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The Self-Detection Method of the Puppet Attack in
Biometric Fingerprinting

Guyue Li, Yiyun Ma, Wenhao Wang, Junqing Zhang and Hongyi Luo

Abstract—Fingerprint authentication has become a staple in
securing access to personal devices and sensitive information in
our daily lives, with the security level of such systems being
paramount. Recent attention has been drawn to the puppet
attack, a forced fingerprint unlocking scenario that exploits
legitimate user fingerprints for unauthorized access. Traditional
authentication methods are constrained by their reliance on ad-
ditional sensors and are typically limited to static authentication
scenarios, lacking versatility in dynamic or mobile contexts. In
this study, we employ physical modeling to elucidate puppet
attack, unraveling the distinctive stress patterns and points of
application associated with forced interactions. By scrutinizing
the physical alterations induced during such attacks, our investi-
gation unveils discernible changes in the texture of fingerprints,
specifically reflecting variations linked to different force patterns.
Consequently, we introduce a detection system that operates
without the need for external sensors, solely utilizing fingerprint
images to extract texture features, thereby offering a broadly
applicable solution. To address the challenge posed by the absence
of puppet attack samples in existing datasets, we constructed
a comprehensive database, incorporating a substantial number
of puppet attack fingerprints collected from 70 volunteers aged
between 20 and 75. This database facilitates a more robust
detection of puppet attack. Our system demonstrates accuracy
rates of 85.5%, 97.2%, 86.5%, and 78.1% across four distinct
scenarios within our puppet attack database.

Index Terms—Puppet attack, identification security, biometric
system, support vector machine.

I. INTRODUCTION

Automated recognition of behavioral and physiological
characteristics of an individual is the core of biometric tech-
nology as the International Organization for Standardization
described [1]. Fingerprint, as a kind of common and easily
obtained physiological characteristic, has been utilized to reli-
ably check the identity by analyzing the local feature extracted
and increasing the efficiency of access to services. Currently,
fingerprints are mainly captured by optical reflection, silicon
crystal capacitive sensors, and ultrasonic scanning [2]. Among
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them, capacitive sensors are widely used. Specifically, the
silicon sensor is employed as one polar plate of the capacitor
and the finger pressed is employed as another polar plate of
the capacitor. The capacitance difference between fingerprint
ridges and valleys derived is used to generate the fingerprint
patterns. Compared to optical reflection, a capacitive sensor is
less susceptible to finger dirt and favorable to capturing more
fingerprint details. Therefore, capacitive sensors-based finger-
print recognition systems are ubiquitously commercialized for
intelligent door lock security, cell phone unlocking [3], and
e-commerce payment [4].

However, concerns on the vulnerability of capacitive sensor
based fingerprint recognition systems grow. Research shows
that fingerprint authentication is vulnerable to attacks. In
particular, presentation attacks employ artificial fingerprint
replicas to counterfeit real fingers and spoof existing capacitive
modules. Such attacks can circumvent a fingerprint recognition
system security with a success rate of over 70% [5], [6]. Differ-
ent from the presentation attack that passes the authentication
with artificial crafts, there still exists risks for authentication
systems [7]. ISO/IEC 30107-1:2016 [1] emphasizes “involun-
tary reactions” in the biometric authentication process, where
the fingerprints that capacitive sensors fetched come from the
clients, but the clients have no intention [8]. This kind of
attack is defined as puppet attack, where an intruder violently
pinches the client’s finger and forces the client to unlock the
verification system. Such attacks can happen in a robbery or
terrorist event, which is abrupt for clients. Another possible
scenario is that the client’s child holds his/her fingers to unlock
the phone [9]. Compared to presentation attacks, puppet attack
employs fingerprints of legitimate clients rather than mimicry
to pass the authentication system. Puppet attack’s abruptness
and authentication process legitimacy make it challenging to
be detected. Existing presentation attack detection methods
will not be able to resist the puppet attack [10]–[12]. Similarly,
authentication systems utilizing only capacitive sensors, such
as access control system of offices or labs, cars or computers
activated by fingerprints, are all exposed to the potential risk
of puppet attack. Therefore, it is necessary to propose a
system that can defend against attack only with fingerprint
images. As Fig. 1 illustrates, puppet attack may cause personal
security risks, data leakage, and pecuniary losses in many
scenarios. The widespread use of fingerprint authentication
systems makes it more significant for system security.

The cell phone manufacturers and smart door locks in the
mainstream market do not have defensive countermeasures
against puppet attacks. Apple released attention aware fea-
tures [13] which can intelligently check whether a client is



2

Personal Security RisksPersonal Security Risks

Data LeakageData Leakage

Pecuniary LossesPecuniary Losses

Fig. 1. Puppet attack scenarios and security risks.

paying attention to the device by capturing depth data and
infrared images. It can recognize if a client’s eyes are open
and the attention is directed towards the device, making it hard
for intruders to unlock devices without clients’ knowledge.
However, to the best knowledge of the authors, this is the
only defensive countermeasure available in the mainstream
market. Having said that, Apple’s attention aware features only
support phones with a 3D face recognition mechanism, which
means fingerprint authentication is still unprotected. There
have also been research efforts on attention aware needs. For
example, the cellphone’s built-in gyroscope is utilized to judge
whether the pressing action is involuntary [7]. However, this
method can hardly be employed on devices like smart door
locks, which do not have built-in sensors other than capacitive
fingerprint sensors.

The difficulty in detecting such attacks is to differentiate
the subtle difference between forced fingerprints and unforced
fingerprints, which are derived from resistance actions. To
solve puppet attack problems, where devices are unlocked
with biometric features but without clients’ permissions or
clients are aware of the attack but fail to resist, we first
collected fingerprints and their corresponding pressure values.
By observing and analyzing the data we collected, we found
that pressure is not a good way for detection and would cost
more burden for the system. Then, we found that texture would
change under different stress distributions. Existing fingerprint
datasets lack forced fingerprints. The ethical approval to col-
lect our own dataset is needed. The ethical review response
for our forced fingerprint collection was approved by the IEC
for Clinical Research of Zhongda Hospital affiliated to South-
east University. The approval number is 2023ZDSYLL109-
Y01, dated March 30, 2023. Approved by our Institutional
Review Board, we established our own database called puppet
attack database, which comprised 5,600 fingerprints from 70
volunteers and is divided into forced and unforced classes.
These volunteers’ ages are between 20 and 75. For forced
and unforced fingerprints, we recorded images that success-
fully passed the authentication process. To simulate real-
world authentication scenarios, the volunteers are required to
unlock the devices with different pressing centers, rotation
angles, and pressing pressure. As for forced conditions, the

intruders are also asked to pinch clients’ fingers to unlock in
different positions. In the database, we can observe whether
the attacked fingerprint images are different from the normal
ones. By importing fingerprint samples that are attacked and
training them with machine learning, we can solve the puppet
attack detection problem. The contributions of this paper are
summarized as follows:

• We physically model the puppet attack. By correlating
the attack pattern with the physics of torque variations,
thereby facilitating the detection of texture changes under
duress. We demonstrates the feasibility of detecting subtle
differences in attacks without the need for additional
sensors.

• We introduce a novel method, SDM-PA, for defending
against puppet attack. This method was validated using a
dataset comprising 5,600 fingerprint images, covering in-
dividuals aged 20 to 75 to simulate real-world scenarios.
Additionally, we explored the impact of varying negative
sample rates on attack detection, determining the optimal
ratio for effective detection.

The rest of the paper is arranged as follows. In Section II,
we introduce the previous fingerprint-related datasets and
research. In Section III, we present the details of the puppet
attack in this paper. Section IV describes the proposed method
that defends against puppet attack. We describe the testbed,
experiment design and evaluation metrics in Section V. Sec-
tion VI reports experimental results. Section VII represents the
future work and Section VIII concludes this paper.

II. RELATED WORK

There has been great progress of defence against fingerprint
presentation attacks in the last few years. We summarize the
existing fingerprint datasets and review the representative work
on fingerprint attack detection.

A. Dataset

As for the fingerprint liveness dataset, LivDet2017 com-
prises three databases with different scanners. Among the
three databases, image height is not constant in Database2
because it depends on the finger swipe way [14]. After that,
the LivDet series is extended with LivDet2019, which consists
of a never-seen-before material in the detection [15] and
LivDet2023 [16].

However, existing fingerprint datasets have limitations: 1)
There is no protocol of age distribution. The limited age dis-
tribution makes the method difficult to promote in large scale
volunteer scenarios. 2) They do not have forced fingerprint
samples, thus we can hardly extract correspondingly puppet
attack features for detection.

B. Presentation Attack Defend Methods

Biometric fingerprint authentication is prone to presentation
attacks, where attackers utilize artificial replicas to intrude
on the system [6]. The existing defence methods can be
divided into two categories: hardware method and software
method [20]–[22].
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TABLE I
COMPARISON WITH OTHER AUTHENTICATION SYSTEM.

Paper Overview Features Classification
Method

[7] Using fingertip behaviors measured by mobile phones’ acceleration
and the rotation angle.

Time-domain and frequency-domain
features from mobile phones’
accelerations and rotation angles.

OC-SVM

[17] Employing finger movement to authenticate clients.
First touch position, first moving direction,
moving distance, etc. from multi-touch screen,
accelerometer and gyroscope.

Binary SVM

[18] Utilizing data from wearable devices to authenticate clients. Signals from calorie burn, step counts and heart rate. Binary SVM

[19] Fingerprint authentication aided by knuckle images
acquired by camera phtography. Fingerprint and knuckle images. Mask R-CNN

SDM-PA Defensing against puppet attack during fingerprint authentication. Single fingerprint image. SVM

The hardware-based methods utilize physiological fea-
tures [23], such as odor [24], temperature [25], pulse oxime-
try [26] and blood pressure [27]. However, to fetch these inher-
ent biometric signals, external sensing devices are employed,
which are always customized and auxiliary. Moreover, the time
expenses of the authentication process would be longer and
cause a bad user experience. Furthermore, hardware update
difficulties emerge once the system is successfully attacked.
In general, hardware-based methods are inflexible, and not
suitable for large-scale commercial use [28].

In contrast, software-based methods analyze the salient
features from fingerprint images captured by sensors in order
to achieve the detection goal, which is more favorable thanks
to its convenience and low cost. Extracted features from
sensors can be broadly classified into the following three types:

• Anatomical features, including pore locations and pore
distribution [29]. These features provide valuable infor-
mation about the individuality of the fingerprint pattern.

• Physiological features, the most typical one is sweat-
pores based feature [30], [31]. Subtle variations in the
fingerprint pattern due to changes in moisture levels can
be indicative of an individual’s physiological state, thus
ensuring robustness against potential attempts to deceive
the biometric system.

• Texture-based features. The utilization of texture features
allows the system to focus on unique texture character-
istics, such as ridges and furrows, which are crucial for
fingerprint recognition.

Among them, the texture feature has become one of the most
widely applied features, because methods based on singular
points, such as pore locations and sweat-pores, may result in
wrong classification. The model performance is intrinsically
limited by the state of the fingerprint skin surface, such as
abrase, wrinkle, and perspiration [32]. The basic idea behind
texture features-based methods is that abnormal fingerprint
images have different texture distributions, despite it is indis-
tinguishable from human eyes. Nikam [33] employed Local
Binary Pattern (LBP) histograms based on the gradient for
the application on fingerprint live detection for the first time,
where texture details are generated by the comparison of the
center pixel value and its adjacent pixels, and proves that
only one image is sufficient to defend spoof attacks. Ghiani et
al. [34] presented a method based on local phase quantization
(LPQ) to discriminate the differences between live samples

from fake samples since the loss of information may occur
as a result of the replica fabrication process. Gragnaniello et
al. [35] proposed the weber local descriptor (WLD), which can
extract two-dimensional histogram features from square bipar-
tite and differential exciatation. Furthermore, Gragnaniello et
al. [36] proposed local contrast phase descriptor (LCPD) for
detection tasks, combining gradient with local phase informa-
tion together. Wasnik et al. [37] employed LBP, Histograms
of Oriented Gradients (HOG) and Binarized Statistical Image
Features (BSIF) on Maximum Filter Response (MFR) images
and achieved a negative Presentation Classification Error Rate
(BPCER) of 1.8% for print photo attacks.

C. Biometric Authentication Methods

Some research employ clients’ inherent habits and unique
behaviors to defend attacks. Wu et al. highlights puppet attack
detection [7], where a client’s finger is put on the sensor. To
defend against the attack, the authentication system is built
with clients’ fingertip-touch behaviours, which are presented
as acceleration and rotation angle of mobile devices. However,
the behavior patterns are captured by additional sensors and
require the clients to do additional actions(e.g., pattern locks,
signature), which increases the burden of the authentication
process. The Table. I compares in detail of the design goals,
features and classification methods.

III. PUPPET ATTACK

In this section, we introduce the puppet attack in detail,
including the attack model and the feasibility of pressure-based
detection.

A. Modeling of Attack

As ISO/IEC 30107 describes [1], the puppet attack is that an
attacker forces the involuntary client’s finger on the fingerprint
sensor to gain access via the fingerprint authentication system.
Fig. 2 exemplifies the scenario where the client unlocks the
cellphone, where (a) is the normal state, (b) is the attack state.
The gray hand represents the attacker, while the red index
finger belongs to the client. The attacker is gripping the hand
of the client and forcing the victim to unlock the phone. Fxy

and Fz denote the decomposition force on the XY plane and
along the Z axis, respectively.
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(a)

Attacker

Client

Client

(b)

Fig. 2. Interaction force during the attack. (a) is the normal state, (b) is the
attack state.

To gain a deeper understanding of the impact of the puppet
attack, it is imperative to consider the concept of Von Mises
stress, which is a method utilised to measure the distribution
of internal mechanical stress within an object. With the stress
distribution calculated by Von Mises stress analysis, we can
assess the extent of the attack’s impact on fingerprint images.
Such analysis assists in deepening the understanding of how
attackers distort fingerprint images through the application of
external forces and enable unauthorized access.

As a consequence, we perform a finite element analysis
(FEA), which is based on generative part structural analysis
of CATIA V5. The von Mises stress, τ , is calculated as:

τ =

√
1

2

[
(τx − τy)

2
+ (τy − τz)

2
+ (τz − τx)

2
]
, (1)

where τx, τy and τz denote three orthogonal stresses.
We define θ as the tilt angle between the finger axis and

the plane and build the von Mises stress analysis of the plane
with the generative part structural analysis of CATIA. Fig. 3(a)
shows the stress analysis under an unforced situation where
F is 3N and θ is 90◦; the stress is concentrated in the central
part of the sensor. In contrast, Fig. 3(b) illustrates the stress
analysis of a forced situation where F is 30N and θ is 30◦;
the stress is concentrated at the edge of the sensor.

We define a client CA is forced by an intruder IA and a
client CB is forced by an intruder IB . Both CA and IB are
female. Also, CB and IA are male. At the same time, we
collect 50 fingerprint images per state, which means CA and
CB are both collected 100 fingerprint images. The fingerprint
data collection system details will be described in Section V-A.

(a)

(b)

Fig. 3. Comparison of stress distributions of (a) a normal state; (b) an
abnormal state.

Fig. 4. The stress distribution and heat maps of forced fingerprints.

Then, we drew the heat map of fingerprint images from CA

when he was forced. Part of these images are shown in Fig. 4.
We find that there is a correlation between the texture of the
fingerprints and their stress distribution. As Fig. 3 and Fig. 4
show, the stress of the forced fingerprints is mainly located at
the edges. At the same time, the heat maps of the fingerprint
images also show the corresponding characteristics. Then we
calculate the statistical results. We establish a two-dimensional
rectangular coordinate for the image, with the lower left corner
at (0,0) and upper right corner at (160,160). Taking only one
maximum pressure center. The pressure cluster center of 100
images is at (117,138), which is similar to stress distribution
results.

B. Feasibility of Pressure-based Detection

With the stress distribution in Section III-A, there is a
clear difference between forced and unforced fingerprints.
This section will validate whether forced fingerprints can be
detected by pressure sensors.
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Fig. 5. Fingerprint pressure under different states.

Fig. 6. Numerical metrics on boxplots.

We recorded the pressure of the fingerprints under forced
state and unforced state. We collected 50 fingerprint images
per state per client. As described in section III-A before, client
CA and intruder IB are female. Client CB and the intruder
IA are male. We draw Fig. 5, a boxplot based on clients’
pressure under different states [38]. As a kind of statistical
chart, boxplots clearly display the distribution of a set of data.
As it illustrates, we can conclude that under a normal state,
the pressing pressure between different genders is minimal, but
male’s pressure is a bit more than female’s in general. Also,
when the attacker is male, the press would face a significant
increase.

In order to distinguish between fingerprints’ states with the
boxplot, we define the range of the normal value as

[Plow , Phigh] (2)

where Plow is the minimum value and Phigh is the maximum
value as Fig. 6 shows. The lower quartile, Q1, upper quartile,
Q3, and interquartile range, IQR, are calculated as

Phigh = Q3 + 1.5IQR,
Plow = Q1 − 1.5IQR,

IQR = Q3 −Q1,
(3)

respectively.
We define Q1,n as the Q1 under the normal state, Q1,ab as

the Q1 under the abnormal state. The pressure threshold Pth

is defined as:
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Fig. 7. Fingerprint pressure under voluntary and involuntary states.

Pth =
Q1,ab +Q3,n

2
. (4)

For client CB , the Pth is 5.01N . That is, the attack that is
less than 5.01N can hardly be differentiated. With this method,
the final accuracy for client CB is 70.7%.

As for CA, Fig. 5 clearly shows that her fingerprint states
can be easily distinguished with pressure difference. As a
result, we asked her to press the fingerprint sensor in a hard
way voluntarily. As Fig. 7 shows, there exists a large overlap
in the IQR between the two states. There would be a high
rejection rate using pressure as the discriminatory criteria.

To conclude, employing pressure as a threshold for forced
fingerprint pressing attack detection can succeed in some
situations. However, there still exist many drawbacks. First,
this method requires individual threshold calculation, which
can be very burdensome in the case of multiple clients.
Besides, the pressure threshold-based discrimination method
is difficult to work when the clients actively press hard. A
high rejection rate would cause extra usability burdens on
users. Meanwhile, the texture would change with the stress
distribution. Therefore, using texture features-based image
classification is more reasonable and convenient, and it is
necessary to build the corresponding dataset. Details of the
establishment of dataset would be introduced in Section V-A.

IV. PROPOSED METHOD

In the field of puppet attack detection, the lack of public
puppet attack datasets makes it difficult to evaluate. Con-
sequently, we first establish a database. Then, image pre-
processing and feature extraction are utilized for the model
training. The framework of the defending method is shown in
Fig. 8. In the training stage, our research involves acquiring
fingerprint images from users in both forced and unforced
states. We apply the Otsu image segmentation method to
effectively segment the fingerprint images into foreground and
background regions, facilitating subsequent feature extraction.
Following the image segmentation, we employ extraction
techniques such as gray level difference statistics, histogram
of oriented gradients and local binary patterns. The extracted
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Fig. 8. Framework of the defending method.

features are encoded as vector representations and utilized
as the input for the SVM classifier. By performing feature
extraction and SVM training on fingerprint images in both
normal and foerced states, we obtain a model for classifying
fingerprint images. In the inference stage, the trained SVM
model is utilized to classify new fingerprint images.

A. Data Preprocessing

An unsupervised and nonparametric method called Otsu
algorithm [39] is used for image segmentation, which com-
putes the threshold of every image since it can generate
the best segmentation threshold automatically according to
the image itself. It is considered to be the best algorithm
for threshold selection in image segmentation, because it is
simple to calculate and not affected by brightness and contrast.
Therefore, it has been widely used in digital image processing.

Otsu segmentation divides the image into background and
foreground according to the gray characteristics of the image.
Because variance is a measure of gray distribution uniformity,
the greater the inter class variance between background and
foreground, the greater the difference between the two parts
of the image. When part of the foreground is incorrectly
divided into the background or vice versa, the difference
between the two parts will become smaller. Therefore, the
segmentation that maximizes the variance between classes
means the minimum misclassification probability.

Let a M × N pixels image be represented in 256 gray
levels [0, 1, 2, . . . , 255]. ni represents the number of pixels
whose gray level is i. The sum of pixels in the image can
be represented in

n =

255∑
i=0

ni. (5)

The probability that the gray level of a pixel is i is

pi =
ni

n
. (6)

A threshold k, 0 < k < 255, can be used to separate the input
image into two classes, C1 and C2, where C1 consists of pixels
with gray values in the range [0, k] and C2 consists of pixels

(a) Original (b) Otsu

Fig. 9. Original image of unforced fingerprints and image processed by Otsu.

with gray values in the range [k + 1, 255]. The probability of
a pixel is classified in C1 is,

P1(k) =

k∑
i=0

pi. (7)

The probability of a pixel is classified in C2 is

P2(k) =
255∑

i=k+1

pi. (8)

The mean gray values of C1 are

m1(k) =

k∑
i=0

iP (i | C1) =
1

P1(k)

k∑
i=0

ipi. (9)

Similarly, the mean gray values of C2 are

m2(k) =

255∑
i=k+1

iP (i | C2) =
1

P2(k)

255∑
i=k+1

ipi. (10)

The average gray value of pixels with gray levels of 0 to k is

mk =

k∑
i=0

ipi. (11)

The global mean of the image is given by

mG =

255∑
i=0

ipi = P1(k)m1(k) + P2(k)m2(k). (12)

The interclass variance is defined as

σ2
B(k) = P1(k) (m1 −mG)

2
+ P2(k) (m2 −mG)

2

= P1(k)P2(k) (m1 −m2)

=
(mGP1(k)−m)

2

P1(k) (1− P1(k))
.

(13)

The bigger the mean difference between m1 and m2, the
bigger σ2

B , which is a measure of separability between classes.
Therefore, the optimal threshold k∗ is needed to maximize σ2

B ,
that is:

k∗ = argmaxσ2
B(k). (14)

Using the optimum threshold value k∗, the image chosen can
be divided into two classes. In this way, pressing area is
segmented and the specific value can be calculated.

The original fingerprint images and the ones processed by
Otsu of unforced and forced scenarios are shown in Fig. 9 and
Fig. 10, respectively.
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(a) Original (b) Otsu

Fig. 10. Original image of forced fingerprints and image processed by Otsu..

B. Feature Extraction

We proposed the utilization of three feature extraction meth-
ods, namely the gray level difference statics (GLDS), local
binary patterns (LBP), and histogram of oriented gradients
(HOG). The GLDS method focuses on quantifying the varia-
tions in grayscale intensities, providing valuable insights into
local contrast and texture patterns. LBP excels at ridge patterns
and texture patterns, which are crucial for accurate recognition.
Furthermore, HOG plays a significant role in capturing the
directional information of ridge patterns, including distribution
and orientations.

1) Feature Extraction Based on GLDS: GLDS is an algo-
rithm based on the estimation of the probability of pixel pairs
at a given distance [40]. By calculating the gray difference
histogram, the features from GLDS reflect an image’s texture
characteristics. The gray histogram of the texture region uses
the features of contrast, mean, entropy and angular second
moment to describe the texture characteristics.

Set (u, v) as a point in the image, the gray level difference
between it and the point (u+∆u, v +∆v) is:

∆g(u,v) = g(u,v) − g(u+∆u,v+∆v) (15)

where g(u,v) is the gray value of point (u, v). By moving (u, v)
through the image, the number of each ∆g(u,v) is counted as
n∆g . The probability of each ∆g(u,v) is calculated:

p∆g =
n∆g

n∆
, (16)

where n∆ represents the sum of gray difference in the image.
Texture characteristics are closely related with p∆g

. The p∆i

would change rapidly along with the variation of g in the
coarse part of the image. Let L be all possible values of gray
difference value. The common gray level difference based
features, i.e., contrast, mean, entropy and angular second
moment, are computed according to the following formulas:

con =

L∑
∆g=0

(∆g)2p∆g, (17)

mean =
1

L

L∑
∆g=0

(∆g)p∆g, (18)

ent = −
L∑

∆g=0

p∆g log2(p∆g), (19)

asm =

L∑
g=0

(p∆g)
2. (20)

Let center pixel 

as threshold

Binary: 0011 1110

Decimal: 62

Extract a 3*3 window

Fig. 11. LBP Feature extraction algorithm.

The contrast directly reflects the contrast of the brightness
of a pixel value and its domain pixel value. If the element
deviating from the diagonal has a large value, that is, the image
brightness value changes rapidly, and the contrast will have a
large value. Entropy is a measure of the amount of information
an image and represents the non-uniformity or complexity of
the texture in the image.

2) Feature Extraction Based on LBP: LBP is a kind of
method used to describe the local texture features of an image.
The LBP operator is a 3 ∗ 3 window. As shown in Fig. 11,
let the center pixel as (uc, vc) and its gray level value is gc.
When the surrounding pixels’ gray level value, gs, is greater
than the center one, it would be marked as 1. Otherwise, it
would be 0. The LBP coding process can be given as

LBP (uc, vc) =

7∑
j=0

2j · s(gs − gc), (21)

where j is the number of adjacent pixels and s(t) is a symbolic
function, defined as

s(t) =

{
1 if t ≥ 0

0 else
. (22)

As a result, an ordered 8-bit binary number will be produced
and used to reflect texture information. After the LBP pattern
of each pixel is calculated, a histogram is built to represent
the texture image.

3) Feature Extraction Based on HOG: HOG is also a
method used for object detection with the information of gradi-
ent distribution and edge directions [41]. It is implemented by
dividing an image into many regions called cells and comput-
ing a histogram of gradients within the cell. These histograms
will finally be combined to form a feature descriptor. The
formula for extracting HOG features is as follows:

G(u, v) =
√
GH(u, v)2 +GV (u, v)2, (23)

where GH(u, v) and G(u, v) represent the horizontal and
vertical direction gradient at the pixel point (u, v) respectively.
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The gradient direction at the pixel point (u, v) can be calcu-
lated as

α(u, v) = tan−1

(
GV (u, v)

GH(u, v)

)
. (24)

Orientation bins refer to the discrete divisions of the angle
of gradient directions. In the context of HOG, the range of gra-
dient angles, typically from 0◦ to 180◦ (unsigned gradients),
is divided into a predetermined number of bins. The choice of
nine bins is standard, which discretizes the gradient directions
into 20 degree intervals. Each bin corresponds to a range of
angles, and the gradient magnitudes are accumulated in their
respective bins based on the gradient direction of each pixel:

Bin(k) =
∑

u,v α(u,v)∈Range(k)

G(u, v), (25)

where Bin(k) represents the k-th bin in the histogram,
Range(k) is the range of angles that fall into the k-th bin,
and the sum is taken over all pixel positions (u, v) in the cell
for which the gradient direction α(u, v) is within the range
corresponding to that bin.

Once the histograms for all cells are computed, they are
normalized over larger, spatially connected regions called
blocks. This normalization step is crucial for improving the
invariance to changes in illumination and shadowing. The final
HOG feature descriptor for the image is the concatenated
vector of these normalized histograms from all of the blocks.

For the fusion of features, LBP and HOG are catenated to
make up a one-dimensional vector.

C. Texture Classification Based on SVM

SVM is initially proposed to solve binary classification
problems [42]. However, it is also found to be useful for
nonlinearly separable cases. SVM can convert the classifica-
tion problem to a quadratic programming problem comparing
to other machine learning algorithms. The local minimum
point problem can be avoided as the result of global optimal
solution, comparing to neural networks.

Suppose training dataset {(xt, yt)}Nt=1 where x ∈ Rd

represent the input, and y ∈ {1,−1} is the training label
that represents the output of the classification. To separate the
two samples correctly, a hyperplane, wTx+ b = 0, is needed
to find. Constrained by the Lagrange function, the optimal
classification function is obtained by

f(x) = sgn((w · x) + b)

= sgn

(
Nv∑
t=1

(atytϕ (x) · ϕ (SVt) + b)

)
,

(26)

where Nv is the number of the support vector obtained from
training stage, at is the Lagrange coefficient, x is the input
sample to be classified, SVi is the training samples chosen
as the support vectors in training steps, yt is the class label
of SVt, w is the normal vector of the hyperplane, b is the
hyperplane offset, ϕ(x) is the feature map function. For a
nonlinear problem, the kernel function is used to transform
the inner product of the high dimensional space into the inner
product kernel function of the original space:

f(x) = sgn

(
Nv∑
t=1

atytK (x, SVt) + b

)
(27)

where K(·, ·) is the kernel function.
Kernel function is the kernel principle and implementation

of SVM in achieving nonlinear algorithm without the incre-
ment of complexity. For kernel function K(v1, v2), there are
four common forms in most cases: linear kernel function,
polynomial kernel function, radial basis function (RBF), and
sigmoid kernel function.

In this article, the polynomial kernel function and RBF are
applied. The formula of the polynomial kernel function is

K (v1, v2) = [(v1 · v2) + 1]
q
, q > 0. (28)

And the formula of RBF is

K (v1, v2) = exp
(
−∥v1 − v2∥2

)
/2σ2

)
. (29)

In (28) and (29), v1 and v2 is the input of the kernel function.
In this research, v1 represents the the number of support
vectors in the SVM model, v2 refers to the fingerprints to
be classified. q and σ is the SVM model parameters obtained
in the training stage.

Identifying the forced fingerprints and unforced fingerprints
is the goal of the article. The texture features mentioned above
are chosen as the inputs of the SVM model.

V. TESTBED AND DATASET CONSTRUCTION

A. Testbed

We employed the BM2166 capacitive sensor and
STM32F407ZET6 microcontroller [43] as the fingerprint
extraction platform, shown in Fig. 12. The platform has
moderated imaging velocity, which meets the demand of
capturing abnormal fingerprint details. When a finger rolls or
slides on the capacitive sensor, sliding traces would be shown
on the image. BM2166 capacitive fingerprint extraction
module is used to fetch the fingerprint images.

The size of the collected fingerprint image is 8mm ∗ 8mm,
the image pixel size is 160 ∗ 160, the resolution (DPI) is 508,
the working temperature is from −20◦C to +40◦C and the
working relative humidity is from 40% to 85%.

B. Data Acquisition

The dataset consists of a total of 5,600 fingerprint samples
from 70 volunteers during three weeks. These volunteers’ ages
range from 20 to 75 and all have different pressing habits.
Some of them get used to unlocking with the sides of the
finger, while others prefer the center. Also, the roughness of
the finger surface varies from volunteer to volunteer.

We take four kinds of scenarios into consideration.
• Scenario S1 - The Complete Dataset: This scenario

encompasses the entire collection of fingerprint samples,
providing a baseline for our system’s performance across
all types of puppet attack. It serves as a comprehensive
set to gauge the overall effectiveness of the detection
algorithm.
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Fig. 12. Fingerprint extraction system and BM2166 drawing.

• Scenario S2 - Direct Pressing: In this scenario, fin-
gerprints are collected from volunteers pressing their
fingers directly down on the sensor. This represents the
most common and straightforward use case, where the
authentication process is assumed to be under duress.

• Scenario S3 - Angled Pressing: Fingerprints in this sce-
nario are obtained when volunteers press their fingers at
a 45-degree angle to the left or right. This simulates a
situation where an attacker might not be able to exert
pressure uniformly, thereby creating a more complex
pattern to analyze and detect.

• Scenario S4 - Side Pressing: This scenario involves
fingerprints taken from the side of the volunteers’ fingers.
This simulates an attack where the attacker uses the side
of the victim’s finger to avoid detection, presenting a
subtler and possibly more challenging form of forced
authentication to recognize.

By dividing the dataset into these scenarios, we aim to create
a nuanced understanding of how different forced pressing tech-
niques might affect the authentication process. This approach
allows us to tailor the detection algorithm for specific types of
attacks and to ensure that our system is capable of identifying
forced authentications with high precision across a range of
different conditions.

The number of images under different scenarios is illustrated
in Table II. There are two states of the fingerprints: normal
state and abnormal state. Considering there are many forced
forms in real life, we set three degrees of freedom as follows:

• Location of the Pressing Center. No matter the client is
forced to press the fingerprint or not, there must exist an
area of the biggest pressure. We let the volunteers press
their fingers on different areas of the sensor, which are
shown in Fig. 13.

• Rotation Angle. In a real-world scenario, clients can
unlock devices with different pressing angles, e.g., by
pressing straight or rolling with an angle. As is illustrated

TABLE II
NUMBER OF IMAGES UNDER DIFFERENT SCENARIOS.

Scenario Abnormal Normal
Scenario S1 - All Unlock 5,600 5,600

Scenario S2 - Straight Unlock 1,400 1,400
Scenario S3 - 45 Degree Unlock 1,400 1,400

Scenario S4 - Side Unlock 2,800 2,800

Fig. 13. Location of the pressing center.

Fig. 14. Rotation angle of fingerprints.

in Fig 14, the volunteers were asked to unlock devices
with many directions, which led to different flow direc-
tions of the fingerprints.

• Pressure. In most instances, the pressure would be ex-
tremely high when the client is under danger. However,
the pressure might not be that high if the client try to
resist the intruder. In order to simulate more conditions
in real life, the volunteers are asked to imitate the
scenario above and we use a histogram to visualize it. The
histogram under different states are illustrated in Fig. 15.

VI. EXPERIMENTAL EVALUATION

A. Experiment Design

We use four texture feature extraction methods and two
SVM kernel functions to get the optimized algorithm for
solving the puppet attack classification problem. GLDS, LBP,
HOG, and LBP-HOG-fusion features are used. As for the
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Fig. 15. Histogram under different states. (a) Histogram of a normal
fingerprint under 106N pressure. (b) Histogram of an abnormal fingerprint
under 106N pressure.

fusion of LBP and HOG, the concatenation of two kinds of
features extracted is calculated as the input.

The puppet attack dataset is comprised of forced fingerprints
and unforced fingerprints. Then, the identification performance
of the texture features is evaluated with two different kernel
functions: the polynomial kernel function and RBF. Classifiers
are trained to classify the texture features into two classes:
normal fingerprints and abnormal fingerprints. The SVM is
investigated using 10-fold cross-validation in order to find the
best parameters. By reading the test set samples’ feature vec-
tors, the trained classifier analyzes the test set and outputs the
corresponding prediction results. The classification accuracy is
thus obtained by comparing prediction labels and actual test
labels.

B. Evaluation Metrics

Faced with a classification problem, the actual category
and prediction category of the samples will produce different
combinations. For a binary classification problem, results
are divided into positive and negative classes. In the actual
classification, there are four situations:

• True Positive (TP): Classifying a normal fingerprint cor-
rectly.

• False Positive (FP): Classifying an abnormal fingerprint
as a normal fingerprint.

• True Negative (TN): Classifying an abnormal fingerprint
correctly.

• False Negative (FN): Classifying a normal fingerprint as
an abnormal fingerprint.

The performance evaluation indexes in this research include
false positive rate (FPR), recall, precision, F1-score and accu-
racy. FPR represents the probability that the attack samples
incorrectly classified as positive ones, defined as

FPR =
FP

FP + TN
. (30)

Recall is the probability of negative samples being predicted
correctly, given as

Recall =
TP

TP + FN
. (31)

Precision is the ratio of negative samples predicted correctly
among all samples which are predicted as negative,

Precision =
TP

TP + FP
. (32)

Ideally, there should be high recall and precision values as
well as low FPR values at the same time, which may not be
achieved in most cases. Therefore, F1-score is introduced to
consider the harmonic value of precision and recall compre-
hensively, defined as

F1-score =
2(

1
Recall + 1

Precision

) . (33)

The accuracy rate is the most commonly used metric to
evaluate the closeness of the measurement value of a quantity
to its true value. In this study, it gives the percentage of the
samples classified correctly, defined as

Accuracy =
TP + TN

TP + TN + FP + FN
. (34)

Making choices according to specific situations is necessary.
In general search situations, improving the accuracy under the
condition of ensuring the recall rate is needed. While in other
cases, precision is much more important, In a real biometric
identification scenario, our goal is to avoid intruders, which
means there should be as few abnormal fingerprints identified
as normal as possible. On the mathematical aspect, low FPR,
high accuracy, and high precision are much more needed. If
possible, a high recall and F1-score are also needed.

C. Analysis of the Defend Methods

We take four kinds of scenarios into consideration, com-
promising of straight unlock (S2), 45-degree unlock (S3), side
unlock (S4) and all of the above (S1). Table III, Table IV, Table
V, and Table VI show the forced fingerprint classification
accuracy, FPR, recall, precision, and F1-score on puppet
attack dataset under scenario S1, scenario S2, scenario S3 and
scenario S4, with features of GLDS, LBP, HOG and the fusion
of LBP and HOG respectively. The table results are organized
according to kernel function and features extracted. Results
are shown after 10-fold cross-validation.
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TABLE III
RESULTS FOR SCENARIO S1 - ALL UNLOCK

Features Kernel
Function Accuracy FPR Recall Precision F1-

Score

GLDS Polynomial 68.5 28.8 65.2 65.3 65.2
RBF 65.5 30.2 60.7 63.8 62.2

LBP Polynomial 80.9 21.1 82.9 77.7 80.2
RBF 69.1 47.5 85.7 64.3 73.4

HOG Polynomial 78.7 24.0 81.5 77.2 83.9
RBF 66.8 37.1 70.8 65.6 68.1

LBP-
HOG

Polynomial 85.5 7.7 78.7 91.1 84.4
RBF 72.9 8.5 54.2 86.5 66.7

TABLE IV
RESULTS FOR SCENARIO S2 - STRAIGHT UNLOCK

Features Kernel
Function Accuracy FPR Recall Precision F1-

Score

GLDS Polynomial 74.6 28.3 77.6 73.3 75.4
RBF 72.5 29.9 74.9 78.6 73.3

LBP Polynomial 97.1 1.3 95.6 98.7 97.1
RBF 86.9 12.9 86.7 87.1 86.9

HOG Polynomial 95.9 1.4 93.1 98.5 95.7
RBF 80.2 13.3 73.7 84.7 78.8

LBP-
HOG

Polynomial 97.2 1.0 95.4 99.0 97.2
RBF 86.7 1.2 85.4 87.7 86.5

TABLE V
RESULTS FOR SCENARIO S3 - 45-DEGREE UNLOCK

Features Kernel
Function Accuracy FPR Recall Precision F1-

Score

GLDS Polynomial 69.8 32.0 72.4 69.4 70.9
RBF 62.4 34.7 59.6 63.2 61.3

LBP Polynomial 86.6 14.3 87.4 86.0 86.7
RBF 71.7 37.6 81.0 68.3 74.1

HOG Polynomial 83.9 17.3 85.1 83.1 84.1
RBF 67.4 36.4 71.3 66.2 68.7

LBP-
HOG

Polynomial 86.5 13.9 86.9 86.2 86.5
RBF 71.7 38.9 82.3 67.9 74.4

TABLE VI
RESULTS FOR SCENARIO S4 - SIDE UNLOCK

Features Kernel
Function Accuracy FPR Recall Precision F1-

Score

GLDS Polynomial 61.4 41.5 64.3 60.8 62.5
RBF 59.8 41.2 60.8 59.6 60.2

LBP Polynomial 76.6 24.5 77.7 76.0 76.8
RBF 64.1 45.3 73.4 61.9 67.2

HOG Polynomial 75.8 25.4 77.1 75.1 76.1
RBF 61.9 35.6 59.4 62.6 61.0

LBP-
HOG

Polynomial 78.1 22.2 78.5 77.9 78.2
RBF 65.2 42.9 73.4 63.1 67.9

1) Scenario S1 - All Unlock: From Table III, among the
features extracted, the FPR of LBP-HOG performs well in
general, which is 7.7% with polynomial kernel function and
8.5% with RBF. Also, LBP-HOG with polynomial kernel
function achieves the highest accuracy in scenario S1, with
85.5%. As a result, it delivers the optimal performance over
these methods. In contrast, GLDS can hardly function properly
on puppet attack dataset, only achieving accuracies of 68.5%
and 65.5%. In other words, GLDS can hardly meet this case’s
basic binary classification requirements.

2) Scenario S2 - Straight Unlock: In scenario S2, LBP-
HOG with both kernel functions has a similar performance
to LBP with both kernel functions. The former one delivers
good performance of 97.2% and 86.7% accuracy and the latter

one is of 97.1% and 86.9% accuracy. However, the LBP-HOG
with polynomial kernel function delivers optimal performance
of 1.0% FPR. This improves the LBP with the same kernel
function’s performance of 1.3% FPR, which is an improvement
ratio of 29%.

3) Scenario S3 - 45 Degree Unlock: Similar with scenario
S2 and S1, LBP-HOG with polynomial kernel function still
holds the lowest FPR, which is 13.9%. However, its accuracy,
86.5%, is lower than LBP with polynomial kernel function,
which is 86.6%.

4) Scenario S4 - Side Unlock: As scenario S4 shows, all
methods perform not so well comparing with S1, S2 and
S3, since the highest accuracy only reaches 78.1% and the
lowest FPR represents 22.2%, both derives from LBP-HOG
with polynomial kernel function. LBP with polynomial kernel
function has similar performance, of which accuracy is 76.6%
and FPR is 24.5%.

5) Discussion: As presented in Tables III, IV, V and VI,
the polynomial kernel function always performs better than
RBF in every scenario. In most cases, with the same kernel
function, LBP performs better than HOG, and the fusion of
LBP and HOG performs best. GLDS performs the worst.

In four scenarios, straight unlock reaches the highest per-
formance, which means when the database consists of strict
standard fingerprints, the offset caused by force action can
be easily detected. Similarly, when the database consists of
fingerprints that are under the side unlock circumstance, the
difference between forced and unforced fingerprints is harder
to detect. As a result, methods in scenario S4, side unlock,
perform worst compared with three other scenarios.

In all four scenarios, SVM with polynomial kernel function
achieves higher accuracy than RBF in terms of all features,
with a gain of about 10%.

To identify a model configuration that would not only yield
high accuracy but also maintain an acceptable error rate when
applied to our dataset, referred to as S1, we evaluated a range
of models to discern their capacity to manage the inherent
trade-off between True Positive Rates (TPR) and False Posi-
tive Rates (FPR). Our preliminary assessments indicated that
three models—LBP-HOG with Polynomial Kernel, LBP with
Polynomial Kernel, and LBP with RBF Kernel—stood out in
terms of their performance metrics.

We opted to focus on these models for a comparative
analysis because they demonstrated a promising balance be-
tween sensitivity and specificity. As Fig. 16 shows, the LBP-
HOG with Polynomial Kernel configuration demonstrated
the highest TPR across the lowest spectrum of FPR val-
ues, suggesting a robust capability in distinguishing between
classes with minimal errors. This model was selected for its
superior balance between sensitivity and specificity and is
particularly suited for scenarios where precision is critical. The
LBP with Polynomial Kernel configuration, while exhibiting
a marginally lower TPR, was chosen for its relatively high
performance and demonstrates a viable option in environments
where a slightly higher error rate can be accommodated. The
LBP with RBF Kernel was included in the comparison as it
presents a competitive alternative, offering a modest trade-
off in TPR for a reduced FPR in specific threshold settings,
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Fig. 16. Comparison of the ROC curve.

which might be desirable in certain practical applications.
The LBP-HOG with Polynomial Kernel model exhibits the
highest AUC, indicating its overall superior performance. The
other two models present slightly lower AUC values but are
still competitive, making them acceptable for use cases with
different error tolerances.

In conclusion, our comparative analysis suggests that the
LBP-HOG with Polynomial Kernel model is the most capable
in handling lower error rates efficiently, thereby being the
recommended choice for applications where accuracy is of the
utmost importance. The other two models provide alternatives
when a balance between different types of errors is required,
allowing for flexibility based on the specific needs and error
rate tolerances of the application.

D. Analysis of Puppet Attack Dataset

1) Comparison of Dataset Scale: In order to explore if
the size of the dataset and client numbers of the dataset
would impact the recognition method performance and limit
the verification of application scenarios, we utilized the data of
the first 20%, 40%, 60%, 80%, and 100% of the full dataset.
The number of clients is 14, 28, 42, 56, and 70 respectively.
We applied the LBP-HOG feature and training SVM with the
polynomial kernel function (LBP-HOG-Polynomial method)
and utilized 10-fold cross-validation.

Fig. 17 shows the detection performance of the basic method
under different numbers of clients. As the number of clients in-
creases, the forced fingerprint detection is gradually improved.
Take S1 as an example, it is noteworthy that the detection
improvement is gradually decreasing, which is 7.1% (from
78.3% to 71.2%), 3.6% (from 81.9% to 78.3%), 2.2%(from
84.1% to 81.9%) and 1.4% (from 85.5% to 84.1%). The
improvement decreasement shows the challenge and difficulty
of the detection. However, positive correlation exists between
the amount of training data and the detection performance. In
other words, the improvement shows the necessity of making
large-scale datasets.

2) Comparison of Category Proportion: Section VI-D1
shows detection accuracy is sensitive to the size of the dataset.
Besides, different quantities of subjects and training sets could
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Fig. 17. Performance of the LBP-HOG-Polynomial method under different
numbers of clients.

TABLE VII
PERFORMANCE UNDER DIFFERENT TRAINING SET SIZES

Training Set Size Accuracy
1 68.2
2 77.6
3 86.2
4 88.1
5 89.5
6 90.9
7 92.3
8 93.2
9 93.3

have an impact on the detection performance. In this section,
we carry out the experiment to quantify the relationship
between training-validation proportion and detection perfor-
mance.

Since Fig. 17 illustrates that the LBP-HOG-Polynomial
method performs best in the whole dataset under scenario S2,
we utilize it it as the basic method, and decrease the training
data to show how the detection performance changes. For each
experiment, we selected 1 to 9 images as the training set, with
the remaining images forming the test set.

As demonstrated in Table. VII, with the enlargement of
the training set size, the performance of detection system im-
proves. Specifically, when the number of images from every 10
images is between 1 and 3, the system performance effectively
improves. This improvement is particularly pronounced when
the training set size expands from including only 1 image per
10 to 3 images per 10, suggesting a threshold effect where
having too few examples per class significantly hampers the
model’s learning capability.

This threshold effect is indicative of the model’s need for a
minimum amount of data to adequately learn the distinguish-
ing features of forced and unforced fingerprint presses. Below
this threshold, the model may not have sufficient examples to
learn from, resulting in a lower performance. As more images
are added to the training set, the model has more examples
to learn the variability inherent in the data, leading to an
improved ability to generalize to new, unseen data.

3) Comparison of Negative Sample Rates: To investigate
the influence of negative sample rates on the classification
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performance of our model, we designed an experiment varying
the proportion of negative samples to positive samples in our
training dataset. We employed a stratified split to ensure a
consistent distribution of samples, allocating 20% of the data
for testing purposes, thus preserving the original distribution
of classes. For the training set, we systematically modified
the negative sample rate from 0% to 100%, in increments
of 10%. At each interval, we trained the LBP-HOG with
Polynomial Kernel model. The model’s accuracy, precision,
and recall were computed against the unchanged test set to
assess performance. As Fig. 18 shows, the model exhibitsthe
highest accuracy at a negative sample rate of approximately
40%, where it demonstrates a well-rounded ability to identify
both positive and negative instances correctly. Precision, while
relatively stable, does show some variance, with a slight drop
as the negative sample rate increases, implying the model’s
conservative stance in predicting negative instances under
imbalance. An important observation is that beyond the 60%
negative sample rate threshold, the model’s accuracy starts
to align with random chance, suggesting that the classifier’s
ability to distinguish between classes diminishes. This indi-
cates a practical upper limit for the negative sample rate in
training datasets for maintaining effective classification in a
binary context. The balance achieved near the 40% negative
sample rate underscores the model’s capability to accurately
classify instances without a significant bias toward either class.
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Fig. 18. Model performance at different sample rates.

VII. FUTURE WORK

1) Dataset Expansion: While our dataset covers a broad age
range, further analysis could benefit from considering
demographic factors such as age, gender, and geographic
distribution more closely. Future efforts could be directed
towards achieving a demographically balanced dataset to
facilitate the development of more personalized detection
algorithms. We encourage future researchers to replicate
our experimental setup and data collection process. We
have provided a detailed description of the hardware and
environmental settings used in our study, enabling others
to gather similar datasets independently.

2) Theoretical Aspects: Despite our rigorous efforts to en-
sure robustness in detecting forced fingerprint pressing
attacks, the challenge of relying on single images and a
limited feature set remains. Future theoretical work could
explore the expansion of the feature set for enhancing
detection capabilities. This may involve investigating
additional biometric markers that indicate forced pres-
sure and the application of more sophisticated anomaly
detection algorithms. We encourage researchers to utilize
our method to replicate our findings and extend them.
By applying our detection methods to their datasets,
researchers can facilitate subsequent comparisons and
validations [44].

3) Network Architecture Exploration: With Support Vector
Machines providing a solid baseline, future exploration
might consider the integration of advanced neural net-
work architectures. The aim would be to assess whether
deep learning models, with their advanced feature repre-
sentation abilities, can outperform traditional methods in
this context.

4) Achieving high accuracy with limited data is a common
challenge in biometric security. Future research can in-
vestigate methods to improve model generalization from
small sample sizes, possibly through techniques such as
few-shot learning, synthetic data generation, and transfer
learning. This line of work is crucial for practical appli-
cations where data collection is challenging or privacy
concerns limit the availability of large datasets.

VIII. CONCLUSION

In this paper, we emphasize the forced fingerprint attack and
propose the attack dataset puppet attack. The proposed puppet
attack dataset consists of 5,600 images from 70 volunteers
under forced and unforced states. We believe that this dataset
will increase the attention on this kind of attack and promote
the development of finger-based attack detection. In addition,
a computer-aided identification for HOG, LBP, and GLDS
feature discrimination of forced and unforced fingerprints
based on BM2166 capacitance fingerprint platform images
is proposed. According to the experimental results, the LBP-
HOG fusion feature on SVM with polynomial kernel function
has a good ability to distinguish forced and unforced finger-
prints and is expected to provide an auxiliary authentication
basis for fingerprint verification.
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