĤA (ful, l) = H (ful, l) + E1 (ful, l)

ĤB (fdl, l) = H (fdl, l) + E2 (fdl, l)
, (3)

where E1 (ful, l) and E2 (fdl, l) represent the channel es-
timation error, which can be modeled as additive white
Gaussian noise (AWGN) with mean 0 and variance σ2

E .
After channel estimation, Alice and Bob get estimated
CFRs ĤA = {ĤA(ful, 0), ..., ĤA(ful, L − 1)} and ĤB =
{ĤB(fdl, 0), ..., ĤB(fdl, L− 1)}, respectively. Different from
[25] that used the channel impulse response (CIR) as channel
information, we use the CFR to improve the key generation
rate. Thus we could design a new neural network to fit our
key generation problem.

C. Feature Extraction

Alice and Bob perform feature extraction to extract real-
valued channel features xA and xB that are suitable for
training the deep learning model and key generation. We can
extract the magnitude and phase of CFR or directly separate
the real and imaginary parts. In this paper, we extract the
magnitude x′ from H as the channel feature. This is because
multipath has a great impact on the phase of CFR, and

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 4

it is difficult for the neural network to learn the mapping
relationship between the phases of the uplink and downlink
channels.

The dataset is then normalized so that the range of the
samples is between 0 and 1. The minimum and maximum
values of the vectors in each dimension of the training dataset
are saved and used for min-max normalization, i.e.,

x =
x′ −min(x′

train)

max(x′
train)−min(x′

train)
, x ∈ [0, 1]n

d

, (4)

where x is the normalized value of nd dimensions. After
feature extraction, Alice and Bob get suitable channel features
xA and xB , respectively.

D. Feature Mapping (only Alice)

Based on [17], there is a feature mapping function F in each
given environment. Alice can use F to predict the estimated
downlink features xB

A from xA, which can be expressed as

xB
A = F(Ω,xA), (5)

where Ω is the parameters for feature mapping, which can
be obtained by deep learning techniques. Through this step,
Alice and Bob are considered to have obtained highly similar
features xB

A and xB , respectively. How to get the optimal value
of parameters to minimize the gap between xB

A and xB is
essential to generating highly similar features.

E. Key Establishment

Alice and Bob use obtained features to generate keys,
including quantization, information reconciliation and privacy
amplification [2]. We use a Gaussian distribution-based quan-
tization method with guard-band proposed in [17] to get the
initial keys QA and QB . Denote the probability of the channel
features x as a definite Gaussian distribution NQ = N (µ, σ2),
where µ is the mean of vector x, σ is the standard deviation of
vector x, and F−1 as the inverse of the cumulative distribution
function (CDF) ofNQ. The values between 0 and F−1(0.5−ε)
are quantized as 0, and the values between F−1(0.5 + ε)
and 1 are quantized as 1. The ε ∈ (0, 0.5) is defined as the
quantization factor, and the values between F−1(0.5− ε) and
F−1(0.5 + ε) are discarded. In order to further improve the
randomness of generated keys, Alice and Bob share the same
random number seed to generate a random vector, and perform
a random permutation on QA and QB .

Information reconciliation and privacy amplification meth-
ods are then adopted to make Alice and Bob agree on the
same key and remove any potential information leakage [2].
In general, we can correct 25% wrong bits of the initial keys.
When the channel reciprocity is too poor and two parties
cannot get similar channel features, the initial keys after
quantization may have more than 25% wrong bits. Even if the
wrong bits are less than 25% of the total keys, the larger wrong
bits will cause a higher cost in information reconciliation. In
this paper, we focus on improving channel reciprocity in FDD-
OFDM systems, because it is essential to the success of key
generation.

Environment (E)

E1

Model 1

Model 2

Model 3

E2

E3

BS (Alice)
Connections

Fig. 2: Deep learning-based PKG in multi-environments.

III. PROBLEM FORMULATION AND ALGORITHM
OVERVIEW

Among the four steps introduced in Section II, feature
mapping is the crucial step for key generation between Alice
and Bob. Therefore, this paper focuses on how to use deep
learning techniques to quickly and efficiently obtain feature
mapping functions F in multiple environments.

A. Problem Statement

The performance of generated keys depends on the deep
learning model. The existing works have verified the good
fitting and generalization performance of the deep learning
model to obtain the feature mapping function F in a cer-
tain environment [13], [14], [16], [17]. However, when the
environment changes, the parameters of F are also affected
by the environment, and the training samples and the actual
samples of the deep learning model no longer obey a uniform
distribution, which will lead to poor performance of the
parameters in the new environment and even invalidate the
effect of feature mapping.

As shown in Fig. 2, suppose a user is in the environ-
ment(E)1, a deep learning model 1 can be trained to get the
parameters Ω for feature mapping and key generation between
the BS and the user in this given environment. However, when
the user moves to other environments, such as E2 and E3, the
training samples of model 1 and actual samples in the new
environment no longer obey the same distribution, resulting in
the performance of the pre-trained deep learning model being
degraded or even invalid.

A simple way to solve this problem is to re-collect the data
and re-train the model for each new environment. However,
training a model requires a lot of training data and training
resources, which is unacceptable for practical applications.
Therefore, this paper aims to address this problem and formu-
late it as a learning-based problem to more efficiently learn
feature mapping functions in new environments using known
knowledge in the source environment.

B. Learning-based Problem for PKG

Assume that there are data in E wireless scenarios, and
the uplink and downlink channel characteristics in the eth

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 5

environment are defined as xe
A and xe

B respectively. According
to [21], the ”domain” and ”task” in the eth environment are
defined as following:

Definition 1 (Domain): The domain D(e) is composed of
the feature space X e and the marginal probability distribution
P (xe

A), i.e., D(e) = {X e, P (xe
A)}. And the symbol X e

denotes an instance set, which is defined as all possible uplink
channel features xe

A, i.e., xe
A ∈ X e.

Definition 2 (Task): The task T (e) is composed of the label
space Ye and a decision function fe, i.e., T (e) = {Ye, fe}.
And the symbol Ye denotes an instance set, which is defined
as all possible uplink channel features xe

B , i.e., xe
B ∈ Ye. In

other words, the task T (e) is the feature mapping from uplink
to downlink.

In a certain environment (domain DSE and task TSE),
the decision function fe can be obtained by model training.
According to [17], the decision function fe can be considered
as the feature mapping function Fe in the eth environment.
Trained networks can act as the feature mapping function
to achieve the feature mapping for key generation. However,
when in a new environment (domain DTE and task TTE), the
feature mapping function F will change, and the performance
of the trained model will be greatly reduced and cannot be
used continuously.

We formulate this problem as a learning-based problem,
i.e., learning from the known environments enables fast
key generation in multiple new environments using a small
amount of data and limited resources, formally defined as
follows. Given the number of source tasks ES , the source
domains {DSE(e)}ES

e=1, the source tasks{TSE(e)}ES
e=1, the

number of source tasks ET , the target domains {DTE(e)}ET
e=1

and the target tasks {TTE(e)}ET
e=1, the learning-based prob-

lem in this paper is to leverage knowledge (data and mod-
els) from {DSE(e)}ES

e=1 and {TSE(e)}ES
e=1 to learn new

tasks {TTE(e)}ET
e=1 with a small amount of data and lim-

ited resource, where {TTE(e)}ET
e=1 ̸= {TSE(e)}ES

e=1 and
{DTE(e)}ET

e=1 ̸= {DSE(e)}ES
e=1.

C. Algorithm Overview

This paper proposes DTL-based and meta-learning-based
feature mapping algorithms for key generation in multi-
environments, elaborated in Section IV and Section V, re-
spectively. DTL and meta-learning aim to learn from source
tasks to increase the generalization ability of the model under
multi-task, and thus are two promising techniques for solving
learning-based problems. Unlike learning functions F directly
training the deep learning model in a given environment, these
two algorithms include the training and adaptation stages, as
shown in Fig. 3.

• Training stage: The two algorithms use datasets from
known environments to train the model. DTL and
meta-learning use different training methods, called pre-
training and meta-training, respectively.

• Adaptation stage: The two algorithms fine-tune the model
using the datasets from the new environments, and then
the fine-tuned model can be used for feature mapping and
key generation.

...

.

.

....

...

...

...

...

...

...

Training Stage
Training Model

...

.

.

....

...

...

...

Adaption Stage Fine-tuning Model

Feature
Extraction

Feature
Extraction

Dataset from eth

Target Environment

Datasets from Source Environments

Ω

Ωe

xB
A = F(Ωe,xA)

Feature
Mapping

Fig. 3: The proposed learning-based feature mapping scheme.

This paper considers a simple FNN as the basic network
structure to learn the feature mapping function F in the
proposed algorithms, as shown in Fig. 3. The input of the
network is the uplink channel feature vector xA obtained by
Alice, and the output of the network is the result of the cascade
of xA through nonlinear transformation. The network is used
to map the features of the uplink and downlink, so the output
of the network is considered to be the estimated vector xB

A

of the downlink channel feature vector xB , which also can
be expressed as (5), i.e., xB

A = F(Ω,xA), where Ω is all
parameters in this network to be trained for feature mapping.
The FNN consists of M layers, including one input layer,
M − 2 hidden layers and one output layer. The output fm(x)
of the mth layer is a nonlinear transformation of the output
of m− 1th layer, which can be written as:

fm(x) = FA,m(Wmx+ bm), 2 ≤ m ≤M, (6)

where FA,m, Wm and bm are the activation function of mth

layer, weight vector between (m − 1)th and mth layers and
bias vector of mth layer, respectively. The rectified linear unit
(ReLU) function commonly used in regression problems is
selected as the activation function FA,m of the hidden layers,
and the sigmoid function is selected as the activation function
FA,m of the output layer.

The purpose of the network is to learn the band feature map-
ping, so we could train a network to minimize the difference
between network output xB

A and xB . Because it is a vector
regression problem, we consider using the mean squared error
(MSE) as the loss function of the neural network. The loss
function is defined as:

LD(Ω) =
1

Nbatch

Nbatch−1∑
i=0

∥xB
A(i)− xB(i)∥22, (7)

where D = {(xA,xB)}Nbatch−1
i=0 is a batch-sized training

dataset, Nbatch is the batch size.

IV. DTL-BASED FEATURE MAPPING

Based on the learning-based problem formulated in Sec-
tion III-B, this section proposes a DTL-based feature mapping
to achieve key generation in new environments for FDD-
OFDM systems. DTL transfers knowledge from the source

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 6

environment to the target environment, so that the network
in the target environment can achieve a better learning effect.
In general, datasets in the source environments are abundant,
while datasets in the target domains are small, so most DTL
algorithms use datasets from source tasks to pre-train the
model and then fine-tune it under a new task [21]. Like these
works, in our proposed DTL-based feature mapping, we use
the datasets from the source environments to pre-trained a
model and then use a small number of samples to fine-tune the
pre-trained model to obtain a model with good performance
in the new environment.

A. Definition of Dataset

Assume that the source datasets {DS(e)}ES
e=1 is collected

from ES source environments, where the dataset DS(e) =

{(x(n)
A (e),x

(n)
B (e))}NS

n=1 includes NS samples in the eth en-
vironment. Furthermore, it is necessary to collect datasets in
multiple target environments to evaluate the performance of
the algorithm. Assume that the target datasets {DT (e)}ET

e=1

from ET target environments, where the dataset in the eth

environment DT (e) = {(x(n)
A (e),x

(n)
B (e))}NT

n=1 includes NT

data samples.
In the DTL algorithm, the datasets {DS(e)}ES

e=1 from
all source environments are considered as a whole as
the training dataset DTr. The dataset DT (e) in the target
eth environment divides into adaption dataset DAd(e) =

{(H(n)
A (e),H

(n)
B (e))}NAd

n=1 and testing dataset DTe(e) =

{(H(n)
A (e),H

(n)
B (e))}NTe

n=1, where NAd +NTe = NT .

B. Training (Pre-training) Stage

The pre-training stage trains the model using dataset
{DS(e)}ES

e=1 from the source environments to minimize the
loss function LDTr

(Ω).
In each batch, Nbatch samples are randomly selected from

DTr to construct a batch training dataset and then ADAM [28]
optimizer is used to optimize the parameters of the model.
When the performance of the model tends to be constant or
the number of iterations reaches the upper limit, the parameters
Ω of the pre-trained model are obtained.

C. Adaption Stage

For the eth target environment, the parameters Ω of the
pre-trained model are used to initialize the network model
parameter Ωe in the target environment. Then the parameter
Ωe is optimized using the adaption dataset DAd(e) in the target
environment to minimize LDAd

(Ω). When the performance of
the model tends to be constant or the number of iterations
reaches the upper limit, the parameters Ωe of the model in a
new environment are obtained.

After repeating the adaption stage in ET target environ-
ments, we can obtain the parameter {Ωe}ET

e=1 in the target
environments. After this, the network parameter Ωe is fixed,
and the network can be directly used in the feature mapping
step in the target environment. Two users, Alice and Bob,
follow the steps in Section II for key generation, where Alice

uses the deep learning model with parameter Ωe for feature
mapping.

We also calculate the average values of Normalized Mean
Square Error (NMSE), KER, and Key Generation Rate (KGR)
using the testing dataset {DTe(e)}ET

e=1 in target environments
to evaluate the performance of the proposed algorithm.

V. META-LEARNING-BASED FEATURE MAPPING

To better leverage knowledge from the source environments,
this section proposes a meta-learning-based feature mapping.
Most existing meta-learning algorithms are problem-specific.
In order to eliminate the limitation of the model architecture
on the application of meta-learning, a model-agnostic meta-
learning (MAML) algorithm was proposed in [29]. The goal
of the algorithm is to achieve adaptation by alternately learning
the parameter initialization of the model between the intra-task
process and the cross-task process [22]. Different from the
DTL algorithm, the meta-learning algorithm requires training
the model from multiple source tasks and aims to learn the best
model initialization parameters through intra-task and cross-
task updates. More importantly, unlike the DTL algorithm that
emphasizes performance on current tasks, the meta-learning
algorithm focuses more on the performance of new tasks.

A. Definition of Dataset

In meta-learning, the training dataset DTr is the combina-
tion of all datasets from the source environments {DS(e)}ES

e=1,
and the training dataset in each task is the dataset in each
source environment. The eth task of training dataset DS(e)
needs to be divided into support dataset DSu(e) and query
dataset DQu(e), and DSu(e)∩DQu(e) = ∅. The dataset DT (e)
in the target environment is to be divided into adaptation
dataset DAd(e) = {(x(n)

A (e),x
(n)
B (e))}NAd

n=1 and testing dataset
DTe(e) = {(x(n)

A (e),x
(n)
B (e))}NTe

n=1, where NAd+NTe = NT .

B. Training (Meta-training) Stage

During the meta-training phase, the goal of the meta-
learning algorithm is to learn a network initialization that
can effectively adapt to new tasks. The underlying network
architecture used here is the same as used in DTL. First,
the parameters Ω are randomly initialized and then updated
through two iterative processes, namely intra-task update and
cross-task update. The network parameters of each source
task are optimized within the intra-task update, and the global
neural network is optimized within the cross-task update.

1) Intra-task Update: A batch of Ebatch tasks is randomly
selected from ES environments in a batch. The goal of each
task is to optimize its own neural network parameters on its
support dataset DSu(e). The objective of each task is achieved
by minimizing the loss function based on supervised learning.
ΩS,e is initialized as the global network parameter Ω. The
objective function of each task can be expressed as:

ΩS,e = argmin
ΩS,e

LDSu(e) (ΩS,e) , e = 1, . . . , Ebatch, (8)

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 7

where ΩS,e is the network parameter of the eth task in the
source task set. In each task, ΩS,e is initialized to Ω, and is
then updated with GTr times of gradient descent, i.e.,

ΩS,e ← ΩS,e − α∇LDSu(e) (ΩS,e) , (9)

where α is the learning rate between tasks. The ΩS,e also can
be updated by ADAM optimizer [28].

The intra-task update only performs once. In the original
MAML algorithm [29], intra-task updates were made also only
once, but some literature proposed to increase the times of
intra-task updates to improve the performance [25]. This paper
analyzes the impact of task update times on performance in
Section VII-D. The results show that the increase of GTr has
no obvious effect on performance, but will increase the training
cost, thus we set GTr to 1.

2) Cross-task Update: The global network parameters Ω
are optimized based on the sum of the loss functions of all
tasks in one batch. After the intra-task update, the loss function
for all tasks in the batch can be estimated based on the related
tasks and their query datasets {DQu(e)}Ebatch

e=1 . These loss
functions can be added together to form the loss function used
to optimize the global network parameters, i.e.

Ltotal(Ω) =

Ebatch∑
e=1

LDQu(e) (ΩS,e) . (10)

This loss function can also be minimized by optimizing Ω by
gradient descent or ADAM algorithm (learning rate β).

After the cross-task update is over, assign the updated Ω
to ΩS,e, and then repeat the intra-task update and cross-task
update until Ltotal(Ω) does not converge. At this time, the
parameter initialization of network learning is obtained, so that
only a small number of samples can be adapted to the new
environment.

It is clear that the training methods of the DTL algorithm
and the meta-learning algorithm are almost completely differ-
ent. In the DTL algorithm, the DTL algorithm minimizes the
loss of the current model (only one) on all tasks, so the DTL
algorithm hopes to find an initialization parameter that per-
forms better on all current tasks. The meta-learning algorithm
first uses the support dataset to minimize the loss function in
each task, then uses the query dataset to minimize the loss
sum of all tasks, and finally updates all model parameters
with the model parameters obtained by minimizing the sum of
loss functions of all tasks, which means that the performance
of the model obtained after training to convergence under
each task using the final initialization parameters obtained by
meta-learning should still be as good as possible. Therefore,
compared to the DTL algorithm, the meta-learning algorithm
makes better use of knowledge in multiple environments,
and the resulting model initialization parameters have better
generalization, which is also proved in the results in Section
VII.

C. Adaption Stage

This step is the same as the Section IV-C. We also use
the fixed parameters {Ωe}ET

e=1 for feature mapping and key

generation to calculate evaluation metrics that can evaluate
the performance of the proposed algorithm using the testing
datasets {DTe(e)}ET

e=1 in the target environments.

VI. THEORETICAL ANALYSIS OF DTL AND
META-LEARNING

In this section, we first analyze channel differences in
different environments, and then theoretically analyze which
algorithm, i.e., DTL or meta-learning, may have better perfor-
mance on this basis.

A. Channel Difference Between Different Environments

According to (2), CFR is mainly affected by two factors,
frequency and propagation environment. The previous work
analyzed the influence of frequency in the same propagation
environment [17]. This paper mainly analyzes the channel
gap in different propagation environments. The propagation
environment refers to the physical environment in which
the signal is transmitted, including communication distance,
transmission medium, obstacles and other factors. In different
propagation environments, during the transmission process, the
signal reaches the receiving end through multiple paths with
different transmission media, resulting in great changes in the
phase and amplitude of the channel. In addition, since the
phase of the channel may undergo various complex changes
during signal transmission, such as phase mutations caused by
multipath effects, the obtained channel amplitude will be more
accurate in comparison. Therefore, this paper uses the channel
amplitude as the channel feature for key generation.

We compare the data collected in the indoor and outdoor
environments in reality, and the data collection process will
be explained in Section VIII. Kolmogorov-Smirnov test (K-S
test) [30] is used to test whether the same subcarrier in two
environments has the same data distribution. Assume that the
Nm sets of data measured on the lth subcarrier in indoor and
outdoor environments are {H l,n

indoor}Nm
n=1 and {H l,n

outdoor}Nm
n=1,

the test statistic (KS value) K can be calculated as

K = max
x
|F1(x)− F2(x)|, (11)

where F1(x) and F2(x) are the empirical distribution functions
(ECDFs) of the {H l,n

indoor}Nm
n=1 and {H l,n

outdoor}Nm
n=1, respec-

tively. The p-value can be obtained by looking up the K-S test
table. We have 900 samples in each subcarrier. At the Level
of significance of 0.05, when the p-value is less than 0.04527,
it is considered that two independent samples do not come
from the same distribution. By performing the K-S test on
all subcarriers in different environments, the p-values of all
subcarriers are much less than 0.04527. Therefore, the data
distribution on all subcarriers in different environments does
not come from the same distribution.

We further compare the kernel density estimation
(KDE) [31] of values on the same subcarriers in different
environments. KDE uses a kernel function (usually a Gaussian
function) to smooth the empirical distribution of a set of data

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 8

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Value

0

2

4
D

e
n
s
it
y Kernel Density Estimation of Subcarrier 1

Indoor

Outdoor

-0.5 0 0.5 1 1.5 2 2.5

Value

0

5

D
e
n
s
it
y Kernel Density Estimation of Subcarrier 100

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Value

0

5

10

D
e
n
s
it
y Kernel Density Estimation of Subcarrier 200

-0.5 0 0.5 1 1.5 2

Value

0

5

10

D
e
n
s
it
y Kernel Density Estimation of Subcarrier 300

Fig. 4: Comparison of kernel density estimation in different
environments.

points to estimate the underlying probability density function.
The output of the density function can be calculated by

FD(x) =
1

Nmbw

Nm∑
i=1

K
(
x− xi

h

)
, (12)

where xi is the ith data point, K(u) = 1√
2π

e−
u2

2 is the kernel

function, bw = 1.06σN
−1/5
m is the bandwidth parameter, and

σ is the standard deviation of the sample data.
As shown in Fig. 4, the value distribution of the channel

under different environments on the same subcarrier is basi-
cally completely different. This result also reflects the huge
influence of the environment on the channel, so the model
trained in one environment is difficult to use directly in the
new environment.

B. DTL v.s. Meta-Learning

In order to better understand the DTL and meta-learning,
we first analyze the loss function. The loss function in the
training stage of DTL at the tth time step is calculated as

L(t)
DTL = LDtr

(
Ω(t−1)

)
, (13)

where Dtr = DSu ∪DQu. According to (9) and (10), the loss
function in the cross-task update of meta-learning at the tth

time step is calculated as

L(t)
total =

Ebatch∑
e=1

LDQu(e)

(
Ω

(t)
S,e

)
=

Ebatch∑
e=1

LDQu(e)(Ω
(t−1) − α∇LDSu(e)

(
Ω

(t−1)
S,e

)
).

(14)

Through comparing the loss functions between DTL and
meta-learning, we find that meta-learning not only takes into
account the need to minimize the performance of the current
query set but also considers the performance of the support set,
while DTL directly considers all training set performance. This

AliceE1

E3
E2

Bob

Bob

Bob

Fig. 5: A overview of the ray-tracing outdoor scenario.

allows meta-learning to have better generalization capabilities
and can better adapt to the data in the new environment
whose distribution is different from the source dataset [32].
According to the analysis in the previous section, the data
distribution in different environments is completely different,
so meta-learning can achieve better performance. This result
is also verified in the following sections.

We would like to emphasize that although the meta-learning
algorithm performs better than the DTL algorithm in our
simulation and experiment, the DTL still has the advantage
of easy implementation and extension. Compared with the
meta-learning algorithm, the DTL algorithm can be fine-
tuned on the model of the current systems directly without
a new pre-training process, and thus can directly extend the
model currently trained in a single environment to multiple
environments.

VII. SIMULATION EVALUATION

In this section, we will first present the data generation and
simulation setup. Then, we give the benchmarks, metrics and
compare the performance of all algorithms.

A. Simulation Setup and Dataset Generation

In the simulation, we consider multiple environments in the
outdoor scenario, which is constructed based on the accurate
3D ray tracing simulator Wireless InSite [33]. An overview
of the ray-tracing outdoor scenario is illustrated in Fig. 5.
The antenna of the base station (Alice) is located in a small
green box with an outdoor height of 20 meters. The three
maroon rectangles represent the possible positions of the user
(Bob), and each rectangle represents an environment. The
uplink channel and the downlink channel work on channels
with frequencies of 2.4 GHz and 2.5 GHz, respectively. The
number of OFDM subcarriers is 128 and the bandwidth is 20
MHz.

Assuming that E1 is the source task environment and
a total of 40,000 locations are collected. E2 and E3 are
target task environments, and 5,000 locations are collected in
each environment (80% for adaptation and 20% for testing).
Since different environments are located in different areas, the

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 9

TABLE I: Default Parameters of Proposed Algorithms

Parameter Value

For All
Algorithms

Number of neurons in hidden
layers

(512,1024,1024,512)

Batch size 128
Optimization ADAM [28]

Exponential decay rates for
ADAM: (ρ1, ρ2)

(0.9,0.999)

Learning rate in Adaption
Stage

1e-5

For
Meta-learning

Inner-task and across-task
learning rate: (α, β)

(1e-3,1e-3)

The number of gradient update
for inner-task training

1

the number of the gradient
update in fine-tuning and

meta-adaption stages

300

The number of source task in
meta-learning

400

The number of samples in
each source task

100

scatterers and propagation paths are completely different, so
the knowledge learned by the model is different, and the model
trained in E1 may not be suitable for the new environment
(E2 and E3). In response to this problem, this paper proposes
two algorithms to use the collected data in E1 to obtain prior
knowledge, so that the pre-trained model can quickly adapt to
new environments (E2 and E3).

A workstation with an Nvidia GeForce GTX 1660Ti GPU
and an Intel Core I7-9700 CPU was used. This paper used
Tensorflow 2.1 as the underlying framework of deep learning
to build the network. The network parameters and some
parameters in the training stage are shown in Table I.

B. Benchmarks

For comparison, we introduce two benchmarks, namely the
direct algorithm and the joint dataset algorithm. All algorithms
are explained below.

(1) Direct algorithm represents the current deep learning-
based key generation methods that ignore the feature
mapping function changes in the multi-environments,
which only include the training stage and testing stage.
In the training phase, we use the training data from the
source environment (E1) to minimize the loss function
in (7) to optimize the deep learning model. In the test-
ing phase, deep learning model performance is directly
evaluated using data from new environments (E2 and E3)
without adaptation. We test different model architectures
in the recent works [14], [17], [34], and select the KGNet
[17] as our basic architecture.

(2) Joint dataset algorithm combines all the data in E1 and
part of the data in E2 or E3 to form a joint training dataset
and then uses the model trained by the joint training
dataset to test the performance in E2 and E3, respectively
[25].

(3) DTL algorithm uses the proposed DTL-based feature
mapping in Section IV for key generation to test the
performances.

(4) Meta-learning algorithm uses the proposed meta-
learning-based feature mapping in Section V for key
generation to test the performances.

For the direct algorithm, we select the optimal architecture
for key generation to show that the deep learning model cannot
be directly used in multi-environments. For the joint dataset
algorithm, we directly combine the dataset from the source
environments and the target environment, which can show
that using suitable algorithms to adopt new environments is
compulsory.

For a fair comparison, some default training parameters
adopted in all algorithms are consistent. Furthermore, the
datasets used for training and adaptation in transfer learning
and meta-learning algorithms are of the same size. The 40,000
total training dataset used in the DTL algorithm is divided into
400 datasets with a sample size of 100 in the meta-learning
algorithm to represent the data under multiple tasks. In each
task, the numbers of samples in the support dataset and query
dataset are both 50. The training dataset used by the joint
dataset algorithm is the combination of the training dataset
and the adaptation dataset in the transfer learning and meta-
learning algorithms.

C. Evaluation Metrics

We use the following metrics for performance evaluation.
• NMSE is used to evaluate the predictive accuracy of the

network, which is defined as

NMSE = E

[∥ xB
A − xB ∥22
∥ xB ∥22

]
, (15)

where E [·] represents the expectation operation.
• KER is defined as the number of error bits divided by the

number of total key bits.
• KGR is defined as the number of initial key bits divided

by the number of subcarriers.
• Randomness reveals the distribution of bit streams. The

National Institute of Standards and Technology (NIST)
statistical test [35] is used for the randomness test for the
generated keys.

D. The Impact of Hyper-parameters in Meta-learning

The selection of the number of iterations GTr in the task and
the batch size Ebatch in the training phase are very important
to the meta-learning algorithm. These two parameters are
analyzed below.

For some tasks, the increase of GTr can greatly improve
the performance. For example, the work in [25] sets GTr to
3, which improves the downlink channel prediction accuracy
in massive MIMO systems. At the same time, as GTr in-
creases, more memory and time resources are required for
meta-learning training. Therefore, the value of GTr should
be determined comprehensively by weighing the consumed
resources and performance. In this paper, GTr is set as {1,
2, 3, 4, 6, 8} for learning, and tests are carried out in the
outdoor environment respectively. The results are shown in
Fig. 6. The results show that with the increase of GTr, the
performance of the meta-learning algorithm does not improve,

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 10

1 2 3 4 5 6 7 8

The number of gradient update for inner-task training: G
Tr

0.02

0.03

N
M

S
E

E2

E3

Average

Fig. 6: The NMSE performance comparison for different
numbers of iterations GTr.

14 8 16 32 64 128

The batch size for meta-training: E
batch

0.02

0.03

N
M

S
E

lowest point

E2

E3

Average

Fig. 7: The NMSE performance comparison for different
numbers of the batch size Ebatch.

but basically stabilizes around a certain range. Therefore, in
order to guarantee the minimum resource consumption, the
GTr is set to 1.

Reasonable selection of the batch size Ebatch in the training
phase is also very important for the training effect. Since
the choice of batch size Ebatch has nothing to do with the
resource consumption of training, it is only necessary to focus
on the training performance under different batch sizes. Fig. 7
compares the NMSE performance under different batch sizes
Ebatch. The results show that the tested NMSE performance is
getting better with the increase of Ebatch and reaches optimal
when Ebatch = 32, which is used in the rest of the paper.

E. Performance of Reciprocal Features

Fig. 8 compares the NMSE performance of the four al-
gorithms during the adaption stage in E2. Since the direct
algorithm has no adaptation phase, it is set as a fixed value
for its test results. The results show that the algorithms based

0 50 100 150 200 250 300

Epochs

10
-3

10
-2

10
-1

10
0

N
M

S
E

The direct algorithm

The joint dataset algorithm

The DTL algorithm

The meta-learning algorithm

Fig. 8: The NMSE performance during the adaption stage.

0 500 1000 1500 2000 2500 3000 3500 4000

The size of adaption samples N
Ad

10
-1

N
M

S
E

The direct algorithm

The joint dataset algorithm

The DTL algorithm

The meta-learning algorithm

Fig. 9: The NMSE performance of the four algorithms versus
the size of adaption samples NAd.

on transfer learning and meta-learning are better than the
direct and joint dataset algorithms. The NMSE of the joint
dataset algorithm increases with the number of epochs. In
the joint dataset, the number of data samples of E2 is much
larger than that of E1, and overfitting occurred during the
training process. In addition, the distribution of data samples in
different environments is too different, so its test performance
is weaker than the direct algorithm. This result suggests that
it is necessary to skillfully utilize a small number of datasets
in new environments, rather than simply superimposing the
data directly. In addition, the meta-learning algorithm is sig-
nificantly better than the DTL algorithm.

Fig. 9 compares the influence of the number of adaptation
dataset samples NAd on the performance of the four algo-
rithms. Since the direct algorithm does not use the adaptation
dataset in the new environments, it is assumed that the
performance of the algorithm under different sample numbers
is consistent. When the number of samples NAd = 4000,
since the data in the new environment in the joint dataset

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 11

0 5 10 15 20 25 30 35 40

SNR of testing dataset (dB)

10
-2

10
-1

10
0

N
M

S
E

The direct algorithm

The joint dataset algorithm

The DTL algorithm

The meta-learning algorithm

Fig. 10: The NMSE performance versus different SNRs.

only accounts for 4000/41000 of the total data, the resulting
overfitting reaction makes the performance of the joint dataset
algorithm is even worse than that of the direct algorithm.
Overall, the meta-learning and DTL algorithms can achieve
better performance than the two benchmarks with a smaller
number of samples, and the performance of the meta-learning
algorithm is better than that of the DTL algorithm.

Testing datasets at SNRs of {0, 10, 20, 30, 40} dB are
also generated to analyze the generalization performance of
the four algorithms. Fig. 10 compares the performance of the
four algorithms tested under different SNRs. The results show
that the DTL and meta-learning algorithms can achieve better
performance than the direct and joint dataset algorithms. The
NMSE is still less than 0.1 when the SNR is lower than 10 dB.
By this time, the meta-learning algorithm can still effectively
improve the reciprocity of features obtained by Alice and Bob.

F. Performance of Initial Keys

Based on the above analysis of the performance of the
feature reciprocity generated by the algorithms, this section
analyzes the performance of the initial keys, which includes
KER, KGR, and key randomness. In the following section,
the quantization factor ε is set to 0.1, which means that 20%
of the features near the isolation zone are removed in the
quantization.

Fig. 11(a) and Fig. 11(b) compare the performance of the
keys generated by the four algorithms tested under different
SNRs. As shown in Fig. 11(a), the KERs of the keys generated
by the direct and joint dataset algorithms are as high as
50%. This indicates that the model trained in the source
environments is invalid in the new environment. The DTL and
meta-learning algorithms can significantly reduce the KERs
of generating keys in these new environments. For example,
the DTL algorithm and meta-learning algorithm generate keys
at the SNR of 20 dB with the KER of 13.37% and 11.3%,
respectively. As shown in Fig. 11(b), when the SNR is higher
than 20 dB, the KGRs of the keys generated by DTL and the

0 5 10 15 20 25 30 35 40

SNR of testing dataset (dB)

10
-2

10
-1

10
0

K
E

R

The direct algorithm

The joint dataset algorithm

The DTL algorithm

The meta-learning algorithm

(a) The KER performance versus different testing SNRs.

0 5 10 15 20 25 30 35 40

SNR of testing dataset (dB)

0.65

0.7

0.75

0.8

K
G

R

The direct algorithm

The joint dataset algorithm

The DTL algorithm

The meta-learning algorithm

(b) The KGR performance versus different testing SNRs.

Fig. 11: The performance of initial keys under different SNRs
of the testing dataset.

meta-learning algorithms are also higher than those of the keys
generated by the other two benchmark algorithms. However,
when the SNR is less than 15 dB, the obtained features of
DTL and the meta-learning algorithms are more concentrated
in the isolation zone, so the KGRs are lower than the other
two benchmark algorithms.

The NIST test suite is used to test the randomness of the
generated keys. Each test will return a p-value. When the p-
value is greater than a commonly chosen threshold of 0.01,
the generated key passes that test. A serial test is composed
of two types of serial tests. When both tests pass, the serial
test is considered to be passed. Table II shows that all cases
pass the test with p-values much larger than 0.01.

G. Complexity Analysis

We compare the time cost of the four algorithms in Table III.
In the training stage, since the training process of meta-
learning includes multiple intra-task and cross-task updates,

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 12

TABLE II: NIST statistical test results of the simulation data.

Test P-value
Approximate Entropy 0.6606

Block Frequency 0.0259
Cumulative Sums 0.3752

Discrete Fourier Transform 0.3019
Frequency 0.4795
Ranking 0.1371

Runs 0.6897

Serial 0.7316
0.7237

TABLE III: Complexity analysis of four algorithms.

Algorithm Training
Stage

Adaption
Stage

Key Gener-
ation Stage

Direct Algorithm 183s - 0.95e-4s
Joint Training

Algorithm
253s - 0.95e-4s

DTL Algorithm 183s 37s 0.95e-4s
Meta-learning

Algorithm
110s 38s 0.95e-4s

meta-learning consumes significantly more resources than
DTL. However, it was found experimentally that the training
process of meta-learning requires only 10 iterations before
the loss function stops decreasing, which takes about 110
seconds. The DTL and meta-learning algorithms increase the
consumption required for the adaptation stage on top of the
direct algorithm and the joint training algorithm, however, the
improved performance shows that the consumption is worth
it. In our experiments, the DTL and meta-learning algorithms
only take about 37 seconds to complete the adaptation to the
new environment, which is an acceptable cost. In the key
generation stage, the time cost of each feature mapping is
around 0.95e-4 seconds, which can be done in almost real-
time.

In summary, it takes about 148 seconds to train and adapt
the network in total, and only 0.95e-4 seconds to use the
network for feature mapping in the key generation stage. Fur-
thermore, the training stage only needs to be performed once
for all environments, and the adaptation stage is performed
only once for each environment. Compared with the training
consumption of networks used in other areas, the proposed
algorithms can achieve fast key generation in FDD-OFDM
systems.

As for the model size, the model used has 2,763,775
parameters and requires 20.5 MB of storage space, which is
affordable to a BS. In addition, the inference stage is usually
not computationally expensive, which can be handled by the
BS too.

H. Security Analysis

The security of our scheme can still be guaranteed even if
the feature mapping function is leaked. When Eve is located
over half of the wavelength away from Alice or Bob, she can-
not get correlated channel measurements. In this circumstance,
even though Eve has access to the feature mapping function,
it cannot infer the channel features.

VIII. EXPERIMENTAL EVALUATION

In this section, we will introduce a FDD-OFDM key gener-
ation hardware platform based on GNURadio and USRP, and
then evaluate the performance of the proposed scheme in a
real environment.

A. Experimental Setup and Dataset Collection

We built an experimental platform based on the GNURadio
software radio suite and USRP N210 to collect FDD channel
data in realistic scenarios to verify performance. Two USRP
N210 SDR platforms [36] are used as Alice and Bob to receive
and transmit signals processed by MATLAB. OFDM probing
signals are generated and processed in MATLAB and stored as
data stream files in the PC. In the experiment, it is difficult to
guarantee that Alice and Bob transmit and estimate the probing
signals at the same moment. First, Alice’s transmitter sends
a sounding signal to Bob, and Bob’s transmitter is triggered
to send an OFDM signal when Bob’s receiver detects the
sounding signal, and then Alice’s receiver detects the sounding
signal and notifies Bob to start subsequent channel estimation.
This mechanism affects the accuracy of the CSI obtained
by Alice and Bob to a certain extent, but due to the short
communication time, it can be regarded as an FDD channel.
In order to avoid the influence of the ISM band signal on the
experiment, the uplink and downlink carrier frequencies ful
and fdl are set to 2.535 GHz and 2.435 GHz respectively, the
transmit gain and receive gain are 30 dB, and the number of
subcarriers is 511.

We conducted extensive experiments in two scenarios, as
shown in Fig. 12, one is an interior scene of an office room,
and the other is an outdoor scene of the Purple Mountain
Laboratories, China. Alice remains stationary, Bob keeps
moving slowly along the route marked in the diagram. There
may also be other variations caused by people or vehicles
moving around. We obtained more than 900 groups of uplink
and downlink CSI vectors in both scenarios.

The amount of data collected in the experiment is less than
that collected in the simulation, so we adjusted the batch size
Nbatch and Ebatch in the transfer learning and meta-learning
algorithms to 8, the number of samples in each task in meta-
learning is 30. In each task, the numbers of samples in the
support dataset and query dataset are both 15. The number of
layers, the number of neurons, and the optimizer of the deep
learning model remain unchanged.

B. Experimental Results

First, we evaluate the performance of deep learning-powered
FDD-OFDM key generation in a single environment, from
which both training and test data are collected. We use 80%
of the data for training and 20% of the data for testing in
two scenarios. This is the first time the actual performance of
such methods has been evaluated experimentally. The results
are shown in Table IV. In the indoor scenario, the KER before
and after feature mapping is 0.3539, and 0.0681, respectively.
In the outdoor scenario, the KER before and after feature
mapping is 0.3683 and 0.0555 respectively. The experimental

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 13

(a) Indoor.

(b) Outdoor.

Fig. 12: Floor plans of an indoor environment and an outdoor
environment, where Alice remains stationary and Bob moves
slowly along the brown-colored line.

TABLE IV: Comparison of performance before and after
feature mapping.

Scenario Metric Before Feature
Mapping

After Feature
Mapping

Indoor
NMSE 0.2031 0.0840
KER 0.3539 0.0681
KGR 0.7583 0.8369

Outdoor
NMSE 0.3158 0.0811
KER 0.3683 0.0555
KGR 0.7144 0.7882

results show that the deep learning method can significantly
improve the reciprocity in FDD systems and greatly improve
the performance of the generated keys in a single environment.

Next, we evaluate the performance of the proposed al-
gorithms in multi-environments. In this paper, we test the
algorithm proposed in this paper using 900 sets of data
collected in the indoor scenario to improve the performance in
the outdoor scenario when the amount of data is small. Fig. 13
compares the performance of several algorithms under differ-
ent adaptation sample sizes. Fig. 13(a) and Fig. 13(b) show
that the NMSE and KER performances of the algorithms both

10 20 30 40 50 60 70 80 90 100

The size of adaption samples N
Ad

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
M

S
E

The direct algorithm

The joint dataset algorithm

The DTL algorithm

The meta-learning algorithm

(a) The NMSE performance versus the number of adaption samples.

10 20 30 40 50 60 70 80 90 100

The size of adaption samples N
Ad

10
-1

10
0

K
E

R

The direct algorithm

The joint dataset algorithm

The DTL algorithm

The meta-learning algorithm

(b) The KER performance versus the number of adaption samples.

10 20 30 40 50 60 70 80 90 100

The size of adaption samples N
Ad

0.7

0.75

0.8

K
G

R

The direct algorithm

The joint dataset algorithm

The DTL algorithm

The meta-learning algorithm

(c) The KGR performance versus the number of adaption samples.

Fig. 13: The performance under different numbers of adaption
samples.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 14

TABLE V: NIST statistical test results of the experimental
data.

Test Indoor Outdoor
Approximate Entropy 0.4391 0.4405

Block Frequency 0.9559 0.3620
Cumulative Sums 0.2653 0.5700

Discrete Fourier Transform 0.4913 0.9087
Frequency 0.2159 0.2159
Ranking 0.7745 0.2395

Runs 0.5005 0.5628

Serial 0.4369 3622
0.7237 0.4795

improve as the number of adapted samples increases. When
the adaptive sample size is only 10, the NMSE performance
of the algorithms proposed in this paper is poor, and it is not
as good as the direct algorithm. However, after quantization,
the mete-learning algorithm can still generate keys with lower
KER when the adaption sample size is as small as 10 and
20. When the adaption sample size is 80, the KER of the key
generated by the meta-learning algorithm is lower than 10%.
In addition, different from the simulation results, when the
adaptive sample size exceeds 40, the KER of the key generated
by the joint dataset algorithm is also smaller than that of the
direct algorithm. This shows that in real-world environments,
despite experiencing different scattering environments, differ-
ent environments still have certain similarities, which can be
used to improve performance in new environments. At this
point, the performance of the two algorithms proposed in this
paper is still better than the joint dataset algorithm.

Fig. 13(c) shows that the performance of KGR seems to be
slightly degraded, and the KGR generated by all algorithms
fluctuates between 0.7 and 0.8. This result is related to the
quantization method we choose. The quantization based on the
Gaussian distribution used in this paper may not perfectly fit
the distribution of channel characteristics, thus causing KGR
fluctuations. Since the fluctuation range is not large, it is quite
normal and feasible to sacrifice a certain KGR to achieve
a lower KER key. Since the fluctuation range is not large
and the KER of the generated key is significantly reduced, in
general, the DTL algorithm and the mata-learning algorithm
can significantly improve the performance of the generated
key in real-world scenarios.

The NIST test is also used to test the randomness of the
generated keys in the real world. Table V shows that all cases
for both indoor and outdoor environments pass the test with
p-values much greater than 0.01.

IX. CONCLUSION

In this paper, aiming at the problem of inapplicability
of deep learning model caused by environmental changes,
we formulated this problem as a learning-based problem,
i.e., using knowledge from source environments to learn the
feature mapping in the new environments, and proposed a
DTL algorithm and a meta-learning algorithm to achieve
fast key generation in multi-environment for FDD-OFDM
systems. Simulation results showed that both algorithms can
effectively improve the performance of generated keys in new
environments. When the SNR=20 dB, the KERs of the keys

generated by the DTL and meta-learning algorithms were
reduced by 73.14% and 77.3%, respectively, compared with
the method without adaptation (the direct algorithm) in the
new environments. The complexity analysis showed that the
meta-learning algorithm consumed less time than the DTL
algorithm in the training stage, and these costs were acceptable
in real-world applications. In addition, we built a USRP SDR-
based testbed and verified the performance of the learning-
based FDD-OFDM key generation method using real-world
data for the first time. The results show that the proposed
algorithm can significantly reduce the KER of generated keys,
and only 80 samples in the new environment can reduce KER
to 10%.

REFERENCES

[1] Y. Zou, J. Zhu, X. Wang, and L. Hanzo, “A survey on wireless security:
Technical challenges, recent advances, and future trends,” Proc. IEEE,
vol. 104, no. 9, pp. 1727–1765, Sep. 2016.

[2] G. Li, C. Sun, J. Zhang, E. Jorswieck, B. Xiao, and A. Hu, “Physical
layer key generation in 5G and beyond wireless communications:
Challenges and opportunities,” Entropy, vol. 21, no. 5, p. 497, May
2019.

[3] J. Zhang, M. Ding, G. Li, and A. Marshall, “Key Generation Based
on Large Scale Fading,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp.
8222–8226, aug. 2019.

[4] G. Li, A. Hu, C. Sun, and J. Zhang, “Constructing reciprocal channel
coefficients for secret key generation in FDD systems,” IEEE Commun.
Lett., vol. 22, no. 12, pp. 2487–2490, Dec. 2018.

[5] J. Penttinen, The Telecommunications Handbook: Engineering Guide-
lines for Fixed, Mobile and Satellite Systems. Wiley, 2015.

[6] 3GPP, “NR; User Equipment (UE) radio transmission
and reception; Part 1: Range 1 Standalone,” Technical
Specification (TS) 36.101-2, Jun. 2022, v17.6.0. [On-
line]. Available: https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=3283

[7] W. Wang, H. Jiang, X. Xia, P. Mu, and Q. Yin, “A wireless secret
key generation method based on Chinese remainder theorem in FDD
systems,” Sci. China Inf. Sci., vol. 55, no. 7, pp. 1605–1616, Jul. 2012.

[8] B. Liu, A. Hu, and G. Li, “Secret key generation scheme based on the
channel covariance matrix eigenvalues in FDD systems,” IEEE Commun.
Lett., vol. 23, no. 9, pp. 1493–1496, Sep. 2019.

[9] D. Vasisht, S. Kumar, H. Rahul, and D. Katabi, “Eliminating Channel
Feedback in Next-Generation Cellular Networks,” in Proc. ACM Conf.
Special Interest Group Data Commun. (SIGCOMM), Florianopolis,
Brazil, Aug. 2016, p. 398–411.

[10] D. Qin and Z. Ding, “Exploiting multi-antenna non-reciprocal channels
for shared secret key generation,” IEEE Trans. Inf. Forensics Secur.,
vol. 11, no. 12, pp. 2693–2705, Dec. 2016.

[11] A. M. Allam, “Channel-based secret key establishment for FDD wireless
communication systems,” Commun. Appl. Electron, vol. 7, no. 9, pp. 27–
31, Nov. 2017.

[12] L. Peng, G. Li, J. Zhang, R. Woods, M. Liu, and A. Hu, “An investiga-
tion of using loop-back mechanism for channel reciprocity enhancement
in secret key generation,” IEEE Trans. Mob. Comput., vol. 18, no. 3, pp.
507–519, May 2019.

[13] X. Zhang, G. Li, Z. Hou, and A. Hu, “Secret Key Generation for FDD
Systems Based on Complex-Valued Neural Network,” in Proc. IEEE
Veh Technol Conf (VTC2021-Fall), Virtual, Sep. 2021, pp. 1–6.

[14] Z. Wan, K. Huang, and L. Chen, “Secret Key Generation Scheme Based
on Deep Learning in FDD MIMO Systems,” IEICE Trans Inf Syst, vol.
104, no. 7, pp. 1058–1062, Jul. 2021.

[15] X. Wei and D. Saha, “KNEW: Key Generation Using NEural Networks
from Wireless Channels,” in Proc. ACM Workshop Wirel. Secur. Mach.
Learn. (WiseML’22), San Antonio, TX, USA, May 2022, pp. 45–50.

[16] Z. Hou and X. Zhang, “Secret Key Generation Scheme Based on
Generative Adversarial Networks in FDD Systems,” in Proc. IEEE
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), Virtual,
May 2021, pp. 1–6.

[17] X. Zhang, G. Li, J. Zhang, A. Hu, Z. Hou, and B. Xiao, “Deep-Learning-
Based Physical-Layer Secret Key Generation for FDD Systems,” IEEE
Internet of Things J., vol. 9, no. 8, pp. 6081–6094, Apr. 2022.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 15

[18] M. Alrabeiah and A. Alkhateeb, “Deep Learning for TDD and FDD
Massive MIMO: Mapping Channels in Space and Frequency,” in Proc.
Conf. Rec. Asilomar Conf. Signals Syst. Comput. (ACSSC), Pacific
Grove, CA, United states, Nov. 2019, pp. 1465–1470.

[19] A. Bakshi, Y. Mao, K. Srinivasan, and S. Parthasarathy, “Fast and
efficient cross band channel prediction using machine learning,” in Proc.
Annu Int Conf Mobile Comput Networking (Mobicom’19), Los Cabos,
Mexico, Oct. 2019, pp. 1–16.

[20] Z. Liu, G. Singh, C. Xu, and D. Vasisht, “FIRE: Enabling Reciprocity
for FDD MIMO Systems,” in Proc. Annu Int Conf Mobile Comput
Networking (Mobicom’21), New Orleans, Louisiana, Oct. 2021, pp. 628–
641.

[21] C. T. Nguyen, N. Van Huynh, N. H. Chu, Y. M. Saputra, D. T. Hoang,
D. N. Nguyen, Q.-V. Pham, D. Niyato, E. Dutkiewicz, and W.-J. Hwang,
“Transfer Learning for Future Wireless Networks: A Comprehensive
Survey,” Proc. IEEE, vol. 110, no. 8, pp. 1073–1115, Aug. 2022.

[22] S. Thrun and L. Pratt, “Learning to learn: Introduction and overview,”
in Learning to learn. Springer, 1998, pp. 3–17.

[23] S. Park, H. Jang, O. Simeone, and J. Kang, “Learning to Demodulate
From Few Pilots via Offline and Online Meta-Learning,” IEEE Trans
Signal Process, vol. 69, pp. 226–239, Dec. 2021.

[24] J. Zeng, J. Sun, G. Gui, B. Adebisi, T. Ohtsuki, H. Gacanin, and H. Sari,
“Downlink CSI feedback algorithm with deep transfer learning for FDD
massive MIMO systems,” IEEE Trans. on Cogn. Commun. Netw., vol. 7,
no. 4, pp. 1253–1265, 2021.

[25] Y. Yuan, G. Zheng, K.-K. Wong, B. Ottersten, and Z.-Q. Luo, “Transfer
learning and meta learning-based fast downlink beamforming adapta-
tion,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1742–1755,
2020.

[26] Y. Yang, F. Gao, Z. Zhong, B. Ai, and A. Alkhateeb, “Deep transfer
learning-based downlink channel prediction for FDD massive MIMO
systems,” IEEE Trans. Commun., vol. 68, no. 12, pp. 7485–7497, Dec.
2020.

[27] Y. Ge and J. Fan, “Beamforming Optimization for Intelligent Reflecting
Surface Assisted MISO: A Deep Transfer Learning Approach,” IEEE
Trans. Veh. Technol., vol. 70, no. 4, pp. 3902–3907, apr. 2021.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980, 2014.

[29] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proc. Int. Conf. Mach. Learn.
(ICML), Sydney, NSW, Australia, Aug. 2017, pp. 1126–1135.

[30] F. J. Massey Jr, “The Kolmogorov-Smirnov test for goodness of fit,” J
AM STAT ASSOC, vol. 46, no. 253, pp. 68–78, Mar. 1951.

[31] G. R. Terrell and D. W. Scott, “Variable kernel density estimation,” Ann.
Stat., pp. 1236–1265, Sep. 1992.

[32] R. Upadhyay, R. Phlypo, R. Saini, and M. Liwicki, “Sharing to learn
and learning to share - fitting together meta-learning, multi-task learning,
and transfer learning : A meta review,” arXiv:2111.12146, 2023.

[33] “Remcom wireless insite.” Sep. 2019. [Online]. Available: http:
//www.remcom.com/wireless-insite

[34] Y. Chen, Z. Chen, Y. Zhang, Z. Luo, Y. Li, B. Xing, B. Guo, and
L. Chen, “Physical layer key generation scheme for mimo system based
on feature fusion autoencoder,” IEEE Internet of Things J., 2023.

[35] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, “A statis-
tical test suite for random and pseudorandom number generators for
cryptographic applications,” Tech. Rep., 2001.

[36] “Ettus research,” Jun. 2018. [Online]. Available: http://www.ettus.com/

Xinwei Zhang received the M.Eng degree in com-
puter technology from Southeast University, Nan-
jing, China, in 2022. He is currently pursuing the
Ph.D. degree with the Department of Electrical and
Electronic Engineering, The Hong Kong Polytechnic
University, Hong Kong.

From April 2021 to September 2021, he was a
Research Assistant with the Department of Com-
puting, The Hong Kong Polytechnic University. His
research interests include physical-layer security and
adversarial machine learning.

Guyue Li (Member, IEEE) received the B.S. de-
gree in information science and technology and the
Ph.D. degree in information security from Southeast
University, Nanjing, China, in 2011 and 2017, re-
spectively.

From June 2014 to August 2014, she was a
Visiting Student with the Department of Electri-
cal Engineering, Tampere University of Technology,
Finland. She is currently an Associate Professor
with the School of Cyber Science and Engineering,
Southeast University. Her research interests include

physical-layer security, secret key generation, radio frequency fingerprint, and
link signature.

Junqing Zhang (Member, IEEE) received the B.Eng
and M.Eng degrees in Electrical Engineering from
Tianjin University, China in 2009 and 2012, respec-
tively, and the Ph.D degree in Electronics and Elec-
trical Engineering from Queen’s University Belfast,
UK in 2016.

From Feb. 2016 to Jan. 2018, he was a Post-
doctoral Research Fellow with Queen’s University
Belfast. From Feb. 2018 to May 2020, he was
a Tenure Track Fellow (Assistant Professor) with
University of Liverpool, UK. Since June 2020, he

is a Lecturer (Assistant Professor) with University of Liverpool. His research
interests include Internet of Things, wireless security, physical layer security,
key generation, and radio frequency fingerprint identification.

Linning Peng (Member, IEEE) received the Ph.D.
degree from the Electronics and Telecommunica-
tions Institute of Rennes Laboratory, National Insti-
tute of Applied Sciences, Rennes, France, in 2014.

Since 2014, he has been an Associate Profes-
sor with Southeast University, Nanjing, China. His
research interests include Internet of Things and
physical layer security in wired and wireless com-
munications

Aiqun Hu (Senior Member, IEEE) received the
B.Sc.(Eng.), M.Eng.Sc., and Ph.D. degrees from
Southeast University in 1987, 1990, and 1993, re-
spectively.

He was invited as a Post-Doctoral Research Fel-
low with The University of Hong Kong from 1997 to
1998, and a TCT Fellow with Nanyang Technologi-
cal University in 2006. He has published two books
and more than 100 technical articles in wireless com-
munications field. His research interests include data
transmission and secure communication technology.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 16

Xianbin Wang (Fellow, IEEE) received the Ph.D.
degree in electrical and computer engineering from
the National University of Singapore in 2001. He
is currently a Professor and the Tier-1 Canada
Research Chair with Western University, Canada.
Prior to joining Western University, he was with the
Communications Research Centre Canada (CRC)
as a Research Scientist/Senior Research Scientist
from July 2002 to December 2007. From January
2001 to July 2002, he was a System Designer with
STMicroelectronics. He has over 450 highly cited

journal articles and conference papers, in addition to 30 granted and pending
patents and several standard contributions. His current research interests
include 5G/6G technologies, the Internet-of-Things, communications security,
machine learning, and intelligent communications. He is also a fellow of
the Canadian Academy of Engineering and the Engineering Institute of
Canada, and an IEEE Distinguished Lecturer. He received many awards and
recognitions, including the Canada Research Chair, the CRC President s
Excellence Award, the Canadian Federal Government Public Service Award,
the Ontario Early Researcher Award, and six IEEE Best Paper Awards. He
was involved in many IEEE conferences, including GLOBECOM, ICC, VTC,
PIMRC, WCNC, and CWIT, in different roles, such as the symposium chair,
a tutorial instructor, the track chair, the session chair, the TPC co-chair, and a
keynote speaker. He has been nominated as an IEEE Distinguished Lecturer
several times during the last ten years. He is also serving as the Chair for
IEEE London Section and the ComSoc Signal Processing and Computing for
Communications (SPCC) Technical Committee. He also serves/has served as
the editor-in-chief, an associate editor-in-chief, and an editor/associate editor
for over ten journals.

