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Abstract 

Ion channels govern many physiological processes in the body; and dysfunction results in several 

life changing conditions such as cystic fibrosis. It is thought that around 18% of drugs in the 

pharmaceutical market currently target ion channels, with many more substances such as sucrose 

and pesticides also affecting ion channel function. The process of recording and analysing ion 

channel data to is notoriously difficult and time consuming. Although some automatic analysis 

methods exist, they typically require significant supervision or parameter initialisation to run. This 

thesis aims to develop and test better models for such analysis by leveraging deep neural networks 

to both generate synthetic data and analyse patch-clamp signals. 

In terms of data synthesis, the issue for deep learning is they are typically dependent on large 

volumes of data that include fully labelled “ground truth”.  We therefore used two methods; (i) 

Markovian simulation, (ii) a novel deep generative adversarial network (GAN) method.  The GAN 

were trained on previously recorded data taken from a number of different sources including ENaC, 

TRPV4 and calcium activated potassium channels (BK) and successfully generated fully labelled 

data. T-SNE and UMAP analysis showed that this data  is characteristically similar to the relevant 

source channel and also different to other channels generated; therefore, showing that the model 

was encapsulating the underlying biological mechanisms to some extent.  

For data analysis we aimed to both improve on existing single channel analysis tool accuracy and, 

for the first time, use deep learning methods to recover continuous kinetic state.  We developed a 

number of models with different architectures and found those based on convolutional neural 

networks (CNN) performed better than recurrent neural networks and considerably better than the 

original and published DeepChannel model.  We then compared several different CNN based models 

including those adapted from visual science such as ResNet and U-Net, and found that in many 

cases ground truth Markovian state could be recovered with F1 accuracy of over 0.9.  There was no 

one single “best” model since we found different models would often perform better than others in 

different analysis scenarios.  

For model development and evaluation, “Markovian synthetic” data was used since it included a 

definitive ground truth. However, in my final results chapter I tested models on BK ion channels 

recorded from stably expressing HEK293 cells using the patch-clamp technique.  The new models’ 

performance at detection of open/close state were compared against expert human labelling and 

show that they could successfully detect the effects of changes of concentration in Ca2+ ions, 

Penitrem A and a drug previously untested on BK channels; Vernakalant. 

In conclusion, this thesis explores the application of deep learning methods to the field of patch 

clamp ion channel electrophysiology. A new method for synthesis of ion channel data is developed, 

as well as two families of new models for ion channel idealisation; one more theoretical, outputting 

the Markovian configuration of the protein at any time, and one more practical, detecting common 

physiological markers when the channel experiences a change in conditions.  
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1 General Introduction 

Ion channels are transmembrane proteins that are fundamentally important for many 

physiological processes in the body such as action potentials; controlling these ion 

channels is a common target for pharmacologists, as dysfunction of these channels is 

responsible for a number of health conditions. Measuring the effects of pharmacological 

agents on ion channels can be done via patch clamp electrophysiology, a process where 

the current across a membrane is measured in response to different electrical potentials 

or concentration of substances such as a drug or ions. One major obstacle for ion channel 

electrophysiologists is analysis of the output of this process; ideally the data should 

resemble a piecewise constant function  (or “square” wave), with edges denoting openings 

and closings of a single channel; however the sensitivity of the experiment leads to the 

signal being notoriously noisy and difficult to analyse automatically. Whilst significant 

efforts have been made to analyse ion channel data algorithmically, many of these 

methods have constraints on the types of noise present (such as relying on a lack of long-

term baseline drift), or a large number of parameters a researcher has to set before 

idealisation can occur. This results in ion channel analysis still being a significantly 

tedious task, with researchers often having to relabel files by hand to correct mistakes. 

Deep learning is a type of artificial intelligence (AI) that has shown promise in other areas 

of data analysis. In image analysis, deep learning (specifically convolutional models) have 

shown to have state-of-the-art performance in detecting objects and segmenting them into 

relevant sections, similar to the process occurring in ion channel signal analysis. This 

study looks at the ways in which deep learning can be used in the field of ion channel 

physiology to approach data driven problems, and build models to better understand how 

these channels operate.  



 
29 

1.1 Ion Channels 

1.1.1 Discovery 

It is difficult to pinpoint exactly where the discovery of ion channels starts; Hodgkin and 

Huxley are commonly cited as the “grandfathers” of the ion channels due to their work on 

action potentials in squid axon cells (Hodgkin & Huxley, 1952); however significant work 

had been done previously studying the action potential of squid axons (Hodgkin & Huxley, 

1939), which in turn built on previous work on the structure of nerve fibres in similar 

animals (Young, 1936). Hodgkin and Huxley continued making inroads into the analysis 

of ion channel function. Hodgkin and Huxley found that by changing the potential 

difference across a cell membrane, they could induce a current that decayed over time. 

Furthermore, by changing the temperature, the rate at which the conductance changes 

would differ as well. This work won the pair the Nobel prize in Physiology or Medicine in 

1963. 

Work continued on membrane conductance in this form for a decade, until another Nobel 

prize winner, Bernard Katz, questioned if these changes in current came from single 

“gates” opening and closing (Katz & Miledi, 1972). Due to limitations in recording 

techniques at the time, the current signal was too noisy to resolve individual channels. 

In 1978, individual channels were eventually recorded using the revolutionary “patch 

clamp” technique (Sakmann & Neher, 1984). By applying slight suction to a pipette, a seal 

was established with the cell membrane that had a resistance across the membrane of 10-

100 giga-ohms; this method for achieving this resistance was a ground-breaking discovery 

that allowed far higher resolution measurements with a far larger signal to noise ratio, as 

well as the isolation of single ion channel recordings. Sakmann and Neher won the Nobel 

prize for their work in 1991. 
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1.1.2 Ion Channel Physiology 

1.1.2.1 Characteristics 

Primarily, ion channels are responsible for selectively allowing ions to traverse the cell 

membrane. This separation of ions across the membrane creates an electrical potential 

across the cell (often called a membrane potential), which if occurring at a rapid rate can 

create bursts of changes of potential energy known as action potentials. 

The opening and closing (or “gating”) of these channels can be controlled with a number 

of different mechanisms, depending on the specific channel. Voltage gated channels gate 

in response to a change in potential difference across the membrane, with perhaps the 

most well-known being the voltage-gated sodium channels responsible for the action 

potential in the human body; in this case a “chain reaction” is created, where a voltage 

activated channel will open, causing a brief spike in its own potential, causing other 

nearby ion channels to behave in a similar manner. 

Ligand-gated ion channels respond to specific molecules binding to the channel to control 

opening and closing. One example of a ligand-gated channel is the nicotinic acetylcholine 

receptor (nAChR) channel (Dani, 2015); which is typically activated by acetylcholine. 

When opened, the movement of ions creates a potential difference within the cell that can 

cause the activation of voltage-gated channels as above. As ligand-gated channels’ 

behaviour is managed by external molecules, they are of particular interest for 

pharmacologists; for example nAChR channels also activate in the presence of nicotine. 

Voltage and ligands are two mechanisms by which ion channels gate, and are generally 

researched the most due to their proximity to electrophysiology and pharmacology 

respectively; however that is not to say that they are the exclusive means by which ion 

channels operate; for example light-gated channels in algae (Harz & Hegemann, 1991) 

are gated via light stimulus instead of voltage or ligands. 
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1.1.2.2 Physiological Role 

Since the first work in ion channels was concerned with the nervous system in squid 

axons, work on ion channels has typically been focused on the action potential and 

associated physiological processes with it. Neher and Sakmann’s work (Neher & 

Sakmann, 1976) on action potentials in excitable muscle fibres opened further research 

into ion channels’ function affecting other physiological systems. 

Both the nervous and muscular systems rely on the membrane potential being excited by 

some external stimulus, either to fire neurons or muscles to achieve their function. 

However, it should be noted that the resting membrane potential controlled by ion channel 

function is also responsible for several other physiological processes in the body; from 

circadian rhythms (Belle, Diekman, Forger, & Piggins, 2009; Noguchi, Wang, Pan, & 

Welsh, 2012), hearing (Ashmore, 2008), wound healing (Reid & Zhao, 2014) and 

pigmentation (Bellono, Kammel, Zimmerman, & Oancea, 2013). 

In addition to resting membrane potential, ion channels are responsible for managing 

intracellular concentration of ions (Hammond, 2015), water transport (Martinez, 1987) 

and calcium signalling (Bootman et al., 2001) 

1.1.3 Molecular Mechanism 

Most of what we know about how ion channels work comes from studying their behaviour; 

however there have been significant efforts to the physical mechanisms behind ion 

channel function. Hille was first to theorise that in sodium channels, sodium ions freely 

move through the pore, with ions that are larger being blocked due to their size (Hille, 

1971). It was not until MacKinnon used X-ray crystallography to analyse the structure of 

the potassium channel KcsA was this confirmed (Doyle et al., 1998), with more 

information about the structure of the proteins that make up the ion channel being 

revealed. Later, Cryo-EM methods (see Chapter 1.2.1.2) gave additional ways to study ion 

channels. 
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We now know that ion channels are made up of a number of subunit proteins typically 

surrounding an aqueous pore of the lipid bilayer. The number of subunits within an ion 

channel is what normally dictates ion channel families; for example the voltage gated 

potassium channel family are made up of 4 similar 𝛼 subunits for primary function, with 

optional additional auxiliary 𝛽 subunits dictating localisation (González et al., 2012). 

Ions across the cell membrane will move along an electrochemical gradient; this is a 

balance of a concentration gradient and an electrostatic one; in a process similar to 

osmosis the concentration gradient will try and equalise the concentration of ions on each 

side of the cell membrane; however if a potential is applied across the gradient, ions will 

be drawn across the membrane to balance the charge; in this case the concentration of 

ions on either side of the cell membrane is not necessarily equal. This forms a new 

equilibrium between the concentration and electrostatic equilibria where the forces 

balancing the two equilibria are equal. The relationship between electrostatic equilibria 

and ionic concentration is central to ion channel function; and can be described using the 

Nernst equation (Veech, Kashiwaya, & King, 1995):  

1.1.4 Ion Channel Dysfunction 

As ion channels are responsible for many physiological functions in the human body, the 

study of their dysfunction is important to remedy many health conditions and study the 

effects of chemicals and toxins that may cause dysfunction when administered. 

Controlling ion channel function via pharmacological means can also be used to treat 

conditions not currently thought to be directly caused by ion channel dysfunction, as well 

as for recreational means in commonly found drugs. 

Channelopathies are genetic conditions caused by mutations in genes that cause 

dysfunction of ion channels. Due to the fundamental nature of ion channels, 

channelopathies are a wide ranging family of conditions that effect multiple different 

systems in the body (Kim, 2014). A table of commonly known channelopathies along with 

the ion channel dysfunction responsible for them can be seen in Table 1.1. Note that this 
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is not a complete list of channelopathies, and some nuance exists within the conditions 

(for example epilepsy is known to present across a wide number of ion channels’ 

dysfunction). 

Table 1.1:Channelopathies along with their responsible channel. 
Many health conditions are caused by dysfunction of ion channels; understanding how these ion channels work is a 
key step into understanding the conditions they cause. 

Condition Responsible Ion Channel(s) Source 

Bartter’s Syndrome Chloride Channels (Rodríguez-Soriano, 1998; 

Simon et al., 1997) 

Congential 

Hyperinsulinism 

ATP Sensitive Potassium 

Channels 

(Pinney et al., 2008) 

Cystic Fibrosis Chloride Channels (Quinton, 1990; Welsh, 

1990) 

Episodic Ataxia Voltage Gated Potassium 

Channels 

(Browne et al., 1994) 

Fibromyalgia Sodium Channels (Vargas-Alarcon et al., 

2012) 

Long-QT Syndrome Voltage Gated Potassium 

Channels 

(Ackerman, 1998; Roden, 

2008) 

Short-QT Syndrome Voltage Gated Potassium 

Channels 

(Brugada, Hong, Cordeiro, 

& Dumaine, 2005; Gaita et 

al., 2004) 

Timothy Syndrome Calcium Channels (Barrett & Tsien, 2008) 
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Tinnitus KCNQ Potassium Channels (Henton & Tzounopoulos, 

2021) 

Seizure Voltaged Gated Potassium 

Channels 

(Armijo, Shushtarian, 

Valdizan, Cuadrado, & 

Adin, 2005; Buono et al., 

2004) 

Perhaps due to the relative focus on the action potential compared to other physiological 

mechanisms, there is a larger body of work studying cardiac conditions compared to other 

conditions in the table above (such as tinnitus). These channelopathies are typically long-

term, life altering conditions; in the case of Long QT (Figure 1.1) syndrome symptoms 

such as fainting or seizures can present, with cardiac arrhythmias caused by dysfunction 

of the action potential in the ion channels potentially leading to death. While some 

channelopathies form long term permanent conditions, there are conditions where people 

can lead ordinary lives until certain stimulus is presented; people with malignant 

hyperthermia (a channelopathy caused by dysfunction in the RYR1 calcium channel) 

experience no symptoms until anaesthetics are applied (Schuster, Roewer, 
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Schneiderbanger, & Johannsen, 2014).

 

Figure 1.1: Three examples of Long QT syndrome. (Roden, 2008).Ion channels form a critical part of healthy 
cardiac function and their dysfunction can lead to conditions such as Long QT syndrome. The distance between the 
“sharp” peak and “smooth” peak has been shown to be caused by ion channel function; if this distance is too long, a 
patient can suffer heart palpitations or seizures.  

 
Figure 1.2: The Buthus Tamulus scoripion and Iberiotoxin. 
The Buthus Tamulus scorpion (A) uses Iberiotoxn (B) as a venom to inhibit calcium activated potassium channels to 
induce hypertension and tachycardia to its prey. Iberiotoxin and its synthetic analogues are commonly used in 
physiology to test for inhibition of ion channel activity. 
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1.1.4.1 Toxins and Pesticides 

Ion channel dysfunction is not always unintentional; many toxins and pesticides function 

via causing ion channel dysfunction. A well-known example, Iberiotoxin, is a toxin present 

in Buthus tamulus scorpion (Figure 1.2) venom that inhibits calcium activated potassium 

channels (Galvez et al., 1990). By blocking these channels, cardiac activity is disrupted 

and typically victims suffer from symptoms such as hypertension and tachycardia, with 

potentially lethal consequences (Bawaskar & Bawaskar, 1992). It is thought that toxins 

targeting ion channels work in one of two methods; either by blocking the pore itself (Hille, 

1975; Olivera, 1997) or by altering the gating mechanism (Cahalan, 1975; Koppenhöfer & 

Schmidt, 1968). A non-exhaustive table of toxins along with the channel they target can 

be found in Table 1.2, adapted from (Kalia et al., 2015). 

 

Table 1.2: A number of toxins along with the ion channels they target, and how they bind to the ion channel 
to affect function.  
Many toxins target ion channels to function as they play a key role in the body. 
 

Toxin Target Binding Site Reference 

𝜔-conotoxin Cav Channels Pore (Nielsen, Schroeder, 

& Lewis, 2000) 

Iberiotoxin  BK Channels Pore (Candia, Garcia, & 

Latorre, 1992; 

Galvez et al., 1990) 

Saxitoxin Nav, Kv Channels Pore (Hille, 1975; Terlau 

et al., 1991) 
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Tetrodotoxin Nav Channels Pore (Hille, 1975; Terlau 

et al., 1991) 

Kurtoxin Cav Channels Voltage Mechanism (Sidach & Mintz, 

2002) 

In fact, due to the biodiversity of naturally occurring toxins, they are a significant area of 

study for therapeutic drugs via creation of analogues due to the potency and stability of 

venoms (Lewis & Garcia, 2003). Perhaps the most compelling example is Ziconotide; a 

non-opioid pain relief drug developed in part in response to the ongoing opioid crisis. This 

drug is derived from the conotoxin venom of the marine mollusc: Conus geographus, 

(Figure 1.3) and blocks the voltage gated Cav2.2 channel, a known channel responsible 

for the transmission of pain (Miljanich, 2004; Safavi-Hemami, Brogan, & Olivera, 2019).  

Ion channels are not only of particular interest in human patients; an increasingly 

pressing problem of food security leads investigation into the development of more 

effective pesticides with lower toxicity seen in humans. Neonicotinoids are a family of 

insecticides make up 25% of total insecticide sales globally (Ffrench-Constant, 

Williamson, Davies, & Bass, 2016), and work by targeting nAChR channels in a similar 

way as nicotine does. With supposedly low levels of toxicity in humans, these show 

promise as a way to achieve food security without passing toxic effects up the food chain; 

however there is significant controversy as to the effectors of neonicotinoids on worker bee 
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population leading to some restriction on their usage globally (Gill, Ramos-Rodriguez, & 

Raine, 2012).  

 

Figure 1.3: The Conus Geograhpus and Conotoxin.  
The venom of the Conus geographus (A) conotoxin and it’s molecular diagram (B),  has been used to synthesise a 
non-opioid pain relief drug that blocks voltage gated calcium channels responsible for the transmission of pain in the 
nervous system. 

 

1.1.4.2 Drug Targets 

Due to the widespread function of ion channels, and the conditions caused by ion channel 

dysfunction, ion channels are a common target for drug development; with an estimated 

$12 billion industry built around drugs targeting ion channels (Cox, 2015).  

Due to the history of ion channel research, particular interest is given to cardiac channels 

and drugs associated with treating associated conditions; the World Health Organisation’s 

essential medicine list includes Amlodipine and Verapamil (both voltage gated calcium 

ion channel inhibitors); and Amiodarone (a voltage gated potassium ion channel blocker) 

as cost effective treatments for their relative conditions; this shows the relevance of ion 

channel targeting pharmaceuticals on the drug landscape as a whole. 
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Similar to how toxins function, drugs targeting ion channels typically work either by 

blocking the channel pore structurally, or effecting the gating process mechanistically. 

For example, the anesthetic Lidocaine functions by blocking the channel pore and flow of 

ions directly in NaV channels.   

Pharmacological agents targeting ion channels are not just limited to the cardiac domain; 

Table 1.3 shows a selection of drugs as well as their targets, showing proposed treatments 

for a number of conditions. It is of particular note that these conditions are not limited to 

those caused by ion channel dysfunction; for example although there is only burgeoning 

evidence for the effect of ion channels in the role of multiple sclerosis; there is already 

progress in developing therapeutic treatments via ion channel targeting. 

Table 1.3: Pharmaceutical drugs that target ion channels, the channel they target and their method of 
affecting the channel. 
Many pharmaceutical agents target ion channels as a means to function; for example many anaesthetics target 
NaV channels responsible for pain transmission. 

Drug (and use) Target Binding Site Reference 

Vernakalant 

Hydrochloride 

(Atrial Fibrillation) 

Cardiac Kv 

Channels 

Pore (Burashnikov, Pourrier, 

Gibson, Lynch, & 

Antzelevitch, 2012; Fedida 

et al., 2005; Naccarelli et al., 

2008; Seyler, Li, Schweizer, 

Katus, & Thomas, 2014) 

Lidocaine 

(Anesthetic) 

NaV 

Channels 

Pore (Bean, Cohen, & Tsien, 

1983) 

Zolpidem (Ambien) 

(Insomnia) 

GABA 

channels 

Positive 

Modulator 

(Perrais & Ropert, 1999) 
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Nateglinide 

(Diabetes) 

ATP 

dependent K 

channels 

Negative 

Modulator 

(McLeod, 2004) 

Alprazolam 

(Xanax) 

(Anxiety) 

GABA 

channels  

Positive 

Modulator 

(Fride, Skolnick, & Arora, 

1990; Massah, Gharaghani, 

Lordejani, & Asakere, 2016) 

 

Outside of prescribed drugs, recreational drugs such as nicotine, cannabis and ketamine 

all target ion channels (Dani, 2015; Watkins, 2019; Yamakura, Chavez-Noriega, & Harris, 

2000). In addition, some food chemicals such as sucrose are known to affect ion channel 

function (Murakami & Kijima, 2000; White, 1995). 

Ion channels affect our health in a wide variety of ways, from cardiovascular function to 

hearing; and can be affected through a number of different avenues 

(prescribed/recreational drugs, toxins and food chemicals). Since the impact of ion 

channels is so large, and our contact with substances that affect them is so common, study 

into how these substances effect the function of ion channels is important. 

1.2 How are ion channels studied? 

There are several ways ion channels are currently studied, typically with emphasis on 

characterising the structure or the function of particular ion channels. A brief summary 

of some of the most popular techniques is given in Table 1.4. 

 

Table 1.4: Methods of studying ion channels.  
There are numerous methods by which we can study ion channels by, each with their own goals, advantages and 
disadvantages. For example structural analysis via crystallography/microscopy takes a static image of the ion 
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channel, whereas patch clamp electrophysiology gives a functional overview of how the ion channel reacts over 
time. 
 

Method  Structural/Functional Output 

X-Ray 

Crystallography 

Structural High resolution structural image of 

the channel at a single point in 

time. 

Cryo-electro 

microscopy 

Structural Lower resolution structural image 

of the channel at a single point in 

time, but requires less pure of a 

sample to start 

FRET Functional Real time openings and closings of 

an individual channel, however has 

a high sensitivity to background 

noise 

Patch Clamp 

Recording 

Functional Real time current reading across 

the cell membrane corresponding to 

openings and closings of a channel; 

different configurations lead to 

different inferences about the cell 

along with different signal to noise 

ratios. 
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1.2.1 Structural study 

Structural study involves methods that aim to resolve the 3D molecular configuration of 

an ion channel. This provides detailed information about the organization of proteins and 

protein domains within the ion channel. However, a significant limitation is that this work 

is typically based on ion channels in a static state. Understanding the structure of an ion 

channel can provide valuable insights into binding sites, pore selectivity, and more. This 

information can be utilized to design further functional analyses and experiments. 

1.2.1.1 X-Ray Crystallography 

In X-ray crystallography, high frequency X-rays are fired at a crystalline sample of a 

protein, that then diffract onto sensors that are then processed to infer information about 

the structure of the protein within. 

X-Ray crystallography has been used (among other applications) to gain insight into the 

structure of transient receptor potential channels (TRP) (Singh, McGoldrick, Saotome, & 

Sobolevsky, 2018), which are a family of ion channels that work as sensors to a number of 

different stimulus including temperature, voltage, as well as some molecules such as 

menthol and capsaicin. X-ray crystallography produces a high resolution structural image 

of the ion channel, allowing researchers to understand how the ion channel operates 

conforms in response to external stimuli. 

1.2.1.2 Cryo-electro microscopy 

Another approach is cryo-electro microscopy; instead of using photons (light) as with a 

traditional microscope, electron guns are used to bombard a sample with electrons that 

then reflect off the sample and onto a fluorescent screen to produce an image. By freezing 

the sample at low temperatures, the structure of the sample is not degraded as it is 

exposed to the electron beam; this allows for far higher quality images with a lower sample 

size than other imaging methods (Milne et al., 2013). 
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Cryo-electro microscopy has also been used to analyse the structure of the TRPV2 channel 

(Zubcevic et al., 2016) to further understand the mechanisms as to how they work; such 

as the selectivity filter and pore size; as cryo-electro microscopy and X-ray crystallography 

have different approaches, they come with advantages and disadvantages over one 

another that typically dictates which one is used; however with recent advances in both 

methods, this gap is becoming smaller and smaller. 

Traditionally, X-ray crystallography has a higher resolution than cryo-electro microscopy, 

however this is offset by the fact that larger protein structures are usually harder to 

crystallise. X-ray crystallography normally requires a higher yield of protein to work 

effectively, although better isolation methods are making this less of a problem. 

It’s important to note that cryo-electron microscopy is used to study the structure and 

physical characteristics of ion channels. While it can be utilized to explain and theorize 

drug actions, it is not as commonly used to measure their effects compared to other 

methods, such as patch-clamp electrophysiology. This is primarily because it is less 

effective in measuring dynamic temporal changes in protein conformations. 

1.2.2 Functional Study 

1.2.2.1 FRET 

Förster resonance energy transfer (FRET) is a florescence spectroscopy imaging technique 

that is used in analysis to measure the opening and closing of ion channels by deriving 

the distance between molecules (Martinac, 2017). This is achieved by measuring the 

energy transfer between fluorescent donor molecules and acceptor molecules and 

measuring the amount of energy transferred. By measuring this over time, we can see 

real-time opening and closing of a protein by seeing the measured difference jump between 

values. 
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FRET, like all experimental techniques, has its own significant drawbacks; it is notable 

for having low signal to noise ratio and is extremely sensitive to changes in recording 

conditions such as temperature or pH (Leavesley & Rich, 2016; Wang et al., 2014).  

1.2.2.2 Patch Clamp Electrophysiology 

Patch clamp electrophysiology (Neher & Sakmann, 1976; Sakmann & Neher, 1984) is the 

“traditional” method for recording and analysing the behaviour of ion channels over time. 

It works by creating an electrical circuit through a bath solution and a small pipette (also 

filled with a solution) that is lowered onto a cell (Figure 1.4). As the pipette touches the 

cell, suction is applied to form a seal around the cell membrane (and an ion channel), with 

the resistance in the circuit rapidly increasing as the current must cross the cell 

membrane to enter the pipette. After a giga-ohm seal is achieved, the current can be 

recorded over time at different voltage levels to measure the ion channel activity over 

time; as the channel opens and closes the resistance across the cell membrane changes 

resulting in relatively large jumps and falls in the measured current compared to the 

noise. 

 

Figure 1.4: Different stages to the patch clamp process. 
From top left to bottom right: A shows a sharp pipette being lowered onto the cell membrane. B shows the pipette 
making contact with the cell membrane with light suction being applied to create a gigaseal and allowing for cell 
attached patch recording. From B, whole cell recording (C) can be achieved by applying further suction; or an inside 
out configuration (D) can be reached by lifting the pipette away from the cell membrane. Finally, outside out (E) 
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recording can be reached by lifting the pipette from the cell membrane when in a  whole cell setup. Patch clamp 
electrophysiology is a key technique in measuring the effects of substances on cell membrane activity. 

 
Table 1.5: Different configurations of patch-clamp electrophysiology. 
 Patch-clamp electrophysiology has a number of different methods that can be used in experimental design to 
allow for changing the concentration either inside or outside of the cell; for example some pharmaceutical agents 
work extracellularly, and so the right method of patch-clamping must be chosen so this can be replicated in 
experimental conditions. 
 

Type of Patch Number of 

Channels 

Notes 

Cell Attached Few The original patch clamp method, fairly stable but 

does not allow access to the intracellular solution. 

Inability to change the extracellular solution in 

the pipette mid-experiment can lead to design 

problems as each cell can only have one point on a 

dose response curve. 

Whole Cell Many Typically allows access to intracellular solution 

via pipette solution,  but is technically very 

difficult to change mid-experiment Capturing 

entire cell electrical activity at one time has 

advantages and disadvantages.  

Inside Out Few Easy access to intracellular solution via bath, and 

typically has higher signal to noise ratio than 

other methods. However rupture of membrane 

results in a much more instable configuration. 

Outside Out Few Allows easier access to extracellular solutions via 

bath (rather than by pipette in cell 
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attached;attached); however due to additional 

steps may be considered more difficult. 

 

There are several distinct types of patch-clamp electrophysiology recording 

configurations, each prepared differently and thus requiring a variety of analysis 

techniques for data interpretation. These different approaches are summarised in Table 

1.5, with several being utilised in this thesis (refer to Chapter 8). The simplest among 

these is the ‘cell-attached patch’, which begins recording immediately upon achieving a 

giga-ohm seal. This method records a limited number of ion channels due to the resistance 

being over a small section of the cell membrane, and typically has a low signal-to-noise 

ratio as the patching area remains attached to the rest of the cell. Additionally, both the 

bath and pipette solutions represent extracellular conditions with respect to the channel 

due to the configuration of the solutions. 

By pulling the pipette back from the cell and removing a patch of membrane, a subset of 

ion channels can be physically isolated from the rest of the cell membrane. This 

configuration is known as ‘inside-out recording’ and is the first of two ‘cell-free’ patch 

techniques. As the membrane is now detached from the rest of the cell, this technique 

usually results in a significantly higher signal-to-noise ratio than cell-attached patch, 

while still recording either a single or a small number of channels. However, one key 

difference is that the bath solution now represents the intracellular solution, as the cell 

has been ruptured and exposed to the bath solution. 

Alternatively, instead of lifting the pipette away from the cell, additional suction can be 

applied to the cell to rupture the cell membrane and open the cell’s interior to the pipette 

solution. This is known as “whole-cell patch clamp” and is a common way of analysing 

ion channels due to the fact that it now results in measuring the current from all ion 

channels in the cells, rather than just the patched region. This configuration typically has 

a lower signal to noise ratio but allows for a more holistic approach to analysis by 
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considering large-scale responses to changes in conditions. One key advantage of this 

method is that since the pipette solution is now at one with the interior of the cell, but the 

bath solution is still on the outside, it is relatively simple to measure the effects of a drug 

on the behaviour of ion channels by changing the bath solution and examining any 

behavioural changes in the current. 

Whole cell recording gives a holistic approach to ion channel analysis while also allowing 

for swapping extracellular solutions to measure the effects of different conditions on ion 

channel behaviour. However, since it records all the channels in the cell, which could be a 

mixed population of ion channel phenotypes and genuine single-channel analysis is not 

possible.  Generally, the low signal to noise ratio can limit the types of analysis used 

downstream.   

The fourth and final standard mode of patch-clamp recording is the ‘outside-out patch 

clamp’.  This method first requires the formation of a whole-cell recording, followed by 

pulling the pipette away from the cell, which tears off a small section of the membrane. 

Due to these mechanical manipulations, the extracellular face of the membrane now faces 

the bath (similar to the whole-cell patch clamp), and the cytosolic face of the membrane 

now faces the inside of the patch pipette. This configuration is technically more 

challenging to achieve than others as it involves several steps of manipulating a delicate 

cell membrane. However, it offers advantages such as allowing for single or low-number 

channel recording with a high signal-to-noise ratio. It also provides the ability to change 

the bath solution to measure different drug effects under various conditions. 

1.2.2.3 Automatic Patch Clamp Arrays 

Due to the delicate and complex nature of the patch clamp process, substantial efforts 

have been made to automate the recording of ion channel activity. This has led to the 

development of automated patch clamp machine equipment (Figure 1.5) that can "patch" 

an array of cells simultaneously, significantly increasing throughput and, in more recent 

years, accuracy (Wood, Williams, & Waldron, 2004). For instance, the Sophion Qube 384 
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(Chambers, Witton, Adams, Marrington, & Kammonen, 2016) boasts a throughput of 384 

patches simultaneously with a success rate of 93% for sealing. This results in large 

datasets for analysis (which are continuing to increase) and alleviates the burden on 

trained researchers to perform this labor-intensive work. Typically, these "parallel" 

recording devices focus on whole-cell recording. While single channel recording is often 

possible (personal communications), analyzing these large datasets would be impractical.  

Whole-cell recordings do provide a holistic view by examining an extremely large number 

of channels at once. This approach offers insights into the overall function of a cell's 

channels in response to changes in conditions. However, one disadvantage is the lack of 

resolution; since a high number of channels are being measured simultaneously, there is 

limited scope for examining the function of individual channels.  On the other hand, 

single-channel recordings offer a more isolated view of channel activity. This can yield 

more information than whole cell recordings if sufficient data is collected. The main 

bottleneck for single channel work is the idealization stage - converting the noisy signal 

into a series of open and close events. Although automatic patch clamp apparatus has 

significantly increased the throughput for gathering single channel data, we still lack the 

necessary tools to harness this data effectively. Current workflows for idealizing and 

analysing data are either not accurate enough or require too much researcher input to be 

feasible at the scale high-throughput automatic patch clamp require. 
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Figure 1.5:  Diagram of how a array based automatic patch clamp system works. 
Automatic patch clamp systems allow for a far greater throughput for recording data; cells are put on a plate with 
many micropores beneath, and suction is applied to the entire plate. Some cells will then form a gigaseal with 
these holes for either cell attached patch or whole cell recordings. Although not all of the cells seal successfully, the 
automatic nature of this method allows for a greater amount of data to be produced as hundreds of cells can be 
patched at once. 

This thesis focuses solely on single channel analysis - where recordings have visible 

openings and closings of single channels. This allows for an exquisitely detailed 

examination of the function and behaviour of these individual channels. 

 

1.2.2.4 Current Tools for Patch Clamp Signal Analysis 

Automatic patch clamp arrays provide a clear route to recording large scale datasets for 

ion channel data; however the analysis tools are still lacking in both accuracy and 

usability for researchers. As more data is generated, any time recovered for researchers 

in the lab is lost at the analysis stage where all existing models need initialisation or 

supervision to operate properly. 

One of the most common pieces of software for ion channel idealisation (the process of 

denoising a raw ion channel signal into a square-like wave of opening and closings)  and 

analysis is the QuB (Nicolai & Sachs, 2013) software suite that utilises the segmental k-

means algorithm (SKM) to perform idealisation (Qin, 2004). The segmental k-means 
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algorithm works by iteratively fitting a hidden Markov model onto the data that has been 

denoised by a clustering process. The Markov model’s parameters are then used to 

improve the cluster process over time in a recursive manner until the desired idealisation 

is achieved. There are a number of drawbacks in this work due to the nature of the 

analysis pipeline; it is very uncommon to see ion channel data not have “baseline drift;”; 

that is, the current slowly starts to move away from the zero point on the axis, and in 

addition the noise terms seen in ion channel records are rarely Gaussian (in fact, studies 

have suggested a larger superset of noises called 1/f noise to be responsible (Bezrukov & 

Winterhalter, 2000)). Both of these problems are fundamental to the model’s performance; 

baseline drift will cause the clustering step of the segmental k-means algorithm to not 

identify clearly separable clusters, and the incorrect noise in the simulation raises 

questions about how other artifacts typically present in ion channel recordings would 

affect the output. 

Another algorithm using a jump segmentation multiresolution filter (J-SMURF) (Hotz et 

al., 2013) promises idealisation with no a-priori knowledge about the Markovian network 

or channel dynamics, robustness against non-Gaussian noise and baseline drift, and high 

accuracy on both synthetic and lab recorded data. This model works by detecting steps at 

different resolutions within the data to build a lower resolution description of the signal, 

then applies a threshold algorithm to this new signal to find the clear events. The data 

used in this work however is of a very high quality with long, well defined events clearly 

visible within the recording; there are very many ion channels that do not exhibit this 

behaviour and a successful model needs to resolve smaller channels with much lower 

dwell times. Indeed, others have commented on this drawback (Gnanasambandam et al., 

2017) and have found that this model is computationally expensive. 

Similarly, the minimum description length algorithm (MDL) (Gnanasambandam et al., 

2017) is an algorithm very similar to J-SMURF in that it attempts to find a lower 

resolution description of the data, but does so in a slightly different way. It shares many 

of the same advantages of J-SMURF; no a priori knowledge of the underlying Markov 



 
51 

model is required, however proves to be more robust against shorter events with a lower 

signal to noise ratio. Again however, all the experiments in the MDL paper were carried 

out with synthetic data, with the model performing best on Gaussian noise. 

Finally, DeepChannel (Celik et al., 2020) approaches the problem using deep neural 

networks using “semi synthetic” datasets (that is, synthetic datasets passed through 

recording apparatus identical to that used in a lab. The model is much more 

computationally expensive than the previous models, but performs far stronger than both 

MDL and QuB’s SKM implementation in end-to-end tests (Celik et al., 2020). This 

research showed that deep learning was applicable to the problem of single channel 

analysis, however this also opens exploration to different model architectures; 

preprocessing methods and other problems in the field that were not covered in the 

previous work. 

The heavy use of synthetic data for evaluation of models is not without good reason; for 

ion channel recordings, artificially creating the data from a known sequence of open and 

closed events is the only way to get an absolute ground truth. For models evaluated on lab 

recorded data, the labels are provided by expert analysis, which is not infallible. It is 

extremely common to have artifacts present in a recording that are hard to distinguish 

from real events, and visa-versa. Furthermore, the use of Gaussian noise in place of more 

complex noise terms in simulated data comes from a continuous developing understanding 

of the noise present in ion channel signals. Further work into improving models using 

non-gaussian noise is ongoing, furthering the work on J-SMURF (Pein, Bartsch, Steinem, 

& Munk, 2021; Pein, Eltzner, & Munk, 2021; Pein, Tecuapetla-Gomez, Schutte, Steinem, 

& Munk, 2018); however the signal to noise ratio in these papers are still significantly 

higher to what is commonly observed in a lab environment.  The original DeepChannel 

work approached this in a particularly novel way through recording the synthetic data 

through an analogue system which generates far more authentic noise than digitally 

generated noise. This method too is not without its drawbacks; the method has an 

extremely low throughput of data generation since data has to be passed through the 
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analogue amplifier in real time. Therefore, the synthesis of realistic ion channel data with 

a high throughput of production and realistic signal noise is somewhat of an open problem.  

In Chapter 3, I will focus on the development of methods for ion channel simulation. 

Moving forward to Chapter 8, I will adopt a distinct approach to “ground truth”. Here, the 

“ground truth” is considered to be the comprehensive response of a channel to a drug, as 

opposed to a point-by-point ground truth. 

1.2.2.5 Markovian Modelling & Kinetic Analysis 

Not long after the development of the Hodgkin-Huxley model of squid axons (Hodgkin & 

Huxley, 1952), further discoveries were made to suggest that mechanism of the ion 

channel’s function was more complex than simply one open state and one closed state 

(Armstrong, 1971). It is now thought that the behaviour of single channel activity is better 

described as a Markovian process, with the channel moving through many different 

hidden states that exhibit either open or closed behaviour (as well as some other 

underlying physiological characteristics).  

By examining the dwell times of the idealised record, we can attempt to fit multiple models 

to the record. This will enhance our understanding of how the channel transitions through 

these states over time. This level of mechanistic detail could be instrumental in drug 

discovery. For instance, two different drugs might inhibit a channel to the same extent, 

but through distinct mechanisms. These mechanisms could only be discernible by 

variations in the resulting Markovian state. There are numerous approaches to recover 

the Markovian state. If the Markov model is known a priori, the Viterbi algorithm can be 

employed to determine the most probable sequence of states. If the structure of the 

Markov model (i.e. the number of open and closed states) is known but the rates not, the 

Baum-Welch algorithm can be used to fit the rates to the data statistically; a different 

approach is to use Monte Carlo modelling (Siekmann et al., 2011) to try and fit different 

parameterisations to the data stochastically using an additional discrete time Markov 

model whose equilibrium corresponds to the rate constants in the continuous time ion 

channel Markov model. 
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All of these methods require the idealised record as an input rather than the raw recorded 

signal; so the time-consuming idealisation step still remains. One area for exploration is 

if an end-to-end pipeline can be developed for prediction of Markov state from the raw 

signal. Since each hidden Markov state corresponds to only one of the visible states, this 

forms a “super-problem” of the idealisation problem; if the state prediction is correct then 

so too will be the open/closed prediction.   In chapter Chapter 4 I will discuss methods 

which allow for canonical forms, and the challenges behind using them for deep learning; 

and in Chapters 5, 6 and 7 I will compare methods to recover Markovian structure directly 

from raw ion channel data using deep-learning methods. 

1.3 Deep Learning 

1.3.1 Discovery 

Neural networks started with its roots in neuroscience, with the McCulloch-Pitts neuron 

(McCulloch & Pitts, 1943) being the first mathematical model of a neuron. At the time, 

these were mainly thought to be used as logic gates, taking in a number of Boolean values 

(0 or 1) and outputting a Boolean value depending on the kind of activation function (or 

in this case, gate) used. More complex systems could be built up by chaining these neurons 

together to make complex decisions. These activation functions were chosen in a way to 

achieve the desired effect and neurons had no weights associated with the inputs to train; 

therefore these models were not “trainable” as we know deep learning models to be now. 

It would not be until the 1960s until the idea had another breakthrough; optimisation of 

weight parameters in a neural network to achieve optimal performance was a subset of a 

larger problem of general parameter optimisation which was experiencing a wave of 

progress due to nonlinear optimisation. Multiple authors are credited with discovering 

backpropagation and gradient descent, typically Bryson and Kelley for the first derivation 

(Bryson, 1961; Kelley, 1960) and Dreyfus for a much more elegant method using 

fundamental calculus (Dreyfus, 1962). Since computational resources were scarce at this 

time, the process of backpropagation could not be done automatically and was only 
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possible with small neural networks. Backpropagation is discussed further in section 

1.3.3.3. 

 

Figure 1.6: Sample images from the MNIST dataset. (Yann LeCun, 1998). 
The Modified National Institute of Standards and Technology database (MNIST) was used as an initial dataset for 
measuring neural networks’ performance at classifying different handwritten digits. It now forms a benchmark 
dataset that many deep learning architectures are compared against. 

The field again entered a period of low activity, mainly due to the lack of computational 

power we have today. In 1980, Fukushima published a model (called a “neocognitron”) 

inspired by the visual nervous system which is largely attributed as the start of 

convolutional neural networks today. In 1989 LeCun applied these concepts to recognising 

handwritten digits  (LeCun et al., 1989), later developing the Modified National Institute 

of Standards and Technology (MNIST) (Figure 1.6) database of handwritten digits 

(LeCun, 1998) that are still used as a benchmark for image recognition today.  

At this point, neural networks were slow, and in most cases performed worse than simpler 

methods. The networks required to solve complex problems were simply too large for 

computers at the time to handle; however through the 1990s and 2000s graphics 

processing units (GPUs) saw significant improvements in performances and thus deep 

learning began to become a viable option for machine learning applications.  GPUs were 

developed for computer vision and image processing and allow thousands of simple 

operations to occur in parallel by housing thousands of individual processing cores.  GPUs 
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can significantly speed up model training, because the computations involved in training 

neural networks (like matrix multiplications and additions) can be effectively parallelized. 

Neural networks continued to become more complex, with the invention of recurrent 

neurons (Rumelhart, Hinton, & Williams, 1986) allowing for more compact 

representations of deep networks. As neural networks expanded in size, depth, and 

complexity, the “vanishing gradient problem” surfaced (John & Stefan, 2001), causing new 

challenges. This problem stems from the application of the chain rule during 

backpropagation. The trainable parameters at the onset of the neural network usually 

had gradients represented by a product of many small numbers (between 0 and 1). This 

gradually diminishing product led to the inability of deep networks to learn, particularly 

in long time series problems. However, this issue was mitigated with the advent of long 

short-term memory (LSTM) cells in 1997(Hochreiter & Schmidhuber, 1997).  LSTM cells 

are designed to retain important information and “forget” unimportant information and 

are now a popular form of recurrent neuronal network (RNN)_widely used in for time 

series such as language modelling or time-series predictions (stock market for example).) 

(Selvin, Vinayakumar, Gopalakrishnan, Menon, & Soman, 2017; Xiao & Zhou, 2020).).  

A persistent challenge, with deep learning models, is the law of diminishing returns 

associated with increasing model size. This issue was temporarily circumvented by the 

development of convolutional neural networks (CNNs). However, as we transitioned into 

the 2010s, there was a significant increase in the depth and number of parameters in 

these models, with state-of-the-art models regularly featuring millions of trainable 

parameters. During this period, U-Net (Ronneberger, Fischer, & Brox, 2015) and ResNet 

(He, Zhang, Ren, & Sun, 2015) emerged as notable advancements. They introduced “skip 

connections” to bypass the diminishing returns issue, however it is important to note that 

these architectures simply mitigated the problem rather than solving it completely. 

In the 2010s, the idea also emerged, that multiple disconnected neural networks could be 

used in tandem to achieve more than the sum of their parts. In 2014, generative 

adversarial networks (GANs) (Goodfellow et al., 2014) were developed for synthetic image 
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generation, starting a revolution of media synthesis from known training sets (Figure 1.7). 

Work on generative adversarial networks continues with advances to mix different 

characteristic for an output (Karras, Laine, & Aila, 2019a) and fixing a particular feature 

of the generated output by supplying a label in the generation process. 

 

Figure 1.7: Some generated images from training a GAN on the MNIST dataset. (Goodfellow et al., 2014).  
Generative adversarial networks (GANs) create new data from an existing dataset by training two models in 
competition with each other; a generator creates new samples and a discriminator determines if the new sample is 
from the generator or from the original dataset. After training, the generator’s outputs are taken as the synthetic 
data; and if training is successful this new data should bear some similarity to the original dataset. 

 

1.3.2 Motivation 

Deep learning has proven to be a significant tool in the field of image analysis, with many 

ground-breaking discoveries and landmark points in deep learning coming directly out of 

the ImageNet Large Scale Visual Recognition Challenge that ran from 2010 to 2017. Deep 

neural networks are designed to detect complex patterns in high dimensional data using 

large datasets, and images are a significant source of data for this application. High 

resolution time series signals are also a source of large, complex data that we can apply 

deep learning methodology to. 

A particularly pertinent example of the application of deep neural networks to the field of 

time series analysis are the advances made in sleep stage time series analysis using deep 

CNN (Supratak, Dong, Wu, & Guo, 2017) applied to electroencephalogram (EEG) signals. 

This work is particularly striking as it aims to recover a series of unknown but 
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interrelated states from a signal electrical signal using the characteristic features of the 

input.   

The original DeepChannel work already showed that a rather simple deep-learning model 

showed promise for tackling the single channel idealisation problem above, and so in this 

thesis I develop new models and rigorously test how far more sophisticated models can go.   

1.3.3 Theory  

1.3.3.1 Neurons and Functions 

Neural networks can have a variety of structures, however it is popular to discuss the 

architectures in terms of “layers”; that is, collections of neurons and functions that operate 

on the previous layer. There are several different common types of neurons and functions 

used in deep learning, all with different applications and purposes; those that we use in 

this work are explained below. 

1.3.3.1.1 Dense Layers 

The simplest type of neuron takes in several inputs and weights (and typically a bias 

term), passes them through an activation function and outputs the result to either the 

next layer or an output (Figure 1.8). In mathematical terms, this can be formulated by the 

equation: 

𝑓(𝐱, 𝐰) = 𝑔(𝐱T𝐰 + 𝑏) 

Where x is the vector of inputs, w the vector of weights, 𝑏 the bias term and 𝑔 the 

activation function. 
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Figure 1.8: An example of a simple model neuron in an artificial neural network. 
The inputs are multiplied by trainable weights, then the results are added together before being passed through an 
activation function to the output. A bias term is added to the neuron before the activation function to avoid a neuron 
from having a weight vector of 0 – causing the backpropagation step to fail entirely. These simple neurons become 
the building block of large neural networks. 

Dense layers are made up of these simple neurons and fully connect to every neuron in 

the previous layer, and output to every neuron in the next layer. This was the method 

used in the first document recognition paper (LeCun et al., 1989); since the number of 

inputs (one for each pixel) was fairly low, the number of parameters that come from a 

small neural network is still manageable. For larger scale models with higher resolution 

data, this becomes unmanageable as the number of parameters between two layers is 

equal to the product of the number of neurons in each layer (Figure 1.9). For example, for 

1 second of 10kHz ion channel data, and 1000 neurons in the first hidden layer, we get 10 

million parameters just from the first layer; this causes the model to be extremely large 

and slow, and nfeasible for our use case. 
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Figure 1.9: An example of a fully connected deep neural network. 
Each line represents a weight, with the output to each neuron becoming an input to all the neurons on the next layer. 
This can become computationally expensive, as models where the number of neurons in a layer is increased, the rate 
at new connections are needed increases exponentially. Typically this kind of fully connected layer is used in 
conjunction with other neural network mechanisms (after the input dimension has been reduced significantly) to 
reduce the number of parameters needed. 

 

1.3.3.1.2 Recurrent Layers 

For temporal data such as time series data or signal analysis, traditionally the approach 

is recurrent cells. A simple recurrent cell simply takes in the output of the previous data 

point and uses at as an input to the current calculation, rather than being independent to 

the previous output. This recurrent nature encodes all previous activity within the 

calculation: 

𝑓(𝐱𝒕, 𝐰) = 𝑔(𝐱𝒕
𝑻𝐰 + 𝐱𝒕−𝟏𝐯 + 𝑏) 

Where 𝐯 is the recurrent weight parameter scaling the output from the previous output 

𝐱𝑡−1. 

The vanishing gradient problem (explained earlier) heavily affects recurrent neural 

networks, and there have been two main cells designed to remedy this problem: Long 

LSTM cells and Gated Recurrent Unit (GRU) cells (Figure 1.10). 
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Figure 1.10: The construction of different recurrent cells. 
Recurrent cells use the previous output of the last sample as an input to the next sample; this allows for networks to 
better understand historical time-series data. The RNN (left) only takes the last raw output in as an input, whereas 
the LSTM incorporates a variable "memory" output that controls how much past data effects the next output. A GRU 
still only takes in the output of the last cell as an input, but uses it to inform the output of the current calculation in 
more detail. 

 

LSTM cells (Hochreiter & Schmidhuber, 1997) work by introducing a “forget gate” that 

propagates historical data within the cell up to a certain, trainable point, at which it 

discards the information.  

The mathematical construction of LSTM cells is fairly complex; however much easier to 

understand from an intuitive standpoint: 

𝒇𝒕 = sig(𝐱𝒕
𝑻𝐰𝐟 + 𝐡𝐭−𝟏𝐯𝐟 + 𝐛𝐟) 

𝒊𝒕 = sig(𝐱𝒕
𝑻𝐰𝐢 + 𝐡𝐭−𝟏𝐯𝐢 + 𝐛𝐢) 

𝒐𝒕 = sig(𝐱𝒕
𝑻𝐰𝐨 + 𝐡𝐭−𝟏𝐯𝐨 + 𝐛𝐨) 

𝒄𝒕 = 𝒇𝒕 ∘ 𝒄𝒕−𝟏 + 𝒊𝒕 ∘ tanh(𝐱𝒕
𝑻𝐰𝐜 + 𝐡𝐭−𝟏𝐯𝐜 + 𝐛𝐜) 

𝒉𝒕 = 𝒐𝒕 ∘ tanh(𝒄𝒕) 

Where 𝑥 is the input vector; 𝑤𝑓 , 𝑤𝑖 , 𝑤𝑜 , 𝑤𝑐 , 𝑣𝑓, 𝑣𝑖 , 𝑣𝑜 , 𝑣𝑐 are weight vectors; 𝑏𝑓, 𝑏𝑖 , 𝑏𝑜 , 𝑏𝑐 the bias 

vectors; sig, tanh are the sigmoidal and hyperbolic tangent activation functions 

respectively, and ∘ representing the element-wise product operator. 
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Intuitively, the first 3 lines of the formulation are just standard neuron activations as in 

the simplest case with sigmoidal activation functions. The critical part of the operation is 

in the final two lines; here 𝒇𝒕 is the “forget vector” that tracks whether or not to use the 

information from the last input (encoded through 𝒄𝒕−𝟏) in the next output.  

Gated recurrent units work in a fairly similar way, with two familiar looking neurons 

being combined in a way that balances past outputs with current outputs. The formulation 

of this is as follows:  

𝒇𝒕 = sig(𝐱𝒕
𝑻𝐰𝐟 + 𝐡𝐭−𝟏𝐯𝐟 + 𝐛𝐟) 

𝒊𝒕 = sig(𝐱𝒕
𝑻𝐰𝐢 + 𝐡𝐭−𝟏𝐯𝐢 + 𝐛𝐢) 

ℎ𝑡 = 𝑓𝑡 ∘ tanh(𝐱𝐭𝐰𝐡 + (𝑖𝑡 ∘ ℎ𝑡−1)𝐯𝐡 + 𝐛𝐡) + (1 − 𝑓𝑡) ∘ ℎ𝑡−1  

Again, these equations are not that helpful in immediately understanding how gated 

recurrent units work; but they operate in a similar way; in this case the forget gate 𝑓𝑡 

creates a “balancing mechanism” in the final equation that forms a weighted, transformed 

average between the previous output and the current data. 

1.3.3.1.3 Convolutional and Deconvolutional Layers 

Convolutional layers were inspired by models of the visual cells in the eyes in that there 

is a notion of “localised focusing” at a neuron level that builds a pattern map of the input 

based on a trainable kernel to build an overall encoding of different features (Hubel & 

Wiesel, 1962).. Similarly to fully connected layers, convolutional layers increase in 

abstraction the deeper we get into a model; for example in image processing, typically the 

first few layers are detecting edges and simple shapes, whereas the final layer will be 

detecting eyes, noses or mouths. 

Convolutional layers result in down sampling of the input data depending on the kernel 

size and “stride” (that is, how the kernel “scans” over the input data). This is helpful in a 

number of cases (such as image classification) as reducing the size of the image (and hence 
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number of parameters at the final stage) is highly beneficial. However, for problems where 

up-sampling is required (for example increasing the size of an image while filling in 

missing pixels intelligently), convolutional layers are not appropriate. In this case, 

deconvolutional layers (or transposed convolutional layers) allow for the convolutional 

process to occur while upscaling the image by adjusting the padding within the input data. 

It should be noted that the term deconvolutional layers is a misnomer; it does not apply 

the inverse of the convolutional function but rather the convolutional process in a slightly 

different way. 

Convolutional and deconvolutional layers work via very similar means to achieve down-

sampling and up-sampling respectively. Typically, two dimensional layers are used for 

image analysis, but the principles can be extended to any number of dimensions such as 

one-dimensional time series data or three-dimensional spatial scans. 

 

Figure 1.11: Diagram of Convolutional and deconvolutional layers. 
Typically used in image analysis, convolutional (left) and deconvolutional layers (right) work by passing a series of 
trainable kernels (green) over an image, taking the sum of the pairwise product of the kernel and each submatrix of 
the input. As these kernels “scan” across the image, features such as edges are detected, and “feature maps” are 
built as the network increases in depth. By adding zero padding between each input, the downscaling effect of the 
scanning process becomes upscaling, which can be used in generation instead of detection. 

At its core, the process involves using a kernel K of a chosen size with trainable parameters 

that passes over the input and is multiplied by a sub-matrix of the input X - the size of 
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this submatrix, and the order of operations dictates whether downsampling or upsampling 

occurs.  

In down-sampling, each element yi,j of the output matrix Y is given as follows - for 

simplicity here the kernel size is (3 × 3) and the stride is 1. Figure 1.11 shows 

visualisations of the areas chosen and the mappings. they correspond to. 

yi,j =  bi,j + ∑ ∑ Kc,d ⋅ X(i+c−1),(j+d−1)

3

d=1

3

c=1

 

The dimensions of the kernel are adjusted by changing the bounds of the sums, and the 

indexes of the input matrix (the −1 terms in the indexing of 𝑋 become −⌊s/2⌋, where s is 

the desired kernel size). A stride can be applied in either or both directions by 

incrementing i and/or j in values other than one, and simply ignoring the resulting "gaps" 

in the output matrix. Typically, when either of the indexes of X are outside of the bounds 

of X (for example, when the index is negative), the value is taken as zero (this is referred 

to as padding). 

 

1.3.3.2 Other Layers and Tools 

1.3.3.2.1 Max Pooling Layers 

In convolutional models, convolutional layers with no stride reduce the size of the output 

by the size of the kernel minus 1. For small images, this can work, as the size towards the 

end of the model gets small enough to simply apply fully connected layers without the 

number of parameters exploding in size. For larger images, the decrease in image size 

over time may not be fast enough to make a model feasible (Figure 1.12). For example, in 

a image that is 1000 pixels wide and high, using a 3x3 kernel will reduce the size by 2 

each layer; this will not make a significant impact on the image size and thus we have a 

problem getting the output classification of the image. One solution is to use a “stride.”. 

Instead of “scanning” the kernel over the image pixel by pixel, we skip a number of pixels 
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equal to this parameter each time. Another approach is to insert “max pooling” layers that 

dramatically down-sample an image in a fast but effective way. 

 

Figure 1.12: A basic diagram as to how convolutional neural networks work. 
Trainable convolutional kernels (or filters) detect features in the input, such as edges, and pooling layers reduce this 
down further to smaller images. As the model depth increases, the complexity of features does as well, so whilst the 
top layer kernels might represent edge detection, the deep kernels might represent face or eye detection. 

 

Max pooling layers achieve down sampling but are far simpler than convolutional layers. 

A set of n × n submatricies are taken, and for each one the maximal value of each 

submatrix is passed to a new, smaller submatrix (Figure 1.13). For example, when n = 2, 

the output matrix will be of size 
n

2
×

n

2
 . This quickly and cheaply achieves down-sampling 

but does not recognise patterns as strongly as convolutional layers. 

Minumum and average pooling layers exist; all of these serve similar purposes using 

slightly different manipulations. 

1.3.3.2.2 Dropout Layers 

Dropout layers are a popular regularisation technique first introduced by Hinton et al 

(Hinton, Srivastava, Krizhevsky, Sutskever, & Salakhutdinov, 2012) designed to stop a 

model overfitting. They work by randomly disabling a selected proportion of the neurons. 

Dropout is only applied during training; during testing and deployment, the dropout is 
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turned off so that the entire network is now involved. The idea is that individual neurons 

will not get locked onto specific input features. 

 

Figure 1.13: Example of a Max Pooling layer in action. 
Pooling layers are a non-parameterised layer mainly used to reduce the size of an image so later layers won’t need 
as many parameters themselves. Typically used is a 2x2 max pooling layer, taking in each set of 2x2 submatricies of 
the input matrix and outputs a new matrix of the maximum value in each 2x2 submatrix. 

 

1.3.3.2.3 Batch Normalisation 

Batch normalisation is another regularisation technique. In theory, a layer's parameters 

are adjusted based on the assumption that the previous layer's parameters are static; 

however this is clearly not the case; since those parameters are trainable as well. A batch 

normalisation layer scales the output of a layer to have a mean of 0 and standard deviation 

of 1 for each batch to adjust the input and force this assumption to be true.  It is said that 

normalising each layers’ input improves the efficiency of training, and also reduces 

overfitting in analogous way to Dropout (above).   

1.3.3.3 Back Propagation and Gradient Descent 

When training deep learning models, a loss function 𝐿 is provided for example aa mean 

squared error for regression problems or cross-entropy for classification problems. We 

want to find a set of weights in the network that minimises this loss function. To find this 
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minimum, we look at the derivative of the loss function with respect to all the weights in 

the model. The complexity of the problem comes from the deep interconnectedness of 

different neurons and activation functions; calculating these derivatives is non-trivial and 

relies heavily on the chain rule in multivariate calculus.  

For example, take the very simple example with 2 neurons. 

 

Figure 1.14: Simple backpropagation example. 
In this case, blue circles are simple neurons, with weights 𝑤 and activation functions 𝑎. For this example and the 
next, we always say that 𝑧𝑖  is the output of the activation function 𝑎𝑖. Backpropagation is a method that collectively 
changes the weights w to minimise a loss function (such as mean squared error) by calculating the derivative of the 
loss function with respect to each weight, and using a gradient descent algorithm to adjust the weights towards the 
minimum. 

 

A loss function 𝐿 measures the difference between our output and ground truth labels, 

and we let 𝐽 be the average loss over a batch (the number of samples the network sees 

before adjusting weights, the size of which is chosen by the user). Then we get: 

𝐽 =  
∑ 𝐿(𝑦̂, 𝑦)

𝑛
 

Therefore we want to find the gradient of 𝐽 with respect to each of the weights. For Figure 

1.14 as an example, with 𝑤2 this is fairly straightforward; we know the activation function 

𝑎2 is differentiable (we choose it in model design), so by considering the dependencies of 

each function we get: 

𝑦̂ = 𝑎2(𝑤2𝑧1) 
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𝑑𝐽

𝑑𝑤2
=

𝑑𝐽

𝑑𝑦̂

𝑑𝑦̂

𝑑𝑤2
 

For 𝑤1 this is slightly more complex since we have several activation functions to go 

through: 

𝑑𝐽

𝑑𝑤1
=

𝑑𝐽

𝑑𝑦̂

𝑑𝑦̂

𝑑𝑧1

𝑑𝑧1

𝑑𝑤1
 

Of course, this is the simplest case. For example, in a fully connected case (Figure 1.15): 

 

Figure 1.15: : More complex backpropagation case. 
In larger neural networks - the derivatives become multivariate and harder to compute by hand. Therefore, high 
processing power is needed to compute the millions of gradients in large models. This is usually achieved by 
leveraging graphics processing units (GPUs) as their underlying processing architecture is more equipped for tasks of 
this kind. 

We get: 

𝑑𝐽

𝑑𝑤1

=
𝑑𝐽

𝑑𝑦̂
(

𝑑𝑦̂

𝑑𝑧4

𝑑𝑧4

𝑑𝑧1

𝑑𝑧1

𝑑𝑤1

+
𝑑𝑦̂

𝑑𝑧3

𝑑𝑧3

𝑑𝑧1

𝑑𝑧1

𝑑𝑤1
) 

This forms the basis for gradient descent; there are many gradient descent algorithms but 

in the simple case we take the weights and change them using the gradients calculated 

above with amount according to some weight 𝛼 (the “learning rate;”); we do this since 𝐽 is 
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not static during training; it changes for each new batch (and therefore so do all the 

derivatives calculated). So for 𝑤2 above, we change the new value to: 

𝑤2 − 𝛼
𝑑𝐽

𝑑𝑤2
 

Then we repeat the process until we reach the end of our dataset. Then we can continue 

training from the start again (one loop is known as an “epoch;”); or stop training when 

desired. 

The problem of exploding or vanishing gradients appears from this process; in the 

recurrent case (Figure 1.16); if we let 𝑧̇2 (not to be confused with the derivative of 𝑧2  with 

respect to time) be the previous output of the neuron, we get (since 𝑧̇2 is dependent on 𝑤3 

also): 

𝑦̂ = 𝑎2(𝑤2𝑧1 + 𝑤3𝑧2̇) 

𝑑𝐽

𝑑𝑤3
=

𝑑𝐽

𝑑𝑦̂

𝑑𝑦̂

𝑑𝑎2
(𝑧̇2 + 𝑤3

𝑑𝑧̇2

𝑑𝑤3
) 

However, 𝑧̇2 is still a function of 𝑤3 and its previous value 𝑧̈2- this creates an infinite 

product in the calculation of the derivative. If the weight is small, this will tend towards 

0; and if this weight is large, it will tend towards infinity as time goes on. 

 

Figure 1.16: Backpropagation in a recurrent neural network. 
Recurrent neural networks are a common type of neuron used for time series tasks, using the previous output as an 
input for the next calculation. For the backpropagation algorithm, this creates a unique problem; due to the 
recursive nature of the neuron at a_2, if we calculate the derivatives of the loss function with respect to w_3 we get 
an infinite series. This can cause a training problem known as exploding or vanishing gradients; where large or 
small gradients cause irregular training (if the gradient is large) or training to stop (if the gradient is small). This is 
the direct reason for the use of LSTM or GRU cells, to truncate this sum and avoid this problem. 
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By using a “forget gate” as in the Long Short-Term memory or Gated Recurrent Unit cells; 

we truncate this product so the gradient does not spiral out of control as the number of 

historical outputs increases.  

1.3.3.4 Model types and Architectures 

There is a wealth of different deep learning model types currently used for a number of 

different problems such as text synthesis, sound classification or regression; and a 

similarly large number of model architectures for each of these problems. One of the most 

common problems for deep learning models is the problem of classification; these models 

usually take in a number of inputs and output a single number representing a class that 

has been encoded from the training set. MNIST is an example of this problem where a set 

of images are all given numbers depending on the handwritten digit represented in the 

image, and these labels are used to train a digit recognition model. For simple problems 

like the MNIST dataset, a simple, shallow convolutional neural network will suffice to 

achieve high accuracy in obtaining the correct labels for each image, however for more 

difficult tasks with larger images or more complex problems, a larger model is typically 

used. 

As models get larger, it has been found that adding additional layers give diminishing 

returns on accuracy (He et al., 2015). Therefore, two important models; ResNet and UNet 

were developed for slightly different purposes that aim to solve this problem in similar 

ways. 

For image classification, ResNet (Figure 1.17) works by introducing so-called “skip 

connections” that pass outputs from early in the network to deeper layers directly, 

skipping intermediate layers; this provides a “short circuit” for the original image to 

inform the deeper layers, avoiding over abstraction deep in the network; ResNet is 

discussed further in Section 4. 
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Figure 1.17: Modified ResNet Model Diagram for time series analysis. 
The ResNet neural network architecture allows for deeper, larger models without getting diminishing returns by 
using “skip connections” that pass early outputs directly on to later inputs. ResNet has been shown to achieve best-
in-class results for tasks such as image classification, due to the depth of the model achieving high levels of 
abstraction of complex images. Here, the residual module diagram (left) makes up the building blocks of the larger 
neural network model diagram (right). “3x” means that residual module is repeated 3 times. 

 

Figure 1.18: Diagram of the UNet architecture, adapted for time-series work. 
The U-Net model is typically used for image segmentation, and works similarly to the UNet model by using skip 
connections to pass information directly further down the model than just the next layer. The model first uses a series 
of convolutional layers to downsample the image into a large number of small kernels (similar to an auto-encoder); 
then uses deconvolutional layers and upsampling process to build a segmentation of the original image from this 
representation. 
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Another approach for this is UNet (Figure 1.18), which is typically used for image 

segmentation where the output needs to have the same output as the input. In this case, 

the input is down sampled significantly to many small convolutional kernels. This 

representation is then up sampled using deconvolutional layers, with each up-sampling 

step also taking the output of the equivalently sized down-sampling layer as an input; this 

pattern of down then up-sampling with skip connections naturally generates a “U” shape 

in model diagrams, giving the model its name. Similarly to ResNet, we will implement 

UNet in later chapters and more discussion can be seen in Chapter 4 onwards. 

 

Figure 1.19: Diagram of how a GAN works. 
 A latent noise vector is passed into a generator network (green) that attempts to create and image similar to those 
in the training set, without seeing them. Then, either this output or a randomly sampled image from the training 
dataset is input into the discriminator network which must attempt to tell if the image came from the generator or 
the real data. The generator and discriminator have coupled losses such that the better the discriminator gets, the 
more the generator adjusts its weights. 

 

Another problem deep learning can approach is the problem of data synthesis. Goodfellow 

noticed that by carefully constructing the loss functions between two neural networks, we 

can construct a zero sum game between them and train them together (Goodfellow et al., 

2014). In GANs (Figure 1.19), there are two models; a generator and a discriminator. The 

generator takes in a latent vector of noise, with the goal of up sampling this noise through 

deconvolutional layers into a realistic sample of data from the dataset, without seeing the 

dataset it is trying to generate from. The discriminator model randomly takes in a sample 
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of data either from the generator or the genuine dataset and attempts to discern if the 

input is from the real data or the generator. The models weights are then both changed 

based on the discriminator’s output; the more the generator “fools” the discriminator, the 

more the discriminator changes its weights. Likewise, as the discriminator gets better at 

recognising the fake data, the generator adjusts its weights more. This means that the 

models should train in parallel, with eventually the generator making data visually 

similar to the data from the dataset. GANs are the primary focus of section 3 in this thesis 

and will be discussed further there. 

One problem that can commonly occur in GANs is when the generator model continuously 

generates the same sample data due to the discriminator labelling it as genuine. This is 

called “modal collapse”.  A similar problem is encountered in unbalanced data where a 

predictive model continuously predicts one class if that class is primarily present in the 

training set. This is typically approached by selection of training data in a way that 

balances the classes, or by using an intelligent loss function that avoids this problem, 

although this is not always possible. 

1.4 Systematic Review of Existing Deep Learning 

Approaches to Electrophysiological Data 

Before beginning development of novel approaches to single channel idealisation, I 

conducted a systematic review of past work on deep learning approaches to 

electrophysiological data which is presented below.   

1.4.1 Method 

Our initial search was carried out on Web of Science, looking for papers whose title or 

abstract contained all of the following: 

• “deep learning”, “artificial intelligence”, “neural networks” or “machine learning” 

• A word starting in “electrophyi-” or “physio-” 

• “time series” or “signal” 

• No instance of “CT”, “MRI”, “fMRI”, “CAT”, words starting with “video”, “image” 

or “audio”. 
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This query was constructed to be as comprehensive as possible while excluding any papers 

focusing on image, video or audio analysis from sources such as x-rays, or computerised 

tomography (CT) scans. We also excluded audio papers as otherwise this produced a large 

amount of acoustic papers. Even with these filters in place, 1305 papers were given, and 

further filtering was required (Figure 1.20). 

 

Figure 1.20: Diagram showing the filtering protocol for papers in the systematic review 
The initial query returned 1305 papers; which was first reduced into papers that contained deep learning or 
physiological signals by inspecting the abstract. Some of these papers only contained either deep learning or 
physiological signals, so then the remaining papers were manually sorted by reading the entire paper and seeing if 
the deep learning methods were applied to the physiological signals directly. 

 

We then manually discarded any papers without an abstract or title that had a specific 

reference to deep learning or a deep learning model, and papers without reference to a 

specific physiological signal. Most of these papers were non-deep learning methods applied 

to signals, and some of these papers did not analyse signals at all. This left us with 294 

papers, which were then manually read and tagged with the year, type of signals analysed, 

and types of deep learning models used. For signals, papers where multiple signals were 

used in analysis were tagged, however any comparisons to other signals were omitted. 

Some signals were described under different names, or under an umbrella term, such as 

Galvanic Skin Response (GSR) and Electrodermal Activity (EDA). In these cases, the 

terms were logged under their umbrella term. Measuring the types of deep learning model 
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needed a similar compromise. All convolutional neural networks (CNN) and recurrent 

neural network (RNN) models were tagged as CNN or RNN respectively, along with any 

other structures they had. Papers that did not explain the details of the neural network 

or described it simply as an Artificial Neural Network (ANN) or Multi-Layer Perceptron 

(MLP) were logged as ANNs. Miscellaneous models were also logged as ANNs if they could 

not be described otherwise. RNNs were also sorted into miscellaneous RNNs, LSTMs and 

GRU models. 

These then imported into an Excel file, which was then imported into a Python3 Jupyter 

notebook for analysis using the pandas and matplotlib libraries; this Excel file can be 

found online at https://github.com/stmball/PhysiologicalSignalsDeepLearning.  We 

counted the number of papers by year, by signal and by model, and also the relationship 

between year and signal, and year and type of model. We looked at the breakdown of types 

of RNNs used, and finally the types of signals used in different deep learning models. 

1.4.2 Results 

 

Figure 1.21: The number of papers on electrophysical deep learning analysis by year. 
After conducting our search, we plot the number of papers containing signal analysis using deep learning by year. 
Here we qualitatively see an increasing trend in the use of deep learning methods for analysing physiological signals.  

 

https://github.com/stmball/PhysiologicalSignalsDeepLearning
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Grouping the papers by year published showed that deep learning is gaining significant 

popularity recently, with 2019 showing the largest amount of deep learning physiological 

papers to date (Figure 1.21); this is perhaps unsurprising as the underlying deep learning 

technologies continue to improve.  

Next, we grouped the papers by the tagged signals; some papers studied more than one 

signal, in this case both signals were included in the counting. By discarding signals that 

were only counted once, we can see that the most popular signals are EEG, ECG, 

photoplethysmogram (PPG), EDA and electromyography (Figure 1.22).  

 

Figure 1.22: The number of papers on electrophysical deep learning analysis by year. 
We also counted what signals were used in each paper. Here we qualitatively see an increasing trend in the use of 
deep learning methods for analysing physiological signals.  

We then counted the papers by the types of models they used. We found that the 

most popular model type were ANNs (MLPs, miscellaneous ANNs and where details were 

omitted), then CNNs and RNNs (Figure 1.23).  
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Figure 1.23: The number of papers by type of  neural network used. 
Similar models were aggregated into one category, and papers could be given more than one category (for example, 
a CNN based GAN). We see that the majority of papers are generic artificial neural networks (ANNs), with CNNs 
second, and RNNs third – this is surprising as conventional wisdom would dictate that recurrent neural models are 
more apt for time series data. Unsurprisingly, long short term memory (LSTM) models are far more popular than 
gated recurrent unit (GRU) models, which follows trends in more theoretical deep learning papers. 

 

Figure 1.24: Number of papers by year for the top 3 model types (ANN, CNN, RNN). 
Here we see that convolutional neural networks are a recent addition to the physiological signal analysis space, but 
now make up a significant proportion of papers. This again follows the trends in the wider neural network 
community, where convolutional neural networks gained popularity in the 2010s for their ability to recognise 
complex characteristics of data. 
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We then grouped the papers by models and plotted them against the year they were 

published (Figure 1.24). From here we can see that CNN and RNN papers have grown in 

popularity over recent years. We also plotted the same data but for the top five most 

popular signals (EEG, ECG, PPG, EDA and EMG) (Figure 1.25). We found that the usage 

of EDA and PPG data in deep learning physiological analysis is fairly new, with 

proportionally far more papers for EEG, ECG and EMG data from 1996 to 2010. 

 

Figure 1.25: Number of papers by year for the top 5 signals (EEG, ECG, PPG, EDA and EMG). 
We also split the count by year by what signals were being analysed by deep neural networks.  We see little change 
in the proportionality of the types of models examined by the deep learning models – together EEG and ECG papers 
make up around 60% of papers in any given year. 

 

Figure 1.26: Breakdown of RNN models by type of cells used 
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We find that LSTM cells are by far the most popular type of recurrent cell used in signal analysis – here we have 
grouped all other types of RNN together, as implementations ranged from the simple recurrent cell as in Figure 1.10 
to more bespoke implementations. 

 

Looking at the types of recurrent neural networks used, the most popular type of cell used 

is the LSTM cell, with other miscellaneous RNN cells coming second followed by GRU 

cells (Figure 1.26).  

We looked at if there was any visible correlation between the type of model and type of 

signal analysed (Figure 1.27). There was no significant correlation between the type of 

signal and type of neural network used (p > 0.05, n = 301, 2-Way ANOVA). 

 

Figure 1.27: Papers represented by the type of signal they analyse, and the type of model used 
To see if there was any relation between the type of model used and the data analysed, we counted how many 
papers used each combination of a model type and a signal. A larger and more yellow circle means more papers were 
analysed – we see no correlation between the type of model used for the signal  (p > 0.05, n = 301, two way ANOVA).  



 
79 

 

The papers were sorted into the country of where the institution was based; in cases where 

no single institution could be found, the primary author was used instead. The results 

showed that authors from the People’s Republic of China have published the most papers, 

followed by the United States of America (Figure 1.28). 

 

Figure 1.28: Papers by country of origin of publishing institution or first author 
We plot the number of papers from each country of origin. Here the first author’s base institution was used as the 
origin country – for papers from industry, the country where the company is based was used as the country of origin. 
We see that the People’s Republic of China has the most papers, followed by the United States of America 
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Figure 1.29: The number of papers published in different journal providers. 
Published conference proceedings were aggregated by the institution responsible for publication. We see that IEEE 
conference proceedings makes up the vast majority of papers – this may be the result of different publishing 
traditions between fields; for example conference papers are much more common in engineering whereas journal 
papers are more standard for physiologists. 

 

Finally, we sorted the papers by the journal, or institution they were published in; for 

example, conference proceedings published by Institute of Electrical and Electronics 

Engineers (IEEE) were logged under “IEEE conference proceedings”. Since the number of 

unique journals published to was large, singleton entries have been omitted (Figure 1.29). 

We see that conference proceedings are by far the most popular entry, primarily from 

IEEE. This indicates that it is mainly engineering fields investigating the use of deep 

learning to analyse physiological signals, rather than more traditional biological ones. 

1.4.3 Discussion 

It is perhaps unsurprising that deep learning has gained such popularity in recent years 

when it is also gaining popularity in other areas of research and industry. We have seen 

a year on year increase in the number of papers published for deep learning from 2014-

2019, however this trend may stop in 2020 if the rate of publication continues at the rate 

it is. Similarly, we found that the popular signals for deep learning physiological analysis 

were similar to those found in other reviews of the field (Faust, Hagiwara, Hong, Lih, & 
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Acharya, 2018; Rim, Sung, Min, & Hong, 2020), however electrooculography (EOG) 

signals were relatively underrepresented in our work. 

The upward trends of EDA and PPG signals over time can be perhaps explained by the 

equipment used for recording these signals; both EDA and PPG sensors are relatively non-

invasive whereas EEG and ECG recording is usually much more involved, with many 

sensors needed to be placed on different parts of the body as opposed to just one or two 

that can be coupled with a portable recording device. 

The growth of CNN and RNN models tracks the development of CNN and RNN 

technologies in general; in recent years CNNs have gained significant attention in the 

field of computer vision but only recently have they been applied to time series signal 

analysis. It was only from 2012 when CNNs started to win the ImageNet Large Scale 

Visual Recognition Competitions, only 3 years before the first CNN paper for physiological 

signal analysis was published according to our findings. 

 LSTMs continue to be the most popular choice of RNN cell, potentially because they have 

the most trainable parameters compared to GRU or regular RNN cells. It remains to see 

if LSTMs and RNNs in general have a place in physiological signal analysis, as part of 

hybrid CNN RNN architectures, or if CNNs or other models will take over. 

Finally, there is no obvious relationship between the types of signal analysed and the 

types of model used. It is unknown as to if there signals have any inherent characteristics 

that would make one type of model preferable to another; in many cases it’s the purpose 

the model is being used for that drives the model choice; for example GANs are typically 

used for synthetic data generation rather than classification tasks, and AutoEncoders 

used for dimensionality reduction, although this is not always the case. 

1.4.4 Conclusion 

We have reviewed the literature for physiological signal analysis using deep learning 

techniques. We found that the most popular signals were EMG, EDA, EMG, EEG and 
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PPG, with PPG and EDA signals increasing in popularity especially in recent years. CNNs 

and RNNs have grown in popularity over time, but there is no “one size fits all” type of 

model that is being used in most papers. This is perhaps unsurprising since CNNs have 

only gained significant attention from around 2012. Finally, there seems to be no 

correlation between the types of signals being analysed and the types of models being 

used.  

1.5  Hypothesis and Objectives 

Given the above; as new deep learning tools and computing resources have become readily 

available it is important to investigate how far deep learning models can advance ion 

channel research. It is therefore hypothesised that new, convolutional deep learning-

based architectures can both idealise patch-clamp data more accurately, and recover more 

information (such as the Markovian state) than existing models or conventional solutions. 

It is also thought that deep learning can go further than a simple classification problem 

and perhaps be used to build more accurate simulation methods to the simple Markovian 

models with noise that exist currently. 

Therefore, the aims of this work are as follows: 

a) Develop new ways of ion channel record generation either by improving 

traditional methods and by using generative adversarial networks. [Chapter 3] 

b) Perform the first direct recovery of ion channel Markovian state with deep 

learning models [Chapter 5, 6, 7]] 

c) Adapt the Markovian state model architecture to analyse multichannel data and 

improve performance over the existing DeepChannel model. [Chapter 8] 

d) Compare performance of current ion channel analysis techniques (QuB) with 

deep learning models [Chapter 8] 

e) Quantify performance of our best deep learning models on 3 different real 

biological datasets, compare with existing methods. [Chapter 8] 
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2 Methods 

The principle aim of this work was to build new deep learning models for classification 

and generation of ion channel records. To be able to achieve these aims, we need two 

approaches; biological work within the lab to obtain real, lab recorded data for model 

training or evaluation; and computational work for developing these models. 

2.1 Computational methods 

2.1.1 Data Simulation Pipeline and Datasets 

For our use case, we require enormous, labelled data sets for model training and 

evaluation. Hand labelling recorded data would not be appropriate as it would involve a 

subjective idealisation process and be prohibitively time consuming. For example the 

benchmark dataset used for evaluating image recognition models, ImageNet (Deng et al., 

2009) is a labelled dataset of (currently) 14 million images. Hand labelling these images 

(accounting for 5 seconds per image) would take 810 days, or over two years.  In addition, 

the underlying Markovian processes would need additional analysis and may not be 

accurate depending on the quality of the idealisation.  

In similar work, a simulation approach has been used to generate ion channel records for 

analysis, but it has typically been done so with a static Markov model and simple 

Gaussian noise added. This is not representative of real ion channel data; it is more 

common for 1/𝑓𝛼 noise (with 𝛼 ≥ 1) to be present in ion channel records (Siwy & Fuliński, 

2002), as well as some lower frequency noise for baseline drift over a longer term (Figures 

2.1, 2.2). 
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Figure 2.1: Power spectral density graphs for simulations of normal Gaussian noise, 1/f noise and 1/f^2 noise. 
In related work, Gaussian noise is often added to a square wave signal to simulate the noise seen when recording ion 
channel activity in the lab; however this is not what is normally observed. Typically the type of noise seen in an ion 
channel recording is a type of noise called 1/f^n noise, where n determines the gradient of the slope in the power 
spectral density graph of the noise. 1/f noise (also known as “pink” noise) is typically seen in nature; and as n 
increases, the noise frequency profile skews towards the lower frequencies. In this work we extensively use 1/f^n 
noise with randomised n to create realistic noise to add to a simulated signal. 

 

Figure 2.2: Examples of simulations of different types of 1/f^n noise with the n parameter changed 
Gaussian noise, or 1/f^n noise, can be seen in the top axis, and is typically added to square wave signals in related 
work to simulate ion channel noise; however the 1/f noise in the central axis is seen much more commonly in ion 
channel noise analysis. As n increases (for example, n = 2 in the bottom axis), the frequency profile skews more 
towards the lower frequencies, a slower variation in the signal over a longer period of time. By combining these 1/f 
noise terms, we can create more realistic synthetic ion channel data than seen before through mathematical 
simulations. 
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Therefore, we developed a new Python package, DeepMICA 

(https://github.com/stmball/DeepMICA), that allows for the simulation of Markovian ion 

channel records, allowing for perturbation of the Markovian matrix, and a more nuanced 

noise system that gives users the ability to layer different types of noise on top of each 

other to give a more authentic output record (Figure 2.3). 

 

Figure 2.3: DeepMICA Workflow for generating new datasets. 
We start with a transition rate matrix (either manually derived or taken from other work), and use it to create a 
Network object. For static  datasets, this Network object is unchanged, but for the datasets that test for changes in 
transition rate matrix, we create a number of new Network objects with perturbed transition rate matricies known 
as the “perturbed” datasets. From this, MarkovLog objects are created which are responsible for the simulation of 
the datasets, with some with drift and some without for both “Static” and “Perturbed” Networks. These are then 
used to generate the simulated signals used for deep learning training. 

 

The general structure of the package is as follows: first, a Network object is initialised 

which manages the Markovian model, allowing for the generation of canonical forms 

(explained in Chapter 3), and perturbation of the transition rate matrix using a symmetric 

triangular distribution for scaling with a user defined magnitude to simulate drug action 

affecting changes in channel kinetics. This allows measurement of the effects of small 

changes in the Markovian model on the performance on a deep learning model; if the deep 

learning model is overfitting onto the initial Markovian model, then changing the 

Markovian matrix in this way will drastically harm performance. Conversely, a 
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successfully generalising model will be robust to these small changes in Markovian 

transition rate matrix. 

The MarkovLog object is responsible for taking these Markovian models and generating 

a recording by sampling the dwell times from the Markov model to get a “discrete record” 

of states and dwell times, and interpolating this record and adding a series of noise terms 

to simulate the characteristically noisy nature of ion channel data for a “continuous 

record” as expected from patch clamp recordings. The discrete record can also be used in 

a Viterbi analysis of the data, which is explained in more detail in Chapter 5. An example 

output of the kind of data obtained from this methodology can be seen in Figure 2.4. 

 

Figure 2.4: Example of 2 seconds of "simple, slow" 1/f noise layered on top of a simulated Markovian signal 
with no additional noise layers 
Here we use a simple 3 state hidden, continuous time Markovian model for the square wave simulation, and apply 
1/f^n noise with a very high n (randomly sampled from a uniform distribution between 3.5 and 4.5 ). This results in a 
very low frequency, but still random noise term that reflects the baseline drift visible in ion channel recordings from 
external conditions. Most other work (QuB, MDL, JSMURF) doesn’t implement baseline drift at all, and the previous 
DeepChannel work implements baseline drift as a sinusoidal change over time. 

Although multiple noise terms are possible with our DeepMICA package; the two used in 

all the data generation are the Simple and Scaled 1/𝑓𝛼 noise mechanisms. These were 

chosen for the following reasons: 

a) Simple 1/𝑓𝛼 noise with a controllable amplitude and 𝛼 parameter. This simply 

generates 1/𝑓𝛼  noise and adds it onto the input signal with no consideration of 

the number of channels open. In our case, we use this with a high value of 𝛼 
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(typically between 3.5 and 4.5) to simulate baseline drift. An example of only this 

baseline drift applied to the simulated Markovian signal can be seen in Figure 

2.4. 

 

Figure 2.5:  Examples of different approaches of simulating the high frequency noise in ion channel recordings. 
Plot A is the “simple” 1/f noise seen above with the 𝛼 parameter set to 1, and signal to noise ratio of 4. Plot B shows 
the “scaled” 1/f noise with 𝛼 set to 1, base signal to noise ratio of 10, but the scaling parameter set to 4. This means 
that for every channel open, the scale of the noise increases by a factor of 4 – this is a more realistic approach as it is 
seen in practice that noise increases as channels open. Plot C shows both the scaled noise with a low 𝛼 parameter 
aggregated with the simple 1/f noise with a high 𝛼. Parameters for data used in training were tuned empirically to 
match the ranges of what was seen in existing recorded data. In each case, the legend shows the underlying 
Markovian state the simulation is in for each timepoint. 

 

b) “Scaled” 1/𝑓𝛼 noise with controllable amplitude, scaling and 𝛼 parameter. This 

generates 1/𝑓𝛼  noise but scales the amplitude with the number of channels open 

according to the scaling parameter. It is clear from analyses of ion channel 

records that the signal is significantly noisier when a channel is open, so called 

“open channel noise” (Heinemann & Sigworth, 1988; Sigworth, 1985). By using 

this scale parameter, we can adjust the amplitude of this noise on a per-channel 
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opening/closing basis to reflect this behaviour. We typically use this noise term 

for the background noise that is usually, incorrectly represented by Gaussian 

noise in other work; by setting 𝛼 randomly between 0.8 to 1.4 we cover a range of 

conditions to test for model robustness versus different noise levels. An example 

of this noise applied to a channel, and its difference to the “simple” noise can be 

seen in Figure 2.5, along with an example of scaled noise along with the simple, 

high 𝛼 noise above. 

The inclusion of 1/f noise is an improvement on Gaussian simulations seen in previous 

work; however may be as much as a result of common filtering practice as the nature of 

the data itself. Therefore, in addition to this data, a digital 8-pole Bessel was added at the 

end of the generation pipeline to reflect this process. 

We also developed, and included in the DeepMICA library; a novel toolbox for preparing 

this data for deep learning, as well as a suite of tools for evaluating model performance on 

both the Markovian prediction (state unreduced) and open/closed configuration (state 

reduced). To achieve this, we rely on a number of external packages, namely numpy 

(Harris et al., 2020), pandas (McKinney, 2010), matplotlib (Hunter, 2007), scikit-

learn (Buitinck et al., 2013), colorednoise 

(https://github.com/felixpatzelt/colorednoise, (Timmer & Koenig, 1995) and tqdm 

(https://github.com/tqdm/tqdm) 

For training and evaluating deep learning models data was sourced from three methods: 

We produced synthetic datasets using the DeepMICA library above; recorded our own 

data from the lab; and used previously recorded data from other work.  

We synthesised different synthetic datasets for different tasks, each testing at different 

levels of “difficulties” for the model; for example, asking a deep learning model to recover 

the Markovian state of a very simple Markov model; or simply to idealise a single channel 

with low levels of noise and no baseline drift are both relatively easy problems for a model 

to solve. However, resolving 10 channels or a complex Markov model with changing rate 

https://github.com/felixpatzelt/colorednoise
https://github.com/tqdm/tqdm
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parameters and high noise is significantly harder. In total, we have simulated 16 different 

types of datasets, using the our new methods; 8 for Markovian state recovery (Chapters 5, 

6, 7) and 8 for multichannel idealisation (Chapter 8). For Markovian state recovery we 

have every combination of the simple 3-state model and the 5-state model taken from 

literature (see below), modulating the transition rate matrices and not; and baseline drift 

being present and not. For the multichannel idealisation datasets were generated with 

and without drift for one, three, five and ten channel records. 

For the Markovian dataset, the two Markov models used can be seen in Figure 2.6. The 

first (known henceforth as the “3 state model”), is a very simple Markov model consisting 

of two open states and one closed state, with one open state around 10 times more likely 

to be reached from the closed state, but on average has around 10 times shorter a dwell 

time as the “longer” open state. The second Markov model is taken directly from the 

literature (Davies, Purves, Barrett-Jolley, & Dart, 2010) and reflects a far more complex 

and realistic Markov model in practice. Figure 2.6 shows what this Markov model looks 

like diagrammatically. 

 

Figure 2.6: Diagrammatic representation of Markov models used throughout this work. 
Green states represent open channels and red closed. Plot A shows the “simple” Markov model where we have one 
open channel and two closed channels; one being a “long” close and the other a “short close”. Plot B shows a model 
taken from literature (Davies et al., 2010) used to test model performance on a real Markov model.  
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2.1.2 Deep Learning Training 

For the deep learning portion of this work, two different setups were used throughout at 

different stages of development. In cases where monitoring output was important (such 

as checking the output of a GAN), Jupyter notebooks (https://jupyter.org/) were used with 

a manual TensorFlow (Abadi et al., 2015) install. As the TensorFlow package needs 

specific versions of GPU drivers and supplementary software installed, for easy of use on 

other computers the official TensorFlow Docker image was used to run training in a 

container to avoid version conflicts.  

Training was run on a number of different machines, but all were equipped with NVIDIA 

TITAN RTX GPUs and Intel Xenon processors to ensure all training times were 

consistent. 

Unless explicitly stated otherwise, all models were trained using an 80/20 train-test-split 

validation technique, along with a learning rate scheduler and early stopping mechanism 

to allow for each model to reach peak performance.  If the validation data 'sets' loss did 

not improve within 5 epochs, the learning rate was reduced by a factor of ten, and if the 

loss did not improve within 20 epochs, training was stopped and evaluation began. We use 

the categorical cross entropy loss function for training (also known as log-likelihood). 

For classification models, model evaluation was performed using a matrix of different 

metrics; both the micro F1 score and Cohen’s Kappa score (explained below) were taken 

for both the Markov-state prediction (where relevant), and the simple open/closed 

configuration of the channel (“reduced-state”); or the level of the square wave 

classification. This gave multiple avenues for investigation to improve model performance, 

for example if the Markovian state classification was weak but the channel classification 

was strong, the model was doing well at idealising the recording but could not understand 

the underlying mechanism. 

https://jupyter.org/
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The F1 Score is a commonly applied metric for measuring the efficacy of classification 

models; it is calculated with the following formula: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Where: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Where 𝑇𝑃, 𝐹𝑃, 𝐹𝑁 are the number of true positives, false positives and false negatives 

respectively. 

In multiclass classification problems, there are two options for calculating the overall F1 

score; the micro average calculates the F1 score across all classes separately, and the 

macro average calculates the F1 score for each label, then averages them together. We use 

the micro averaging to achieve a measure of point by point accuracy. 

Another way of approaching the modal collapse problem discussed earlier is to use the 

Cohen’s Kappa score. Formally it is defined as follows: 

𝜅 =
𝑝𝑜 − 𝑝𝑒

1 − 𝑝𝑒
 

Where 𝑝𝑜 is the observed agreement between the model and the ground truth; i.e. the 

number of correct classifications divided by the total number of data points; and 𝑝𝑒 is the 

expected probability of chance agreement, calculated as follows: 

𝑝𝑒 = ∑
# 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖 𝑓𝑟𝑜𝑚 𝑚𝑜𝑑𝑒𝑙

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠
∙

# 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠
𝑖∈𝑆

 

Where 𝑆 is the set of all classes. 

Cohen’s Kappa score is much stricter score for measuring the accuracy of machine 

learning models, as it penalises modal collapse in multiclass classification severely. For 

example, in the case where a model is predicting all 0 classes in a record with nine 0 
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classes and one 1 class, the macro averaged F1 score gives a score of 0.47, the micro 

averaged F1 score gives a score of 0.9, but the Cohen’s Kappa score gives a score of 0. 

Furthermore, if the model starts to get the prediction drastically wrong; worse than a 

random classifier; this score can reach negative values. A negative Cohen’s Kappa 

indicates prediction worse than that expected by random chance. 

Both of these metrics are helpful tools in measuring the efficacy of our models accounting 

for the need to predict underrepresented classes. The major disadvantage of these two 

metrics however is that as they are not differentiable; due to the nature of back-

propagation needing derivatives of the loss function with respect to each parameter,  such 

metrics are helpful for model evaluation but cannot be used as loss functions for the deep 

learning training process. 
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3 Synthetic Dataset Generation with 

DeepGANnel 

3.1 Introduction 

Mathematically modelling ion channel data and adding generated noise allows for a large 

amount of generated data to be made available for deep learning training, but this data 

is likely to overlook some unknown characteristic features of the data. A data driven 

approach of simulating data from existing data allows for a deep learning model to learn 

the characteristic features of the data and potentially allows for a more accurate 

simulation of ion channel data, with no prior knowledge and control of the underlying 

Markovian model. This chapter has been adapted from the work published in the 

PLOSONE journal (Ball et al., 2022). 

In this chapter, we successfully leverage generative adversarial networks (GANs) to build 

an end-to-end pipeline for generating an unlimited amount of labelled training data from 

a small, annotated ion channel “seed” record. Our method utilises 2D CNNs to maintain 

the synchronised temporal relationship between the raw and idealised record. We 

demonstrate the applicability of the method with 5 different data sources and show 

authenticity with t-distributed Stochastic Neighbor Embedding (t-SNE) and Uniform 

Manifold Approximation Projection (UMAP) projection comparisons between real and 

synthetic data. The model would be easily extendable to other time series data requiring 

parallel labelling, such as labelled ECG signals or raw nanopore sequencing data. 

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have proven to be 

important for generative tasks, such as image generation (Karras, Laine, & Aila, 2019b) 

or audio synthesis (Donahue, McAuley, & Puckette, 2019). GANs have been used in 

electrophysiology to create new unsynchronised datasets (Qin et al., 2020; Truong et al., 

2019), with the former example being used to generate data for model training, but 
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continuous labelling of data (millisecond-by-millisecond) has remained an unsolved 

challenge. GANs have great potential to allow a data driven approach to synthesis, using 

a small amount of “real”, lab recorded data to generate an unlimited amount of simulated 

data; the advantage of this method is that noise and artefacts present in the real training 

dataset also appear in the generated data.  

T-distributed stochastic neighbour embedding (t-SNE) (Van der Maaten & Hinton, 2008a) 

and uniform manifold projection (UMAP) (McInnes, Healy, & Melville, 2018) 

dimensionality reduction algorithms are non-linear graph-based methods for reducing the 

number of dimensions of a dataset; either for computational reasons (e.g. computationally 

expensive algorithms might need dimensionality reduction to become feasible), or 

visualisation purposes (reducing a complex dataset down to two dimensions to graph and 

understand the structure of the data is sometimes helpful). These methods differ from the 

commonly used principle component analysis (PCA) dimensionality reduction method as 

they aim to preserve different kind of structures; PCA prioritises preserving global 

structure over long distances whereas t-SNE preserves local distances. UMAP aims to 

achieve both by implementing a further manifold transformation to an adjusted t-SNE to 

preserve some global structure as well. 

In this work we develop a GAN model to generate realistic, simulated ion channel data 

from existing patch-clamp recordings from several channel phenotypes, each with a 

continuous parallel state label. These outputs could then be used to build more accurate 

ion channel analysis models. We use a further series of analysis tools to evaluate the 

model’s performance; including T-SNE and UMAP projections to investigate if each 

channel’s high dimensional characteristics are reflected in the simulated data. 

3.2 Methods 

3.2.1 Experimental Workflow Summary 

Experimental ion channel data (See “Source Data”, Table 3.1) was recorded using patch-

clamp electrophysiology and then passed to our GAN model network (using a Jupyter 
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notebook) as input data.  After training, the GAN network is set to write simulated data 

to file. These simulated data were then passed along with the original raw “seed” partner 

datasets to a Jupyter notebook that ran dimensionality reduction algorithms to compare 

the raw and GAN simulated datasets (see “T-SNE and UMAP").    

3.2.2 Model design 

We propose a GAN based model to generate synthetic time-series data that includes 

realistically similar features to real ion channel molecule currents. Figure 3.1 describes 

the complete pipeline of the proposed DeepGANnel model in this work. The architecture 

of the GAN model introduced in this work follows the regular DC-GAN methodology, but 

applies the convolutional neural networks that efficiently demonstrated to produce time 

series datasets in previous work (Delaney, Brophy, & Ward, 2019; Donahue et al., 2019). 

In the following sections, the utilized neural networks briefly are covered along with the 

processed data information and evaluation metrics criteria.  

 

Figure 3.1:  Pipelines for DeepGANnel Development. 
A relatively small amount of lab recorded data is labelled manually, then preprocessed and used to train the 
DeepGANnel networks to generate labelled, synthetic ion channel data. 

 

Data are recorded using standard electrophysiological techniques.  These raw data are 

then labelled using existing software and expert supervision.  Pre-processing makes copies 
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of these data adding a small amount of gaussian noise to the raw data and reshapes the 

two signals into 2D “images” (2x1280). 

3.2.3 Generative Adversarial Networks (GAN) 

A GAN typically consists of two neural networks competing against each other; the 

generator network tries to convert random noise into observations that seem as if they 

have been sampled from the original data; while the discriminator network aims to 

classify whether the sampled data comes from the original dataset or output of the 

generator network by predicting a class probability. The training process is employed in 

an adversarial manner between the two networks by updating the parameters of both 

models based on updates of the discriminator; the generator is looking to maximise the 

discriminator’s uncertainty in classifying an output as real or fake, and the discriminator 

is looking to minimise this. 

3.2.4 Design of the Networks 

The DeepGANnel networks are based on the successful DC-GAN model (Radford, Metz, 

& Chintala, 2015), with the input and output shapes of the generator changed to images 

with dimensions n by m (one channel for the raw signal, one for the idealisation, n and m 

were typically 2 and 1280, but these numbers can easily be varied depending on context) 

along with changes to the subsequent hyperparameters along with pre/post processing to 

facilitate this change. 

The architecture of the generator 𝐺 consists of strided deconvolutional layers that allow 

the network to undergo spatial learning with its own up-sampling; batch normalisation 

layers allow for stabilising learning parameters by normalising inputs and Leaky 

Rectified Linear Unit (ReLU) activation functions for all layers, except for the tanh 

function that is used in the output layer. The input to this model is a matrix of latent noise 

that is transformed into the output signal, and the output of the model is a two-

dimensional sample generated from the noise that can be sent to the input of the 

discriminator for training the model. 
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Figure 3.2: DeepGANnel network architecture 
On the left is a generator network of DeepGANnel in which the input is a random noise and output is a 2D matrix by 
2x1280 that is converted from 1-D time series. The generator model in this architecture uses three deconvolution 
layers (upsampling) to produce an matrix from seed (random noise shape by 2x1280). Several Dense layers are used 
to take the noise input and transform into a desired matrix by up-sampling (Deconv or transposed convolutional 
layer) steps size of 2x1280. At each layer, Leaky Rectified Linear Unit (LeakyReLU) is used as activation function with 
batch normalisation, except output layer which uses tanh activation function. The discriminator model comprises of 
several convolutional layers with the same activation function (LeakyReLU) at each layer to classify whether a  
matrix of values is real or fake by comparing the sampled data to real data. Dropout layers were also appended to 
all convolutional layers except input layer with the value of 0.3 to reduce overfitting. Finally, a Dense output layer is 
used after flattening the network structure with classified labels. 

 

The discriminator 𝐷, is also a deep convolutional neural network. Similar to the generator, 

this model combines strided convolution layers to downsample the input data to obtain a 

binary classification of the input record (real or generated). In our discriminator 

architecture, the batch normalisation layers are not used, but instead a dropout 

regularisation technique was used at each layer. The last convolution layer in our 𝐷 

network is flattened and passed into a sigmoid function for classification, but otherwise 

similarly to the generator; Leaky ReLU activation functions are used for all other layers. 

Figure 3.2 shows the architecture of our DeepGANnel model in this work including both 

𝐺 and 𝐷 networks. The Adam optimiser (Kingma & Ba, 2014) was used initially with a 

0.0001 learning rate for the training process. Manual tuning of the learning rate 

parameters was needed during training to avoid overfitting from one of the models.  
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3.2.5 Data sources 

For GAN simulation training, ion channel recordings were obtained from cell-attached 

patch clamp electrophysiology on a number of different cell types; for detailed methods 

please see the associated references.  

Table 3.1: Sources of raw data for development and testing of the GAN network 

Code Channel source Sample 

size 

(segments) 

Methods Reference 

Phenotype A Canine articular 

chondrocyte 

179 (Lewis et al., 2013) 

Phenotype B WinEDR 

simulated 

244 None, see text below 

Phenotype C Tracheal 

chondrocyte 

36 None, see text below 

Phenotype D Paraventricular 

nucleus of the 

Hypothalamus 

499 Feetham, Nunn, 

Lewis, Dart, & 

Barrett-Jolley, 2015) 

Phenotype E Equine articular 

chondrocytes 

286 (Mobasheri et al., 

2010), 

In the case of tracheal chondrocytes (“Phenotype C”) data was provided by my co-author 

Dr Abdul Kadir (Ball et al., 2022). Data was acquired with methods similar to (Lewis et 

al. 2013), except that trachea were isolated, cut into small pieces, and thence treated as 

for articular chondrocytes.  In all cases, animals were previously euthanised for 

unassociated reasons; no animals were killed or harmed for this study.  Typically, patch 
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pipettes were fabricated using 1.5 mm o.d. borosilicate glass capillary tubes (Sutter 

Instrument, USA, supplied by INTRACEL, UK). They were pulled using a two-step 

electrode puller (Narishige, Tokyo, Japan) and when filled with recording solutions, had 

a resistance of approximately 5-10 MΩ. In each case, data was recorded using cell-

attached patch clamp with an Axopatch 200/a amplifier (Axon Instruments, USA). Low-

pass filtering was set to 1 kHz (Axon’s built in 4-pole Butterworth filter) and data were 

digitized at 5 kHz with a Digidata 1200A interface or CED 1401 (CED, Cambridge, UK).  

Recordings were made with WinEDR (John Dempster, University of Strathclyde, UK).   

In addition, in order to achieve a diverse population of ion channel records to test our GAN 

model, we simulated ion channel data using the simulation feature in WinEDR (John 

Dempster, University of Strathclyde, UK) using default rate constants (“Phenotype B”). 

Idealisation/annotation of raw data was performed with QuB (Nicolai & Sachs, 2013).  

Datasets had different record lengths between 1024 to 4096 datapoints per channel.  

Sample sizes given in Table 3.1. 

For manifold projection data input.  The raw data is the same as above (Table 3.1), and 

the simulated data are outputs from the GAN, these specific datasets are included in data 

in the associated repository. 

3.2.6 Evaluation metrics 

GANs are considered successful when they implicitly learn the distribution of samples of 

the real dataset. We assess the efficiency of the proposed DeepGANnel model to simulate 

single molecule data by comparing real to GAN simulated data using a number of different 

approaches. The standard metrics for GANs are the so-called generator loss and 

discriminator loss. These are calculated as the logistic binary cross entropy loss; this is 

calculated as: 

𝐿 =  −(𝑦 log(𝑝) + (1 − 𝑦) log(1 − 𝑝)) 
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Where 𝑦 is the true label and 𝑝 the predicted label. For the generator this is calculated 

once, with the true label being whether the output is fake or not, and the predicted label 

being whether the discriminator predicted if the output is fake. For the discriminator, this 

is calculated twice then totalled; once for the fake output as above, and again in the same 

manner for real outputs. 

We also use the t-SNE and UMAP dimensionality reduction algorithms as a means to 

compare and contrast the different ion channels and sources in a more meaningful way. 

Additional measures of GAN performance (Maxiumum Mean Discrepancy and Dynamic 

Time Warping) were used by Dr Numan Celik in the original paper (Ball et al., 2022). 

3.2.6.1 T-SNE and UMAP 

To compare the raw data (Table 3.1) and the matching GAN outputs; raw data (Table 3,1) 

and matching GAN outputs were used as inputs for manifold projection (t-SNE and 

UMAP)  analysis.   Dimensionality reduction algorithms allow us to visualise high 

dimensional data in a low dimensional format, typically within a visualisation such as a 

scatter plot. Principal Component Analysis (PCA), for example, reduces the dimension of 

data by choosing a new orthogonal basis for the data based on the maximal variance of 

the data. For non-linear datasets, this dimensionality reduction may not accurately 

convey the shape or pattern of the higher dimensional data, as points that are close 

together in Euclidian space but far away in the context of the data may be brought 

together during the PCA transformation (for example, a circular or ring-shaped dataset 

loses its shape in PCA). The so-called “kernel trick” can solve this problem by providing a 

non-linear transformation to the space before the PCA algorithm is applied, however this 

requires that this non-linear transformation to be found algorithmically, which can be 

time consuming and inaccurate.   

The t-SNE (Van Der Maaten & Hinton, 2008b) algorithm focuses on local similarity rather 

than global similarity by considering only a neighbourhood around each point in high 

dimensional space. The algorithm first constructs a matrix of probability distributions for 
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each pair of points in the higher dimensional space such that close points have a high 

probability and far away points have a low probability. The algorithm then constructs a 

second matrix of probability distributions for the lower dimensional space and minimises 

the Kullback-Leibler divergence between the two via gradient descent. This method 

preserves local similarities, but global similarities are lost between far away points.   

Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018) was 

developed to attempt to maintain the global similarities by using the same general method 

as t-SNE (the construction of two matrices and optimisation to fit the lower dimensional 

one to the higher dimensional one), but uses a topological transformation of the data and 

a different divergence metric to achieve stronger global similarity.  Note that in both cases 

we trained these projections on the super dataset together (i.e., all raw and GAN records 

concatenated together).  We used the standard Python packages t-SNE from Scikit Learn 

and UMAP from the umap-learn on conda-forge.  Full code is in the code repository as a 

Jupyter notebook, but essentially raw and GAN generated datasets were broken into 512 

datapoint length “windows” and input to the manifold function with dimensionality of 2 

(which allows projection onto an x-y plane).  To give an objective indication of whether 

there was a significant difference between manifold clusters between original and GAN 

simulated data, we tested for statistical difference between each pair with the R package 

ClusterSignificance (Serviss, Gådin, Eriksson, Folkersen, & Grandér, 2017), which tests 

the separation of the clusters by computing as score based via Euclidean distance . 

Whilst helpful for visualising high dimensional data, t-SNE and UMAP are not without 

criticism. The iterative matrix-based approach can lead to poorer fits than PCA (Chari & 

Pachter, 2023). For our data however, the complex relationship between the timeseries 

warrants a more non-linear approach than a standard PCA. 
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3.3 Results 

 

Figure 3.3: Realistic labelled single molecule data are synthesised by DeepGANnel. 
 (A) Discriminator and Generator losses plotted per epoch during training. (B) The maximum mean discrepancy 
(MMD) and dynamic time warping (DTW) evolution over the first 250 epochs as they approach equilibrium as 
measured by Dr Numan Celik. (C and D) Examples of real (C) and GAN synthesised (D) labelled data records.  (E and 
F) All points amplitude histograms calculated from the real (E) and GAN synthesised (F) data.  

 

Single (ion channel) molecule datasets were recorded using the patch-clamp technique 

and our standard protocols, and approximately 30 seconds was recorded under constant 

conditions (room temperature etc.). The resulting datasets were annotated (idealised) in 

QuB to produce a two-dimensional signal (dimension 1 = raw signal, dimension 2 = 

continuous annotation).   Following robust scaling (Scikit learn) and reshaping these data 

were passed to the DeepGANnel model for approximately 10,000 epochs.  Processing 

within each training epoch included augmentation with an invisibly small amount of 

Gaussian noise (approximately 0.1% of signal amplitude) applied to each data window. 

Figure 3.3A shows the characteristic evolution of discriminator and generator losses, with 

typical generator losses 10x or more the discriminator loss.  Figure 3.3 C and D show 

examples of raw (real) input data and a representative strip of post train DeepGANnel 
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generated data.  The two first analyses that are typically conducted in patch-clamp 

research are amplitude histograms and kinetic analysis.  In addition to the objective 

metrics, amplitude histograms are shown in Figure 3.3E (real events) and Figure 3.3F 

(GAN simulated events), are also clearly similar in terms of size and shape. 

 

Figure 3.4: Comparative kinetic analyses of real and DeepGANnel simulated data 
(A and B) Kinetic analysis provided by Dr Fiona O’Brian from the real (input) single molecule data with closed times 
(A) fit with 4 exponentials and open times (B) fit with 3 exponentials. The respective time constants and weights are 
displayed in the inset tables.  (C and D) Kinetic analysis from the GAN simulated (output) single molecule data with 
closed times (C) fit with 3 exponentials and open times (D) fit with 2 exponentials. The respective time constants and 
weights are again displayed in the inset tables. 

 

For an in-depth analysis we conducted full kinetic analysis of both raw (real molecular 

data) and GAN simulated data.  These are shown in Figure 3.4, and there are similarities 

and differences between the real and GAN events.  In terms of closed times, it is apparent 

that whilst the over-all distribution is similar between real (Figure 3.4A) and GAN (Figure 

3.4C) there are differences. Kinetic anaylsis, performed by an experienced 

electrophysiologist and co-author on Ball et al, Dr Fiona O’Brian showed the real data 

included some long closed-events that are absent from the GAN simulated equivalent, 

perhaps due to the short window length as the generator output.  In terms of open times 

again the over-all distribution is similar between real (Figure 3.4B) and GAN simulated 
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(Figure 3.4D), but there is attenuation of the very long open sojourns in the GAN 

simulated data. 

 

Figure 3.5: Sample data from both real dataset and DeepGANnel model output from numerous ion channels. 
In each subpanel, real raw and labelled data is displayed on top with simulated data below. (A): “Channel 
phenotype A” canine articular chondrocyte sample data and model output. (B): “Channel phenotype B”, WinEDR 
simulated sample data and model output.  (C): “Channel phenotype C” tracheal chondrocyte sample data and 
model output. (D): “Channel phenotype D” PVN sample data and model output. 

 

To further test the ability of the GAN method to simulate a wide range of ion channel-like 

data we then trained DeepGANnel on 4 further ion channel phenotypes (see Table 3.1).  

Each of these is shown in Figure 3.5, where raw data, including the timeseries label, is 

shown a above the GAN simulated data.  Subjectively, it appears each phenotype of 

channel is well represented by the matching GAN.  To investigate more objectively how 

similar each GAN generated dataset is from its parent raw data (Table 3.1) we performed 
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t-SNE and UMAP dimension reduction comparisons between each of the 5-phenotypes of 

data (Figure 3.6).  It is clear that there is a tendency for each GAN manifold cluster (t-

SNE or UMAP) to align closely with its parent real data projection.  Following this, we 

systematically analysed the cluster separation between real and GAN clusters, but first, 

we investigated whether this method could distinguish between each real vs real 

combination, and each GAN vs GAN combination. We focussed on UMAP projections. 

Table 3.2 shows the comparisons between UMAPs of the real data.  Each real dataset is 

significantly different to each other, demonstrating the power of UMAP cluster analysis 

to objectively classify real world data.  Secondly, the equivalent analysis focusses on 

UMAP comparisons of the 5 different GAN generated datasets is show in Table 3.3.  In 

this case, all GAN simulated datasets are different from each other, except for the A and 

C datasets (different types of cartilage ion channels), which are not significantly different 

from each other.  Finally, Table 3.4 shows that cluster-analysis of UMAP projections is 

unable to see a statistically significant difference between the canine articular ion channel 

data (Phenotype A) and its respective GAN, the tracheal ion channel data (Phenotype C) 

and its respective GAN or the equine cartilage data (Phenotype E) and its derived GAN 

data.  However, the GANs produced from channel phenotypes B and D were significantly 

distinguishable from their parent datasets (Phenotypes B and D). 
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Figure 3.6: T-SNE and UMAP dimensional reduced visualisations for DeepGANnel and real data. 
For each of the channel phenotypes shown earlier (A to E), (i) T-SNE and (ii) UMAP projections are shown with “GAN” 
data on the left and “real” source data on the right.  Sets of projections A to D correspond to those channel 
phenotypes shown in Fig 5, (A): “Channel phenotype A” canine articular chondrocyte. (B): “Channel phenotype C” 
WinEDR simulated. (C): “Channel phenotype B”, tracheal chondrocyte. (D): “Channel phenotype D” PVN data and 
(E) shows the same arrangement with the equine chondrocyte data shown in Figs 36 to 39. 
Table 3.2: : Statistical separation of UMAP clusters between real datasets.  
Maximum p-values calculated by the ClusterSignificance permutation package in R (Serviss et al., 2017).  p-values 
are given after at least 1000 permutations. Phenotype codes described in the methods, Table 3.1.  

 Phenotype 

A 

Phenotype 

B 

Phenotype 

C 

Phenotype 

D 

Phenotype 

E 

Phenotype 

A 

1 0.02 0.001 0.001 0.001 

Phenotype 

B 

- 1 0.02 0.001 0.001 

Phenotype 

C 

- - 1 0.001 0.001 

Phenotype 

D 

- - - 1 0.001 
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Phenotype 

E 

- - - - 1 

 

 

 

 

 

 

 

 

Table 3.3: Statistical separation of UMAP clusters between GAN generated datasets.  
Maximum p-values calculated by the ClusterSignificance permutation package in R  (Serviss et al., 2017).  P-values 
are given after at least 1000 permutations. Phenotype codes described in the methods, Table 3.1.  

 Phenotype 

A 

Phenotype 

B 

Phenotype 

C 

Phenotype 

D 

Phenotype 

E 

Phenotype 

A 

1 0.001 0.590 0.001 0.001 

Phenotype 

B 

- 1 0.001 0.001 0.001 

Phenotype 

C 

- - 1 0.001 0.001 

Phenotype 

D 

- - - 1 0.001 

Phenotype 

E 

- - - - 1 
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Table 3.4: Statistical separation of UMAP clusters between each real dataset and its GAN simulated 
equivalent.  
Maximum p-values calculated by the ClusterSignificance permutation package in R  (Serviss et al., 2017).  p-values 
are given after at least 1000 permutations. 

Phenotype Source p-val 

A Canine articular chondrocyte 0.739 

B WinEDR simulated 0.001 

C Tracheal chondrocyte 0.371 

D Paraventricular nucleus of the 

Hypothalamus 

0.001 

E Equine articular chondrocytes 0.993 

 

3.4 Discussion 

In this work, we have generated synthetic raw single-molecule timeseries data along with 

continuous synchronised annotation/idealisation using a generative adversarial network 

(GAN) based on both real ion channel single molecule data from cultured chondrocytes. 

We demonstrate that the GAN generated raw ion channel data was similar to those 

obtained by real ion channel data. We assessed success of the GAN by three methods and 

in each they proved successful, but retain some limitations.   

A central problem in single molecule, including “ion channel” research is that analyses of 

data is laborious and frequently requires a degree of expert hand crafting to complete.  

The first step in such analysis is idealisation of the record, or in machine learning terms, 

annotating or labelling.  Each time point (of which there will be many million) needs to be 

annotated as to how many molecule pores are open at that instant.  This then becomes, 
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effectively, a two-dimensional representation of the data.  Currently, we are working with 

simple datasets with one type of molecule in the dataset, but in the future such analysis 

will extend this to more complex datasets.  Clearly new analysis methods will also be 

necessary to get the maximum amount of information from complex single molecule data.  

A number of tools have been developed to address these issues (Colquhoun, Hatton, & 

Hawkes, 2003; Gnanasambandam et al., 2017; Juette et al., 2016; Nicolai & Sachs, 2013) 

including our own Deep-Channel deep learning model (Celik et al., 2020).  For further 

development of similar or enhanced tools there is a lack of available training data.  There 

are two clear choices for such data; (i) real biological data that has been annotated in some 

way or (ii) synthetic datasets.  Both approaches have biases and severe limitations.  Real 

data cannot be perfectly labelled; the real ground truth is unknowable and so will only be 

an approximation. In practical terms, the longer the length of the real data, the greater 

the “ground truth” errors will be.  As a result, new machine learning methods will learn 

the errors of the existing technology.  Furthermore, only simple datasets can be annotated 

and so this sets an upper limit on the complexity of the datasets that could be analysed 

by potential new tools.  However, synthetic datasets also contain many biases and 

limitations, some of which may be entirely unanticipated or recognised.  Therefore, the 

starting problem that our work addressed here was to create very large datasets of ion 

channel single molecule activity that could be used to develop single molecule analysis 

tools.  We chose to investigate if GAN technology could provide a useful alternative source 

of data. In principle this would have the advantages of synthetic data in that one could 

produce unlimited amounts, but still retain nuance and subtle authenticity missed by 

mere simulation.  We are also hopeful that such synthetic data could be used in 

development of ion channel modelling software and may allow for a novel type of data 

inference, extracting critical features in datasets that may be overlooked by traditional 

analysis. Visual inspection, and analysis of our similarity metrics demonstrates that 

DeepGANnel can reconstruct faithfully simulate a number of different ion channel 

phenotypes.  Clearly the datasets are not identical (that would be simply a copy), but 

raises the question of whether the simulation is good enough to be useful.  To examine 
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this, we show in Figure 3.7 an example experiment.  We train our Deep-Channel model to 

analyse/idealise the data from phenotype C (Table 3.4, Figure 3.55C). Half of the small 

length of original raw data (75k datapoints equivalent to approx. 8 seconds of recording) 

is clearly insufficient to allow Deep-Channel to learn the appropriate features and idealise 

the remaining half of this dataset (Figure 3.7 A, B).  However, DeepGANnel, once trained 

can produce any amount of data similar to this original dataset (See Figure 3.5C).  We 

then trained Deep-Channel on this GAN dataset, 5x the size of the original, and 

performance is now acceptable (Figure 3.7D, E, F).  

 

Figure 3.7: Potential of DeepGANnel to facilitate Deep Learning Training on Physiological time series data.  
This demonstration uses data from ion channel Phenotype C.  The original raw data is 150k sample points. This was 
split into two 75k data sets, for training and for validation by our previously published labelling network Deep-
Channel  (13).    (A) Shows the training and validation accuracy; the accuracy on the training set itself is near perfect, 
but it fails to an accuracy of 0.5 (to predict open or closed) with the unseen validation dataset.  (B) Shows similar to 
(A), but with losses. Complete failure with the unseen validation set. Ergo, model training fails as is illustrated in (C) 
where the raw signal (top) is shown above the synchronised ground truth black and prediction red.   In the second 
part of this demonstration (D, E and F), we replace the training data with the GAN generated dataset of Phenotype 



 
111 

C, which could be any length, but in this example is 5x larger than the original.  Now Deep-Channel does much better.  
After about 5 epochs, performance against the validation dataset improves in terms of both accuracy (D) and loss 
(E) and the final product is well trained model (F).  There is close agreement between the ground truth (black) and 
the prediction (red). 
 

3.4.1 Comparisons of GAN methods to traditional synthesis 

methods 

The new GAN synthesis method will have strengths and weaknesses compared to 

stochastic Markovian model-based processes.  (1) Speed: Training a GAN takes a 

considerable time (hours), but simulation itself takes ms per record.   The usual stochastic 

methods produce records at the ms per record timescale, but do not need training. They 

still need laborious hand customising to simulate a particular phenotype of channel.  Our 

software only Markovian based simulations, written in Python, take about 8ms to 

generate one “record” whereas DeepGANnel, on our GPU workstations takes about 4ms 

(once trained).  It should be noted that Stochastic models will take n times longer to 

simulate data records with n channels within, whereas the GAN method would need 

retraining to a multi-channel dataset; but still take the same 4ms per record once trained.  

The method we used to create the training set in our DeepChannel project (Celik et al., 

2020) used stochastic simulation followed by passing these data through a real patch 

clamp amplifier.  This method was the slowest of all, producing data at less than real time 

(so approximately 1000x slower than other methods).  (2) Authenticity: Speed is not the 

objective of this work however, it is “authenticity”.  In the present paper, we provide 

metrics for authenticity in terms of UMAP/t-SNE cluster similarity for DeepGANnel, 

however there is no absolute way to do the same with stochastic methods.  The more effort 

the user puts into it, analysing noise and reproducing these, measuring single channel 

properties and encoding this, the closer it would become, but this entire laborious process 

would need to be repeated for every type of ion channel and condition to be simulated.  

With DeepGANnel, the user simply points the script at a new set of seed data.  

Fundamentally, stochastic data may include unrecognised biases since every feature must 

be hand crafted, and DeepGANnel would include artefacts found in native data that would 

likely be omitted using a stochastic approach.  The inclusion of these in training data 



 
112 

would be important for development of robust analysis software.  (3) A priori assumptions: 

DeepGANnel needs none, but stochastic simulation requires every detail to be estimated. 

However, stochastically generated data has the advantage that the experimenter could 

potentially develop software similar to HJCFit (Colquhoun et al., 2003; Gibb et al., 2018) 

and QuB (Nicolai & Sachs, 2013), to recover the hidden Markov model (HMM), and 

validate accuracy.  With a DeepGANnel simulated dataset the underlying HMM would be 

unknown, and need to be estimated with further software such as HJCFit, in the same 

way as one would do with real patch clamp data. 

Training of deep learning models such as DeepGANnel require some thought about loss 

functions and metrics. For example, in this work we use T-SNE and UMAP to measure 

the efficacy of the method on maintain the “characteristic nature” of the channel, a concept 

of which is extremely complex hard to formally define. Other, traditional measures of a 

model performance (such as studying the open/closed distributions of the output) may be  

misleading; a model may be able to reproduce a statistically identical distribution in one 

measure but still “look” fundamentally different from the real data (for example, if the 

noise is largely different). Furthermore, some usually unwanted elements of the data 

(such as artefacts or baseline drift), are highly desirable in the GAN output as they more 

accurately represent what is expected from lab recordings. 

3.4.2 Previous use of GAN for time-series data 

The literature includes previous examples where timeseries data can be simulated with a 

GAN (For example, (Zhu, Ye, Fu, Liu, & Shen, 2019)), but these lack the synchronous 

labelling critical in single molecule analysis or many other physiological studies.  

Generating single-molecule timeseries with a basic GAN (Vanilla-GAN) model should be 

very effective at producing authentic ion molecule signal patch-clamp signal, but this 

would lack the output of the critical timepoint-by timepoint labelling necessary to meet 

our goals of creating valid alternative datasets.  However, we have shown that using a 

2D-CNN based model in a shape of (samples x 2 x 1280 x 1) is very effective; with a small 

amount of carefully annotated seed data generating unlimited synthetic copies.  In 
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Figures 3.5 and 3.7 we show a direct comparison for a typical electrophysiological work 

up of both the original and DeepGANnel synthesised data.  On the supplementary 

information and public repository (https://github.com/RichardBJ/DeepGANnel), we 

include a movie of the training process.  The match between synthetic kinetic analysis 

and the real data is not perfect, but rather close.  The notable exception is that the longer 

states (both open and closed) are missing or have a diminished representation.  We 

attribute this to the necessity to use a finite window (“image” width or “record length”) 

size.  Also as stated in the methods this was cropped to remove leading and trailing 

artefacts.  Perhaps models using far greater window lengths would be possible, but this 

does not appear to be a major problem for our purpose (since most single molecule events 

durations are within this window) and it would increase the model complexity many-fold.  

This model took 24-48 hours to train on our system and note that performance peaked but 

would deteriorate if it was left indefinitely. Our code allowed automatic adjustment of 

learning rate as epochs progressed, but we still chose to stop the modelling manually.  The 

ever-increasing GPU power make ever larger window sizes less of an issue in the future. 

We summarise these strengths and weaknesses in Table 3.5. 

Table 3.5: Likely strengths and weaknesses of DeepGANnel versus traditional synthesis methods.  
This table summarises the pros and cons of DeepGANnel discussed and justified in the text.  By definition such 
comparisons can only be subjective because Traditional Methods vary (entirely dependent on a priori assumptions, 
that could be simple or complex), as do computing platforms. 

 Stochastic Simulation DeepGANnel 

A priori 

assumptions 

Everything must be estimated or assumed; 

channel size, rate constants, open channel 

noise, thermal noise levels, artifact 

frequency etc. 

None required. 

Authenticity Depends entirely on the accuracy of a priori-

assumptions.  

Highly authentic. 
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Speed Moderate speed. Slow to train, fast 

to simulate 

thereafter. 

GPU needed Typically, these are not used. Future 

stochastic models may use them. 

Realistically these 

are needed for 

training, although 

not for simulation 

itself. 

Markov Model  Could include Markovian model structure. May include 

Markovian 

structure, but this 

is not guaranteed. 

Need for seed 

data 

No.  The data can be completely imaginary. Yes 

Fully Labelled 

data 

Yes Yes 
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3.4.3 Future applications of GAN in electrophysiology 

The potential for further exploitation, of GAN technology in electrophysiology beyond the 

current use for creation of datasets is immense.  One future goal will be to simulate far 

more complex data signals, but we still have the limitation on how to acquire the fully 

annotated seed data in the first place. Potentially painstaking manual annotation of very 

short sections of data with known numbers of ion channel molecules by several human 

experts would be possible.  Furthermore, it is possible that single-molecule GAN could be 

used more directly in electrophysiological modelling.  Currently, single molecule 

behaviour within such models is derived by a set of differential equations based on a set 

of measured or even estimated parameters derived from curve fitting lab-recorded data  

(Feetham, Nunn, Lewis, Dart, & Barrett‐Jolley, 2015), but it may be possible in the future 

to use GAN to generate more realistic stochastic behaviour directly.  Additionally, future 

studies will investigate whether interpretability methods can be used to identify 

important, defining features within each different dataset that are missed either by eye 

or by standard single molecule analysis techniques.   The DeepGANnel approach will 

prove especially useful for generation of “raw” data, along with ground truth annotations 

as analysis methods move to using a big data approach; creating large datasets where 

underlying models are unknown or too complex to simulate stochastically.  Potentially 

also, our methods could be used to augment data in an analysis pipeline, for example to 

facilitate secondary analysis where only small samples of data are available. 

The architecture we present here, using deep learning to generate physiological timeseries 

data with continuous annotations, could also be adapted easily for additional usability for 

equivalent systems in physiology. For example, action potential or electrocardiogram 

simulation.  As proof-of-principle we show here that indeed DeepGANnel can easily 

synthesise telemetered ECG signal, again fully annotated (Figure 3.8).  In this example 

the annotation dimension (annotations were provided by Elaheh Sayari is merely beat 

(binary state 1) or no beat binary (0), but this could easily be extended to include P-wave 

(categorical state 2), T-wave (categorical state 3), or abnormal event (categorical state 4) 
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etc with trivial code adaptation.  Another example would potentially be Nanopore data 

which has similar data output to patch-clamp data. 

 

Figure 3.8: General usability of DeepGANnel for 2-dimensional physiological time series data. 
In this example we fed rodent ECG data (dimension 1) along with a beat annotation (dimension 2, peak of r-wave, 
provided by Elaheh Sayari) into DeepGANnel and trained with 10,000 epochs until realistic rodent ECG data was 
generated. Data collected via electrocardiogram transmitters from male Wistar rats (ETA-F20; Data Sciences 
International, St Paul, MN, USA) as previously described (44), briefly ECG signal was digitized to a PC with a CED 
Micro1401 using Spike2 at 5 kHz. In principle this could also be encoded with further annotations such as t-wave 
(note rats do not show a significant p-wave). 
 

In summary, GANs are increasingly proving a viable method to generate synthetic 

datasets for biological research, and here we show an implementation that allows 

simulation of time dependent single molecule (patch clamp ion channel protein) activity 

along with a continuous state annotation that is extendable for an array of physiological 

uses.  For the remainder of this thesis, however, we used Markovian based synthesis based 

methods described in Chapter 2, rather than DeepGANnel, since one of the limitations 

reported above is the lack of a ground truth Markovian state, critical to development of 

the novel models developed in this PhD. 
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4 Testing Canonical Forms of BK Channel 

Markovian Models 

4.1 Introduction 

As discussed previously, in normal physiology, ion channels pass-through a number of 

states in a Markovian process (Bruno, Yang, & Pearson, 2005; Sivilotti & Colquhoun, 

2016).  These states correspond to open and closed configurations of the channel; with the 

potential for many hidden states to correspond to either conformation. This leads to a 

situation where individual ion channel behaviour can be described by a continuous time 

hidden Markovian structure.   

Continuous time hidden Markov models (CT-HMMs) can be defined with a set of hidden 

states 𝑆, visible states 𝑉, a hidden transition rate matrix 𝑄, and an emission matrix 𝐸. 

The rows in 𝑄 sum to zero, in a way such that the diagonal entries 𝑞𝑖𝑖 are the negative 

sum of the other entries in the row. The dwell time in each state 𝑖 ∈ 𝑆 is exponentially 

distributed with 𝑓(𝑡) = 𝑞𝑖𝑒−𝑞𝑖
𝑡
, and the probability of moving from state 𝑖 to 𝑗 being 𝑞𝑖𝑗 𝑞𝑖⁄ , 

where 𝑞𝑖 =  ∑ 𝑞𝑖𝑘𝑘 . In addition to this hidden process, for each dwell a visible state 𝑧 ∈ 𝑉 is 

selected from the emission matrix 𝐸, with probability 𝑣𝑖𝑧/𝑣𝑖, where 𝑣𝑖 =  ∑ 𝑣𝑖𝑘𝑘 . In practice, 

the hidden Markov state is not visible, but the visible states from the emission matrix are, 

along with how long they spend in those visible states (the dwell times). These transition 

rate matrices govern the underlying mechanism of the process, but are non-trivial to 

obtain.  

Some of these Markov transition rate matricies are simple such as the “5 state’ 

Markovian model of a BK Channel described in Chapter 2.1.1 (Davies et al., 2010) 

(Figures 4.1, 4.2) whereas others can be highly complex with many more hidden states, 

such as the Cox model of a BK channel (Cox, Cui, & Aldrich, 1997) (Figures 4.3, 4.4). 
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Furthermore, we can define arbitrarily simple Markovian models such as the “3 state” 

model in Chapter 2.1.1 for an easier to understand example (Figures 4.5, 4.6).   

 

Figure 4.1: The “5-state” Markovian model diagram (A) and its corresponding transition rate matrix (B).  
The “5 state” model is taken from Davies et al. as a rate-fitted model of a BK channel’s kinetics. A shows the model 
diagram, with green states representing open states and red closed states. The transition rate matrix (B) shows how 
this is interpreted mathematically, with the negatives on the diagonal corresponding to the mean time to spend in a 
state. The rest of the rates on a row show the proportional chance to change to that column’s state – for example in 
open state 0 there is a far higher chance of travelling to closed state 4 than open state 1. The open-open connection 
makes training deep learning networks difficult, as a changes in state from 0 to 1 will not cause a change in 
conductance level. 

 
Figure 4.2: Example output of a simulation from the “5-state” model at 10kHz. (A), it’s corresponding state at 
each timepoint (B), and the channel’s open/closed configuration at each timepoint (C).  
Data was simulated at 10kHz with 1/f^n noise added in post. In the 5-state model, we see a significant amount of 
“flickering”; events which are extremely short and only a few samples long. This is common within ion channel 
recording, but such events are sometimes filtered out using a dead-time filter. 
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Figure 4.3: A ten state Markovian model diagram from Cox et al. (A) and its corresponding transition rate 
matrix (B).  
This ten state model is more complex rate-fitted model of a BK channel’s kinetics. A shows the model diagram, with 
green states representing open states and red closed states (due to the number of transitions, rates are omitted from 
the diagram but visible in the matrix). The transition rate matrix (B) shows how this is interpreted mathematically, 
with the negatives on the diagonal corresponding to the mean time to spend in a state as in Figure 4.1a. As with the 
5-state model, we see many open-open transitions and close—closed transitions; this makes analysis significantly 
more difficult. 
 

 

 

Figure 4.4: Example output of a simulation from the ten state model at 10kHz. (A), it’s corresponding state at 
each timepoint (B), and the channel’s open/closed configuration at each timepoint (C).  
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Data was simulated at 10kHz with 1/f^n noise added in post. Here we see the model rapidly changing within the 
open states or closed states having no impact on the channel’s open/closed configuration (in particularly around 
0.5s, where the channel switches between O4 and O5 many times). 

 

Figure 4.5: The “3 state” Markovian model diagram (A) and its corresponding transition rate matrix (B).  
The “3 state” model is the simplest Markovian model with multiple hidden states corresponding to one open/closed 
visible state (in this case, two closed states in red). A successful Markovian deep learning model will not only detect 
the open/closed nature of the data, but identify which closed state it is in given its dwell time. The transition rate 
matrix (B) shows the structure of a Markovian transition rate matrix. The dwell times are entered in the non-diagonal 
entries, with the diagonal entries being equal to the negative sum of the other row values. The 3-state model 
topology was chosen as the simplest possible model that still exhibited multiple hidden states with the same 
open/closed configuration; with the rate constants chosen for a clear discrimination for the two types of closed 
events (a “long” close and a “short” close).  
 
 

 

Figure 4.6: Example output of a simulation from the “3 state” model at 10kHz. (A), it’s corresponding state at 
each timepoint (B), and the channel’s open/closed configuration at each timepoint (C).  
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This model’s parameters were chosen specifically for longer dwell times that are visually easy to resolve; with C2 
forming (on average) dwell times ten times as long as C1. The stochastic nature of this process (and why C1 still 
exhibits some long dwell times), along with a method to mitigate the impact of it is discussed in more detail in 
Chapter 6. 
 

Markov models are represented by their transition state matrices, 𝑄, which can be 

partitioned by rearranging the rows and columns into rates between closed states 𝑄𝐶𝐶, 

closed to open states 𝑄𝐶𝑂, open to closed states 𝑄𝑂𝐶, and open states 𝑄𝑂𝑂: 

𝑄 = [
𝑄𝑂𝑂 𝑄𝑂𝐶

𝑄𝐶𝑂 𝑄𝐶𝐶
] 

From this representation the joint distributions for dwell times can be written as: 

𝑓𝑐(𝑡𝑐) = π𝑐𝑒𝑄𝐶𝐶𝑡𝑐𝑄𝐶𝑂𝑢𝑜  

𝑓𝑜(𝑡𝑜) = π𝑜𝑒𝑄𝑂𝑂𝑡𝑜𝑄𝑂𝐶𝑢𝑐  

𝑓𝑐𝑜(𝑡𝑐 , 𝑡𝑜) = π𝑐𝑒𝑄𝐶𝐶𝑡𝑐𝑄𝐶𝑂𝑒𝑄𝑂𝑂𝑡𝑜𝑄𝑂𝐶𝑢𝑐  

𝑓𝑜𝑐(𝑡𝑜 , 𝑡𝑐) = π𝑜𝑒𝑄𝑂𝑂𝑡𝑜𝑄𝑂𝐶𝑒𝑄𝐶𝐶𝑡𝑐𝑄𝐶𝑂𝑢𝑜  

Here π𝑐 , π𝑜 are row vectors whose ith element is the initial state probability that a 

closed/open interval begins in closed/open state i, and 𝑢𝑐 , 𝑢𝑜 are column vectors of ones, 

one for each open/closed state. 

Kienker (Kienker, 1989) describes that if these joint distributions are equal for two ion 

channel Markov structures, their kinetic behaviour will be identical. Furthermore, 

Kienker’s work identifies that multiple transition rate matrices produce the same set of 

distributions; meaning there can be many correct transition rate matricies fitted for one 

set of ion channel data.  

One of our goals in this project (see Objectives, section 1.5 b) ) is to attempt to directly 

recover Markovian state using deep learning architecture. Crucially, deep learning 

algorithms depend on a single source of “ground truth” to train; most Markovian models 

will have a number of functionally identical formulations; that when simulated will give 
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an equivalent timeseries and kinetic analyses. This may make model evaluation 

unreliable as a model may predict an equivalent, but different model to the physiological 

dogma (such as existing Markov schemes in the literature) and therefore give seemingly 

incorrect outputs.  

A representational form for a class of equivalent Markov models that give equivalent 

functional outputs is known as the canonical form.   For example the Bauer-Kienker 

Uncoupled (BKU) form (Barbi & Petracchi, 1992; Kienker, 1989) results in a structure 

with no closed-closed or open-open transitions (Figure 4.7). Restricting our dataset to only 

include canonical forms would eliminate this equivalence concern. Furthermore, the BKU 

form specifically may increase model performance, as a change in state always 

corresponds to a change in open/closed configuration; and therefore a large change in 

current. In Kienker’s work however, he discusses that this form may contain negative rate 

constants leading to a physiologically infeasible model; but the conditions for which this 

infeasibility occurs is not explored. 

 

Figure 4.7: (A) Example of BKU form structure with ordering (B) BKU structure of a transition rate matrix.  
Equivalences between continuous time hidden Markov models present a problem for machine learning algorithms, 
as the existence of a consistent, unique ground truth state is not possible, as a neural network model might internally 
derive a different, but equivalent model to the one used to generate the labels. An approach to solving this is to use 
an applied version of the Bauer-Kienker uncoupled form (A), known as a type of canonical form that exists for every 
ion channel Markovian model. The transition rate matrix of a BKU canonical form takes a unique structure (B); blue 
areas represent non-zero terms. Notice how the 𝑄𝐶𝐶  and 𝑄𝑂𝑂  matricies are diagonal (only have non-zero terms along 
the diagonal). This form is achieved by diagonalisation of the Q_cc and Q_oo matricies separately, followed by a 
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calculation of the resulting Q_co and Q_oc matricies as these do not have to be diagonal. This structure directly 
results in a decoupled Markovian structure, where no closed-closed or open-open connections are present. 

 

Therefore, the aim of this chapter is to generate the canonical forms for Markovian models 

of ion channels to examine their feasibility for use in deep learning training. 

4.2 Methods 

As detailed in Chapter 2.1.1, we use 2 Markov models for the data simulation for 

Markovian deep learning. Along with these two models, we will consider a third, more 

complex model for the calculation of a canonical form to examine if more complex 

Markovian models reliably convert to a canonical form. 

We start by rearranging the transition rate matrix 𝑄 into the form above, splitting the 

matrix into rates between closed states 𝑄𝐶𝐶, closed to open states 𝑄𝐶𝑂, open to closed states 

𝑄𝑂𝐶, and open states 𝑄𝑂𝑂: 

𝑄 = [
𝑄𝑂𝑂 𝑄𝑂𝐶

𝑄𝐶𝑂 𝑄𝐶𝐶
] 

 

Note that 𝑄𝑂𝑂 and 𝑄𝐶𝐶 must both be square, but 𝑄𝐶𝑂 and 𝑄𝑂𝐶 not necessarily so. Then if 𝑃 

is our matrix in BKU form, then by definition, 𝑃𝑂𝑂 and 𝑃𝐶𝐶 must both be diagonal matrices, 

since there are no connections between open and open, or closed and closed states. Kienker 

describes that to convert a matrix into BKU, we need to diagonalize 𝑄𝑂𝑂 and 𝑄𝐶𝐶; typically 

this is achieved using a transformation matrix 𝑆 of the form: 

𝑆 = (
𝑆𝑂𝑂 0

0 𝑆𝐶𝐶
) (22) 

Where 𝑆𝑂𝑂 and 𝑆𝐶𝐶 are made up of the eigenvectors of −𝑄𝑂𝑂 and −𝑄𝐶𝐶 respectively 

(negative since we want the diagonals to also be negative, to satisfy the Markov transition 

rate matrix definition). We also choose the multiplicities of these eigenvectors so that the 
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rows of the transformation matrices sum to one.  We can then transform 𝑄 to BKU form 

by using: 

𝑃 = 𝑆−1𝑄𝑆 (23) 

The resulting transition rate matrix for the method above is only unique up to the 

relabelling of states; however this can be fixed by labelling states in order of the negative 

diagonal value; if sorting in ascending order (most negative first), this corresponds to the 

‘shortest’ states first, and the ‘longest’ states last. (Figure 4.7). 

To achieve this with our data processing pipeline, the DeepMICA library includes code for 

converting a Markovian model to canonical form 

(https://github.com/stmball/DeepMICA/blob/main/generate.py#L611). For this work, the 

Markovian models were encoded into the DeepMICA library and converted using this 

method. 

4.3 Results 

The first of our models (the “3 state model”) is already in canonical form; as there are no 

open-open or closed-closed connections. 

The second of our models (the “5 state model”) is not in canonical form – conversion to 

canonical form yields the transition rate matrix and diagram seen in Figure 4.8 and is 

physiologically invalid as there are negative non-diagonal rate constants between the first 

open state and the second and third closed states. 

https://github.com/stmball/DeepMICA/blob/main/generate.py#L611
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Figure 4.8: “5-state” Markovian model and its BKU Canonical Form (B, C). 
An experimental model taken from literature (Davies et al., 2010)  derived via curve fitting (A) does not produce a 
valid BKU canonical form (B,C) due to negative rate constants between states (shown in red). Since we cannot 
sample from an exponential distribution with negative constants, the canonical form is an invalid Markovian model 
and we cannot simulate data from it. B shows this diagrammatically; whereas C shows the canonical transition rate 
matrix. 

 

Figure 4.9: Ten state Markovian model (A) along with its BKU Canonical (B,C) . 
The other experimental model from Cox et al. yields the canonical form seen in B and C. Due to the number of 
parameters in the canonical model, labels were omitted and are instead visible in the transition rate matrix C. We 
see that although the canonical structure is correct, we have many negative non-diagonal rate constants (circled in 
red) in the resulting transition rate matrix, making this an invalid Markovian form; and therefore impossible to 
simulate data from. 
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Finally, the third of our models from Cox et al. (Cox et al., 1997) is also not in canonical 

form initially. Conversion to canonical form again gives many non-diagonal rate constants 

and is therefore physiologically invalid (Figure 4.9). 

4.4 Discussion 

We have calculated the canonical forms for 3 Markovian models, two of which are from 

the physiological literature. Of these 3 models, one was already in canonical form, and the 

other two produced physiologically invalid canonical forms after the diagonalisation 

process was performed. 

These canonical forms would have been helpful for deep learning as they would have 

improved reliability of the models in production; as there would be no chance of an 

equivalent but different model being predicted by the model compared to what was 

expected by the user. However the negative rate constants for the physiological models 

would be unhelpful in further analysis and therefore are not worth considering; no 

simulations can be done for a transition rate matrix with negative constants as the 

exponential distribution requires these parameters to be strictly positive. 

Due to the linearity of the transformation given by Kienker (Kienker, 1989), small 

adjustments to the original transition rate matrix will only have a similarly small effect 

on the canonical matrix – meaning we cannot make a small consideration to our model to 

allow a valid canonical form. Similarly, drug action that affects ion channel kinetics 

significantly (and therefore produces large changes in the transition rate matrix) may 

push the Markovian model into having an invalid canonical form. This drawback makes 

the BKU form difficult to use in practice. 

For a canonical form to exist without allowing for relabelling of state numbers, we order 

the states within the open and closed classes by their expected dwell times. Under the 

effects of substances the kinetic structure of the ion channel may change, and this 
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ordering may become inaccurate. This arbitrary ordering introduces discontinuities in the 

canonical form. 

One solution would be to use a different canonical form; other canonical forms have been 

suggested as alternatives to the BKU canonical form such as the MIR form (Bruno et al., 

2005), and another from Larget (Larget, 1998) however both of these canonical forms have 

open-open and closed-closed connections. Intuitively, these state transitions would be 

harder for a network to detect from a current trace as there would be no accompanying 

change in channel opening, and hence no “current jump” as with closed-open state 

transitions for the model to detect.  
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5 A Comparison of different neural network 

architectures for Naïve recovery of 

Markovian State on simulated data 

5.1 Introduction 

 It is thought that the underlying mechanism in which ion channels open and close is 

Markovian; that is, in addition to possibly having a single “open” and “closed” state, ion 

channels may instead move through a number of different “open” and “closed” states each 

with different mean dwell times (McManus & Magleby, 1988; Yoshida, Oda, & Ikemoto, 

1991).  An important task in single channel analysis would be the ability to recover such 

Markovian states, especially in diseases or in the presence of substances that may cause 

subtle changes in kinetics and the Markovian process, with potentially dangerous effects.  

It is also thought that Markovian states may have some relation to the physical 

configuration of the protein (Cox et al., 1997) and recovering this Markovian state from a 

patch clamp electrophysiology signal is therefore of great interest to researchers as it may 

encode additional structure-function information about ion channels. Although existing 

methods exist to recover Markovian states retrospectively from an ion channel signal, 

these either idealise the ion channel signal beforehand, or are still relatively 

computationally expensive. 

Deep learning has been proven to recover complex information from noisy data and has 

also been shown to have high-accuracy idealisation (beating other methods) for ion 

channel recording idealisation, under a limited set of conditions (Celik et al., 2020) 

Therefore, this chapter aims to develop and test deep learning models that can directly 

recover Markovian states, bypassing the traditional workflow of applying the Baum-
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Welch or Viterbi algorithms to idealised ion channel data to recover the underlying 

Markovian state. We conduct a quantitative comparison of several deep learning model 

architectures, identifying the advantages and disadvantages of each. This analysis is 

carried out while adhering to common pre-processing steps in the pipeline. 

5.2 Methods 

5.2.1 Model Design 

 

Figure 5.1: Different approaches to classification using RNN (A) and CNN (B) based architectures. 
In the recurrent architecture, points are sequentially classified one-by-one in the model (shown in red), using previous 
information with decreasing weights as the time distance increases. For LSTM based RNN networks, this “fading” 
weighting (represented by red) on past data is not infinite and gets cut at a trained number of points. For CNN 
models, we process a number of points together, forming “windows”. The advantage of this case is far larger 
throughput (in our case, 1024 points get processed at a time) – however the models tend to be a lot larger due to the 
fully connected layer at the end. 
 
 

We design 6 model architectures: SimpleCNN, LSTM, DeepChannel, SplitCNN, ResNet 

amd UNet. The first two models are simple architectures centred around two types of deep 

learning cell (LSTM recurrent and 1D-CNN convolutional). These are essentially small 

pilot models providing a baseline to see what type of cell is most promising. The recurrent 

model predicts the individual points on a point-by-point basis in turn, with the recurrent 

nature of the model allowing for past points to be used as an input to the recurrent cells. 

Due to the nature of LSTM cells, the number of past points to be used as an input to the 

LSTM cell (forget gate parameter) is a finite parameter controlled by the backpropagation 

algorithm. On the other hand, the convolutional networks use a “window” based method, 
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where the input to the model is a fixed number of points, with the model giving a 

classification for each point in turn. This model results in a larger model (greater numbers 

of parameters to fit) but allows for a grouped processing of points, forcing the model to 

consider the entire window for each point it classifies. This window size forms a trade-off 

where more points exponentially increase model size, but gives more context to the model 

to classify each point. Figure 5.1 illustrates the difference in these two approaches, and 

Figures 5.2, 5.3 and 5.4  show model diagrams for the architectures used in this chapter. 

 

Figure 5.2: Model architectures for the “Simple CNN” (A) and “LSTM” (B) models.  
These models are simple examples of neural networks of the recurrent and convolutional types. The ”Simple_CNN” 
model has two layers of convolutions followed by a fully connected layer, with added dropouts and max pooling 
layers for performance. For the 3-state datasets this model has 11,777,872 parameters. The ”LSTM” model has two 
layers of LSTM cells followed by a fully connected layer; this model has significantly fewer parameters than the CNN 
model (4,205,571 for the 3-state datasets), but predicts the points on a per-point basis rather than together in 
windows of 1024.  
 

We then implement two models from problem specific literature; DeepChannel (Celik et 

al., 2020) is a hybrid recurrent-convolutional network that has been proven to successfully 

idealise real ion channel data, with greater accuracy than traditional algorithms in the 

scenarios used in the ground breaking paper (Celik et al 2020]. Like the simple recurrent 

model, it predicts the number of channels point by point; however, it made no attempt at 

recovering the underlying Markovian state. In this work, we retrain the model on the 

Markovian datasets to extend its functionality to Markovian recovery. The other model 
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(SplitCNN) from the literature we consider is DeepSleepNet (Supratak et al., 2017); a 

split-convolutional based model that has “coarse” and “fine” feature recognition through 

implementing a large kernel and small kernel for two different convolutional pathways. 

This model has been shown to be able to recover the underlying Markovian sleep stage 

state from EEG signals, so solves a similar problem to the one presented in this chapter. 

Figure 5.3 shows model diagrams for these implementations. 

 

Figure 5.3: Model architecture diagrams for DeepChannel (A) and the SplitCNNModel (B). 
Both of these models are adapted from the literature – DeepChannel (CITE) has shown state-of-the-art performance 
on ion channel idealisation, and the SplitCNN model approach has been seen to work for sleep stage detection in 
DeepSleepNet (CITE). Both models have been adapted for Markovian state recovery of simulated ion channel data. 
Similar to the ”simpler” models, the RNN-based DeepChannel model has significantly fewer parameters (1,383,299 
for the 3-state datasets) than the SplitCNN model (17,289,072), however again predicts point-by-point rather than 
in groups of 1024. 
 

Finally, two models, ResNet and U-Net, are adapted from state of the art, highly 

sophisticated deep learning research on image analysis to time series analysis. ResNet 

(He et al., 2015) is an extremely deep neural network that utilises “skip” connections to 

avoid the effect of diminishing returns from additional layers. This model is typically used 

for holistic classification of images; taking a large two-dimensional image array and giving 

it a single class at the end; however I adapted this for use with one-dimensional time 

series arrays by including a large dense layer at the end for point-by-point classification. 

U-Net (Ronneberger et al., 2015) is a similar model that also uses skip connections, but is 
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usually used for image segmentation through a series of deconvolutional layers to recover 

the original image size, similarly to an auto-encoder. for the present work I adapted this 

by converting the 2 dimensional cells in the original schema to one dimensional cells; and 

as our problem is equivalent to segmentation (labelling each input point as a fixed number 

of classes), no further adaptations were needed. Figure 5.4 shows model diagrams for 

these architectures. 

 

Figure 5.4: ResNet (A, B) and Unet (C) model architecture diagrams. 
ResNet and UNet are state-of-the-art solutions for image classification and segmentation respectively; by 
converting the 2 dimensional neural cells into 1 dimensions, we can adapt them to be used with time series data. In 
ResNet’s case, we have to adjust the output to be a classification for each point, rather than a classification for the 
whole timeseries (as in the typical implementation); but no such adjustment has to be made for UNet as our problem 
is equivalent to one-dimensional time series segmentation. The UNet model has 10,463,747 parameters for the 3 
state datasets, and (due to the point-by-point classification adjustment) the ResNet parameter number is the largest 
of all the models at 57,570,756 for the 3 state datasets.  

Figure 5.5 shows a comparison of parameter count for models training on the 3 state 

datasets; we can see the CNN models have vastly more parameters than their RNN 

counterparts; some caution should be taken into interpreting this as the models having 

poorer performance; as the CNN models can leverage GPU acceleration via CUDA 

acceleration as well as process files in batches in 1024 point windows, reducing the 

number of inputs needed to idealise a file. 
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Figure 5.5: Comparison in model sizes by number of parameters for all models tested. 
The number of parameters a model has positively affects its ability to learn abstract patterns, at the cost of 
performance and the risk of overfitting to data. Models such as ResNet utilize a significantly larger amount of 
parameters than the simpler recurrent models, due to the depth of their architectures. It’s important to state that 
training time is not directly proportional to the number of parameters – models using CNN layers can utilize CUDA 
accelerated learning via the GPU, so train significantly faster. In addition, the CNN based models are predicting 
groups of 1024 points at once, meaning that their effective speed may be much faster. 

 

5.2.2 Dataset Generation 

Lab recorded data has no Markovian ground truth, so it is difficult to train a neural model 

as no loss function can be accurately calculated. We use a synthetic data pipeline (see 

Chapter 2.1.1) with two Markov configurations, and test for model’s robustness against 

data with or without baseline drift, and with or without small perturbations of the 

Markovian model; resulting in a total of 8 different dataset classes for each combination 

above. For each combination below, 48 files were generated for training, 48 for validation, 

with 24 for testing, with each file having 10 minutes of data at 10kHz, as would be seen 
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in a realistic ion channel recording. A diagram with the dataset generation can be seen in 

Figure 5.6.  

 

 

Figure 5.6: Data Generation Protocol. 
For the Markovian datasets, 8 families of data were generated, each with 48 files of validation, 48 files of training, 
and 24 files of testing, each at 10mins of data at 10kHz each.  The 8 dataset families come from the combinations of 
the different choices colored in the figure; first, either the 3-state or 5-state model is chosen (see Figure 5.7), and 
either sampled with fix parameters, or sampled with perturbing parameters (see methods) to obtain a sequence of 
states and dwell times that in total exceed 10mins. Finally the data is interpolated to a signal assuming a sample 
rate of 10kHz, using either scaled 1/f^n noise (with parameters chosen to qualitatively match lab recorded data), or 
this noise in addition to a “drift term”; another 1/f^n noise with a larger n, representing a slow but random change 
of the current over time. 

 

5.2.2.1 Markovian Models 

The two Markovian models used for data generation can be seen in Figure 5.7. The “3 

state” model is the simplest non-trivial Markovian model to test for state recovery. We see 

a “short open” and a “long open” that are significantly different, so a successful model 

should be able to discern the difference between the events by considering the length of 

each of these events. 
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Figure 5.7: “3-state” (A) and “5-state” (B) Markovian model diagrams used for two different types of data 
generation for training. 
To discern if our neural networks can detect the underlying Markovian state, we use two Markovian schema; the 
simplest possible Markovian model that still exhibits hidden states (A), and a rate-fitted Markovian model taken 
from Davies et al. (B). In total we generate 8 datasets, half of which are sampled from the 3-state model and half 
from the 5-state model. The motivation behind this is to test models’ performance on both theoretical, ”best case” 
Markovian processes versus what is more normally seen in the lab. 

 

The ”5-state” model comes from a Markovian model experimentally fitted from real ion 

channel data (Davies et al., 2010). It is significantly harder than the 3-state model for a 

number of reasons: the additional number of states naturally introduces a higher error 

rate, but the lack of a visible state change between the open states results in some 

confusion as to the hidden state the simulation currently holds. A successful neural model 

should still be able to infer that a particularly short-closed event (C3) is extremely likely 

to have two open events succeeding it if the next closed event is particularly long (C1). 

Our initial approach to this problem was to use an uncoupled canonical form such as BKU; 

however as we concluded in Chapter 4, this often leads to models that are invalid in 

“physiological space”.  Datasets are labelled with their Markovian model; either “3-state” 

for the 3 state Markovian model or “5-state” for the 5 state model. 
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5.2.2.2 Transition Rate Matrix Perturbation 

For each Markov model, we consider two cases; one where the Markov model is static 

across all datafiles and one where we perturb the transition rate matrix to simulate a 

drug effecting the dynamics of the ion channel. This perturbation must be done carefully; 

if we change the structure of the Markovian model too much then we encounter some 

confusion with Markov model equivalencies, whereas not adjusting the transition rate 

matrix enough will not test for drug effects at all. We therefore implement an algorithm 

where a randomly chosen multiplier for each rate matrix entry is chosen from a triangular 

distribution (from 0.75x to 1.25x), and multiplied with the transition rate matrix for each 

file. This preserves the Markov model structure (no new connections across states are 

made), and proportionally changes each of the dwell times stochastically to maintain the 

order of magnitude. Although this might not exactly model drug action (where typically 

only a few rate entries are changed), this method tests for additional robustness due to 

recorded variances in kinetics.  Datasets with perturbed transition rate matrices are 

labelled “perturbed”, and those without, “static” 

5.2.2.3 Noise and Baseline Drift 

The noise seen in ion channels is complex and depends on the channel, conditions and 

equipment used. Therefore, we test for each dataset across a range of situations, along 

with the presence or absence of a baseline drift term. This long-term noise element proves 

difficult for other, traditional algorithms to overcome, yet is often present in real ion 

channel data. Overcoming this type of noise and achieving a recovery of Markovian state 

despite it is vital for real world application; as such, for all files we randomly add a channel 

scaled 1/fn noise with n chosen randomly between 0.8 and 1.4, signal to noise ratio between 

2 and 5, and channel scaling factor between 1.1 and 1.5. For the drift datasets, we 

additionally add a 1/fn with n between 3.5 and 4.5 and signal to noise ratio above 5 (see 

Methods chapter 2.2 for how this affects the output signal).  These values were chosen by 

inspecting lab recorded data and comparing the outputs of the simulations qualitatively. 
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An example of both non-drift and drift data samples can be seen in Figure 5.8.  In total 

these procedures produced 8 different simulated ion channel record “phenotypes”.  

Datasets are labelled “no drift” for those without the additional drift term added, and 

“drift” for those which have. 

 

Figure 5.8: Training data examples for non-drift (A,B) and drift (C,D) datasets. 
For half of the dataset families, a ”drift” noise term was added to simulate the long term baseline drift experienced 
when recording real data in a lab. The non-drift dataset (A, B) stays mainly between 0 and 1.5pA; with some variation 
due to the random nature of the noise. The drift datasets (C, D) on the other hand have a “noise” term added causing 
a slower, but larger variation of the current over time, as is typically seen in lab recordings. A and C show these 
respective datasets over a single second of simulation, whereas B and D show the larger trend over 10 seconds of 
data. Dotted blue and red lines show the default closed and open conductance levels respectively. 
 

5.2.3 Training Protocol 

For training, we employed two Keras callback functions to dictate when training ended; 

if the model’s performance against the validation set did not improve within 5 epochs, the 

learning rate was reduced by a factor of 10, and if the performance still did not improve 

within 20 epochs, training stopped entirely. After training, each model was then evaluated 

against each file in the testing set, where accuracy, F1 Score and Cohen’s Kappa Score 

were all recorded for both the state recovery and open/closed idealisation.  In each case 

we present results from both the full Markovian recovery and the so called “reduced” 

recovery which is simply detection of open and closed, essentially idealisation. 
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5.3 Results 

After training all 6 neural networks on the 8 dataset phenotypes, we recorded the  micro 

F1Score and Cohen’s Kappa score for the model’s prediction versus the ground truth for 

each point in the testing dataset. Figures 5.9 to 5.32 show the performance metrics for 

each model.  

5.3.1.1 Static 3-State Model Without Drift 

This dataset represents what one would expect to be the easiest for a model to decode.   

Figure 5.9 shows an example of raw data with the recovered idealization below, with both 

model prediction and ground truth for each of the 6 models (LSTM, DeepChannel, 

SimpleCNN, SplitCNN, ResNet and U-Net).  Visibly, there is some success although areas 

of failure, furthermore the LSTM and DeepChannel data look similar, but different to all 

the other 4 models that in fact look similar to each other. This is supported by the 

quantitative data; Figure 5.10 shows Cohen’s Kappa validation results for each model 

applied to these data with 24 replicates.  Figure 5.10 is the reduced result representing 

full Markovian recovery.  The most successful models are the Simple and Split CNN 

models, achieving respective Kappa scores of 0.8164  0.0725 and 0.8475  0.0735 (n=24). 

These perform better than the very large ResNet and UNet models (0.7708  0.1962, 

0.7951  0.0301, n=24 respectively) in this scenario and statistically significantly better 

than the original, published, DeepChannel model or a simple LSTM recurrent model 

(0.3850  0.0652, 0.3877  0.0618, n=24 respectively).   

In terms of simply open/closed idealization (“reduced” Kappa), the pattern is generally 

similar, but DeepChannel and LSTM models do perform more closely (0.7266  0.1556, 

0.7418  0.1467, n=24 respectively) to the Simple and SplitCNN models (0.9475  0.0461, 

0.9538  0.0510, n=24 respectively).   The fact that all these models have Cohen’s Kappa 

significantly greater than zero indicates that they do all provide highly significant 

idealization and recovery of Markovian state beyond chance.  Figures 5.11 show the same 
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data but analyzed with micro F1.  The results parallel those of Cohen’s Kappa, but note 

that with the simple idealization (“reduced F1”) all models achieve micro F1 of over 90%. 

 

Figure 5.9: Sample Model Traces for “Static Three State Model with No Drift” Dataset.  
Shown is 1 second of data at 10kHz in black along with each model’s predictions (red) versus the ground truth (blue). 
For each model, both the Markovian recovery (left) and conductance level (open/closed) (right) is shown.We see 
LSTM and DeepChannel models experience low performance and a high amount of “flickering” between states, 
whereas the SimpleCNN, SplitCNN, ResNet and UNet models are all fairly accurate with their predictions. 
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Figure 5.10: Model Training Metrics for “Static Three State Model with No Drift” Dataset for both Markovian 
recovery (A) and channel recovery (B). 
Two way ANOVA showed significant differences of the models for Cohen’s Kappa score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all models were 
significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an ”NS” denote no significance (p 
> 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote 
significant between 1 and 0.1%. 
 
 

 

 

Figure 5.11: Model Training Metrics for “Static Three State Model with No Drift” Dataset for both Markovian 
recovery (A) and channel recovery (B). 
Two way ANOVA showed significant differences of the models for micro F1 score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all models were 
significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p 
> 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote 
significant between 1 and 0.1%. 
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5.3.2 Static Three State Model With Drift.  

With this dataset phenotype there is the addition of a drift noise term.   Figure 5.12 shows 

an example of raw data with the recovered idealization below, with both model prediction 

and ground truth for each of the 6 models.  As with the no-drift data above, the raw data 

the LSTM and DeepChannel look very similar and this is matched by the metrics. Figure 

5.13 show the Kappa scores for the full Markovian and simple idealization respectively.  

On the full Markovian (“unreduced”) predictions the SimpleCNN is the strongest (0.7883 

 0.0467, n=24) whereas DeepChannel and the LSTM perform worse (0.3547  0.0713, 

0.3640  0.0672, n=24 respectively), (with the exception of ResNet), although still much 

better than chance.   Strikingly, ResNet has failed with a Kappa score of 0.  This is 

apparent from the raw data (Figure 5.10A) and the F1/Kappa metrics. For the simple 

reduced idealization, recovery simply of open or closed state the margin is smaller, but 

the overall pattern of performance is similar.  The micro F1 scores, presented in Figure 

5.14 are analogous, but note that ResNet now performs very poorly. 
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Figure 5.12: Sample Model Traces for “Static Three State Model with Drift” Dataset 
Shown is 1 second of data at 10kHz in black along with each model’s predictions (red) versus the ground truth (blue).  
For each model, both the Markovian recovery (left) and conductance level (open/closed) (right) is shown. As with the 
non-drift dataset, we see LSTM and DeepChannel models experience low performance and a high amount of 
“flickering” between states, whereas the SimpleCNN, SplitCNN, ResNet and UNet models are all fairly accurate with 
their predictions. 
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Figure 5.13: Model Training Metrics for “Static Three State with Drift” Dataset for both Markovian recovery 
(A) and channel recovery (B). 
Two way ANOVA showed significant differences of the models for both F1 score and Cohen’s Kappa score (p < 0.001) 
and between the datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all 
models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an ”NS” denote no 
significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 

 

Figure 5.14: Model Training Metrics for “Static Three State with Drift” Dataset  for both Markovian recovery 
(A) and channel recovery (B). 
Two way ANOVA showed significant differences of the models for both F1 score and Cohen’s Kappa score (p < 0.001) 
and between the datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all 
models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no 
significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 
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5.3.3 Perturbed Three State Model Without Drift.  

The underlying Markovian scheme here is the same as above, however prior to dwell times 

being sampled from the transition rate matrix, the values were perturbed as described in 

Chapter 5.3.1.2 to simulate drug action.  Raw data are shown in Figure 5.15 and it is 

immediately apparent that there has been, again, a total failure of ResNet.  Amongst the 

others, performances look subjectively similar to the static datasets.  From the Kappa and 

micro F1metrics (Figures 5.16, 5.17) the performances parallel that of the static data, with 

the best model being the SplitCNN returning a Kappa score of 0.8659  0.0352 for full 

Markovian recovery and micro F1 of 0.9106  0.0235.  In terms of Cohen’s Kappa the 

Simple and SplitCNN perform twice as well as the simple LSTM or DeepChannel. 
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Figure 5.15: Sample Model Traces for “Perturbed Three State Model with Drift” Dataset 
Shown is 1 second of data at 10kHz in black along with each model’s predictions (red) versus the ground truth (blue). 
For each model, both the Markovian recovery (left) and conductance level (open/closed) (right) is shown.  For this 
sample of data we see a less noisy sample, which subjectively improves the performance of the recurrent based 
models (LSTM and DeepChannel). We still see however, that the convolutional based networks show far stronger 
performance compared to the RNN counterparts. 
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Figure 5.16: Model Training Metrics for “Perturbed Three State Model with No Drift” Dataset for both 
Markovian recovery (A) and channel recovery (B). 
Two way ANOVA showed significant differences of the models for Cohen’s Kappa score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all models were 
significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p 
> 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote 
significant between 1 and 0.1%. 
 
 

 

 

Figure 5.17: Model Training Metrics for “Perturbed Three State Model with No Drift” Dataset for both 
Markovian recovery (A) and channel recovery (B). 
Two way ANOVA showed significant differences of the models for F1 score (p < 0.001) and between the datasets (p 
< 0.001); post-hoc tests were performed for each model pair within the datasets – all models were significantly 
different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p > 0.05), black 
pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote significant 
between 1 and 0.1%. 
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5.3.4 Perturbed Three State Model with Drift. 

These datasets were similar to the previous set, but with the addition of drift as described 

earlier.  This would be expected to be the most challenging for the 6 models to recover 

information from so far.  Raw data with Markov recovery and idealizations are shown in 

Figure 5.18.  Again, subjectively LSTM and DeepChannel look very similar to each other 

and the other four models looking distinct and reasonably successful.  The metrics are 

shown in Figures 5.19, 5.20.  ResNet fails to exhibit statistically significant (for Kappa 

score 0; corresponding to randomly guessing the state) recovery either of full Markovian 

state or “reduced” open/closed state idealization.  SimpleCNN, SplitCNN and UNet all 

deliver good performance with Kappa scores of 0.8248  0.0477, 0.8669  0.0366 and 

0.7971  0.0314 respectively, n=24.   
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Figure 5.18: Model Training Metrics for “Perturbed Three State Model with Drift” Dataset.  
Shown is 1 second of data at 10kHz in black along with each model’s predictions (red) versus the ground truth (blue). 
For each model, both the Markovian recovery (left) and conductance level (open/closed) (right) is shown.  For this 
sample of data we see a less noisy sample, which subjectively improves the performance of the recurrent based 
models (LSTM and DeepChannel). We still see however, that the convolutional based networks show far stronger 
performance compared to the RNN counterparts. 
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Figure 5.19: Model Training Metrics for “Perturbed Three State Model with Drift” Dataset for both Markovian 
recovery (A) and channel recovery (B). 
Two way ANOVA showed significant differences of the models for Cohen’s Kappa score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all models were 
significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p 
> 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote 
significant between 1 and 0.1%. 
 

 

 

Figure 5.20: Model Training Metrics for “Perturbed Three State Model with Drift” Dataset  for both Markovian 
recovery (A) and channel recovery (B). 
Two way ANOVA showed significant differences of the models for F1 score (p < 0.001) and between the datasets (p 
< 0.001); post-hoc tests were performed for each model pair within the datasets – all models were significantly 
different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p > 0.05), black 
pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote significant 
between 1 and 0.1%. 
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5.3.5 Static Five State Model Without Drift 

The subjective appearance of these datasets is very different from the 3-state model.  The 

nature of the originating 5-state model leaves to long closed sojourns with bursts of 

openings (top panels of Figures 5.21, 5.24, 5.27, 5.30).   With the static 5-state data, the 

raw representative example (Figure 5.21) shows a distinct burst in the centre of the 

window, subjectively, this has been detected by U-Net, SimpleCNN, SplitCNN and not 

ResNet.  LSTM and DeepChannel, which appear to be influenced by the events but do not 

(subjectively) appear to have detected them convincingly.  The two different metrics 

shown; Cohen’s Kappa (Figure 5.22) and micro  F1 (Figure 5.23) show report rather 

different values.  Kappa for U-Net is near perfect at 0.9665  0.0155  for the full Markovian 

(“unreduced”) recovery and the simple reduced idealization. Whereas ResNet fails entirely 

by this metric and the other models are moderately successful.  However, by assessment 

with F1, all models appear reasonably successful.  This may be due to the severe 

imbalancing of the dataset in the five state model’s data. 
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Figure 5.21: Model Training Metrics for “Static Five State Model with No Drift” Dataset.  
Shown is 1 second of data at 10kHz in black along with each model’s predictions (red) versus the ground truth (blue). 
For each model, both the Markovian recovery (left) and conductance level (open/closed) (right) is shown. The Five 
state models exhibit periods of flickering that (subjectively) the recurrent networks have difficulty analyzing. The 
convolutional networks appear to have a fairly high accuracy, with the exception of ResNet that predicts the same 
state across the whole file. 
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Figure 5.22: Model Training Metrics for “Static Five State Model with No Drift” Dataset for both Markovian 
recovery (A) and channel recovery (B). 
Two way ANOVA showed significant differences of the models for Cohen’s Kappa score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all models were 
significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p 
> 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote 
significant between 1 and 0.1%. 

 

Figure 5.23: Model Training Metrics for “Static Five State Model with No Drift” Dataset for both Markovian 
recovery (A) and channel recovery (B). 
Two way ANOVA showed significant differences of the models for F1 score (p < 0.001) and between the datasets (p 
< 0.001); post-hoc tests were performed for each model pair within the datasets – all models were significantly 
different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p > 0.05), black 
pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote significant 
between 1 and 0.1%. 
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5.3.6 Static Five State Model With Drift 

These datasets use the same 5-state model as above and the same noise levels, but add a 

realistic level of drift.  Representative raw data are shown in Figure 5.24 although over 

this length of record, the drift is not obvious. Subjective inspection of these raw data traces 

suggest that only the Simple and Split CNN models have been successful.  This is reflected 

quantitatively in the Cohen’s Kappa metric graphs in Figure 5.25.  There is a modal 

collapse of the larger U-Net and ResNet models (no statistically significant state recovery 

or idealisations compared to random guessing), good success with simple and splitCNN 

(Kappas of 0.8243  0.0100 and 0.8168  0.0088, n=24 respectively) on both full Markovian 

recovery and reduced open closed state detection.  The commonly used micro F1 metric 

for all models is similar and approximately 0.9. 
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Figure 5.24: Model Training Metrics for “Static Five State Model with Drift” Dataset.  
Shown is 1 second of data at 10kHz in black along with each model’s predictions (red) versus the ground truth (blue). 
For each model, both the Markovian recovery (left) and conductance level (open/closed) (right) is shown.  The Five 
state models exhibit periods of flickering that (subjectively) the recurrent networks have difficulty analyzing. The 
convolutional networks appear to have a fairly high accuracy, with the exception of ResNet that predicts the same 
state across the whole file. 
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Figure 5.25: Model Training Metrics for “Static Five State Model with Drift” Dataset for both Markovian 
recovery (A) and channel recovery (B). 
Two way ANOVA showed significant differences of the models for Cohen’s Kappa score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all models were 
significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p 
> 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote 
significant between 1 and 0.1%. 
 

 

Figure 5.26: Model Training Metrics for “Static Five State Model with Drift” Dataset for both Markovian 
recovery (A) and channel recovery (B). 
Two way ANOVA showed significant differences of the models for F1 score (p < 0.001) and between the datasets (p 
< 0.001); post-hoc tests were performed for each model pair within the datasets – all models were significantly 
different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p > 0.05), black 
pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote significant 
between 1 and 0.1%. 
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5.3.7 Perturbed Five State Model Without Drift 

The results for the penultimate dataset (Figure 5.27), across the 6 models tested were very 

similar to that for the static 5-state with no drift.  The U-Net model has proven the most 

effective by assessment with Cohen’s Kappa (Figure 5.28) with similar performance from 

Simple and SplitCNNs (Kappas of 0.9658  0.0173, 0.8297  0.0123 and 0.8425  0.0173. 

respectively, n=24).  Again, ResNet fails entirely.  It appears that perturbation of 

transition rate parameters has not substantially altered overall model effectiveness. 
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Figure 5.27: Sample Data traces for “Perturbed Five State Model with No Drift” Dataset.  
Shown is 1 second of data at 10kHz in black along with each model’s predictions (red) versus the ground truth (blue). 
For each model, both the Markovian recovery (left) and conductance level (open/closed) (right) is shown.  The Five 
state models exhibit periods of flickering that (subjectively) the recurrent networks have difficulty analyzing. The 
convolutional networks appear to have a fairly high accuracy, with the exception of ResNet that predicts the same 
state across the whole file. 
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Figure 5.28: Model Training Metrics for “Perturbed Five State Model with No Drift” Dataset for both 
Markovian recovery (A) and channel recovery (B). 
Two way ANOVA showed significant differences of the models for Cohen’s Kappa score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all models were 
significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p 
> 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote 
significant between 1 and 0.1%. 

 
Figure 5.29: Model Training Metrics for “Perturbed Five State Model with No Drift” Dataset for both 
Markovian recovery (A) and channel recovery (B). 
Two way ANOVA showed significant differences of the models for F1 score (p < 0.001) and between the datasets (p 
< 0.001); post-hoc tests were performed for each model pair within the datasets – all models were significantly 
different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p > 0.05), black 
pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote significant 
between 1 and 0.1%. 
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5.3.8 Perturbed Five State Model With Drift 

This dataset now adds drift to the above scenario and so this might be expected to be the 

most challenging of all the datasets tested our 6 models with (Figure 5.30).  Subjective 

inspection of the representative raw data in Figure 5.30 suggests that U-Net has done the 

best job with Simple and Split CNNs also performing well.  With the exception of the 

poorly performing DeepChannel model the micro F1 scores (Figure 5.32) are again all very 

similar and in the 0.9 range, but the Cohen’s Kappa (Figure 5.31) reveal U-Net to be the 

best performing model with values of 0.9707  0.0105 and 0.9946  0.0119 for the full 

Markovian recovery and simple idealization respectively.  It should be noted that 

SimpleCNN and SplitCNN also performed well; achieving 0.8197  0.0100 and 0.8386  

0.0100 respectively for Markovian state recovery. 
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Figure 5.30: Sample Data Traces for “Perturbed Five State Model with Drift” Dataset.  
Shown is 1 second of data at 10kHz in black along with each model’s predictions (red) versus the ground truth (blue). 
For each model, both the Markovian recovery (left) and conductance level (open/closed) (right) is shown.  The Five 
state models exhibit periods of flickering that (subjectively) the recurrent networks have difficulty analyzing. The 
convolutional networks appear to have a fairly high accuracy, with the exception of ResNet that predicts the same 
state across the whole file. 
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Figure 5.31: Model Training Metrics for “Perturbed Five State Model with Drift” Dataset for both Markovian 
recovery (A) and channel recovery (B). 
Two way ANOVA showed significant differences of the models for Cohen’s Kappa score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all models were 
significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p 
> 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote 
significant between 1 and 0.1%. 
 
 

 

Figure 5.32: Model Training Metrics for “Five State, Hard, Drift” Dataset for both Markovian recovery (A) and 
channel recovery (B) 
Two way ANOVA showed significant differences of the models for F1 score (p < 0.001) and between the datasets (p 
< 0.001); post-hoc tests were performed for each model pair within the datasets – all models were significantly 
different (p < 0.001) unless stated otherwise. Red pairs labelled with an ”NS” denote no significance (p > 0.05), black 
pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote significant 
between 1 and 0.1%. 
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5.3.9 Training Progress 

During training, the training and validation metrics were recorded to examine how 

quickly each model trained; Figures 5.33, 5.34 show the model training progress for two 

datasets across all models. Finally,  as discussed before, the number of parameters in each 

of the models is vastly different; so training times were also monitored to compare training 

times for the GPU enabled CNN networks against the non-GPU enabled RNN networks. 

As an example of the relative training efficiency, Figure 5.35 shows the total time for 

training for the static 3-state no drift dataset.  This shows that, whilst performance was 

not ideal, DeepChannel was the fastest to train followed by ResNet and LSTM. The three 

generally best performing models, SimpleCNN, SplitCNN and U-Net took the longest time 

to train.  

 

Figure 5.33: Model training process for each model for two different dataset families 
A shows each models performance versus time for the Static Three State Without Drift dataset, and B for the 
Perturbed 5 State With Drift. Since the training protocol allows for models to continue training until they plateau, 
we see some models continue to get small marginal gains for quite a while before stopping. The Simple_CNN, 
Split_CNN and Unet models seem to have the most stable training processes, whereas ResNet, LSTM and 
DeepChannel models have some difficulty on the harder datasets. 
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Figure 5.34: Model training times for each model in seconds for the Static Three State Model with No Drift 
dataset. 
Here we can see with the exception of ResNet, that continued to make marginal gains for a number of epochs, the 
CNN models take the same order of magnitude of time to train as the RNN models, due to CUDA acceleration and 
the batch processing. 
 

 

5.4 Discussion 

This experiment was done as a method to see which model architectures had the most 

potential to take through to the rest of the work; it is clear from the results that the 

convolutional methods have greater accuracy and versatility over several different types 

of problems. However, we can instantly see a few problems from training. 

5.4.1 Markovian Analysis 

Firstly, since the data generation is stochastic, manual examination of the outputs reveals 

that in numerous points, the ground truth is not the most likely state for the observed 

dwell time. This is natural to expect as the ground truth comes from a stochastic 

simulation; however it is unfair to judge a model against a random entity. Therefore, 

developing a method to test the model against most likely state, rather than the simulated 

state is highly desirable. 
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In addition, the Markovian models used themselves in the data generation are another 

form of error. The “simple”, 3-state model, with transition rate matrix created without 

reference to the literature creates arguably more stable, realistic data than the 5-state 

model taken from literature. One reason for this is that the data simulation pipeline is 

not perfect; for example the “flickering” seen in the 5-state output would likely be filtered 

out either from filtering, or from the mechanism of opening and closing not happening 

instantaneously. 

5.4.2 Model Design and Training 

Since the input window size of the convolutional models is what gives the model the 

context around a point to classify it accurately; we have a clear incentive to make this as 

large as possible; however, increasing this size also vastly increases the size of the final 

dense layer in all but the U-Net architectures (U-Net upsamples using deconvolutional 

layers). In fact, >90% of the models’ parameters come from this final dense layer, which 

is a cause for concern as it becomes unclear whether the convolutional layers are causing 

good performance, or if the model is essentially just a fully connected model. It is 

important therefore to try and develop ways of reducing this final dense layer as it may 

be causing overfitting or is where the convolutional models are getting a performance edge 

over the recurrent models. 

The training protocol gives all the models the “best shot” at predicting the testing dataset, 

but this results in some models training for a lot more time (both in terms of epochs and 

real-time) than others. For example, the simple LSTM model trained for at least 175 

epochs whereas the DeepChannel model was finished before 25. As this synthetic data 

can be tuned to be closer to lab-recorded data, requiring retraining of the model each time; 

this increase in training time slows down model development, particularly in 

hyperparameter optimisation where training occurs many times. 

A common observation, noted in various studies  (Carvalho, Pereira, & Cardoso, 2019; 

Handelman et al., 2019) including our own here, is the contrasting perspective provided 
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by different performance metrics. For instance, the micro F1 score can still be high even 

if a model apparently completely fails, especially when there’s a dominant class. On the 

other hand, Cohen’s Kappa is generally more robust to this issue as it is more suited in 

imbalanced data. However, it might be beneficial to develop a custom metric that 

surpasses both in effectiveness, i.e., one that aligns more closely with an 

electrophysiologist’s definition of success.  For the subsequent Chapters we will therefore 

focus on the Cohen’s Kappa rather than F1. 

From this work the UNet, SimpleCNN and SplitCNN models are performing well above 

the LSTM, DeepChannel and ResNet models. As these models are of different levels of 

complexity, and with different design philosophies, we’ll take only these top models 

through to further tests. 
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6 Improving Dataset Quality with the 

Viterbi Algorithm 

6.1 Introduction 

The process of developing a deep neural network requires labels to train against; these 

are true values for the neural network to compare to the output and adjust the weights 

depending on how closely the neural network output matches with the truthful output. 

 

Figure 6.1: An example of Markovian “unluckiness”. 
Here an example of data where the Markovian simulation gives a state that is not the most likely outcome. Due to 
the probabilistic nature of the Markovian process, it is possible for an event to happen with a state that is not the 
most likely to occur – for example, in the figure above we see a particularly long “short” opening that would typically 
be expected from the second open state, rather than the first. When training a neural network, this stochastic nature 
creates confusion in training – we cannot reasonably expect the models to predict the output of a stochastic process, 
so should investigate a way to remove the chance element from the system. 
 

In the previous chapter, we trained the neural networks on the Markovian state from a 

simulation; however this is a stochastic process; for example in the “simple” Markovian 

model we have two “open” states; one short and one long. Since moving from the closed 

state to one of these open states is done via sampling from two exponential distributions, 

we might have an uncharacteristically long “short” opening or a short “long” opening 

(Figure 6.1). This creates downstream problems in training; there is no way for a neural 

network to always accurately predict the next simulated Markovian state even given 

perfect historical information, since the state is chosen stochastically. As is, the model will 

make unnecessary adjustments if it correctly guesses the “most likely” state, but simply 
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due to chance gets the simulated state wrong. This will incorrectly increase the loss 

function for the batch and cause unhelpful changes in parameters in the network.   

Perhaps more importantly is that in this case, this will have some further consequences 

on the channel’s idealisation, since the model does not discern between the different errors 

of “incorrect state, correct number of channels” and “incorrect state, incorrect number of 

channels”. Therefore, this so-called “stochastic error” both affects the Markovian state 

recovery as well as the channel idealisation. 

In this Chapter we aim to improve deep learning Markovian state recovery performance 

by relabelling training sets with the most likely state rather than standard, simulated 

Markovian labels. By doing so, we expect to increase the speed of training as the gradient 

descent algorithm should make more consistent changes, and by our training protocol 

reach convergence sooner. 

6.2 Methods 

6.2.1 Dataset re-labelling Algorithm 

As described above, the stochastic error phenomenon described above affects the 

Markovian state recovery as well as the channel idealisation. Therefore we felt the 

solution to this issue would be to provide the neural network the most likely state for the 

simulation to be in given the observations rather than the simulated state from the data 

generation. There are a number of algorithms for the discrete Markov case for finding the 

most likely state given a series of observations (Baum, Petrie, Soules, & Weiss, 1970; 

Viterbi, 1967) for both cases where the transition matrix is known (Viterbi) and unknown 

(Baum-Welch). Usage of these algorithms in ion channel idealisation is not unusual; the 

existing SKM method (Qin, 2004) extends the Viterbi algorithm to find the most likely 

transition rate parameters and uses them as a basis to construct the idealisation in a 

recursive manner.  

Our approach is slightly different; instead of repeatedly applying the Viterbi algorithm 

and using parameter re-estimation to approximate the most likely Markovian state, since 
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we know the transition rate matrix a priori, we can simply run the Viterbi algorithm once 

on our observations to get the most likely Markovian state for each point and use this to 

train the deep learning model rather than the simulated state. 

The Viterbi algorithm has two steps, the forward and the backward pass; and works in 

the following way. First, given a series of known observations 𝑦0, 𝑦1 , … 𝑦𝑇 sampled from a 

known 𝑁 × 𝑀 emission matrix 𝐵, and a known 𝑁 × 𝑁 transition matrix 𝐴, if we have initial 

state probabilities Π = {𝜋0, 𝜋1, … , 𝜋𝑁−1} , state space 𝑆 = {𝑠0, 𝑠1, … , 𝑠𝑁−1} and emission space 

𝐸 = {𝑒0, 𝑒1, … , 𝑒𝑀−1}, then we construct two new matrices 𝐶1, 𝐶2, both of sizes 𝑇 × 𝑁. 𝐶1 

corresponds to the probability of being at each state given each observation and 𝐶2 the 

pointer to the previous most likely state. We set the first row of 𝐶1 to be equal to the initial 

probabilities to equal {𝜋𝑖 ∙ 𝐵[𝑖, 𝑦0]∀ 𝑖 ∈ 𝑆;}; i.e. the probability of seeing the first 

observation given the initial states. 

We then start the forward pass; we iteratively fill 𝐶1 and 𝐶2 by considering the previous 

row in both matrices using the following formula: 

𝐶1[𝑗, 𝑖] = max
𝑘

{𝐶1[𝑘, 𝑖 − 1] ∙ 𝐴[𝑘, 𝑗] ∙ 𝐵[𝑗, 𝑦[𝑖]]} 

𝐶2[𝑗, 𝑖] = argmax
𝑘

{ 𝐶1[𝑘, 𝑖 − 1] ∙ 𝐴[𝑘, 𝑗] ∙ 𝐵[𝑗, 𝑦[𝑖]]} 

This constructs the two matrices with the probabilities of each state as well as the most 

likely previous state. From here, we can start at the bottom of the matrix and back trace 

the most likely route, using the following method: Set 𝐷𝑇 = argmax
𝑘

{𝐶2[𝑘, 𝑇]} and 𝐸𝑇 = 𝑠𝐷𝑇
. 

Then we can calculate the most likely sequence 𝐸 by iterating backwards through 𝐶2: 

𝐷𝑖−1 = 𝐶2[𝐷𝑖, 𝑖] 

𝐸𝑖−1 = 𝑠𝐷𝑖−1
 

The complexity of this algorithm is 𝑂(𝑇𝑆2;); with no dependency on the size of the emission 

matrix. 
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The Viterbi algorithm works on discrete hidden Markov models, however it can be 

extended to continuous Markovian systems in a number of ways. One way, utilised in 

software such as QuB is to turn the system into a discrete system by only considering the 

state at a certain interval. As a signal has a sample rate (e.g. 10kHz), and any information 

between samples is lost, this is sufficient for most cases. Another approach, explored here, 

is turning the system discrete by considering the emission matrix not just by the number 

of channels open and closed, but also with the observed dwell time for the observation. 

This significantly grows the emission matrix from 𝑁 × 𝑀 to 𝑁 × 𝑇, where 𝑇 is the number 

of events in a record; but since the Viterbi algorithm has no performance dependency on 

the size of the emission matrix, the only computational cost in this method is construction 

of the new matrix. 

Construction of the new emission matrix is straightforward; we set any indexes with 

states corresponding to a different number of channels than observed to 0 (since for 

example the probability of an open state giving closed data is nil), then for the indexes 

with the correct number of channels, calculate the probability 𝑃(𝐸 > 𝑒𝑖|𝑆 = 𝑠𝑗)- where 𝑒𝑖 is 

the observed dwell time and 𝑠𝑗 is each state. To do this, we use the CDFs for the 

exponential function (1 − 𝑒−𝜆𝑡) with rate parameter 𝐴𝑠𝑗
. Then we normalise the vector of 

probabilities to avoid vanishing terms. 

6.2.2 Model training 

To test if training the neural networks on the most likely state (via the Viterbi algorithm) 

performed better than the output of the simulation, we train each model in an identical 

fashion to the previous chapter. We measure the F1-Score and Cohen’s Kappa Score for 

both the Markovian state recovery and “reduced” channel idealisation to measure how 

using the Viterbi algorithm affects model performance, comparing the predicted state to 

the simulated, stochastic state. We also measure the number of epochs used to train before 

early stopping; as the protocol allows training to continue indefinitely until performance 

plateaus; using the Viterbi algorithm as pre-processing is still of interest if the model 
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performance is similar but training time is reduced. Figure 6.2 gives an example of the 

output of the pre-processing, showing not only the most likely state, but the probabilities 

of each state for each point. 

 

 

Figure 6.2: Example data trace (A), the difference between the most likely  state and simulated state (B), and 
the probability distribution of being at a given state at any time (C) 
In cases where we experience Markovian “unluckiness”; for example an uncharacteristically long “short close”, it is 
not fair to punish a neural network for an incorrect prediction, as we can’t expect AI models to predict a stochastic 
process. Therefore, we implement the Viterbi algorithm, producing a new labelling of the states for the most likely 
state given the open/closed conductance level record instead of the simulated state.  In B, we see that there are 
many places where the Simulated (orange dotted) record deviates from the Viterbi (blue dashed) record, which are 
areas where a model may well reasonably predict the most likely state, but unfortunately get “unlucky”, with the 
other closed state being randomly picked. C shows the probability distribution using the forwards-backwards 
algorithm for each time point. Note that the probabilities are not only a product of the dwell (in this case, longer 
opens are more likely to be state 2 than 1), but will also be a function of the previous state’s probabilities as well (in 
this case, less so, as both state 1 and 2 always return to 0. 
 

6.3 Results 

After training the models on the Viterbi pre-processed data, to produce the new “most 

likely state” labels, models were trained until their performance showed no significant 

improvement as described in the training protocol in Chapter 5. From here, we compared 

the performance of the new models to those also used in Chapter 5.  We used the same 

eight training/testing datasets as before (3-state low noise “static”, with and without noise, 

3-state high noise “perturbed”, with and without drift and then a further four analogous 
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datasets which was based on the 5-state Markovian scheme).  However, following the 

performance characterisations in Chapter 5 we now use only SimpleCNN, SplitCNN and 

U-Net.  Since we also demonstrated in Chapter 5, that the F1-scores bore little relation to 

Cohen’s kappa or visual inspection of the raw data, we will present only Cohen’s Kappa 

below, but the more commonly used metric, F1, will be available in the supplementary 

figures.  

6.3.1 Three State Model Datasets 

Figure 6.3 shows the raw data for the simpler of the two Markovian state models and the 

static transition rate matrix in the absence of drift.  For each of the three well performing 

CNN models we show the prediction outcomes for the conventionally labelled data 

alongside the augmented labels with Viterbi “most-likely-state”.  From subjective 

inspection of these raw records, there is not a clear difference between the standard and 

most-likely-state.  Figure 6.4 show the Cohen’s kappa metrics.  Whilst performance overall 

is reasonable with full Markovian Kappas of 0.8164  0.073,0.8194  0.0730, 0.8475  

0.0735, 0.8369  0.0851, 0.7951  0.0302, 0.7954  0.030 for SimpleCNN, SimpleCNN with 

Viterbi, SplitCNN, SplitCNN with Viterbi, UNet and UNet with Viterbi respectively; 

there are no statistically significant improvements in performance of any of the models 

when compared to their Viterbi counterpart (e.g. SimpleCNN versus SimpleCNN Viterbi). 

Similarly, there is the same lack of statistically significant improvement in model 

performance for the 3-state-static with drift (Figures 6.5, 6.6), 3-state-perturbed with no 

drift (Figures 6.7, 6.8) or 3-state perturbed with drift (Figures 6.9, 6.10).    
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Figure 6.3: Example raw data trace (black), state recovery and channel idealisations for models on the “Static 
three state model without Drift” dataset. 
Shown is 1 second of data at 10kHz in black along with each model’s predictions (red) versus the ground truth (blue). 
For each model, both the Markovian recovery (left) and conductance level (open/closed) (right) is shown. We see that 
performance across the board is fairly similar, with some incorrect idealisations; but no significant qualitative 
differences as in Chapter 5. 
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Figure 6.4: Model Training Metrics for “Static Three State Model without Drift” Dataset.  
Two way ANOVA showed significant differences of the models for Cohen’s Kappa score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all Viterbi/non-Viterbi 
pair of models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an ”NS” denote 
no significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 
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Figure 6.5: Example raw data trace (black), state recovery and channel idealisations for models on the “Static 
three state model with Drift” dataset. 
Shown is 1 second of data at 10kHz in black along with each model’s predictions (red) versus the ground truth (blue). 
For each model, both the Markovian recovery (left) and conductance level (open/closed) (right) is shown. As with the 
static three state model with drift dataset, we see similar performance across all models. 
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Figure 6.6: Model Training Metrics for “Static Three State Model with Drift” Dataset.  
Two way ANOVA showed significant differences of the models for Cohen’s Kappa score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all Viterbi/non-Viterbi 
pair of models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an ”NS” denote 
no significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 
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Figure 6.7:  Example raw data trace (black), state recovery and channel idealisations for models on the 
“Perturbed three state model without Drift” dataset.  
Shown is 1 second of data at 10kHz in black along with each model’s predictions (red) versus the ground truth (blue). 
For each model, both the Markovian recovery (left) and conductance level (open/closed) (right) is shown. As with the 
static three state model with drift dataset, we see similar performance across all models. 
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Figure 6.8: Model Training Metrics for “Perturbed Three State Model without Drift” Dataset 
Two way ANOVA showed significant differences of the models for Cohen’s Kappa score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all Viterbi/non-Viterbi 
pair of models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an ”NS” denote 
no significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 
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Figure 6.9:  Example raw data trace (black), state recovery and channel idealisations for models on the 
“Perturbed three state model with Drift” dataset. 
Shown is 1 second of data at 10kHz in black along with each model’s predictions (red) versus the ground truth (blue). 
For each model, both the Markovian recovery (left) and conductance level (open/closed) (right) is shown. As with the 
static three state model with drift dataset, we see similar performance across all models. 
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Figure 6.10: Model Training Metrics for “Perturbed Three State Model with Drift” Dataset.  
Two way ANOVA showed significant differences of the models for Cohen’s Kappa score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all Viterbi/non-Viterbi 
pair of models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an ”NS” denote 
no significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 
 
 

6.3.2 Static Five State Model  without Drift.  

Here we simulated data using the more complex 5-state Markovian scheme described in 

Chapter 5 and again compare the performance between the standard model state labels 

and the case where we have replaced the labels with the Viterbi “most-likely” state.  

Figure 6.11 shows representative examples of the raw comparisons.   The Cohen’s kappa 

metrics are shown in 6.12 for the full Markovian recovery and reduced open/closed 

idealization respectively.  Here, unlike the 3-state equivalent above we do see statistically 

significant performance increases for the SimpleCNN and SplitCNN, but the 

improvements are small. For example, SimpleCNN improves from 0.8068  0.0122 to 

0.8144  0.0104, p < 0.05, n=24 on implementation of the Viterbi most-likely labels.    



 
180 

 

Figure 6.11: Example raw data trace (black), state recovery and channel idealisations for models on the 
“Static Five state model without Drift” dataset. 
Shown is 1 second of data at 10kHz in black along with each model’s predictions (red) versus the ground truth (blue). 
For each model, both the Markovian recovery (left) and conductance level (open/closed) (right) is shown. Here we 
see a split in the model performance; both UNet models are the only models to correctly identify the flickering block, 
whereas the Simple and Split CNN models both fail on these sections, detecting it as one large event.  
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Figure 6.12: Model Training Metrics for “Static Five State Model without Drift” Dataset.  
Two way ANOVA showed significant differences of the models for Cohen’s Kappa score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all Viterbi/non-Viterbi 
pair of models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an ”NS” denote 
no significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 
 

6.3.3 Static Five State Model with Drift  

As reported in Chapter 5, we find U-Net fails to predict target labels statistically 

significantly (Figures 6.13, 6.14), but for the remaining comparisons, Simple and 

SplitCNN there are very small, but statistically significant improvements with the Viterbi 

most-likely labels.  Interestingly, with the slightly more complex dataset, Five State Hard 

without Drift (Figures 6.15, 6.16) there is no significant improvement with Viterbi 

labelling, but again with the most complex case Perturbed Five State Model with Drift 

(Figures 6.17, 6.18) there is a mix of statistically significant model performance change 

with Viterbi labels and others not so.  For example, there are no statistically significant 

improvements in the SimpleCNN or U-Net model performances, there is a small reduction 

in performance with the SplitCNN (from 0.8386  0.0098 to 0.8072  0.0062 p < 0.05, n = 

24).   
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Figure 6.13: Example raw data trace (black), state recovery and channel idealisations for models on the “Static 
Five state model with Drift” dataset. 
Shown is 1 second of data at 10kHz in black along with each model’s predictions (red) versus the ground truth (blue). 
For each model, both the Markovian recovery (left) and conductance level (open/closed) (right) is shown. Contrary to 
the ”static five state model without drift”, both models suffer modal collapse here, with the Viterbi correction 
showing no impact on model performance. 
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Figure 6.14: Model Training Metrics for “Static Five State Model with Drift” Dataset.  
Two way ANOVA showed significant differences of the models for Cohen’s Kappa score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all Viterbi/non-Viterbi 
pair of models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an ”NS” denote 
no significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 
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Figure 6.15: Example raw data trace (black), state recovery and channel idealisations for models on the 
“Perturbed Five state model without Drift” dataset. 
Shown is 1 second of data at 10kHz in black along with each model’s predictions (red) versus the ground truth (blue). 
For each model, both the Markovian recovery (left) and conductance level (open/closed) (right) is shown. Here the 
UNet models perform the best again, correctly identifying the flickering block in the center of the trace example. 
However there is still no significant improvement between the Viterbi and non-Viterbi versions of each model 
architecture. 
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Figure 6.16: Model Training Metrics for “Perturbed Five State Model without Drift” Dataset  
Two way ANOVA showed significant differences of the models for Cohen’s Kappa score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all Viterbi/non-Viterbi 
pair of models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote 
no significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 
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Figure 6.17:  Example raw data trace (black), state recovery and channel idealisations for models on the 
“Perturbed Five state model with Drift” dataset. 
Shown is 1 second of data at 10kHz in black along with each model’s predictions (red) versus the ground truth (blue). 
For each model, both the Markovian recovery (left) and conductance level (open/closed) (right) is shown. This is 
thought to be the hardest of our datasets, however UNet again shows the highest performance, correctly identifying 
the flickering block at the start of the trace. There is still no significant difference between the UNet model trained 
on the simulated data versus the one with the additional Viterbi pre-processing step. 
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Figure 6.18: Model Training Metrics for “Perturbed Five State Model with Drift” Dataset. 
Two way ANOVA showed significant differences of the models for Cohen’s Kappa score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all Viterbi/non-Viterbi 
pair of models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an ”NS” denote 
no significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 
 

 

Figure 6.19: Model training loss per epoch for each model using Viterbi versus Simulated labels for the 
Perturbed Five State with Drift dataset. 
AAlthough we see little change in the model performance of Viterbi versus simulated models, we do see a large 
decrease in training time before early stopping. In this case, the SplitCNN model took half as many epochs to reach 
peak performance with the Viterbi training labels than the simulated ones (green versus brown); with similar 
improvements in the SimpleCNN (red versus blue) and UNet (orange versus purple) datasets. 
B.. 
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Figure 6.20: Model training accuracy per epoch for each model Viterbi versus Simulated labels for the 
Perturbed Five State with Drift dataset. 
Although we see little change in the model performance of Viterbi versus simulated models, we do see a large 
decrease in training time before early stopping. In this case, the SplitCNN model took half as many epochs to reach 
peak performance with the Viterbi training labels than the simulated ones (green versus brown); with similar 
improvements in the SimpleCNN (red versus blue) and UNet (orange versus purple) datasets. 
 

 

 

Figure 6.21: Model training times for each model in seconds. 
 In addition to training the models, we logged how long each model took to train. Here we can see that the Viterbi 
versions of the Split and Simple CNNs took significantly less time than the non-Viterbi versions, suggesting more 
efficient training.  
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6.3.4 Training Progress 

Training progress was also tracked and compared to the previous chapter in Figure 6.19 

amd Figure 6.20. From this we can see across the board improvement in model training 

speed from all 3 models, along with higher training metrics throughout.  Indeed, when 

considering model training times (Figure 6.21), we see a significant improvement in how 

long the models trained before they stopped improving. 

6.4 Discussion 

We have seen that in this case, there is no consistent end-model performance 

improvement; and on those occasions where a statistically significant improvement was 

detected, the improvement was very small and unlikely to be noticed by an end-user. The 

application of the Viterbi algorithm for general machine learning is not unique, having 

been used for speech recognition natural language processing previously (Botros, Siddiqi, 

& Deiri, 1993); however the application of the Viterbi algorithm directly to the time series 

problem and deep learning is novel. 

6.4.1 Training Times  

There was a significant training time decrease for each model, however and this is likely 

due to the training process; the preprocessing’s aim was to reduce the “confusion” during 

training because of the stochastic element in the dataset; this meant that the model was 

likely to eventually get correct state predictions on average, but take far longer. Therefore, 

although there is a slight initial cost to calculating the most likely state through the 

Viterbi algorithm; there is clear value in using this preprocessing pipeline to improve 

development cycles in practice. 

In addition, the models were evaluated on the simulated state, rather than the most likely 

state. This was done to keep the benchmark the same from the previous chapter, however 

introduces a stochastic element to model evaluation resulting on a perfect performance 

never being possible. For comparative evaluation as the datasets are the same this does 
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not impact the validity of the results.  Since Viterbi pre-processing significantly reduced 

training times without harming the model’s performance (and in some slight cases, 

improving it); we will be continuing to use Viterbi pre-processing for later work in this 

thesis. 
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7 Improving Model Performance Through 

Progressive Windowing 

7.1 Introduction 

In previous work, we have split data into a sequence of “windows”, with each point in the 

window being labelled with a state in the output layer. The size of this window is a 

hyperparameter arbitrarily controlled by the operator, with larger windows exponentially 

increasing the model size and training times. By splitting the data into such windows, we 

lose some context surrounding each point, as the CNN models only consider data inside 

the current window being analysed; for hidden Markov models this is potentially sub-

optimal since each state encodes some information about the points surrounding it, as 

some states are inaccessible from others, and the dwell times of previous and future events 

could be used to infer the likely state of the current event. Therefore, the more 

surrounding data we have for each point, the more equipped a model should be to 

accurately predict the hidden Markovian state present at that time; but this comes at a 

large computational cost as increasing the window size exponentially increases the 

number of parameters in the model.   

Events that are closer to a given point are more helpful for predicting that point’s state 

than those further away, since the Markovian property has a reliance on only the previous 

state (although this implicitly may hold some information about previous states). 

Therefore, in theory the penalty for lack of context would not be uniform across the 

window; points in the centre of the window have a similar amount of context to either side, 

whereas points lying at the edges of the windows have a context imbalance, in extreme 

cases not knowing the previous state at all.  Further investigation of this potential issue 

confirms this theory. By plotting where predictions errors occur within windows, we can 

show that there is indeed a significant performance decrease (considerably greater error 
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rate] towards the left and right edges of the windows (Figure 7.1).  These Markov state 

prediction errors also occur in the channel idealisation, but to a lesser extent.  

 

Figure 7.1: State and Channel accuracy for one of the "full window" models, on a per-window basis. 
We take all the windows analysed by the CNN models and calculate the error rate for each position in the window. 
Here we can clearly see that the edges of the prediction perform on average significantly worse than the centre of 
the model. This is likely due to a lack of surrounding information and context for the edge points. Also note that this 
effect appears  slightly more pronounced for the Markovian state prediction, perhaps since that is more associated 
with contextual data. 
 

One approach to resolve this error would be to return to the approach used in 

DeepChannel (Celik et al., 2020), with the network using a LSTM model architecture to 

predict one point at a time. This comes at a severe functionality cost as we saw in Chapter 

5 with our novel models significantly outperforming detection accuracy over the original 

DeepChannel model. Furthermore, detection speed was considerably slower since instead 

of processing a window of 1024 points at a time, we are predicting a single point for each 

run. Therefore, in this chapter we will consider whether prediction accuracy is improved 

if the model predicts the middle 512 points (half the original window, for simplicity of 

reforming the idealisation in post). We will then use overlapping windows to still cover 

the entire dataset 

Aim:  Improve prediction of Markov states with intelligent progressive windowing. 
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7.2 Methods 

We train models similarly to chapters 5 and 6, on the same 8 datasets, with the same 

training protocol, including Viterbi analysis. However, in this case, we adjust the model 

architectures to only output the centre 512 points of the input. For the SimpleCNN and 

SplitCNN model, this is simply a case of reducing the size of the last dense layer; for the 

U-Net model, however, this is slightly more complex, requiring us to remove the last 

inverse convolutional layer to output a signal half the size of the original. This change 

brings us outside of the domain U-Net was designed for (1-to-1 image segmentation). 

 

Figure 7.2: Comparison of processing for previous models and the new method. 
In previous methods (A), there was a one-to-one correspondence between the input and output points. In the new 
model (B), each input window is only mapped to its centre 500 points. This means that 2 passes are required to 
completely predict the data, the first for points 250-750, 1250-1750 etc and the second for 750-1250, 1750-2250 etc. 
One disadvantage of this method is the first and last 250 points are not predicted “in place”, but sewn together to 
make a new 1000 window consisting of the first and last 500 points. This creates a discontinuity in the data. 
 

For training and testing, we now make two passes through each datafile (Figure 7.2). The 

first operates from points 0-1024, 1024-2048 et cetera predicting the middle points 256-

768, 1280-1792 et cetera. The second pass predicts points 512-1536,1536-2560 predicting 

the points 768-1280, 1792-2304 etc. Then, these windows are combined in a way to get the 

full prediction of the file. One immediate drawback of this method is that the first and last 

256 points of the record must be predicted by other means, as they are at the extremities 

of the datafile and cannot be contained in an output window. For this, we join the first 
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and last 512 points of the file (with a discontinuity in the centre), and use this to predict 

these points. 

We then compare these new models with the ones without the reduced output size and 

measure both the F1-Score (shown in the supplementary figures) and Cohen’s Kappa Score 

for both the state and channel predictions. We also monitor the training progress over the 

process, and record the time take for each model to train. 

7.3 Results 

We have 8 datasets below, the simpler 3-state model with high/low noise, with and without 

drift, and the more complex 5-state model with the same noise and drift combinations.  

We then compare the performance of our 3 “best” models (SimpleCNN, SplitCNN and U-

Net) with and with the new progressive windowing.  In all cases we again calculate 

metrics for the full Markovian state prediction and the so-called reduced case where we 

simply predict open and closed, which is equivalent to ordinary ion channel idealisation. 

7.3.1 Static Three State Model without Drift 

Inspection of the raw data (Figure 7.3) shows some events that were falsely predicted by 

the SimpleCNN, but not with the progressive SimpleCNN windows.  Conversely, there 

seem (subjectively) to be considerably more false events in the Windowed U-Net model.  

Quantitatively (Figure 7.4), there were no statistical differences in Cohen’s Kappa with 

any of the three comparisons except the U-Net which performed significantly worse on 

both Markov state recovery and reduced inference (ie idealisation). 

The progressive windowing models performed similarly on the remaining three-state 

datasets; Static Three-state-Model with drift, Perturbed Three-state-model without drift, 

Perturbed three-state-model with drift.  In each case the progressive window U-Net 

performs visibly worse (Figures 7.5, 7.7 and 7.9) than the control and this is supported by 

the quantitative analyses with Cohen’s Kappa (Figures 7.6, 7.8 and 7.10).  However, there 
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was a consistent and statistically significant improvement with progressive windowing of 

the SplitCNN model, in terms of our primary objective, Markov state recovery. 
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Figure 7.3: Sample Data Traces (1s) of an input simulated ion channel signal (leftmost, black), with the 
Markovian recovery prediction (left) and channel prediction (right) for each model; for the “Static Three State 
Model without Drift” dataset. 
Here we see the pairwise comparison of our top three models along with their ”progressive windowing” pre-processed 
counterparts. We see subjectively that the “SimpleCNN” model performs slightly worse, introducing artefacts to the 
idealization, and the ”SplitCNN” model slightly better, with slightly fewer artefacts. Perhaps most strikingly, the U-
Net model is far worse, perhaps due to the progressive windowing preprocessing needing additional changes to the 
model architecture to work. 
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Figure 7.4: Model Training Metrics for “Static Three State Model without Drift” Dataset.  
Two way ANOVA showed significant differences of the models for Cohen’s Kappa score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all models were 
significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p 
> 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote 
significant between 1 and 0.1%. 
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Figure 7.5:  Sample Data Traces (1s) of an input simulated ion channel signal (leftmost, black), with the 
Markovian recovery prediction (left) and channel prediction (right) for each model; for the “Static Three State 
Model with Drift” dataset. 
Here we see the pairwise comparison of our top three models along with their ”progressive windowing” pre-processed 
counterparts. We see subjectively that the “SimpleCNN” model performs slightly worse, introducing artefacts to the 
idealization, and the ”SplitCNN” model slightly better, with slightly fewer artefacts. Perhaps most strikingly, the U-
Net model is far worse, perhaps due to the progressive windowing preprocessing needing additional changes to the 
model architecture to work. 
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Figure 7.6: Model Training Metrics for “Static Three State Model with Drift” Dataset 
Two way ANOVA showed significant differences of the models for Cohen’s Kappa score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all models were 
significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p 
> 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote 
significant between 1 and 0.1%. 
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Figure 7.7: Sample Data Traces (1s) of an input simulated ion channel signal (leftmost, black), with the 
Markovian recovery prediction (left) and channel prediction (right) for each model; for the “Perturbed Three 
State Model without Drift” dataset. 
Here we see the pairwise comparison of our top three models along with their ”progressive windowing” pre-processed 
counterparts. We see subjectively that the “SimpleCNN” model performs slightly worse, introducing artefacts to the 
idealization, and the ”SplitCNN” model slightly better, with slightly fewer artefacts. Perhaps most strikingly, the U-
Net model is far worse, perhaps due to the progressive windowing preprocessing needing additional changes to the 
model architecture to work. 
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Figure 7.8: Model Training Metrics for “Perturbed Three State Model without Drift” Dataset.  
Two way ANOVA showed significant differences of the models for Cohen’s Kappa score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all models were 
significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p 
> 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote 
significant between 1 and 0.1%. 
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Figure 7.9: Sample Data Traces (1s) of an input simulated ion channel signal (leftmost, black), with the 
Markovian recovery prediction (left) and channel prediction (right) for each model; for the “Perturbed Three 
State Model with Drift” dataset. 
Here we see the pairwise comparison of our top three models along with their ”progressive windowing” pre-processed 
counterparts. We see subjectively that the “SimpleCNN” model performs slightly worse, introducing artefacts to the 
idealization, and the ”SplitCNN” model slightly better, with slightly fewer artefacts. Perhaps most strikingly, the U-
Net model is far worse, perhaps due to the progressive windowing preprocessing needing additional changes to the 
model architecture to work. 
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Figure 7.10: Model Training Metrics for “Perturbed Three State Model with Drift” Dataset.  
Two way ANOVA showed significant differences of the models for Cohen’s Kappa score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all models were 
significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p 
> 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote 
significant between 1 and 0.1%. 
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Figure 7.11: Sample Data Traces (1s) of an input simulated ion channel signal (leftmost, black), with the 
Markovian recovery prediction (left) and channel prediction (right) for each model; for the “Static Five State 
Model without Drift” dataset. 
Here we see the pairwise comparison of our top three models along with their ”progressive windowing” pre-processed 
counterparts. We see subjectively that the “SimpleCNN” model performs slightly worse, introducing artefacts to the 
idealization, and the ”SplitCNN” model slightly better, with slightly fewer artefacts. Perhaps most strikingly, the U-
Net model is far worse, perhaps due to the progressive windowing preprocessing needing additional changes to the 
model architecture to work. 
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Figure 7.12: Model Training Metrics “Static Five State Model without Drift” Dataset. 
Two way ANOVA showed significant differences of the models for Cohen’s Kappa score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all models were 
significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p 
> 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote 
significant between 1 and 0.1%. 
 
 

7.3.2 Static Five State Model without Drift 

As in previous chapters this Markovian model produces flickery bursts which is a 

challenging idealisation task.  Visual inspection of the raw data in Figure 7.11 shows that 

there are distinct differences with the progressive windowing U-Net; apparently false 

events detected outside of the clear burst, but apparently better performance within the 

bursts.  However, in contrast, quantitative analysis by Cohen’s Kappa reveals that the 

model is significantly worse for both Markovian recovery over all (Figure 7.12) and 

open/closed state recovery (Cohen’s Kappa, reduced, Figure 7.12).   

7.3.3 Static Five State Model with Drift  

Interestingly, here, as with the equivalent data in Chapter 6, U-Net failed entirely as 

assessed by Cohen’s Kappa (Figures 7.13).  There is no statistically significant 

improvement of Cohen’s Kappa with this adaptation applied to the SimpleCNN or 

SplitCNN either.  However, visual inspection of the raw records, for SplitCNN with and 

without windowing, for example, does appear to show large areas of the record for which 

prediction has improved (Figure 7.14), but clearly this is surpassed by the additional 

errors in other areas. 
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Figure 7.13: Sample Data Traces (1s) of an input simulated ion channel signal (leftmost, black), with the 
Markovian recovery prediction (left) and channel prediction (right) for each model; for the “Static Five State 
Model with Drift” dataset. 
Here we see the pairwise comparison of our top three models along with their ”progressive windowing” pre-processed 
counterparts. We see subjectively that the “SimpleCNN” model performs slightly worse, introducing artefacts to the 
idealization, and the ”SplitCNN” model slightly better, with slightly fewer artefacts. Perhaps most strikingly, the U-
Net model is far worse, perhaps due to the progressive windowing preprocessing needing additional changes to the 
model architecture to work. 
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Figure 7.14: Model Training Metrics for “Static Five State Model with Drift” Dataset.  
Two way ANOVA showed significant differences of the models for Cohen’s Kappa score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all models were 
significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p 
> 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote 
significant between 1 and 0.1%. 
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Figure 7.15: Sample Data Traces (1s) of an input simulated ion channel signal (leftmost, black), with the 
Markovian recovery prediction (left) and channel prediction (right) for each model; for the “Perturbed Five 
State Model without Drift” dataset. 
Here we see the pairwise comparison of our top three models along with their ”progressive windowing” pre-processed 
counterparts. We see subjectively that the “SimpleCNN” model performs slightly worse, introducing artefacts to the 
idealization, and the ”SplitCNN” model slightly better, with slightly fewer artefacts. Perhaps most strikingly, the U-
Net model is far worse, perhaps due to the progressive windowing preprocessing needing additional changes to the 
model architecture to work. 
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Figure 7.16: Model Training Metrics for “Perturbed Five State Model without Drift”  Dataset.  
Two way ANOVA showed significant differences of the models for Cohen’s Kappa score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all models were 
significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p 
> 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote 
significant between 1 and 0.1%. 
 
 

7.3.4 Perturbed Five State Model without Drift 

Raw data shown in Figure 7.15.  All the models performed reasonably well with this 

dataset with Cohen’s kappa 0.8 or above (Figure 7.16 exception; windowed U-Net).  Simple 

and SplitCNN models show a statistically significant improvement with windowing, but 

windowed U-Net is considerably worse (Figure 7.16).   Note that despite the improvements 

gained by progressive windowing the simple and SplitCNN do not perform as well as the 

sequential (conventionally) windowed Viterbi labelled U-Net model first presented in 

Chapter 6 (on this dataset).  The Perturbed Five State Model With Drift results (Figures 

7.17, 7.18) are exactly analogous to those without drift above (Figure 7.16) except that 

here the deterioration of U-Net performance by progressive windowing is catastrophic 

with modal collapse, with performance no better than random chance.  
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Figure 7.17: Sample Data Traces (1s) of an input simulated ion channel signal (leftmost, black), with the 
Markovian recovery prediction (left) and channel prediction (right) for each model; for the “Perturbed Five 
State Model with Drift” dataset. 
Here we see the pairwise comparison of our top three models along with their ”progressive windowing” pre-processed 
counterparts. We see subjectively that the “SimpleCNN” model performs slightly worse, introducing artefacts to the 
idealization, and the ”SplitCNN” model slightly better, with slightly fewer artefacts. Perhaps most strikingly, the U-
Net model is far worse, perhaps due to the progressive windowing preprocessing needing additional changes to the 
model architecture to work. 
 



 
211 

 

Figure 7.18: Model Training Metrics for “Perturbed Five State Model with Drift” Dataset.  
Two way ANOVA showed significant differences of the models for Cohen’s Kappa score (p < 0.001) and between the 
datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all models were 
significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p 
> 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote 
significant between 1 and 0.1%. 
 

7.3.5 Training Progress 

In terms of the training progress itself, training and validation metrics are presented in 

Figures 7.19, 7.20.  We see some interesting trends; the progressive windowed 

SimpleCNN and SplitCNN models outperform their previous counterparts in training, 

but the validation sets are outperformed by the older SplitCNN model; suggesting that 

the smaller model (SimpleCNN) is overfitting the training data. The U-Net model does 

not perform well with the progressive windowing, with the performance significantly 

lower than the full-sized model at all times during training.  

Training times (Figure 7.21) show that the window models are faster to train than the full 

sized models; however from the training progress we can see that the models train for 

approximately the same number of epochs before reaching a plateau in training and 

stopping. The reduction in training time is therefore likely caused by the smaller model 

size; since most of the parameters are in the final dense layer, reducing the size of the 

output window in the SplitCNN model on the 3-state datasets reduces the number of 

trainable parameters from 17 million to 9 million. 
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Figure 7.19: Comparison of the Accuracy for each epoch over the training duration. 
In addition to training the models, we tracked their performance over time throughout the training process.  In the 
Split_CNN and Simple_CNN case, the windowing shortens training time and increases model performance during 
training, however for the UNet model the opposite is observed. 

 

Figure 7.20: Comparison of the Loss for each epoch over the training duration. 
We also track the categorical cross-entroopy loss for each epoch. In the Split_CNN and Simple_CNN case, the 
windowing shortens training time and increases model performance during training, however for the UNet model 
the opposite is observed. 
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Figure 7.21: Training times for windowed and non-windowed models in seconds 
Here we see that there is a slight improvement of the training times of the windowed models compared to the non 
windowed models. As the number of epochs is approximately the same for each pair of models, we can conclude this 
is likely caused by the reduced number of parameters from the smaller output size. 

 

7.4 Discussion 

In this chapter, we focussed on the theoretical and observed performance drop-off at 

detection window edges, perhaps resulting from lack of contextual (Markov state) 

information available for models to infer Markovian state.  We adapted the models to take 

“whole” windows as input, but output only window centres as predictions.  Assembling 

full annotations by using two passes through the datasets.  This resulted in much faster 

detection times, and a small, but significant improvement in performance of some models, 

but notably worse performance of others (U-Net in particular). 

Perhaps the biggest point of discussion is whether the performance gains we saw here 

with the progressive windowing justify taking these models forward in future.  On the 

one-hand the models are smaller (useful in terms of future deployment) and run faster 

due to the reduced parameter numbers.  Also, the law of marginal gains means that even 

small improvement at each stage of an analysis pipeline could end-up being valuable over-

all.  But against this, the most successful model to date has been the U-Net achieving an 
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impressive 0.9663 Kappa score on Markovian recovery in some tests, and 0.9941 on the 

reduced condition of simple open/closed idealisation. Noting that Markovian recovery by 

deep learning is entirely new and it is the idealisation task that is currently the primary 

tool of single channel analysis (Celik et al., 2020; Davies et al., 2010; Feetham et al., 2015; 

Nicolai & Sachs, 2013; Numata, Sato-Numata, & Yoshino, 2021). However, U-Net was the 

least reliable here and so clearly the progressive windowed U-Net model itself would not 

be a useful model to take forward from this work. 

Following on from this, an obvious question is why did U-Net fail here so badly, in the face 

of otherwise improved performance?  The answer to this question is likely to relate to the 

obligatory changes made to adapt the model to our use and, so it expected. The nature of 

this model modification turned out to undermine the design philosophy behind U-Net 

itself, where the architecture had been specifically designed for their one-to-one 

segmentation scenario (Ronneberger et al., 2015).  As described in the methods (Chapter 

7.2) the original U-Net model includes inverse convolutional layers, the last of which had 

to be reduced in size to match the smaller prediction window. Clearly, it turns out that 

this layer was often critical to performance.  This raises the final point as to whether there 

could be other approaches to the same problem.  We tackled the window edge problem by 

a direct deep learning approach, adapting the models to smaller output predictions and 

using two passes of the data.  An alternative method that could be investigated in the 

future would be an entirely post processing approach.  One could use the identical models 

to those used in previous chapters and again use two passes of the data, staggered by half 

a window.  The first pass (A) would output full predictions from windows starting at 0, 

1024, 2048 et cetera and the second pass (B) would output full predictions from 512, 1536, 

2560 et cetera.  Post processing would then simply aggregate A:256-768, B:768-1280, 

A:1280-1972, B:1972-2304 et cetera.  This would be less computationally efficient since 

models would still pass the data twice and be the slower (and memory hungry) full-sized 

models, but it would likely correct window edge errors without damaging the performance 

of the underlying models themselves. 
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Another way to take this work forward would be in training a bespoke (unique for the 

case) model for Markov model recovery when a Markov schema is known a priori, and the 

user wants seamless Markovian state recovery. The method detailed here within would 

allow a model to be quickly trained on synthetic data, and then used to predict the user 

data, with said model cached to speed up the process in the future. This would give a one-

to-one relationship with the users initial labelling of states at the cost of training a new 

model for each Markovian schema. In this case, training time is the performance 

bottleneck and so reducing this cost is of particular interest. 

In conclusion we found that adapting the Simple and SplitCNN convolutional models gave 

small improvements to detection accuracy, and training time, but reduced reliability for 

U-Net. Therefore the Window Simple and Window Split CNN models were carried forward 

to the final chapter, in addition to the previously tested UNet model without windowing. 
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8 Ion Channel Idealisation using Deep 

Learning Methods 

8.1 Introduction 

In the work preceding this chapter, ion channel record generation using deep learning, 

and ion channel Markovian state recovering using deep learning were examined. 

However, arguably the most important problem to be solved regarding ion channel 

analysis using deep learning is the problem of channel idealisation. In the Markovian 

work, we saw that on simulated data, models could accurately recover the Markovian 

state, and by extension, the number of channels open at a given time from the raw signal 

record; however this comes with a few caveats; firstly, the data used for both training and 

testing is synthetically generated via a Markovian simulation. This is necessary to obtain 

an accurate point-by-point ground truth for the underlying, stochastic Markovian state; it 

is simply not possible to obtain this ground truth for lab-recorded data (indeed; this 

problem still exists somewhat for channel idealisation however we can mitigate this 

problem in several ways, such as using transfer learning methods to use a small amount 

of hand labelled data to supplement a model previously trained on a large amount of 

synthetic data). Secondly, all the datasets used in training and testing for the Markovian 

work were single channel; it is not realistic to make this assumption when applying these 

models to real, lab recorded data; very often a patch will include multiple channels at 

multiple conductance levels, meaning a simple binary classifier is inappropriate. 

Therefore, in this chapter, we look at building multichannel classifiers focused on channel 

idealisation only.  

Measuring the efficacy of these models is significantly difficult; the lack of ground truth 

poses a similar problem as in the Markovian problem; we simply cannot know for certain 

the ion channel’s configuration at each time point. However, we know from existing work 

that ion channel behaviour can be influenced via changes in the conditions; so we can use 



 
217 

summary statistics from the model output along with existing knowledge about the effects 

of substances on a channel to infer if a model is accurately detecting these outcomes; for 

example, although we cannot get a point-for-point labelling of an ion channel recording 

when a channel inhibitor is applied, we know that overall the number of openings should 

decrease. It is known that substances can affect the channel size, opening probability 

and/or the dwell time distributions of a channel depending on the substance and channel 

involved. Therefore, if we select a substance with known ion channel modulating 

properties we can test our deep learning models to see if they identify these known actions. 

If our deep learning model can identify such effects with similar sensitivity to existing 

methods, then the model has been successful.   

Another significant challenge of evaluating deep learning models on real ion channel data, 

as opposed to simulated, is that real data contains artefacts that may affect the deep 

learning process. For example, MinMax scaling (the scaling used in previous work), is 

extremely sensitive to outliers and anomalies in the data; something which is not 

uncommon in ion channel recordings and often manually removed by a researcher. 

Previous work into automatic ion channel idealisation (Celik et al., 2020; 

Gnanasambandam et al., 2017; Hotz et al., 2013; Qin, 2004) has not approached this 

problem, so a novel solution must be developed. Furthermore, in all this previous work, 

the number of channels visible in the test set is always known a priori; resulting in a 

similar channel size for each dataset. Due to the nature of patch-clamp electrophysiology, 

we cannot guarantee the number of channels recorded in the patch clamp process; 

therefore a model trained on single channel data may be given data with several channels 

to idealise and fail. A novel approach is yet to be developed for this problem as well, and 

needs to be approached for models to work on real data. 

For this chapter we use calcium activated potassium channels (KCa1.1, or BK for “big 

potassium”) stably expressed in the HEK cell line since it is a well-studied system with 

commercial availability.  BK channels are characterised by their conductance (1100-

300pS) (Lee & Cui, 2010), far greater than other potassium channels, but smaller than 
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those used in similar work for automatic ion channel idealisation (Gnanasambandam et 

al., 2017), so provide a difficulty for deep learning models in line with previous work. Like 

all ion channels, BK have fundamentally important biological functions, for example, 

dysregulation of BK channels has shown to be a factor in a number of conditions from 

hypertension (Brenner et al., 2000) to epilepsy (Du et al., 2005) and autism (Laumonnier 

et al., 2006). 

 

Figure 8.1:  BK Channel sensitivity to changes in ion concentration, adapted from (Nimigean & Magleby, 1999; 
Yang et al., 2008) 
(A) shows three samples of recordings from a BK channel in HEK293 cells at different calcium concentrations, 
recorded at 30V. Ca2+ is shown to increase Po, but has no effect on channel size. B and C show differences in channel 
size when the same channel is exposed to changes in Mg2+ concentration; B shows representative examples of the 
channel at 0 and 10mM of Mg2+ and C shows the voltage amplitude curve for the same set of conditions. 
 

Regulation of the BK channel is complex involving, organic ligands, phosphorylation, 

voltage and its defining physiological feature of sensitivity to intracellular calcium ions 

(Horrigan & Aldrich, 2002).  Elevation of calcium ion concentrations at the cytosolic 

surface leads to increasing   open probability (Figure 8.1). The effect of individual ions is 

not restricted to open probability, for example the presence of magnesium ions shifts the 

activation voltage of BK channels to the left (Figure 8.1) (Zamoyski, Serebryakov, & 

Schubert, 1989) . In addition to individual ions, many more substances can effect BK 

channel activity.  Interestingly it has been shown that carbon monoxide increases BK 
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channel size (Bae, Kim, & Lim, 2021) causing arrythmia, and myocardial cell deaths, 

potentially leading to cardiac fibrosis.  

A well-known example of pharmacological modulation of BK is that of the injectable 

anaesthetic compound ketamine.  In addition to its interaction with calcium ion channels 

it also reduces the open probability the BK channel (Denson, Duchatelle, & Eaton, 1994); 

BK channel inhibition is known to modulate neurotransmitter release (Denson et al., 

1994; Denson & Eaton, 1994; Yamakura et al., 2000), causing anaesthetic effects. 

Usefully there are also a range of commercially available ligands which can be routinely 

used as tools to probe the functions of BK. For example, iberiotoxin, the toxin from the 

scorpion Buthus tamulus that inhibits the current through BK channels, causing both 

slowing of the mean dwell times and reduction of the open probability of the channel 

(Candia et al., 1992) quite specifically and at very low concentrations. Of particular 

pertinence to this chapter are two further drugs; Penitrem A, a commonly used toxin 

produced by the spore Aspergillus Claviceps for the study of BK channels as it is widely 

available and is a BK antagonist in both intra- and extracellular applications (unlike 

iberiotoxin which only works extracellularly) (Asano et al., 2012). The well-known nature 

of Penitrem A’s effect on BK channels allows us a baseline to compare against when 

evaluating models; a robust model should be able to detect the blocking action of the toxin 

on a BK channel across a number of conditions (Figure 8.2). 
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Figure 8.2: Response of BK channel to Penitrem A, Adapted from (Asano et al., 2012). 
Penitrem is known to reduce channel activity for BK channels, and is more versatile and available than its analogues 
such as iberiotoxin. A shows a representative example of the signal with and without Penitrem A, and B shows the 
response of the current reading as the Penitrem A concentration is increased for two different phenotypes of the 
channel (𝛼, 𝛼 + 𝛽1). 
 

The second drug; Vernakalant Hydrochloride, is of interest to us as while the effects on 

other, similar potassium channels are well known (Burashnikov et al., 2012; Naccarelli et 

al., 2008; Seyler et al., 2014), there has been little study on the effects of the drug on BK 

channels specifically. The drug is typically used in the treatment of atrial fibrillation; a 

condition of which BK channels are known to play a part (Jakob et al., 2021), so studying 

the effects of this drug on BK channels is a worthwhile in its own right in addition to 

model validation.  

8.2 Aims and Objectives 

This Chapter encapsulates 3 stand-alone experiments.  Each one was recorded by a 

different experimenter (including one by myself) on a different set of equipment, with 

different acquisition hardware and different mode of patch clamp recording to contribute 

to generalisability of our results. 

8.2.1 Ca2+ sensitivity of BK channels.     

In this experiment, we start from a knowledge that calcium activated potassium channels 

(BK channels) exhibit an increase of open probability as the concentration of extracellular 



 
221 

calcium increases. We idealise a number of different ion channel recordings at different 

calcium concentrations, and from these idealisations calculate the open probabilities. A 

successful deep learning model should be able to generate a set of open probabilities that 

fits known open probability dose response curves. 

8.2.1.1 Specific objectives:  

A.  Characterise BK channels, and their sensitivity to voltage and Ca2+ ions with a deep-

learning based approach, with new, novel models trained on relevant datasets. 

B. Compare traditional analysis via computer assisted idealisation through QuB of the 

inside out patch data with analysis using a deep learning approach, as well as secondary 

analysis from these idealisations such as dwell time histogram analysis. 

C. Determine whether our deep-learning approach can detect Ca2+ activation with 

greater sensitivity to a traditional idealisation approach. 

8.2.2 Penitrem A sensitivity of BK channels. 

In this experiment, we again start from knowledge that BK channels are inhibited by the 

concentration of extracellular Penitrem A. In this case, an independent analysis and 

idealisation of outside-out patch clamp recordings was performed; a deep learning model 

should not only detect a decrease in open probability as the concentration of Penitrem A 

increases, but ideally have a stronger discrimination than the manual analysis.  

8.2.2.1 Specific objectives:  

D. Measure BK channels’ sensitivity to Penitrem A using a deep learning approach,  

E. Compare traditional (idealisation) analysis of outside-out patch data with  a deep-

learning approach by considering the differences and similarities between each approach’s 

resulting analysis for open probabilities and dwell times. 
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F. Determine whether our deep-learning approach can detect Penitrem inhibition of BK 

with greater sensitivity to a traditional idealisation approach. 

8.2.3 Vernakalant Hydrochloride sensitivity of BK channels 

In this experiment, we start from the knowledge that cardiac domain potassium channels 

are inhibited by the concentration of extracellular vernakalant hydrochloride, however 

the effect of the drug on BK channels specifically is unknown. The previous two 

experiments act as controls for showing the deep learning models can detect a known drug 

effect, whereas this experiment attempts the inverse; detecting an unknown drug effect 

assuming the deep learning model works successfully. This approach yields both a new 

method for ion channel idealisation, as well as the discovery of a previously unknown 

effect of a drug on an ion channel. 

8.2.3.1 Specific objectives:  

G: Test whether vernakalant modulates BK channels via outside-out patch clamp 

recordings, and if so calculate the magnitude and EC50 of the effect using a deep-learning 

approach. 

H: By comparing commonly sought after physiological analysis of ion channel function 

(dwell time, open probability analysis), compare the performance of the deep learning and 

traditional, semi-automatic idealisation approach to idealisation of vernakalant BK 

channel modulation data. 

8.3 Methods 

Three datasets were used in this work; the “Calcium” and “Penitrem” datasets were 

generated by members of the group for the purpose of model testing (see 

acknowledgements) and the “Vernakalant” dataset recorded by myself specifically for this 

work.  
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8.3.1 Cell Culture 

HEK-293 cells were chosen for all experiments due to a strong expression of the BK 

channel gene and robustness to changes in conditions. They were kindly provided initially 

by Dr Sean Brennan, who stored and cultured here in on site.  For all three datasets, cell 

culture protocol was the same (Figure 8.3, Table 8.1); cells were stored in a media of Gibco 

DMEM High Glucose + GLUTAMAX [Thermo Fisher Scientific, USA] with 10% foetal 

bovine serum (FBS) [Sigma Aldrich, USA] and 1% gentamicin [Sigma Aldrich, USA] 

(“FBS+” media) in T25 flasks at 80% confluence before splitting and 38C and 5% CO2.  

Table 8.1: Cell Culture Solutions. 
Two solutions were used for cell culture; since patch clamp recording is significantly difficult in the presence of FBS, 
a solution without FBS or Gentamicin was used to suspend cells for patch clamping. This solution was also used for 
washing the flask between spins in the cell culture protocol. 

Media Name FBS- FBS+ 

Gibco DMEM High Glucose 

+ GLUTAMAX 

100% 89% 

FBS 0% 10% 

Gentamicin 0% 1% 
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Figure 8.3: Cell Culture protocol. 
BK cells were used to test the effects of different substances using our deep learning models. Cells were taken from 
an incubator at ~80% confluence (about every 2 days) and split using the above protocol. Cells were split into two 
groups at the end of splitting; one group would be resuspended for the following round of splitting, and the other 
would be used for experiments. 
 

Cells were split every few days when confluence reached above 80% - this was done by 

removing media and washing a T25 flask [Thermo Fisher, USA] with 5ml clean media 

without FBS or gentamicin. 5ml 1% trypsin solution was then added to detach cells from 

the flask surface, incubating for 10-15mins at 38C 5% CO2 to allow this process to occur. 

After cells had lifted from the bottom of the flask, the resulting solution was quenched 

with the 10ml of the FBS media, then spun down in a centrifuge at 750rpm for 5mins. The 

pellet was then washed again in the non-FBS media, and at this point two suspensions 

were created; in one case the pellet was resuspended in 10ml of the FBS media. Two 1ml 

measures of this suspensions were placed into clean T25 flasks and 5ml of additional FBS 

media was added, then flasks were placed into the incubator until splitting was required 

again. In the other case, the pellet was resuspended in non-FBS media, with 1ml of this 

solution placed into a 5cm glass bottomed petri dish [Matek, USA] and left for 10mins in 

the same incubation conditions as the other cells to recover ready for patching. 
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8.3.2 Freezing and Revitalising 

Cells were split regularly (between 2-4 days), and a sample of cells were frozen each time 

to preserve cell stocks. To do so, after passing the cells through the centrifuge, sterile 

DMSO was added until a final concentration of 10% DMSO to 90% FBS media was 

achieved, and aliquoted into 1ml cryovials [Thermo Fisher, USA]. Samples were then 

transported to a -80C freezer for 48 hours before transferring into long term liquid 

nitrogen storage. 

To revitalise the cells, cryovials were taken from the liquid nitrogen storage and 

immediately placed into a 37C water bath. After thawing, 10ml of pre-warmed FBS media 

was added into a centrifuge tube along with the previously frozen cells, and span down at 

750rpm for 5mins. The FBS + DSMO solution was then decanted out and replaced with 

clean, FBS positive media into a T25 flask, and placed back into an incubator at 38C 5% 

CO2 until the desired confluence was required.   

 

Figure 8.4: General Electrophysiology protocol. 
Cells were recorded in the same way each time. Pipettes were pulled to the required resistance (5-8MΩ)  and filled 
with a solution depending on the experiment and recording configuration. The patch clamping bath was filled with 
another solution, again depending on the experiment. A Gigaohm seal was then achieved followed by the required 
patch-clamp configuration (e.g. inside out or outside out). Then recording was started to obtain data samples for 
analysis, perfusing new solutions into the bath to measure drug response. 
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8.3.3 Recording Data 

For patch-clamp recording, a similar protocol was used across all datasets (Figure 8.4); 

patch-pipettes were pulled using 1.5mm O.D 10cm length borosilicate glass capillary 

tubes [Intracel, England] and a two-step electrode puller [PP-830, Narishige, Japan] . 

Patch pipettes were pulled with an aim to achieve initial patch resistance of 5-8MΩ once 

filled with physiological solution. 

8.3.3.1 Solutions 

Solutions for each dataset can be seen in Table 8.2 and were used across all experiments; 

however whether each solution was extracellular or intracellular depended on the patch-

clamp configuration being used and is given below. In addition, for the “Penitrem” dataset, 

an additional 300uM free calcium was added to the bath solution to induce activity. The 

recording configurations and solution locations can be seen in Table 8.2. 

Table 8.2: Solutions used for patch-clamping.  
Both solutions were made up using KOH to the desired pH.  

Solution A B 

K+ 150mM 150mM 

Cl- 154mM 161mM 

Mg2+ 1mM 2mM 

Ca2+ 2mM 2mM 

HEPES (-1) 10mM 10mM 

Na+ 0mM 5mM 

EGTA (-2) 3.05mM 0mM 
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Calculated 

osmolarity 

316.05 337.2 

pH (with KOH) 7.3 7.4 

 

In the cases where a drug was used, it was always applied extracellularly; to do this, a 

portion of extracellular solution was aliquoted into a smaller vessel and the correct 

amount of drug was added to the solution to reach the desired concentration in a Falcon 

tube [Fisher Scientific, UK]. This solution was then perfused through the bath to achieve 

the change in conditions without losing the seal via a pump [Minipuls 3, Gilson USA].   

8.3.3.2 Making a seal 

Critical to the patch clamp technique is careful formation of the giga-ohm seal which 

allows for resolution of the pico-ampere current jumps exhibited by ion channel activity. 

This is achieved by a Faraday cage on an air table holding a microscope (for visual 

positioning of the pipette), micromanipulator [Narishige, Japan] (for precisely lowering 

the pipette onto the cell surface without rupturing it) and an electronic headstage for 

conducting the electrical current out of the cage and towards the amplifier. The Faraday 

cage and air table are crucial to the patch-clamp process, as a slight vibration during 

recording can cause extreme noise during the recording, or rupture the cell entirely. 

When the desired solutions were in the pipette and dish, the pipette was lowered down 

onto a cell using a micromanipulator until an increase in resistance was observed, 

corresponding to the pipette tip touching the cell surface. Then, light suction was applied 

to the pipette to increase the resistance of the seal until no more suction was needed to 

continue the increase in resistance; at this point suction was completely removed, and 

resistance would climb steadily to the giga-ohm level.  



 
228 

At this point, the giga-seal had been created and current was being measured across the 

cell wall, however due to the experimental design, further steps needed to be taken to be 

able to modulate the extracellular solution without detaching the pipette from the cell 

membrane (since in this initial cell-attach patch configuration, the extracellular solution 

was in the pipette, and could not be changed).  

For inside-out patch (IOP), the pipette was withdrawn from the cell to isolate a small 

patch of membrane with cytoplasmic face to the bath.  However, for OOP additional 

suction was applied to the patch to rupture the cell membrane beneath the patch-pipette 

tip and achieve a whole-cell configuration. At this point, the pipette was withdrawn from 

the cell dish to pull off a patch of membrane clear of the cell. If a vesicle was apparent the 

pipette tip was quickly moved through the solution surface. 

This then resulted in the pipette solution representing intracellular conditions, and the 

bath solution representing extracellular conditions, and a fluid pump could be used to 

perfuse new solutions through the bath, changing the extracellular conditions to be 

measured. For example, in the case of measuring the effects of calcium concentration, a 

series of solutions increasing in calcium were perfused into the bath, allowing for the same 

cell to be recorded under a set of different conditions.  

8.3.3.3 Digitisation 

Recording would be either be achieved through an amplifier, with either a gain of 200 or 

500 times depending on noise and the number of channels present. The 4-pole in build 

basselfilter was set at either 1kHz or 2kHz depending on the sample rate, with an 

additional HumBug filter [Quest Scientific, Canada] to remove 50 cycle noise. This would 

then be passed into a digitiser to convert the signal from analogue to digital at a sample 

rate of either 10kHz or 250kHz depending on the dataset.  
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8.3.4 Real Data Datasets 

 If different voltage levels were desired, the voltage would be changed throughout the 

recording via the patch clamp software. In some cases a patch was robust enough to record 

over a series of both drug levels and voltage levels; in this case the voltages were cycled 

through first, then a drug applied. Data was recorded into WinEDR; the recording 

parameters for each of the datasets can be seen in Table 8.3. 

Table 8.3: Dataset information for each dataset 
Each dataset was recorded under slightly different conditions, examining a different drug or ion’s effect on the BK 
channel. 

Dataset Name Sample 

Rate 

Set-up Variable 

Drug/Ion 

Recording 

configuration 

“Calcium” 10kHz  Microscope: Eclipse 

E600FN, Nikon, 

Japan 

Amplifier: Axopatch 

200B, Axon 

Instruments, USA 

Headstage: CV 

203BU, Axon 

Instruments, USA 

Digitiser: Digidata 

1200, Axon 

Instruments, USA 

Ca2+ IOP 

“Penitrem” 250kHz Microscope: Eclipse Ti, 

Nikon, Japan 

Penitrem A IOP 
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Amplifier: Axopatch 

200B, Axon 

Instruments, USA 

Headstage: CV 

203BU, Axon 

Instruments, USA 

Digitiser: Digidata 

1550, Axon 

Instruments, USA 

“Vernakalant” 10kHz  Microscope: CK2, 

Olympus. Japan 

Amplifier: Axopatch 

200A, Axon 

Instruments, USA 

Headstage: CY 201A, 

Axon Instruments, 

USA 

Digitiser: CED 

MICRO3 1401, 

Cambridge Electronic 

Design, England 

Vernakalant 

Hydrochloride 

OOP 
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8.3.5 Data Pre-processing 

Once the data had been digitised as above, into WinEDR binary format, it was converted 

to text comma separated value (CSV) format first split by condition such that each file 

only contained one voltage level and drug level. For the “Calcium” and “Vernakalant” 

datasets, QuB idealisations were performed to ascertain a baseline performance of what 

is currently possible with modern methods, and for the “Penitrem” dataset, idealisations 

and analysis were carried out by Dr Sean Brennan. 

Several automatic processes were used to clean the data before being analysed with the 

deep learning models (Figure 8.5) to ensure the deep learning model could accurately 

idealise the data. 

 

 

Figure 8.5: Preprocessing Pipelines. 
The preprocessing pipelines were slightly different for the synthetic training data and the real, lab recorded data – 
due to the nature of the simulation, the synthetic data was far more ideal than seen in the lab; the synthetic data 
had no spiking anomalies and had a fixed number of channels present in each file, meaning the MinMax scaling was 
consistent. The synthetic data’s events happened almost instantaneously, giving a quick change in current; whereas 
in the real data due to filtering and the realistic nature of the recording, the change in current for events was far 
slower. 
 

8.3.5.1 Anomaly detection (deep-learning methods only). 

Initially, an anomaly detector and remover was built to remove peak artefacts from the 

data (Figure 8.6). These artefacts could potentially be many times greater in amplitude 
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than a single channel event and interfere with any scaling operation used, and developing 

an intelligent method for handling these events is a crucial step, without which models 

may fail. This was achieved by first detecting anomalies; the data was split into 20 bins, 

and within each bin any point more than an arbitrary 4 standard deviations (0.0001% 

exclusion) from the mean would be considered anomalous. To increase the effectiveness of 

the anomaly detection, a simple propagation algorithm was used to include any datapoints 

part of a peak (for an upward peak artefact, any other points that were strictly increasing 

towards the peak’s centre) that were under the 4 standard deviation threshold.  

 

Figure 8.6: Anomaly Detection. 
A shows an example of an anomaly along with the threshold (4 standard deviations) used in the preprocessing 
timeline. All points further than 4 standard deviations away from the mean were labelled as anomalous – B shows 
two different approaches to inclusion of anomalous points; the “simple” anomaly detection takes only the points 
above the threshold – however the “smart” algorithm includes all strictly decreasing points around the anomaly to 
label the base of the spike as well. In C we see the 3 different approaches to anomaly removal – we can either delete 
the anomaly completely and join the points together ( this is what is used in the work); interpolate the missing data 
with a linear fit; or replace the anomaly with the mean. During training these latter two methods were found to lead 
to worse model idealizations so were avoided. 
 

We tested several strategies to removing detected anomalies; simply deleting the 

anomaly, shortening the record; replacing the anomaly with the mean current value 

across the whole file; or interpolating the points before and after the anomaly linearly 

(Figure 8,6). In preliminary testing, it was found that simply deleting the anomaly was 
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the only feasible method, as the other two approaches introduced significant inaccuracies 

in the deep learning idealisation that resulted in poor performance for further analysis. 

8.3.5.2 Timeseries Amplitude Normalisation via Estimation 

(TANE) 

Due to the nature of ion channel activity and scaling functions such as MinMax, the size 

of the channels after scaling would depend on the number of channels present in the input 

signal. Since the training dataset consistently had five channels present, for lab-recorded 

signals with less than five channels present, a consideration had to be applied to scale the 

recording such that the mean channel size was equal to the channel size present in the 

traning dataset (Figure 8.7). In this work we use Timeseries Amplitude Normalisation via 

Estimation (TANE) where we estimate the number of channels present in the data by 

splitting it into 10 windows (to mitigate the factor of baseline drift) and construct 

amplitude histograms for each one. A simple peak-detector (scipy.signal) is used to 

compute the number of peaks in these histograms, which when averaged should 

correspond to the number of conductance levels in the data. Alternatively, this number 

can be entered manually by the user (Manual-TANE). We then divide the amplitude data 

pointwise by a factor inversely proportional to the number of channels observed; this 

would result in a fixed unitary conductance or channel size post scaling. 
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Figure 8.7: TANE Scale factor detection. 
Since the model trained on data that always contained 5 channels, the minmaxing process would lead to a synthetic 
discrepancy between the mean size of channels between the training and real lab recorded dataset if the lab recorded 
data had less than 5 channels. Therefore, for every recording, the data was split into 20 windows and the amplitude 
histograms calculated (first 9 shown here) . The histograms were then run through a peak fitting algorithm to detect 
the number of channels in each segment – the mean of which across all windows would be taken as the detected 
number of channels, rounded up. 
 

Without such a correction, idealisation would either fail completely, or return the incorrect 

number of channels, skewing downstream statistics. Application of this pre-processing 

step appeared to correct this issue, with the option of manual supervision to ensure the 

detected number of channels was correct by giving the user the predicted number of 

observed channels and allowing a manual override if the estimation was deemed incorrect. 

8.3.5.3 Time-domain scaling 

In the final step, a basic decimation algorithm was used on the signals; this algorithm 

simply took each 𝑛th point, where 𝑛 was the decimation parameter (Figure 8.8) and 

discarded the rest. This was in part to sharpen event edges to increase model performance, 
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and reduce input data size, and offered an additional control to bring the number of points 

in an event more in line with that seen in the training data. 

 

Figure 8.8: Data decimation (downsampling). 
A simple decimation process was applied to the recording data where each nth point was taken of the signal, with n 
being the decimation factor (here 10). This was important for 3 reasons, particularly for the “Penitrem” dataset. 
Firstly, the “Penitrem” dataset had an extremely high sample rate, meaning that the events (whilst having a similar 
size by time) had vastly more points than the training set, causing the inputs to the model to appear squashed on 
the time axis. By decimating this, we corrected this problem. Secondly – it improved model performance on high 
sample rate data – by using the decimation process we effectively cut the prediction time by a factor of 10. Lastly, 
and perhaps most importantly, is that due to the filtering of the data through the hardware - the events had a much 
“softer edges” (by number of points); decimation “sharpens these edges by ”speeding up” the change in current.  

These pre-processing steps were in addition to the pre-processing steps seen in Chapter 

7, with the above steps added where appropriate. 

8.3.6 Deep Learning 

8.3.6.1 Data simulation 

The work on Markovian models has been limited to single-channel data, so new models 

had to be re-trained for the idealisation of multichannel data. Previous work, such as the 

original DeepChannel (Celik et al., 2020) models were already tested on multichannel 

data, so forms a baseline for a state-of-the-art comparison.  To train multichannel models, 

the same model architectures from Chapter 7 were used, but with a new dataset, 

extending the previous simulations to allow for multi-channel simulation. 
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8.3.6.2 Deep Learning Models 

The initial models tested for multi-channel idealisations were the three best models from 

the previous chapter: a Split CNN model modelled from similar work (Supratak et al., 

2017) with a window truncation method detailed in Chapter 7; a “Simple” CNN model 

with a window truncation method, serving as a low-parameter baseline to compare similar 

models against; and the state-of-the-art UNet model applied to signal segmentation rather 

than image segmentation (also with a window truncation method). These models had 

identical optimiser functions (Adam) and loss functions (categorical crosscross entropy) as 

in Chapter 7, but the target labels were the number of channels open at a given point in 

the signal rather than the Markovian state as in Chapter 7. 

 

Figure 8.9: New SplitCNN Model Architecture adding an LSTM route in the second stage. 
In the original DeepSleepNet paper which inspired the SplitCNN design (Supratak et al., 2017), an LSTM route is used 
in the second stage of the model to allow for longer-term feature detection. This new model is added to the models 
we test on multichannel data. 
 

In addition to these two models, DeepChannel (Celik et al., 2020) was re-added into the 

model consideration as it has been shown to perform multi-channel idealisation accurately 

in previous work. In addition a new model was added: similar to the Split CNN model 

(Figure 8.9) but with an additional LSTM step after the convolutional blocks to better 
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encode historical data, as this model has also seen high performance in similar tasks 

(Supratak et al., 2017). 

8.3.6.3 Data Training 

For the synthetic training data in this chapter, multiple independent Markovian processes 

were simulated and added together, and noise added in post to simulate ambient 

conditions in the lab. In total, 8 different datasets were trained (drift/non-drift datasets 

both for 1, 3, 5 and 10 channels). Each of these consisted of 24 files of 10mins of data at 

10kHz for training, totalling 144 million input datapoints, and 281250 training samples 

after the windowing process.  A further 24 equivalent files were used for testing each 

model, and 12 files more for mid-training validation. In addition to the 1/f noise sampling 

to replicate realistic noise, a digital patch-clamp style 8-pole Bessel filter was applied to 

the resulting data at a cut off frequency of 2kHz. 

The models were then trained in a similar method to Chapter 7, with automatic learning 

rate scheduling and early stopping based on validation performance. The training 

progress for each model, and evaluation on the testing datasets were noted. These models, 

trained on the synthetic data were then used to idealise the lab-recorded data to gain a 

point-by-point classification of the raw signal. 

8.3.7 Data Postprocessing 

After obtaining the automated model idealisations for the patch-clamp (real) data files, 

some postprocessing was applied to the data to improve model results.  

8.3.7.1 Time Domain Rescaling 

The idealisations were unscaled by the timepoint (correcting decimation (see section 

8.3.5.3), and then passed through a dead-time filter to remove events smaller than or 

equal to 10 points long to remove flickering. 
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In the “Calcium” dataset, three candidate models from previous work were used to analyse 

the data, however in the “Vernakalant” and “Penitrem” datasets only the best of these 

models was used as performance was similar across all the models in testing. For the 

“Vernakalant” and “Calcium” datasets, an additional QuB idealisation was performed as 

a baseline to compare against. This idealisation would act as a ground truth for the 

following processing. 

From the idealisations; a baseline correction was made to set the baseline in the data to 

the baseline in the idealisation to avoid biasing the nPo. The nPos were then calculated 

by using the following formula: 

𝑛𝑃𝑜 =  ∑ 𝑘𝑛𝑘

𝑚

𝑘=0

 

Where 𝑘 is the conductance level, 𝑛𝑘 the number of points at the conductance level, and 

𝑚 the maximum conductance level observed. 

For cases where a drug was applied, the relative nPos were calculated by dividing the 

nPos by the nPo observed when no drug was used. 

In all cases, dwell-time histograms for the two most common conductance levels were 

generated fitted using the standard method of log-binning the dwell times and using a 

square root axes for the frequencies. Curves with the equation: 

𝐹(𝑥) = ∑ 𝑎𝑖𝑒 ∙ 𝑒𝑥−𝜏𝑖−𝑒𝑥−𝜏𝑖  

Were fitted to the dwell time histograms. This equation is slightly different to the typical 

equation used to fit dwell time histograms (Sigworth & Sine, 1987), however the inclusion 

of the extra constant 𝑒 is helpful for fitting as each 𝑎𝑖 now directly corresponds to the peak 

of each exponential function.  

The areas (𝑎𝑖) and centres (𝜏𝑖) of each of these fits were then compared to check for changes 

in the underlying Markovian process of the channel, along with the relative nPos (for 
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checking if a change in conditions increased or decreased channel activity) and gaussian 

fitted parameters for the amplitude histograms (for testing changes in channel size).  

8.4 Results 

8.4.1 Multichannel Model Training on Synthetic Data 

For idealisation of synthetic data, the micro F1score and Cohen’s Kappa score were 

recorded for each model trained on each dataset (Figures 8.10-8.25;); in total 40 models 

were trained and given a code name moving forward; the Simple CNN models were 

designated A, Split CNN +LSTM B,  and UNet C, Split CNN without LSTM D, and 

DeepChannel E. The number of channels the dataset was generated to have would make 

the next part of the codename, then whether or not the training data had added drift 

would make up the final part (D or ND for drift/no-drift). Therefore the 5 channel Split 

CNN model with LSTM with drift added would be represented by Model B5D. The models 

showed mixed results, with significant difference between each model (p < 0.001, n=24) 

but no model consistently outperformed the others. For example in the single channel 

dataset the CNN models significantly outperformed DeepChannel (p < 0.001, n=24) but 

on the 5 channel dataset without drift, DeepChannel was far superior (p < 0.001, n=24) 

for all models bar the Simple CNN model 5AND) 

 Following additional assessment of apparent errors produced with preliminary testing of 

sections of real data, the 5 channel drift version of the LSTM-SplitCNN model (seen in 

section 8.3.6.2) was chosen to be taken forward for idealisation of real data in the following 

analysis. 
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Figure 8.10: Model Training Traces for “One Channel, No Drift” Synthetic Dataset 
Representative traces for each model are seen above, with the ground truth in blue and model idealization in red. 
Here, DeepChannel shows oversensitivity to events and UNet under sensitivity.  

 

Figure 8.11:  Model Training Metrics for “One Channel, No Drift” Synthetic Dataset. 
Two way ANOVA showed significant differences of the models for both F1 score and Cohen’s Kappa score (p < 0.001) 
and between the datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all 
models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no 
significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 
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Figure 8.12: Model Training Traces for “One Channel, Drift” Synthetic Dataset.  
Representative traces for each model are seen above, with the ground truth in blue and model idealization in red. 
Here, DeepChannel shows oversensitivity to events and UNet under sensitivity.  

 

Figure 8.13: Model Training Metrics for “One Channel, No Drift” Synthetic Dataset.\ 
Two way ANOVA showed significant differences of the models for both F1 score and Cohen’s Kappa score (p < 0.001) 
and between the datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all 
models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no 
significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 
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Figure 8.14: Model Training Traces for “Three Channels, No Drift” Synthetic Dataset 
Representative traces for each model are seen above, with the ground truth in blue and model idealization in red. 
Here, DeepChannel shows oversensitivity to events and UNet under sensitivity.  

 

Figure 8.15: Model Training Metrics for “Three Channel, No Drift” Dataset.  
Two way ANOVA showed significant differences of the models for both F1 score and Cohen’s Kappa score (p < 0.001) 
and between the datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all 
models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no 
significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 
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Figure 8.16: Model Training Traces for “Three Channels, Drift” Synthetic Dataset 
Representative traces for each model are seen above, with the ground truth in blue and model idealization in red. 
Here, DeepChannel shows oversensitivity to events and UNet under sensitivity.  

 

Figure 8.17: Model Training Metrics for “Three Channel, Drift” Dataset.  
Two way ANOVA showed significant differences of the models for both F1 score and Cohen’s Kappa score (p < 0.001) 
and between the datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all 
models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no 
significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 
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Figure 8.18: Model Training Traces for “Five Channels, No Drift” Synthetic Dataset. 
Representative traces for each model are seen above, with the ground truth in blue and model idealization in red. 
Here, DeepChannel shows oversensitivity to events and UNet under sensitivity.  

 

Figure 8.19: Model Training Metrics for “Five Channel, No Drift” Dataset.  
Two way ANOVA showed significant differences of the models for both F1 score and Cohen’s Kappa score (p < 0.001) 
and between the datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all 
models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no 
significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 
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Figure 8.20: Model Training Traces for “Five Channels, Drift” Synthetic Dataset.  
Representative traces for each model are seen above, with the ground truth in blue and model idealization in red. 
Here, DeepChannel shows oversensitivity to events and UNet under sensitivity.  

 

Figure 8.21: Model Training Metrics for “Five Channel, Drift” Dataset 
Two way ANOVA showed significant differences of the models for both F1 score and Cohen’s Kappa score (p < 0.001) 
and between the datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all 
models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no 
significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 
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Figure 8.22: Model Training Traces for “Ten Channels,No Drift” Synthetic Dataset.  
Representative traces for each model are seen above, with the ground truth in blue and model idealization in red. 
Here, DeepChannel shows oversensitivity to events and UNet under sensitivity.  

 

Figure 8.23: Model Training Metrics for “Ten Channel, No Drift” Dataset.  
Two way ANOVA showed significant differences of the models for both F1 score and Cohen’s Kappa score (p < 0.001) 
and between the datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all 
models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no 
significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 
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Figure 8.24: Model Training Traces for “Ten Channel, Drift” Synthetic Dataset.  
Representative traces for each model are seen above, with the ground truth in blue and model idealization in red. 
Here, DeepChannel shows oversensitivity to events and UNet under sensitivity.  

 
Figure 8.25: Model Training Metrics for “Ten Channel, Drift” Dataset.  
Two way ANOVA showed significant differences of the models for both F1 score and Cohen’s Kappa score (p < 0.001) 
and between the datasets (p < 0.001); post-hoc tests were performed for each model pair within the datasets – all 
models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no 
significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 
 

 

 

8.4.2 “Calcium” Dataset 

The “Calcium” dataset contained recordings for a number of BK channel IOP patch-clamp 

experiments with different holding potentials and Ca2+ concentrations (at the cytoplasmic 
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face of the membrane). These data were split in to two groups: (i) Recordings at either -

40mV and +40mV with changing Ca2+ concentration, and (ii) recordings at a Ca2+ 

concentration of 17.7µM with differing holding potentials (-100mV to 100mV stepped by 

10mV). 

Sample idealisations of files of the “Calcium” dataset can be seen in Figures 8.26 and 8.27. 

Qualitatively, we found that the idealisation process was mostly successful (Figure 8.26) 

with some errors resulting in a blank idealisation (Figure 8.27). This could be caused 

either by model under/overfitting, or a problem in the pre-processing pipeline (such a 

TANE malfunction, see discussion). Formal model validation with this dataset, however, 

requires comparison of the physiological phenotype with the well-established data in the 

literature, by way of comparing further physiological analysis with current methodologies, 

in addition to how successfully the model detects drug action known to occur. 

 

Figure 8.26: Successful idealisation from the “B5D” model for “Calcium” dataset.  
Here we show a raw data trace from the “Calcium” dataset, and the corresponding idealization – we see that the 
model successfully idealises the record, successfully converting the raw noisy signal into a square wave. 
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Figure 8.27: Unsuccessful idealisation from the “B5D”model for “Calcium” dataset.  
Here we show an example where irrespective of metrics it is clear that the model has not idealized correctly. This can 
be caused by a number of issues, (see full text); but is likely fixed by further work into improving the quality and range 
of the training data, and the pre-processing pipeline. 

 

Figure 8.28: Amplitude histograms and unitary conductance plot for “Calcium” dataset.  
A and B show representative examples of current histograms for -40mV and 40mV recordings respectively, fitted 
with Gaussian curves. C shows unitary conductance plot of voltage vs channel size (current). A linear regression 
(n=42) showed a significant relation between the two variables (p < 0.001). The unitary channel conductance, 
measured as slope of unitary current against voltage ( di/dV ) corresponded to 137.7±29.8pS (n= 42), consistent with 
the literature on BK channel conductance of 100-300pS. 
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8.4.2.1 Single Channel Amplitude Histograms 

Single-channel amplitude histogram analysis of the calcium dataset (Figure 8.28) showed 

a significant, approximately Ohmic relationship between single-channel amplitude and 

voltage for the channel (p < 0.001), as expected.  The unitary channel conductance, 

measured as slope of unitary current against voltage (di/dV ) corresponded to 140±31pS 

(n= 42).  This assumes that the current was non-rectifying over the recording range.  It 

should be noted, however, that this analysis is done prior to idealisation and is separate 

from model performance. 

 

Figure 8.29: Dose Response Curves Relative (to 17.7uM) nPo at different levels of Calcium for both B5D model 
idealisations (Model) and manual idealisations (Manual). 
2 way ANOVA for the effects of the concentration of calcium showed a small significance of the amount of calcium 
applied to the channel to the open probability (p = 0.029, n=2) and no significance for a difference in the model 
idealisations versus the manual qub idealization.  DRC were fit with 3-parameter logistic models, Slope (B5D, Slope: 
-6.5e+00±9.4e+01, Min:   8.1e-01±2.2e-02, EC50:  5.2e-06±1.2e-04 Mand QuB, Slope: -1.9±6.4e-01, Min:  3.9e-
01±2.0-02, EC50: 1.9e-06±4.0e-07 M, n=2 ).  
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8.4.2.2 Calcium Dose Response Curves 

For dose response curve analysis we used nPos (the mean number of channels open across 

the trace, see methods) rather than unitary amplitudes.   Following idealisation with 

either a manual, QuB method (see section 8.3.5) or our deep learning model (B5D) we 

derived two independent dose response curves for nPos for the activation of BK with Ca2+ 

(Figure 8.29) at 40mV membrane potential.  Both models revealed the expected increase 

of open probability (nPos) with increasing [Ca2+] with a small significant difference for 

nPos between Ca2+ concentrations (p = 0.029, n= 42, 2-way ANOVA).  EC50s calculated 

for the Ca2+ activation effect were approximately 5 and 2uM for the QuB our model “B5D” 

respectively (Figure 8.29). 

 

Figure 8.30: Relative nPo at different Voltages for both model idealisations (Model) and manual idealisations 
(Manual). 
For current voltage fits:, the V1/2 was 21.3±0.02mV (p = 1e-6) and that with B5D was 16.07±3.1 mV (p=5e-5, n=1). 
In this case, the maximum nPo for each cell was used as the benchmark for relativity. Minimum and maximum were 
approximately 0 and 1.0 in both cases, since this was normalised data. 
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8.4.2.3 Current (nPos) -voltage Analyses 

One of the BK channels defining properties is activation by voltage therefore I used the 

same approach as above (Ca2+ dose response curves) to measure this property with both 

the QuB method and B5D in the presence of a fixed intracellular Ca2+ intracellular 

concentration. Figure 8.30.  Fits were limited to positive membrane potentials and one 

concentration of Ca2+ due to data availability (17µM).  Fit to the QuB dataset gave a 

midpoint for voltage activation of  21.3±0.02mV (p = 1e-6) and that with B5D was    

16.07±3.1 mV (p=5e-5).   

 

8.4.2.4 Kinetic Analyses 

Dwell time histograms were calculated (Figure 8.31) using a 3 exponential curve fit on 

both the model and QuB idealisations to compare kinetic analysis between the manual 

and automatic idealisations.   I compared these fits systematically with 2-way ANOVA.  

The dwell time parameters (Taus and Areas 1, 2 and 3 for both open and closed dwell 

times) for both the model and manual idealisations are shown in Figure 8.31 and 8.32. 

For each set of parameters (Closed or Open Taus and Areas), a 2-way ANOVA was carried 

out to test for the effect of Ca2+ concentration and results can be seen in Figures 8.33 to 

8.39 and Table 8.4. In addition, a 2-way ANOVA showed significant differences in the 

means of the overall tau and area parameters between the manual and model approaches 

(p = 0.0319, n= 34), and  deep learning model showed a lower variance in every 

parameter(p =7= 7.3960e-7, Fisher Exact testtest, n = 1212). The lack of change of kinetics 

is in line with the current literature that BK channels show no change in Markovian 

structure with Ca2+ concentration (Geng & Magleby, 2015; Nimigean & Magleby, 2000) . 
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Figure 8.31: Representative dwell time histograms for both the model (A) and QuB (B) idealizations at -40mV. 
Dwell times for representative example data recorded at -40mV can be seen above for both the model idealisation 
and the manual QuB idealisation. All idealisation dwell times were fitted with 3 exponential plots, noting the relative 
areas and centres (taus) for each curve.  Summarised fit parameters can be seen in Figures 8.33 to 8.39, along with 
the supplementary figures. 

 

Figure 8.32: Representative dwell time histograms for both the model (A) and QuB (B) idealizations at +40mV. 
Dwell times for representative example data recorded at 40mV can be seen above for both the model idealisation 
and the manual QuB idealisation. All idealisation dwell times were fitted with 3 exponential plots, noting the relative 



 
254 

areas and centres (taus) for each curve.  Summarised fit parameters can be seen in Figures 8.33 to 8.39, along with 
the supplementary figures. 

 

 

Figure 8.33: Dwell Time Parameter Plots for Closed Tau Parameters for both the manual (QuB) and model 
(Auto TANE B5D)  idealisations at 40mV. 
For both idealisations, the open and closed dwell times were recorded and the corresponding histograms fitted with 
three exponential curves (with area and tau parameters). Here we show the distribution of these closed tau 
parameters for both idealisations. A two way ANOVA showed a significant effect of the drug on the closed taus for 
either the model idealisations (p = 0.0478, n = 34), and also for the QuB idealisations (p = 0.0350, n = 34). 
Furthermore, while the model exhibits a tighter clustering of parameters. Two way ANOVA across all the area and 
tau parameters showed a significant difference overall between the QuB and Model parameters (p = 0.0319, n = 34); 
however this does not necessarily imply one is better than the other. 

 

Figure 8.34: Dwell Time Parameter Plots for Open Tau Parameters for both the manual (QuB) and model (Auto 
TANE B5D)  idealisations at 40mV. 
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For both idealisations, the open and closed dwell times were recorded and the corresponding histograms fitted with 
three exponential curves (with area and tau parameters). Here we show the distribution of these open tau 
parameters for both idealisations. A two way ANOVA showed no significant effect of the drug on the open taus for 
either the QuB or model idealisations (p > 0.05, n = 34). Furthermore, while the model exhibits a tighter clustering of 
parameters, it is not significantly so via an F-Test (p > 0.05, n= 34). Two way ANOVA across all the area and tau 
parameters showed a significant difference overall between the QuB and Model parameters (p = 0.0319, n = 34); 
however this does not necessarily imply one is better than the other. 
 

 
Figure 8.35: Dwell Time Parameter Plots for Open and Closed Mean Parameters for both the manual (QuB) 
and model (Auto TANE B5D)  idealisations at 40mV. 
For both idealisations, the open and closed dwell times were recorded and the corresponding histograms fitted with 
three exponential curves (with area and tau parameters). Here we show the distribution of the mean parameters for 
both idealisations (that is, the sum of all areas multiplied by the corresponding taus). A two way ANOVA showed a 
significant effect of the drug on the open areas for the QuB idealisations  (p < 0.001 respectively, n = 34) but not the 
model idealisations (p > 0.05, n = 34). Furthermore, while the model exhibits a tighter clustering of parameters, it is 
not significantly so via an F-Test (p > 0.05, n= 34). Two way ANOVA across all the area and tau parameters showed 
a significant difference overall between the QuB and Model parameters (p = 0.0319, n = 34); however this does not 
necessarily imply one is better than the other. 

 
Figure 8.36:Dwell Time Parameter Plots for Closed Mean Parameters for both the manual (QuB) and model 
(Auto TANE B5D)  idealisations by calcium concentration at 40mV. 
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For both idealisations, the open and closed dwell times were recorded and the corresponding histograms fitted with 
three exponential curves (with area and tau parameters). Here we show the distribution of the closed mean 
parameters for both idealisations (that is, the sum of all areas multiplied by the corresponding taus) split by calcium 
concentration. A two way ANOVA showed a significant effect of the drug on the open areas for the QuB idealisations  
(p < 0.001 respectively, n = 34) but not the model idealisations. Furthermore, while the model exhibits a tighter 
clustering of parameters, it is not significantly so via an F-Test (p > 0.05, n= 34). Two way ANOVA across all the area 
and tau parameters showed a significant difference overall between the QuB and Model parameters (p = 0.0319, n 
= 34); however this does not necessarily imply one is better than the other. 

 

Figure 8.37: Dwell Time Parameter Plots for Open Mean Parameters for both the manual (QuB) and model 
(Auto TANE B5D)  idealisations by calcium concentration at 40mV. 
For both idealisations, the open and closed dwell times were recorded and the corresponding histograms fitted with 
three exponential curves (with area and tau parameters). Here we show the distribution of the open mean 
parameters for both idealisations (that is, the sum of all areas multiplied by the corresponding taus) split by calcium 
concentration. A two way ANOVA showed a significant effect of the drug on the open areas for the QuB idealisations  
(p < 0.001 respectively, n = 34) but not the model idealisations. Furthermore, while the model exhibits a tighter 
clustering of parameters, it is not significantly so via an F-Test (p > 0.05, n= 34). Two way ANOVA across all the area 
and tau parameters showed a significant difference overall between the QuB and Model parameters (p = 0.0319, n 
= 34); however this does not necessarily imply one is better than the other. 
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Figure 8.38: Dwell Time Parameter Plots for Closed Mean Parameters for both the manual (QuB) and model 
(Auto TANE B5D)  idealisations by voltage at 17.7uM. 
For both idealisations, the open and closed dwell times were recorded and the corresponding histograms fitted with 
three exponential curves (with area and tau parameters). Here we show the distribution of the closed mean 
parameters for both idealisations (that is, the sum of all areas multiplied by the corresponding taus) split by voltage. 

 

Figure 8.39: Dwell Time Parameter Plots for Open Mean Parameters for both the manual (QuB) and model 
(Auto TANE B5D)  idealisations by voltage at 17.7uM. 
For both idealisations, the open and closed dwell times were recorded and the corresponding histograms fitted with 
three exponential curves (with area and tau parameters). Here we show the distribution of the open mean 
parameters for both idealisations (that is, the sum of all areas multiplied by the corresponding taus) split by voltage. 
 
Table 8.4: Kinetic Sensitivity to Ca2+ Statistical tests for each group of dwell time parameters at 40mV 
Each group of dwell time parameters (open taus, closed taus, open areas, closed areas) were tested via 2 way 
ANOVA (n = 20) for the effect of change in Ca2+ concentration. Means were tested via 1 way ANOVA  for the same 
effect. 
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Parameter QuB Ca2+ Effect 

ANOVA 

Model Ca2+ Effect 

ANOVA 

Closed Taus P = 0.0350 P = 0.0478 

Open Taus P = 0.0027 P > 0.05 

Closed Areas P > 0.05 P > 0.05 

Open Areas P > 0.05 P > 0.05 

Closed Means P > 0.05 P > 0.05 

Open Means P > 0.05 P > 0.05 

8.4.3 “Penitrem” Dataset 

The “Penitrem” dataset contained multiple recordings of BK activity with different 

concentrations of a known BK channel inhibitor, Penitrem A, recorded using IOP, mostly 

at -60mV (membrane potential). For this dataset, 3 models were compared: (i) A manual 

idealisation performed with pClamp (see Chapter 8.3.5, provided along with the raw data), 

(ii) an idealisation using manual TANE and the B5D model; and (iii) an idealisation using 

automatic TANE and B5D model. 

Figure 8.40 and Figure 8.41 show representative examples of the “Penitrem” dataset along 

with idealisation with the  automatic TANE B5D model. As with the previous dataset, 

errors are apparent; sometimes the model would insert events where there were none, or 

miss events entirely. 
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Figure 8.40: Successful idealisations from the “B5D” model for “Penitrem” dataset.  
This challenging dataset exhibits significant baseline drift, a type of noise avoided in similar work. Here our model 
sees good performance, missing a few events but overall achieving good accuracy.  
 

 

 

 

Figure 8.41: Unsuccessful idealisations from the “B5D” model for “Penitrem” dataset.  
Sometimes it is clear, from observation rather than metrics that idealization has failed. This can be a result of a 
number of issues, including poor recording conditions, or incorrect parameters in the pre-processing steps. This 
problem can be resolved by further improvements in the pre-processing algorithms, or increasing the quality of the 
training datasets. 
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Figure 8.42: Example amplitude histograms, unitary conductance by voltage, and current dose response plots 
for “Penitrem” dataset. 
A and B show representative examples of two current histograms at for data recorded at -60mV, fitted with Gaussian 
curves. C shows the unitary conductange/channel sizes (adjusted to negative when channels open downwards) 
versus voltage. D shows this same relationship but split by the amount of drug instead of voltage (i.e. a dose response 
curve with respect to current). In both C & D points further than 2 standard deviations from the mean were filtered 
to remove outliers. Statistical analysis of the linear regression showed a linear relationship between voltage and 
current (p < 0.05, R^2 = 0.675, n=117) but not dependency between drug level and channel size (p > 0.05, 
n=117).Again, the unitary channel conductance, measured as slope of unitary current against voltage ( di/dV ) 
corresponded to 140.6±105pS (n= 117), consistent with the literature on BK channel conductance of 100-300pS. 
 

8.4.3.1 Amplitude histograms 

The amplitude histogram analyses (Figure 8.42) found a significant relation between 

voltage and channel size as expected (p < 0.05, R^2 = 0.675, n=117), but no significant 

association between the channel size to the drug concentration (p > 0.05).  The unitary 

slope conductance, calculated as above was 140.6±105pS (n= 117) 

8.4.3.2 Penitrem Dose Response Curves 

For dose response curve analysis, we used nPo as well as unitary conductance.  These 

were measure at different Penitrem concentrations at a membrane potential of -60mV 

(Figure 8.43).   
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Figure 8.43: Relative nPos for different Penitrem levels, by different analysis methods. 
Here we show 3 different analyses methods used for analyzing the Penitrem dataset – this dataset came along with 
analyses information, plotted here as “Fully Manual Analysis”. Then the B5D model was used twice, once with 
automatic TANE and once with manual TANE. In all 3 cases we see a general downward trend in channel activation, 
with the trend being more visible in the model idealizations.   DRC were fit with 4-parameter logistic relationships 
(Automatic TANE, plus B5D, Slope: -5.1±12.9, EC50: 7.8±7.1 (µM). Manual TANE, plus B5D, Slope:-3.8±0.4,, 
EC50:11.7±1.6 (µM)., Full manual (collaborator), Slope:-0.06±0.07, EC50: 5.3±642.6 (µM)) 
 

There was no significant effect of the drug on unitary conductance (p > 0.05, n = 117), and  

no significant differences in the relative nPos for each of the 3 models (p > 0.05) . Manual 

analysis with pClamp detected a relation between drug and nPo however neither of the 

deep learning models did (1-way ANOVA had p > 0.05 for both model methods and p = 

0.00478 for the manual idealisation). Nonetheless, we attempted to fit dose response 

curves to nPos ~ concentration for each case.  Figure 8.43 shows dose response curve 

analyses for the Penitrem action on BK (at membrane potential, Vm -60mV) using three 

different methods: (i) automatic TANE B5D model, (ii) manual  TANE B5D model, and 

(iii) the original pClamp idealisation provided by the experimenter.  The manual TANE 

method (ii) was unfittable in this way, but both methods (i) and (iii) were successfully 

fitted.  Fitted dose response curves for the automatic TANE B5D model and pClamp gave 
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IC50s of 7.8±7.1(µM) and 5.3±642.6(µM) respectively.  Interestingly the automatic TANE 

B5D model predicted a minimum nPos of near zero (at 10µM Penitrem) whereas the 

pClamp idealisation left a significant current present (approximately 0.5).   

8.4.3.3 Kinetic analysis 

For kinetic analysis I used the automatic TANE B5D model as it was the model that 

correctly identified a drug effect in the dose response curve. Since nPo was calculated as 

part of previous work on this dataset, the raw idealisations were not available and 

therefore kinetic analysis could not be completed. 

As before the idealisations were used to construct dwell times histograms for open and 

closed states.  Representative examples of these graphs are shown in Figure 8.44 for 

Automatic TANE B5D model at both 3 and 300nM Penitrem.  As the data was analysed 

prior to the experiment taking place, the raw idealisations were not available and 

therefore dwell times could not be calculated for the manual idealisation method. 

Examination of the dwell time histograms for the automatic TANE B5D model (Figures 

8.45 to 8.47 and Table 8.5) shows a higher variance than the other datasets, however this 

is to be expected as the data is more challenging than the other two datasets, with more 

extreme noise present. Table 8.55 shows the statistical 2-way ANOVA tests for drug effect 

on the dwell time histogram parameters. 
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Figure 8.44: Representative dwell time histograms for both the model idealization at 3nM Penitrem A (A) and 
300nM Penitrem A (B). 
Showed is a representative model example for a recording at -60mV at 0.3nM Penitrem A (top) and -60mV at 30nM 
(bottom) fitted with 3 exponential curves. For curve fitting, both the area and tau (centre) parameters were recorded 
and summarized in the supplementary figure and figures 8.45 to 8.47 to examine if the drug had an effect on the 
underlying Markovian structure of the ion channel. 
 

 

Figure 8.45: Dwell Time Parameter Plots for Closed and Open Tau Parameters for the model (Auto TANE B5D)  
idealisations at -60mV. 
For the idealisations, the open and closed dwell times were recorded and the corresponding histograms fitted with 
three exponential curves (with area and tau parameters). Here we show the distribution of these tau parameters for 
the model idealisations. A two way ANOVA showed a significant effect of the drug on the closed taus (p = 0.003, 
n=73), but not the open taus (p > 0.05, n=73). 
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Figure 8.46: Dwell Time Parameter Plots for Open and Closed Mean Parameters for the model (Auto TANE 
B5D)  idealisation at -60mV. 
For the idealisations, the open and closed dwell times were recorded and the corresponding histograms fitted with 
three exponential curves (with area and tau parameters). Here we show the distribution of the mean parameters for 
both idealisations (that is, the sum of all areas multiplied by the corresponding taus). A two way ANOVA showed no 
significant effect of the drug on the means for the model idealization (p > 0.05, n = 73). 
 

 

Figure 8.47: Dwell Time Parameter Plots for Mean Parameters for the model (Auto TANE B5D)  idealisations 
by drug concentration at -60mV. 
For the idealisations, the open and closed dwell times were recorded and the corresponding histograms fitted with 
three exponential curves (with area and tau parameters). Here we show the distribution of the mean parameters for 
the idealisations (that is, the sum of all areas multiplied by the corresponding taus) split by voltage. 
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Table 8.5:Statistical tests for each group of dwell time parameters. 
Each group of dwell time parameters (open taus, closed taus, open areas, closed areas) was tested via 2-way 
ANOVA (n =7272) for the effect of change in Penitrem concentration. Means were tested via 1 way ANOVA for the 
same effect. 

Parameter Model Penitrem Effect ANOVA 

Closed Taus P = 0.00307 

Open Taus P > 0.05 

Closed Areas P > 0.05 

Open Areas P > 0.05 

Closed Means P > 0.05 

Open Means P > 0.05 

 

8.4.4 “Vernakalant” Dataset 

I recorded the “Vernakalant” dataset using my protocols described in the methods. The 

dataset  contained recordings of BK channels in control and 3 different concentrations of 

vernakalant hydrochloride at different membrane potentials (-40 to 40mV in 20mV 

intervals), under the more challenging OOP patch-clamp configuration.   This allows 

direct exposure of drug to the extracellular face of the membrane/ion channels. 

Data in the “Vernakalant” dataset was idealised using Automatic TANE and A5D, B5D 

and C5D models. Figures 8.48 and 8.49  show representative examples of subjectively good 

and bad idealisations with the B5D model.  As with the “Calcium” dataset we found that 

while most of the data idealised correctly, there were clear cases of both false positives 

and false negatives. This was especially the case at 0mV data where the channel size was 

especially small, and the data was scaled larger through minmax scaling. 
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Figure 8.48: Successful idealisations from the “B5D” model for “Vernakalant” dataset.  
Here we show a raw data trace from the “Calcium” dataset, and the corresponding idealization – we see that the 
model successfully idealises the record, successfully converting the raw noisy signal into a square wave. 

 

Figure 8.49: Unsuccessful idealisation from the “B5D”model for “Vernakalant” dataset.  
Here we show an example where irrespective of metrics it is clear that the model has not idealized correctly. This can 
be caused by a number of issues, (see full text); but is likely fixed by further work into improving the quality and range 
of the training data, and the pre-processing pipeline. 
 
 

8.4.4.1 Amplitude Histograms 

I again created amplitude histograms and current-voltage measurements for each 

membrane potential (with and without the presence of vernakalant Figure 8.50).   In 
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terms of voltage, there was a linear relationship between voltage and unitary amplitude 

(p < 0.001, R^2 = 0.996, n=70) and the slope conductance was 210+/-64pS (n=70).   This 

was paralleled at each concentration of vernakalant used (230+/-73, 210+/-40 and 210+/-

41 for 1,10 and 100nM respectively) and there was no significant difference in these (2-

way ANOVA). 

 

Figure 8.50: Example amplitude histograms,  unitary conductance by voltage and unitary conducatnace by 
voltage, by drug 
A and B show representative examples of current histograms for -20mV at 10nM of Vernakalant (A) and 20mV at 
0nM (B), fitted with Gaussian curves. C shows the relationship of unitary conductance/channel sizes (adjusted to 
negative when channels open downwards) by the concentration of drug. ANOVA showed no significant difference 
between the drug groups effect on the channel size (p > 0.05, n = 67), however by aggregating all the drug levels and 
considering just the unitary conductance versus voltage relationship, we saw a statistically significant relationship 
(p < 0.001, R^2 0.996, n = 67). 
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8.4.4.2 Dose Response Curves 

Dose response curves were then constructed for vernakalant on nPos for each of our 5 

different membrane potentials with four different idealisation methods (i) The A5D model 

with automatic TANE, (ii) The B5D model with automatic TANE, (iii) The C5D model 

with automatic TANE and (iv) semi-automated idealisation with QuB.  We found that all 

three deep learning models broadly agreed with the QuB idealisation, with no significant 

difference of nPos across the drug concentrations at any voltage (2 way ANOVA, p > 0.05).  

Hill (dose response) curves were fitted for each voltage and model (Figures 8.51, 8.52, 8.53 

and Table 8.6). A significant inhibition was observed at -20mV by the UNet model (p = 

0.0088), and at 0mV by the A5D and B5D model (p =  0. 0071 and 0.0048 respectively). 

These effects were not noticeable at other potentials and manual analysis detecting no 

drug effect at any potential. 

 

Figure 8.51: Relative nPo versus drug concentration as predicted by a number of different model architectures 
at -40mV and -20mV. 
Here we show the different nPo analysis for the output of three different model architectures on the Vernakalant 
dataset, as well as a manual analysis using current methods. Across the 5 different voltage conditions, we only see 
three scenarios where a model detects a significant effect of Vernakalant  via ANOVA with the B5D and A5D models 
at 0mV  (p  = 0.007082 and  0.004759 respectively, n=3), and the C5D model at +40mV (p = 0.008759, n=3). Overall 
however, a two-way ANOVA detected no significant effect of either the drug or the method used to idealise the data 
across all voltages (p > 0.05, n=3).  For Hill Curve Analysis, EC50s for -40mV were 1.0±0.03uM, 6.3±1.5uM, 2.5±6.0e-
02uM and 2.2±1.1 uM for the A5D, B5D, C5D and QuB analysis respectively, and for -20mV 3.5±94.34uM, 
6.3±1.5uM, 2.5±0.1uM, 25.1±1.69uM for A5D, B5D, C5D and QuB respectively. 
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Figure 8.52: Relative nPo versus drug concentration as predicted by a number of different model architectures 
at 0 and 20mV. 
Here we show the different nPo analysis for the output of three different model architectures on the Vernakalant 
dataset, as well as a manual analysis using current methods. Across the 5 different voltage conditions, we only see 
three scenarios where a model detects a significant effect of Vernakalant  via ANOVA with the B5D and A5D models 
at 0mV  (p  = 0.007082 and  0.004759 respectively, n=3), and the C5D model at +40mV (p = 0.008759, n=3). Overall 
however, a two-way ANOVA detected no significant effect of either the drug or the method used to idealise the data 
across all voltages (p > 0.05, n=3).  For Hill Curve Analysis, EC50s for 0mV were 4.2±1.6e-4uM, 7.0±1.5e-3uM, 
6.6±7.5e-5uM and 2.1±8.6e-2 uM A5D, B5D, C5D and QuB analysis respectively, and for 20mV 4.5±0.32 uM, 
7.0±1.5e-3 uM, 9.5±6.9e-3 uM and 2.4±1.8uM for A5D, B5D, C5D and QuB analysis respectively. 

 

Figure 8.53: Relative nPo versus drug concentration as predicted by a number of different model architectures 
at 40mV. 
Here we show the different nPo analysis for the output of three different model architectures on the Vernakalant 
dataset, as well as a manual analysis using current methods. Across the 5 different voltage conditions, we only see 
three scenarios where a model detects a significant effect of Vernakalant  via ANOVA with the B5D and A5D models 
at 0mV  (p  = 0.007082 and  0.004759 respectively, n=3), and the C5D model at +40mV (p = 0.008759, n=3). Overall 
however, a two-way ANOVA detected no significant effect of either the drug or the method used to idealise the data 
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across all voltages (p > 0.05, n=3).  For Hill Curve Analysis, EC50s for 40mV were 0.5±3.1e-5uM, 26.6±2.19e3uM, 
1.1±0.015uM and 16.6±3.2e-2uM for A5D, B5D, C5D and QuB models respectively. 
 
 
Table 8.6: EC50s calculated from dose response curve fits to each data idealised by each method at each 
membrane potential. 
pVals are those for the null hypothesis that the EC50 intercept differed from zero.  -- means it was not statistically 
significant.   

Vm Model EC50±SD (µM) pVal  

-40 C5D 2.5±6.0e-02 -- 

-40 A5D 1.0±0.03 -- 

-40 QUB 2.2±1.1 0.07 

-40 B5D 6.3±1.5 -- 

-20 C5D 2.5±0.1 -- 

-20 A5D 3.5±94.34 -- 

-20 QUB 25.1±1.69 -- 

-20 B5D 35±3.9 4-e6 

0 C5D 6.6±7.5e-5 2e-16 

0 A5D 4.2±1.6e-4 2e-16 

0 QUB 2.1±8.6e-2 4e-10 

0 B5D 7.0±1.5e-3 2e-16 

20 C5D 9.5±6.9e-3 2e-16 
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20 A5D 4.5±0.32 8e-8 

20 QUB 2.4±1.18 -- 

20 B5D 7.2±1.4e-3 2.2e-16 

40 C5D 1.1±0.015 5e-14 

40 A5D 0.5±3.1e-5 2.2e-16 

40 QUB 16.6±3.2e-2 -- 

40 B5D 26.6±2.19e3 -- 

 

8.4.4.3 Kinetic Analyses 

From the automatic TANE B5D model and QuB idealisations, we took the dwell time 

histograms and fitted exponential curves as before, with representative examples shown 

in Figures 8.54 and 8.55.  We assumed a three-state stochastic model again and the 

resulting open and closed taus (1,2,3 each) and respective areas are plotted in Figures 

8.56 to 8.62.  Table 8.7 shows a summary of the 2 way ANOVA tests completed on each 

group of parameters (open taus, closed taus, open areas, closed areas), 
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Figure 8.54:  Representative dwell time histograms for both the model (A) and QuB (B) idealizations at -40mV.\ 
Here we show a pair of representative examples of dwell time histograms at -40mV for both the model idealization 
and QuB idealisation.  For all files, three exponential curves were fit to the dwell time histograms and their areas and 
centres (taus) recorded. Summarised fit parameters can be seen in the supplementary figures and figure 8.56 to 8.62 

 

Figure 8.55: Representative dwell time histograms for both the model (A) and QuB (B) idealizations at +40mV. 
Here we show a pair of representative examples of dwell time histograms at 40mV for both the model idealization 
and QuB idealisation.  For all files, three exponential curves were fit to the dwell time histograms and their areas and 
centres (taus) recorded. Summarised fit parameters can be seen in the supplementary figures 8.56 and 8.62 
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Figure 8.56: Dwell Time Parameter Plots for Closed Tau Parameters for both the manual (QuB) and model 
(Auto TANE B5D)  idealisations at 40mV. 
For both idealisations, the open and closed dwell times were recorded and the corresponding histograms fitted with 
three exponential curves (with area and tau parameters). Here we show the distribution of these closed tau 
parameters for both idealisations. A two way ANOVA showed no significant effect of the drug on the closed taus for 
either the model idealisations or QuB idealisations (p > 0.05, n = 70). Furthermore, while the model exhibits a tighter 
clustering of parameters, it is not significantly so via an F-Test (p > 0.05, n= 70). Two way ANOVA across all the area 
and tau parameters showed a significant difference overall between the QuB and Model parameters (p < 0.001, n = 
70); however this does not necessarily imply one is better than the other. 

 

Figure 8.57: Dwell Time Parameter Plots for Open Tau Parameters for both the manual (QuB) and model (Auto 
TANE B5D)  idealisations at 40mV. 
For both idealisations, the open and closed dwell times were recorded and the corresponding histograms fitted with 
three exponential curves (with area and tau parameters). Here we show the distribution of these open tau 
parameters for both idealisations. A two way ANOVA showed no significant effect of the drug on the closed taus for 
either the model idealisations (p > 0.05, n = 70), but does show a significant difference for  the QuB idealisations (p = 
0.0297, n = 70). Furthermore, while the model exhibits a tighter clustering of parameters, it is not significantly so via 
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an F-Test (p > 0.05, n= 70). Two way ANOVA across all the area and tau parameters showed a significant difference 
overall between the QuB and Model parameters (p < 0.001, n = 70); however this does not necessarily imply one is 
better than the other. 
 

 

Figure 8.58: Dwell Time Parameter Plots for Open and Closed Mean Parameters for both the manual (QuB) 
and model (Auto TANE B5D)  idealisations at 40mV. 
For both idealisations, the open and closed dwell times were recorded and the corresponding histograms fitted with 
three exponential curves (with area and tau parameters). Here we show the distribution of the mean parameters for 
both idealisations (that is, the sum of all areas multiplied by the corresponding taus). A two way ANOVA showed no 
significant effect of the drug on the means for either the QuB or model idealisations (p > 0.05. n= 70). Furthermore, 
while the model exhibits a tighter clustering of parameters, it is not significantly so via an F-Test (p > 0.05, n= 70). 
Two way ANOVA across all the area and tau parameters showed a significant difference overall between the QuB 
and Model parameters (p = 0.0319, n = 70); however this does not necessarily imply one is better than the other. 

 

Figure 8.59: Dwell Time Parameter Plots for Closed Mean Parameters for both the manual (QuB) and model 
(Auto TANE B5D)  idealisations by Vernakalant concentration at 40mV. 
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For both idealisations, the open and closed dwell times were recorded and the corresponding histograms fitted with 
three exponential curves (with area and tau parameters). Here we show the distribution of the closed mean 
parameters for both idealisations (that is, the sum of all areas multiplied by the corresponding taus) split by 
vernakalant concentration. 
 
 

 

Figure 8.60: Dwell Time Parameter Plots for Open Mean Parameters for both the manual (QuB) and model 
(Auto TANE B5D)  idealisations by Vernakalant concentration at 40mV 
For both idealisations, the open and closed dwell times were recorded, and the corresponding histograms fitted with 
three exponential curves (with area and tau parameters). Here we show the distribution of the open mean 
parameters for both idealisations (that is, the sum of all areas multiplied by the corresponding taus) split by 
vernakalant concentration. 

 

Figure 8.61:  Dwell Time Parameter Plots for Closed Mean Parameters for both the manual (QuB) and model 
(Auto TANE B5D)  idealisations by Voltage at 10nM Vernakalant. 
For both idealisations, the open and closed dwell times were recorded, and the corresponding histograms fitted with 
three exponential curves (with area and tau parameters). Here we show the distribution of the closed mean 
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parameters for both idealisations (that is, the sum of all areas multiplied by the corresponding taus) split by 
vernakalant concentration. 
 
 

 

 

Figure 8.62: Dwell Time Parameter Plots for Open Mean Parameters for both the manual (QuB) and model 
(Auto TANE B5D)  idealisations by Voltage at 10nM Vernakalant. 
For both idealisations, the open and closed dwell times were recorded and the corresponding histograms fitted with 
three exponential curves (with area and tau parameters). Here we show the distribution of the open mean 
parameters for both idealisations (that is, the sum of all areas multiplied by the corresponding taus) split by 
vernakalant concentration. 
 
Table 8.7: Statistical tests for each group of dwell time parameters. 
Each group of dwell time parameters (open taus, closed taus, open areas, closed areas) was tested via 2 way 
ANOVA (n = 1414) for the effect of change in Vernakalant concentration. Means were tested via 1 way ANOVa for 
the same effect 

Parameter QuB Vernakalant 

Effect ANOVA 

Model Vernakalant 

Effect ANOVA 

Closed Taus P > 0.05 P > 0.05 

Open Taus P = 0.0297 P > 0.05 

Closed Areas P > 0.05 P > 0.05 

Open Areas P > 0.05 P > 0.05 
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Closed Means P > 0.05 P > 0.05 

Open Means P > 0.05 P > 0.05 

As with the calcium dataset, we tested the differences in the QuB and B5D model in the 

overall parameter means via a 2 way ANOVA, as well as the variances via an F-Test. 

The 2-way ANOVA showed a significant difference between the QuB and B5D model dwell 

time histogram parameters (p < 0.001, n = 70), however as with the calcium dataset this 

does not necessarily mean one is better than the other. We also saw that in almost all 

parameters (apart from the “area 3” parameter for both open and closed dwell times), the 

B5D model showed a smaller variance, with a Fisher exact test (n=12) showing an overall 

lower variance (p = 0.0033) 

 

8.5 Discussion 

In this chapter, I measured the ability for a deep learning network to perform BK ion 

channel idealisation in three scenarios designed to represent a range of real-world 

analysis tasks.  In each case results were compared it to the best current manual methods.  

Since there can be no genuine “ground truth” with such real analysis tasks, the first two 

datasets analysed (“Calcium” and “Penitrem”) had functional “ground truth” outputs, in 

the sense that we have prior knowledge of how BK channels do behave in response to 

voltage, Ca2+ and Penitrem challenge.  This discussion will begin by summarising the 

outcomes of each of the specific objectives given in the introduction 8.2, and then conclude 

by  discussing the strengths and weaknesses observed for each method. 

8.5.1 Calcium Dataset 

A.  Characterise BK channels, and their sensitivity to voltage and Ca2+ ions with a deep-

learning based approach, with new, novel models trained on relevant datasets. 
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BK channels are a widely studied ion channel, this is why they were chosen for this study; 

furthermore in terms of size (unitary conductance) they are perhaps the “Goldilocks” ion 

channel in terms of signal to noise ratio.  Ion channels can have a single channel 

conductance in the high femtosiemens (fS) range where even by eye in a clear record they 

are unlikely to be resolvable (certain, glutamate ligand-gated ion channels, resolved by 

noise analysis;  (Howe, 1996)).  Ion channels in the low pS range are quite common varying 

from for example 10pS to 50pS, for example L- and N- type Ca2+ ion channels (Snutch, 

Peloquin, Mathews, & McRory, 2013)..  At the other extreme there are several ion 

channels in the nanosiemens (nS) range, such as bacterial mechanosensitive ion channels 

MscL (Haswell, Phillips, & Rees, 2011). The BK channel has widely published unitary 

conductances in the range of 100 to 300pS.  In our study here we found in this initial 

dataset a single channel conductance of 137.7pS (Figure 8.28), which sits in the 

approximate average of this range. Previous work (Blatz & Magleby, 1987; Geng et al., 

2020) shows the BK channel as both voltage and calcium sensitive analysed both of these 

properties with our novel model and analysed both of these properties with our novel 

model and using QuB. QuB was one of the most popular open-source packages available 

for single channel analysis, but is no longer maintained (we cloned this when it was 

available) and so a simple to use alternative would be useful, irrespective of any 

advantages new methods might bring.  

In terms of Ca2+ sensitivity, both QuB and our B5D model showed a similar increase 

activity with increase in Ca2+ in the low micromolar range (Figure 8.29) .  Data was 

limited (see caveats below), but nevertheless both models detected this with similar 

calculated EC50s in the low micromolar range (2uM and 5uM for B5D and QuB, 

respectively).  This is entirely comparable to the literature with the dose response curve 

reported in Figure 6 of the ground breaking Barrett et al 1992 showing an EC50 of 

approximately 2uM, but a specific EC50 not quoted. (Barrett, Magleby, & Pallotta, 1982).  

Furthermore, Barrett et al show the dose response curve at 20mV where we have it at 

40mV which will cause a small shift.  Other work has reported greater sensitivity to Ca 

(ie lower EC50) that this, in the sub micromolar range (e.g. 31nM) (Numata et al., 2021)) 
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indicating perhaps different behaviours between isoforms (Latorre et al., 2017). Although 

in a sense, the B5D model wins here reporting a slightly lower EC50 (showing a more 

sensitive analysis), paradoxically, the fall-off of BK channel activity is more evident after 

QuB analysis.  It should, in theory   (Barrett et al., 1982; Blatz & Magleby, 1987; Geng et 

al., 2020)  all to near zero by 100nM (for an EC50 of 2uM), but B5D appears to be over 

estimating the residual current at low activity levels.  This is broadly indicative of an issue 

with net false positives, or type I error and will be discussed further below. 

In terms of voltage, the BK channel is closely related to the voltage-sensitive potassium 

ion channel family  and retains profound voltage sensitivity. However, the pattern is 

complex with voltage sensitivity increasing with increased intracellular Ca2+.  So for 

example in the original Barrett et al paper they show that with 1uM intracellular Ca, 50% 

activation of the channel occurs at 30 to 40mV, but with 10uM Ca2+ this rises to shifts 

leftward (more negative) by about 40mV.  In terms of voltage, the BK channel is closely 

related to the voltage-sensitive potassium ion channel family (Kim & Nimigean, 2016) and 

retains profound voltage sensitivity (Barrett et al., 1982; Blatz & Magleby, 1987).    

However, the pattern is complex with voltage sensitivity increasing with increased 

intracellular Ca2+.  So for example in the original Barrett et al paper they show that with 

1uM intracellular Ca, 50% activation of the channel occurs at 30 to 40mV, but with 10uM 

Ca2+ this rises to shifts leftward (more negative) by about 40mV.   

In terms of voltage sensitivity both idealisation methods detected the predicted activation 

at positive potentials (see Figure 8.30) and reported half-maximum activation potentials 

(V1/2) in the region of +10mV, with 17µM present, showing agreement between the 

analysis methods.  However; this relation lay to the right of that expected from the 

literature, where with >10µM present we may have expected half maxima (V1/2) to be 

nearer -10mV (Blatz & Magleby, 1987; Geng et al., 2020). .This discrepancy could result 

from paucity of critical data meaning the fits were only possible at positive potentials and 

have been normalised; and represents a common theme throughout this work of 

unreliability of the manual analysis. There was not sufficient data available to produce 
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the 3D-dose response curve (x concentration, y, voltage and z is open probability) 

sometimes applied to the BK channel to show its complex calcium ion and voltage 

sensitivity.  This is because whilst there were many recordings, one needs a combination 

of each condition to be present, together with a maximum or common condition to allow 

normalisation. An alternative approach would be to only use patches with one channel in, 

and then use absolute open probabilities. This was the approach used in the Barrett et al. 

study, but filtering in this way would have left a very small dataset, and partly defeated 

the purpose of this work which was automated analysis of difficult data.  

We also conducted a kinetic analysis using the existing QuB method and novel B5D model.  

Channel kinetics are one of the critical ion channel properties that can only be derived 

using “single” channel patch-clamp recording and provides mechanistic insight (Sivilotti 

& Colquhoun, 2016) impossible with any other (current) technique.  There were numerous 

kinetic analyses of BK channels early after its discovery and isolation  (Cox, 2014; 

Lucchesi & Moczydlowski, 1991; McManus & Magleby, 1988; Yoshida et al., 1991) .This 

was extended to provide an understanding of the influence of different beta subunits 

(Contreras, Neely, Alvarez, Gonzalez, & Latorre, 2012)  and more recently these data have 

been combined with structural data to give a detailed understanding of structure-function.  

In our own analysis we calculated dwell times for open and closed events with the two 

different methods QuB idealisation and B5D.  We do this under exhaustive conditions and 

report Tau for a wide range of voltages and Ca2+ conditions.  We found B5D to be more 

consistent across analysis, but this does not necessarily equate to more accurate.  The 

shortest Tau were very tightly clustered in the B5D model and whilst there was not 

sufficient data for statistical significance there does appear to be a trend in the longer 

open time taus for larger values with higher concentrations of Ca2+ (Figures 8.29b, 8.29c).). 

One-way ANOVA was applied to look for the “functional ground truth” of kinetic 

sensitivity to Ca2+/voltage exhibited in the literature and whilst both of our approaches 

largely missed this known effect, QuB did a little better (Table 8.4).   
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Probably the most established Markovian kinetic model is that of Magleby’s group 

(Rothberg & Magleby, 1998; Shelley, Niu, Geng, & Magleby, 2010). This is highly complex 

set of 10 state models, however individual dwell time curves between these can our own 

can be visually compared.  We did this at +40 and -40mV, at 18µM, whereas Shelly et al 

20102010 show a range +70 and; 70mV (-70,-50,+50,+70mV) with 100µM or more Ca2+ 

and other more subtly different experimental conditions.  Shelly is not specific about the 

exact idealisation protocol, but since this work follows on from Rotheberg & Magleby 1998 

it is likely to be 50% threshold crossing (explicit in the latter).  Starting with open time 

observations (Figure 8.63); Shelly et al see only one clearly distinguishable open time at 

any voltage despite the complex kinetic schema reported.  They find however, that the 

mean of this peak increases with increasing voltage from around 0.1ms at -70mV to 

approximately 1ms at +70mV. Our data with B5D idealisation, however, whilst similarly 

fitted with multiple exponentials shows two clearly distinguishable peaks at -40mV; one 

at about 0.1ms another near 3ms (Figure 8.32), perhaps suggesting different recording 

conditions or behaviour between isoforms.   By +40mV our (B5D) fitted data shows three 

clearly distinguishable peaks with Tau of around 0.1,1 and 100ms.   Interestingly, QuB 

idealisation delivers a longer open states than either Shelly or B5D, with a criticised 

deadtime issue (Prof David Colquhoun personal discussions), where the nature of the of 

the output leads to all events being exact multiples of the sample interval.  With QuB 

data, by +40mV there is a single clear open time peak, but it is evidently longer than that 

of the B5D model and some 10x that reported by Shelly (and note Shelly used higher Ca2+ 

which would be expected to increase open times).   If Shelly et al and Rothberg et al are 

treated as functional ground truths, the B5D kinetic data do appear subjectively a little 

closer than the QuB data.  Direct comparison of the closed times between our study and 

previous kinetic analyses are not as useful as comparisons of closed times, because closed 

times (especially longer ones) are strongly dependent on number of channels present in 

the patch.  Nevertheless, again, B5D has detected the presence of a substantial short 

events missed by the QuB methods.  Furthermore, I would direct readers to Figure 8.63, 

reproduced from Rothberg et al and Shelly and invite comparisons with our raw figure 
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data in Figures 8.26, 8.40 and 8.48.   In these previous studies, the single objective was to 

record very short sections of very high-quality data; manually quality controlling, 

choosing only records with demonstrably only one channel present etc, all to optimise for 

single channel kinetics.  In the present study we, by design, used all the data that was 

recorded without any more than the most rudimentary quality control.  This was to test 

the software in non-ideal conditions, since it was felt the principle of deep learning 

idealisation had already been proven with high quality curated data already. 

 

Figure 8.63: Kinetic Analysis and example traces from (Rothberg & Magleby, 1998; Shelley et al., 2010).  
A shows Shelly et al. is a noteable work investigating the kinetics of the BK channel where it is seen that the one 
open time exponential is seen to shift to the left (and increase in mean open time) as voltage increases. Our work 
shows more visible peaks in the dwell time histograms for the deep learning models, and the manual analysis 
producing longer open dwell times than any of the dwell time peaks in Shelly et al. This may be to do with differences 
in recording conditions, such as an increased concentration in Ca2+ in Shelly et al’s work. If this previous work is to 
be taken as a ground truth, then there is some arguments to me made that the B5D model is more accurate than 
QuB for kinetic analysis of this type. B and C show raw data samples from Shell et al and Rothberg et al – showcasing 
the clean nature of this data compared with the particularly challenging nature of our data seen in Figures 8.26 8.32 
8.38. 

 

8.5.2 Penitrem A sensitivity of BK channels. 

In this experiment, we again start from knowledge that BK channels are inhibited by 

extracellular Penitrem A. In this case, an independent analysis and idealisation of 

outside-out patch clamp recordings was performed; a deep learning model should not only 
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detect a decrease in open probability as the concentration of Penitrem A increases, but 

ideally do this faster, objectively and have a stronger discrimination than the manual 

analysis.  

Whilst the channel (BKaB1) and recording mode here were the same; the data was 

collected by a different experimenter on a different “rig” in a different lab (see methods).  

In many disciplines it may be expected that such differences should be inconsequential, 

but patch clamp is very much a skilled manual procedure and so it is possible results 

would be different.  I again found that single-channel amplitude followed a broadly Ohmic 

relationship similar to in the “Calcium” dataset above and the published literature .  The 

unitary slope conductance was a little larger (150pS) than that observed above, but still 

well within the range of that seen in the literature (Lee & Cui, 2010).  Dose response 

relationship of Penitrem has been performed before and revealed that the efficacy is 

different depending on the isoform of BK channel, in our case we had BKa/B1 which Asano 

et al (2012) reported to have an IC50 of 64nM (Asano et al., 2012) and an almost 

irreversible nature (approximately 1nM in the absence of the β - subunit).  It was active 

from either the inside or the outside of the channel.  We next compared the amplitudes of 

channels recorded at -60mV, across a range of Penitrem concentrations.  As expected there 

was no change in amplitude with Penitrem. 

We have three sets of relative nPo dose response curve parameters; two for our favoured 

B5D model (with and without automatic TANE) and one for the QUB analysis.  These 

were in the range of 5 to 12uM, but noting the manual TANE B5D model method 

performed rather badly (orange line, Figure 8.43).  In this sense the automatic TANE 

method shows great promise as a method to achieve a sensible dose response curve with 

the B5D model.  As is typical of single-channel recording the dose response curve have 

high variance.  This is quite unlike what one might expect with a whole-cell dose response 

curve where potentially hundreds of ion channels are averaged together.  In the case of 

single channel recording an individual channel can naturally be open or closed at any 

concentration and so much longer periods of recording necessary to get the variance down.  
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Nonetheless, given that we know the expected Hill relation a priori we found these were 

fittable using conventional curve fitting algorithms, with initial conditions set as the 

expected Hill parameters. .Note the QUB idealised data, kindly supplied by a group 

member for this project showed nPos that did not fall below approximately 0.5% whereas 

our model had a dose response curve minimum of near zero nPos.   In fact close inspection 

of the Asano et al paper shows that although Penitrem acts rather slowly it would be 

expected to reach neglible nPo at 100nM of Penitrem (which is approximately that we 

used). Whilst the focus of this thesis is novel application of deep learning methods, a 

further potential flaw is the biological experimental design of the experiments curated for 

this project.  In addition to the high variance (probably) due to low sample numbers, for 

an expected IC50 of 65nM it may have been better to use the dose range from the sub 

nanomolar to the µM range. It is a common pharmacological observation that in the 

vicinity of the IC50 variability is highest.  This can be over-come with sufficient numbers, 

but ideally the data would have included a number of patches that ran from 0, 0.1nM to 

10uM. Furthermore, the near irreversibility reported by Asano et al 2012 (reference) 

creates complications for dose response curve analysis.  We do not at this post-hoc analysis 

have information about whether the cells were replaced between each experimental run 

etc., If that was not done it would confound the analysis, and weaken the usefulness of 

these data as functional ground truth. It should be remembered that our novel analysis 

approach is however, directed towards industry where multi-parallel equipment would 

make curation of much greater datasets possible.   

We could not find a thorough kinetic analysis of Penitrem A’s effect on BK channels, but 

in our study here, the B5D method appears to reveal a change in kinetics (Figure 8.44, 

Table 8.4);  and this would be similar with that seen when BK channels are inhibited by 

U-37883A   (Teramoto et al., 2004).  It would fit with a model where the channel is subject 

to flickery block or the shorter events are promoted by an allosteric interaction.  These 

would be interesting observations to pursue in a follow-up study.  
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8.5.3 Vernakalant Hydrochloride sensitivity of BK channels 

In this experiment, we start with no prior knowledge of what effect Vernakalant will have 

on this isoform of potassium channel.  In this section of this work, the channels and cells 

were the same as for the Calcium and Penitrem A Datasets above, but again collected on 

a different “rig”, this time by myself.  Also, this used the most difficult, or involved, form 

of patch clamp, “outside-out” patch, where cells are first giga sealed, then the membrane 

is ruptured and then the patch pulled off.  The additional steps leave more to go wrong 

and therefore make the acquisition of data harder. Furthermore, since the process of 

pulling the patch of membrane from the cell follows a few minutes after making the initial 

seal,  it is logical to suppose seals are less good and recordings would have greater noise 

(since noise is proportional to 1/seal resistance).   From the literature, it is clear that the 

primary action of vernakalant in heart disease is as an inhibitor of sodium ion channels 

(Burashnikov et al., 2012; Naccarelli et al., 2008; Seyler et al., 2014),, but there is also 

information to suggest it also has an inhibitory action on a type of (non-BK) atrial 

potassium channel.  We thought it was therefore important to investigate if it also 

inhibited BK channels which, as described previously, are a somewhat ubiquitous protein.   

Observationally, there were fewer issues with model collapse with this dataset, however 

there are still a number of obvious errors in idealisation.  In terms of unitary conductance 

the values are considerably higher at around 200pS, still entirely compatible with the 

literature, but presumably larger due to the recording conditions having a lower 

concentration of Ca2+ in the bath solution. Again there was no difference in amplitude 

with drug concentration. In terms of dose response analysis; most conditions (with most 

models) did report a statistically significant dose relationship, but this was clearer at +ve 

membrane potentials.  This would be that expected with a small negatively charged drug 

(accessing the pore), since electrostatic forces would tend to drive it into the aqueous pore 

and sterically inhibit the channel; but this would not be expected for Vernakalant which 

is a rather lipid soluble compound, with low water solubility (drugbank.com) and largely 

uncharged (Alagem, Dvir, & Reuveny, 2001; Hille, 1978, 1992; Hurst, Latorre, Toro, & 
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Stefani, 1995).   In terms of kinetic analysis, we see the model detects no significant effect 

of Vernakalant on the kinetic behaviour of the channel, with QuB only detecting a 

significant difference in the Tau parameters.  The DL models again report a greater 

number of very short events than QuB; this may be due to flickering classifications, an 

artefact error from training. 

In summary, from a biological perspective, we do detect a significant dose effect, but it 

appears rather small, especially given that we went up to 100uM, about 10x that used in 

clinics (drugbank.com). That said these types of screens are critical in pharmacological 

research since over-doses do occur and even subtle disturbance in ion channel function 

can be dangerous. 

 

8.5.4 Strengths and Weakness of Idealisation methods 

The main advantage of using these deep learning models over QuB is that they can be 

completely automatic. All of the pre-processing has analytical methods for automatic 

parameter detection, and (with an appropriate standard model) the model prediction 

requires no user input. In fact; the entire process from signal to summary statistics such 

as nPo, dwell time histograms and amplitude histograms can be fully automated; and 

(with a few exceptions where manual fixing had to be done), this was how the data was 

analysed in the work above. 

While this system can be fully automatic; there is plenty of room to improve initial 

idealisations by manually changing either the pre-processing parameters, or the deep 

learning model itself; this is particularly important when considering improvements in 

automatic patch clamp systems; if an end-to-end pipeline can be established for patch 

clamp experimentation to analysis, the drug discovery process speeds up significantly. 

With this system, it is possible to generate bespoke datasets for the given ion channel if 

the Markovian network is known a priori, train a deep learning model on this dataset, 

and use it to idealise new data from recordings. For our work; this was not needed, and in 
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fact the Markovian model used for simulation was the “simple” 3-state model rather than 

the more complex, 5-state model with parameters taken from the literature; showing the 

robustness of the model to Markovian changes. This is particularly important for cases 

where the Markovian transition rate matrix may change due to the application of a drug, 

or a change in conditions. 

The choice of model forms a central trade-off for this model, with the ability to sacrifice 

applicability to a larger number of ion channels for more accurate idealisation. In the case 

of this work, no channel record had visible number of channels greater than five, so the 

five channel model provided a good balance between being able to detect the maximal 

number of channels, and accurately idealising what we had. A more sophisticated 

approach could involve training multiple models for each number of channels visible in 

the data; however this depends on the robustness of the channel detection algorithm, and 

increases the overall model size dramatically, as one model is needed per number of 

channels opening. 

This flexibility however forms a double-edged sword; the model is large and relatively slow 

compared to current methods computationally, although still significantly faster when 

considering human input is needed for semi-automatic idealisation. The model (and 

accompanying pre/post-processing code) is several gigabytes large, and realistically 

requires significant GPU processing power to run; this is not uncommon for deep learning 

models however. 

In some cases, particularly when the data was very noisy or had a significant baseline 

drift present; the model would produce an idealisation that was either all-open or all-

closed; or very few events present. This was common during testing of the models and was 

fixed not by adjusting the model itself, but the pre-processing parameters. One major 

drawback of deep learning models is that as the testing data gets more dissimilar to the 

training data, the performance will drop; overfitting causes this problem in the extreme 

however it is always present to some extent. Due to the diversity of the recorded data, it 

is easier to change the pre-processing parameters to make the input data more like the 
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training data than the other way around, which would involve retraining of said models. 

This is done by intelligent selection of the decimation parameter to make the dwell times 

in line with what was seen in the training data. 

The dissimilarity of the training data to the lab recorded data is a necessity; deep learning 

is a supervised learning method where labels are required for training. By simulating the 

data, we can achieve accurate ground truth for records on demand; one alternative to this 

method that would make the training dataset better reflect the application would be to 

use human labelled data for the ground truth. This comes with two significant 

considerations; firstly there is always some disagreement between experts when it comes 

to idealisation as there is some subjectivity to deciding what an “event” construes; and it 

is also extremely time consuming to obtain the amount of data needed for training a deep 

learning model. In the previous DeepChannel work, simulated data was passed through 

an analogue amplifier; although this gave an objective ground truth along with data with 

realistic noise, the data was still collected in real-time, resulting in a long feedback process 

for development. In comparison, with this method hours of data can be simulated in a 

matter of seconds; allowing for parameters to be changed quickly to improve dataset 

quality. Throughout this work, the simulation algorithm has been improved, and 

continuous improvements to improve the realism of the simulated data will reflect in 

better model performance. 

Comparison with QuB poses an additional problem; it is not a comparison to a “ground 

truth” per se but a comparison to an already established form of analysis; the 

disagreement between the QuB and the models’ nPos in the “Calcium” dataset for example 

only tell us that the type of errors present in the deep learning idealisation are consistent 

within themselves, but altogether different to those present in the QuB idealisation. This 

is not to say that either idealisation is incorrect, but as the approach to idealisation 

between the deep learning models and QuB models (SKM) is markedly different; it’s 

perhaps unsurprising to see some disagreement here. The agreement between the models 

implies that the same issues were arising irrespective of the model chosen; this was why 
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only the “B5D” model was taken forward to the other datasets; as performance was so 

similar between the models. 

A significant problem during pre-processing was the issue of scaling. By default, min-max 

scaling was employed as a way to normalise data and channel “size” during training; 

however this ran into the problem of different raw data signals having different number 

of conductance levels, and therefore min-max scaling resulted in vastly different channel 

sizes. Ideally, a general model should be channel-size agnostic, only considering the 

significant changes in the data stream; however this proved extremely challenging. A 

number of different scaling methods were attempted, including scaling the mean and 

standard deviation of the data to 0 and 1 respectably (this did not help the “channel size” 

problem;); and scaling the data on a “per file” basis by using the distance between 

amplitude histogram peaks to force the mean channel size to be a certain value (this did 

not work due to noise and inaccuracies in the amplitude histogram peak fitting process). 

These sophisticated methods, while perhaps more logical than the min-max followed by 

scaling to the number of channels open, were significantly worse when used as inputs to 

the deep learning networks. Moving forward, we anticipate improvements in pre-

processing to hold they key to better model performance. 
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9 Discussion 

This project aimed to investigate, develop and test novel deep learning methods for single 

channel patch clamp analysis.  We successfully adapted well known convolutional 

network models to recover, for the first time, continuous Markov states from simulated 

ion channel data using deep learning.  Furthermore, we produced models that 

considerably outperformed the existing state-of-the-art deep learning analysis model, 

DeepChannel, which had already been shown to outperform shallow learning models in 

some circumstances.  In additional experiments we developed a deep learning method  for 

synthesis of ion channel data, given a small amount of “seed” data and tested a number 

of novel models on real world data.    

Despite this success, there is still a substantial amount of work needed to optimise pre-

processing and model architecture; and developing ways of deploying these such models 

in user-friendly frameworks for the practical use by ion channel researchers. 

9.1 Data Sourcing 

9.1.1 GAN Data 

Our novel work here (Chapter 3) shows for the first time that generative adversarial 

networks (GANs) can create synthetic, fully labelled data that has characteristically 

specific qualities depending on the kind of ion channel used for training, and this approach 

inherently has several advantages and disadvantages; but as with the classification 

problems these are often intertwined. 

The GAN produced data has been shown to be characteristically similar (via T-SNE and 

UMAP methods) to the real data it is trained from, and also characteristically different to 

data from different sources. This is of interest as generating large amounts of “similar” 

data to a real ion channel is desirable for training humans how to idealise ion channels, 

or even other AI models. Moreover, this data is anonymous and generatable on demand; 
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albeit more slowly than other methods when including the training process; meaning that 

the quality of training is likely to be much higher than other methods with more data 

available. 

Our GAN model had limitations, however, for example the only form of control we have 

on the output data currently is the input data we use to train the model. Metrics such as 

open probability, channel size, drift and noise cannot be controlled by the user for 

pretrained models; so simulating slight changes in conditions, or adjusting the data for 

training another model is difficult, compared to, for example, equivalent stochastic models  

(O’Brien, Feetham, Staunton, Hext, & Barrett-Jolley, 2022). One potential solution to this 

would be to use conditional GANs (Mirza & Osindero, 2014) to attach some control on 

these metrics during model training. In conditional GAN networks, an additional input  

(such as nPo) is added to the generator, corresponding with some information about the 

data. After training with this additional input,  it can be used to control characteristics 

about the output from noise via changing this value manually in the generator.  

9.1.2 Markovian Simulation 

While our GAN models represented a successful data driven approach to data generation; 

the limitations meant that we felt for the rigorous testing we needed for our novel deep 

learning model; there would be an advantage in using an updated Markovian simulation 

method.  This is the approach usually used in the literature (Bruno et al., 2005; 

Gnanasambandam et al., 2017; Qin, 2004) and possible since we know many of the 

properties of ion channel recordings (such as they follow an underlying Markovian 

mechanism, contain some form of 1/f noise) that allow us to build a mathematical model 

to generate signals. Therefore, most of this thesis used Markov models to simulate data, 

and added synthetic noise to the data through a series of “noise layers” that emulate the 

noise observed on real ion channel recordings (e.g. comparing Figure 5.3 and 8.38), .   

These noise terms are highly customisable and extendable; from simple Gaussian noise to 

1/f noise that scales based on the number of channels open and the time since the last 
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opening (Howe, 1996; Sigworth, 1985; Yu, Dhingra, Dick, & Galán, 2017). This control 

over the noise on the signal was used throughout this work to ensure the simulated ion 

channel data was as close as possible in shape to the real data recorded from the lab; some 

variation was built into the noise parameters to cover a wider range of recording 

situations; resulting in a range of signal to noise ratios and datasets with and without 

baseline drift. 

The Markovian simulations for the Markovian state recovery work used two Markovian 

networks; a simple 3-state model designed as the simplest non-trivial Markovian scheme 

as a baseline, and a 5-state Markovian scheme taken from the literature from a real ion 

channel analysis fit. The 5-state model produced data that had a far larger range of dwell 

times; the mean dwell time for one of the samples was only a few samples long, whereas 

for another state it was thousands; which caused difficulty in training.  

In the idealisation work, multiple copies of these Markovian simulations were added 

together before noise was added in post; initially the 5-state model was used but it was 

quickly found that due to the nature of the Markovian model, it was rare to have two 

channels open simultaneously, and in cases where it did, the dwell times were so short 

(single point) that models would not idealise the bursts at all. Therefore, the simple 3-

state model was used and parameters manipulated to make the channel more realistic 

compared to a sample of lab recorded data, with clear, isolated events with appropriate 

dwell times. This created balanced, higher quality datasets, but the underlying Markovian 

model was unreasonably simple. In our testing in Chapters 5, 6 and 7, it was found that 

this gave generally better results than models trained on the 5-state data. Presumably 

this is because models would encounter a narrower range of dwell times (instead of the 

range of single-point to large dwells of no activity), which were easier to “learn” for the 

neura networks. 
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9.1.3 GAN vs Markovian Simulation 

The GAN generated data showed a novel and promising approach to data synthesis, 

however, as stated above, it was not used for the subsequent work on Markovian channel 

recovery or channel idealisation. This was mainly due to two reasons: lack of a reliable 

ground truth for the Markovian case, and lack of control on event frequency.  It was critical 

in Chapters 5,6,7 and 8, to have a wide range of training data “phenotypes” as possible or 

the classic deep learning pit fall of over-fitting would likely occur (Aghajanyan, 2017; 

Zhang et al., 2021) 

The DeepGANnel, our GAN channel synthesis method is designed to produce idealisation 

in parallel to ion channel data (this was the key breakthrough), however, this idealisation 

may not be perfect, since, by definition it would reproduce the same wrongly labelled 

events that the humans did that labelled the seed data in the first place.  Therefore, using 

these labels as training data for the deep learning models of Chapter 5, 6, 7 and 8 could 

potentially introduce new errors into the system. In other words, the new models would 

not only learn the true nature of the underlying data, but also learn the inaccuracies from 

the GAN or human labelled data used. This is the major advantage of using a 

mathematical simulation; we can ascertain an accurate, objective ground truth for every 

point in the signal. This allows the model to form its own opinion of the dataset rather 

than rely on a reproduction from a third party. 

Secondly, the GAN data does not allow us to increase the event frequency arbitrarily to 

create a more varied dataset. Deep learning models are infamously “black boxes” 

(Holzinger, Langs, Denk, Zatloukal, & Müller, 2019) with little controls on the internal 

mechanisms present, so building a balanced dataset is difficult when the GAN produces 

low nPo data. With a mathematical simulation, we can adjust the Markovian transition 

rate matrix to increase the event frequency when the data is particularly imbalanced. 
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9.1.4 Digital vs Analogue recordings 

Another decision to make in the data sourcing process is whether or not to use analogue 

equipment in the data simulation process. In previous work (Celik et al., 2020), data was 

simulated via digital means, but noise added by passing this data through the real 

analogue patch-clamp equipment used in a lab environment, adding genuine noise with 

similar characteristics. 

This comes with a major drawback in that by passing the data through an analogue 

machine, it bottlenecks the production of data to a real-time process; data is re-recorded 

out of the analogue amplifier in real time.  Furthermore, whilst it includes authentic 

“amplifier noise”, there are still native physiological noise types that are not included 

(open channel noise etc, see above).  On the other hand, with the mathematical models, 

since the noise added is digital, it can be simulated orders of magnitude faster than the 

analogue method. As we found the performance of the deep learning models had a high 

reliance on the amount of data we had, this proved important in model tuning; as doubling 

the amount of data available to the models gives a significant improvement in 

performance.  

9.1.5 Synthetic Noise Analysis 

One of the key criticisms of synthetic, digitally generated data (as with the case in the 

Markovian simulations) is the unrealistic nature of the signal compared to lab recorded 

data. In other work (Hotz et al., 2013), data is simulated by adding Gaussian noise to a 

square wave generated via a Markovian process. This creates starkly different looking 

data to lab-recorded data and may form an unrealistic standard of the quality of data 

these models are likely to receive. 

For this work, the quality of the data is a larger concern as it’s the primary source where 

the models learn their patterns from; if the data is not “close” to what is expected in the 

real, lab recorded case, model performance is likely to be poor. In fact, when tuning the 
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channel idealisation models to perform better on the real data, changing the data and 

retraining the model was the largest source of improvements. 

As discussed previously, the noise seen in ion channel recordings is 1/f noise; but the 

clearest way to see the difference between the noise terms in this work and previous work 

is to look to the power spectrum density plots for our simulated data, some real data from 

the lab, and Gaussian noise (Figure 9.1). 

 

 

Figure 9.1: Noise analysis of simulated training data (A) versus real data (B) versus Gaussian noise (C). 
In this work, simulated data was used with customized noise layers to better reflect the nature of the noise seen in 
real lab recordings. In other work, simple Gaussian noise was used layered on top of a Markovian simulation – but it 
is clear from the power spectrum analysis here that it does not accurately reflect the nature of the noise as in the 
methods in this work. Note that the density of the noise trails off in the training data and real data, but is constant 
throughout in the Gaussian noise. 
 

We clearly see similarity between the simulated data and real data, and a large difference 

between these two and the Gaussian noise; this is no accident and is the result of a large 

amount of testing and tuning for the training dataset to be as high quality as possible. 

9.1.6 Pre-processing 

Pre-processing forms a crucial part of any artificial intelligence problem, with many 

algorithms depending on certain properties of the data to function correctly; for example 
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PCA assumes equal scaling across each of the input features. Deep learning is no 

exception; the inputs for each of the models in my work has needed significant processing 

performed on it before being passed into the model itself, and these were very different in 

Chapters 5, 6 and 7. 

In Chapter 5 I found that relatively simple pre-processing allowed outstanding model 

performances; with Cohen’s Kappa scores for recovery of Markovian state of 0.9665. 

However, in Chapter 6, I found that implementing the Viterbi algorithm significantly 

improved model training times yet further. I also found that (as with the later channel 

idealisation work) by constricting the expected classification range to the middle 50% of 

points (“progressive windowing, Chapter 7) we also saw a significant improvement in 

performance, beyond even the Viterbi implementation of Chapter 6. Both of these pre-

processing adjunct steps are focused on giving the model the “easiest” job possible; it’s 

simply not possible to expect a neural network to correctly predict the output of a truly 

stochastic process, and is not helpful to expect the same performance for a model on a 

point with context in both time directions versus a point with context in only one direction 

on the edge of the time window. 

For the GAN work (Chapter 3), pre-processing went a step further into data augmentation 

(Wong, Gatt, Stamatescu, & McDonnell, 2016). Due to the extremely low amount of data 

we had available, we needed to ensure that the data we used was high quality, and utilised 

as much as possible. During training, it was clear that any input with no events in must 

be removed, leaving us with even less data; but by flipping each input on the time axis 

(reading it back to front), and by adding a small amount of Gaussian noise to each input, 

we generated enough variation within the training data for the models to converge.  In 

contrast, our predictive models (Chapters 5, 6,7 and 8) did not use any data augmentation 

as such, since there was, in effect, an infinite volume of training data available (see above). 
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9.2 Potential of Deep Learning Models 

Deep learning models have seen growing use for complex tasks across a range of fields 

due to their ability to learn complex patterns from data without many assumptions about 

the nature or structure of the data itself. This flexibility has allowed for models to gain 

better-than-expert metrics at tasks such as cancer detection (Ardila et al., 2019; Hu et al., 

2019). Deep learning approaches have several advantages over other AI methods which 

we have successfully exploited in our single channel analyses in this work. 

9.2.1 Complex Pattern Recognition 

Some AI algorithms (for example, PCA, support vector machine (SVM)) enforce some kind 

of structure in the function being used to build a model; for example, in linear PCA; the 

projection to the PCA space is a linear combination of the features in the original space. 

In linear SVM, the support vectors are always linear, even if it is not necessarily the best 

choice of fit for the data. This can be changed through transformations in pre-processing, 

or adjusting the functions used for the support vectors, however this comes at a 

performance cost as new parameters are added. 

In deep learning, due to the number of large number of parameters (often several million) 

and depth of the models, far more complex patterns can be fitted to the data. In fact; the 

universal approximation theorem shows that with enough neurons in a single hidden 

layer, a network can approximate any function to an arbitrary accuracy within a bounded 

region (Hornik, Stinchcombe, & White, 1989). 

This is perhaps why deep learning tasks show successful metrics for multimodal or 

complex data tasks (Ramachandram & Taylor, 2017); since the dimensionality of the input 

data is high, and covariance is likely, naturally the best fit is likely to be a function with 

a large number of parameters. For the case of deep learning application to ion channel 

data idealisation, we know from dwell time analysis that there are underlying Markovian 

processes occurring and that the best fit for idealisation of this data would ideally take 
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this into account; for example a poor model might reproduce aggregate statistics (for 

example dwell time histograms) missing key characteristics (e.g. the non-unimodal nature 

of the dwell time histograms reflecting the Markovian nature of the data), or try and 

enforce the Markovian structure from the training dataset onto any new data.  The 

approaches I used in this thesis (Chapters 6 and 7) maintain this characteristic behaviour 

shown in the aggregate statistics in Chapter 8 (see model dwell time histograms in Figure 

8.32), showing that the model is either “understanding” some underlying structure to the 

data or is agnostic to changes in the underlying Markovian structure and continues to 

idealise correctly despite a significant change in the nature of the data. Either way, the 

model produces useful outputs for testing ion channel behaviour; showing the ability of 

the models to work with the complex underlying mechanisms. 

9.2.2 Assumptions in Model Development 

Several AI models make significant assumptions about the nature of the data in training; 

for example, PCA is sensitive to the scaling of the features, outliers, and imposes a linear 

relationship (by default without any processing) for it to function correctly (Wold, 

Esbensen, & Geladi, 1987). Deep learning models on the other hand take a data-driven 

approach, making few assumptions and allowing the model to infer itself via gradient 

descent any patterns in the data .  Due to the complexity of ion channel data, and the 

flexibility of deep learning models, it is possible that models I deployed successfully in this 

thesis are in fact using other information (for example, noise shape) than simply the 

change in current for idealisation.  An experience patch clamper (feels) they can determine 

subtle open and closed events in raw data by taking all these “features” into account.   It 

is possible that if it were possible to have a ground truth with real data the models would 

be even more successful than we found here.   We do not have complete knowledge of ion 

channel function, and the existence of better-than-expert models  in other fields (Hollon 

et al., 2020; McKinney et al., 2020) implies that deep learning models are capable of 

ascertaining patterns outside of our understanding for better analysis of the data. 
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9.2.3  Fully Automatic Idealisation 

Previous work (Hotz et al., 2013; Qin, 2004) has all needed some form of human 

supervision to achieve an idealisation (for example, an initial guess of Markovian model), 

or faces significant caveats or assumptions on the data inputted (e.g. absence of baseline 

drift). One of the main allures of deep learning models is the “black-box” ability to take in 

a wide variety of complex data and output labels without any human input. 

For ion channel idealisation this is particularly important; as fully automated ion channel 

recording becomes more and more widespread; the analysis becomes a more limiting 

bottleneck for results, even with semi-automatic analysis methods. An ideal model should 

be as general as possible, allowing for fully-automatic idealisation without user input, 

allowing for end-to-end analysis from cell culture to summary statistics. 

In this work, I have shown that this is possible, albeit with the caveat that some parts of 

the model pre-processing work better with some user tuning, although this is not strictly 

necessary (for example, automatic versus manual TANE in Chapter 8.3.5.3 and Figure 

8.43). During analysis, the full analysis was run automatically on the raw data, outputting 

both the raw point-by-point idealisation (for manual analysis where needed), and the 

summary statistics (nPos, dwell time histograms etc).  

9.3 Drawbacks of Deep Learning models 

While we found our deep learning models to show high performance on the complex 

problem of Markov state recovery, and are generally more flexible than previous methods; 

in practice, in other domains, alternative machine learning solutions often show similarly 

high performance under certain circumstances due to a number of reasons , for example 

over-abstraction or over-fitting on the data (Nitze, Schulthess, & Asche, 2012). 

Furthermore, deep learning models are often far larger and slower than their non-deep 

learning counterparts (Vakili, Ghamsari, & Rezaei, 2020); causing them to be impractical 

in applications where speed or size are more important than accuracy. 
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9.3.1 Model Size 

One of the main disadvantages I foresee with my deep learning models compared to other 

AI analysis models is time performance; i.e. how fast the model runs. The clear example 

of this is the Segmented K-Means algorithm, used by the popular software QuB (Qin, 

2004). This model is far smaller and faster than my models, and runs on any (Windows) 

machine (not just ones with CUDA enabled graphics cards). However, the end-to-end 

nature of my work means in practice very often then deep learning models take less time 

to analyse the data as less human input is needed to give a sensible output. 

I found throughout the present work (Chapter 5 ,6 and 7) that my very large models, 

adapted from those used for complex image recognition tasks (such as ResNet) performed 

similarly to the lighter deep channel models (e.g., my SimpleCNN) for channel idealisation 

and Markovian state prediction; this may be unsurprising as CNN models with fewer 

layers  that focus on edge detection are likely to detect most events.  For this reason, I 

dropped the ResNet based model after Chapter 5.  It should be noted, however, that even 

my relatively simple models are still significantly larger than the SKM QuB model 

although smaller than the ResNet model (17 and 12 million parameters versus 58 million 

parameters for ResNet); so are faster.  This would be a consideration for, for example, web 

deployment of ion channel detection models (see below) although, computer power 

continues to increase with such a pace the limitation may evaporate soon.  

9.3.2 Model Specificity  

As computational power increases, the size and speed of our model becomes less of a 

concern; however occasional model failures could be critical when considering a fully-

automated pipeline. As such, further work should be done to make the model more robust 

to a larger range of conditions (such as longer or shorter dwell times; a larger range of 

noise; or artefacts in the data).  We have shown that models trained on synthetic data can 

be used on data with a different Markovian network by adjusting some pre-processing 

parameters. We also found that our new models work on data with more baseline drift 
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than seen in previous work (Celik et al., 2020; Hotz et al., 2013; Qin, 2004), so our models 

are fairly robust, but if the Markovian network is changed too much, or the signal to noise 

ratio is too low, model performance decreases significantly (see comparison of “Static” to 

“Perturbed” metrics in Chapters 5, 6, 7, or the model’s subjective change in performance 

in the Vernakalant dataset compared to the higher noise Penitrem Dataset). 

9.3.3 Reliance on Large Datasets 

One way of overcoming model specificity issues is to use a wider range of datasets, with 

data coming, ideally from different sources and different methods.  Deep learning models 

typically require a larger dataset to train from versus simpler models, and it was clear 

from earlier work that maximising the scale of this data was a significant factor in model 

performance; initial preliminary training for the Markovian state recovery experiments 

had significantly less data to train and model performance was ~20% lower across the 

board for every model (data not shown). This showed that for training deep learning 

models, human labelled data was not viable, and even the previous DeepChannel method 

of using simulated data through an analogue amplifier might not give the throughput 

needed for sufficiently training these large models (which simulates data in real-time, 

needing 160 hours to reproduce the data used in Chapters 5,6,7 for example); hence the 

continued development of the data simulated pipeline to be able to generate a large 

amount of similar data on command. 

The extent of the success of the models trained on synthetic data predicting lab-recorded 

data was perhaps surprising and  highly promising; lab-recorded data is complex, with 

many factors affecting both the cell’s function as well as the accompanying noise. Initially, 

it was planned that the simulated data might be too dissimilar to the lab-recorded for the 

models to be able to analyse, so the models would be “transfer learned” on a small set of 

hand-labelled lab-recorded data to fine tune the models to a point where they would work 

on the real data. Transfer learning is a process where all, or some of a model, is retrained 

on a different dataset to tune the model to a desired domain. This is common in 

applications where the applied domain has difficulties in acquiring high quality data (as 
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in our case), or when applying another party’s model (for example a generic image 

recognition model) to a more specific use case (i.e. animal detection). The theory behind 

transfer learning is that the early neurons are responsible for the fundamental pattern 

recognition processes that are shared across several domains, and only the last layers are 

specific to the use case. By “freezing” the first few layers of a model, these “fundamental” 

patterns (such as line, shape detection) are kept the same, whereas the more specific 

processes (such as ear, nose, mouth detection) are allowed to retrain on the new, specific 

dataset.  As it transpired, in preliminary experiments, we found transfer learning failed 

(data not shown), initially models regressed in their detection ability before learning the 

new structure apparently no better than a naive model.  This implies that the quality of 

the synthetic data was relatively high, and my approach correct. Still, there is significant 

room for improvement in this area; as deep learning is very much a data driven AI method, 

improving the data for training is a primary method of improving model performance. 

9.3.4 The Opaqueness of Models 

Another very important aspect to training the deep learning models throughout this work 

was fine-tuning the pre-processing for each application. Deep learning models are 

notoriously hard to debug (as they are essentially “black box” algorithms with limited 

ways to see the inner workings of); and ensuring the pre-processing pipeline takes some 

time and development for each use case. Often this will cause development cycles to slow 

down as some training is needed before changes can be shown to have a positive effect on 

the model’s performance. 

In the GAN work, initially all the standard pre-processing steps were applied to the signal; 

normalisation, data augmentation via flipping, scaling and moving; however in early 

training experiments all generator outputs were simply empty records with no events. 

This was due the fact that there were input windows in the training set without events 

in, and the generator model had clearly decided that these were the easiest sections of the 

data to replicate to fool the discriminator. Removal of empty windows rectified this 



 
303 

problem; but is an illustrative example of pre-processing decisions being iteratively 

improved over many training runs over a longer period of time. 

 

Figure 9.2: Example of “Flickering” classification on simulated testing set.  
Here we see that the model sometimes flickers between two states – this can either be due to under-training, or the 
model being undecided between two states and splitting its decision between two states in order to reduce the loss 
function on balance.A better loss function may solve this problem, or improvments to the dataset.  
 

A training problem that we were not able to overcome is finding a suitable loss function 

that accurately defines what a “good” idealisation consists of.  Currently the loss function 

used in the Markovian state recovery and channel idealisation is categorical cross-

entropy; this is an unweighted point-wise comparison of the prediction to the ground truth 

via log-likelihood. While this is helpful, and generally correlates to model performance; 

there are a few cases where a model can abuse this loss function to get a lower loss without 

giving a “helpful” output. The first of these is to simply predict no channels are present 

when channels are particularly rare. In unbalanced (but perhaps realistic) datasets such 

as these, a model’s categorical cross-entropy will be low, and accuracy high if the model 

simply predicts nothing is happening; however it is extremely important that the model 

is sensitive to rare events as this is often biologically important in recordings (for example 

in a channel inhibitor). Another way a model might try and “game” the loss function is to 

“hedge” across two conductance levels or Markovian states in cases where it is not 
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particularly sure by flickering between the two classes (Figure 9.2). Again, while this 

results in increased accuracy, this is extremely damaging to analysis as each flicker counts 

as an event and creates many small dwell times in dwell time histogram analysis. Both of 

these problems can be approached by a use of a different metric; for example both the 

micro F1-Score and Cohen’s Kappa score mitigate these problems; however they cannot 

be used as loss functions as they are not differentiable.   They also still have limitations 

themselves (see below).  The compromise we use here is to try and use balanced datasets 

that exhibit constant, reasonable activity relative to the window size. 

All of these problems require solutions either through pre-processing or post-processing, 

since there is very little that can be done within training itself (or on the model object in 

post) to solve problems.  The model is very much a black box and it is hard to understand 

the internals, therefore instead it must be done symptomatically by looking at particularly 

problematic sections of data and outputs. 

9.4 Future Work 

This work shows promising results for ion channel analysis using deep learning models, 

however there is still room for improvement when it comes to model performance; these 

improvements can be broadly sorted into two groups; iterative improvements that take 

the general method of the work and iterate it to get better performance, and major changes 

to the methodology that may offer a jump in improvement. 

9.4.1 Iterative Improvements 

In addition to the apparently unresolvable issue of fitting loss functions being non-ideal 

for our use case, the choice of metrics makes an enormous difference to apparent success.  

As is widely discussed in ML circles, and seen in Chapters 5, 6 and 7. Machine learning 

can “game” the popular F1 metric for example.  With a low activity channel and F1 would 

be near perfect despite modal failure of the model. For this reason we focussed on Cohen’s 

Kappa which factors in the possibility of chance observations (McHugh, 2012).    Note that 

in Chapter 5 we found instances where the model had entirely failed, reported Coehn’s 
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Kappa as zero and yet F1 remained satisfyingly high.  However, even the Kappa statistic 

may not capture what electrophysiologists would judge as good and bad idealisation. For 

example, a strip of data with one missed event would disturb a patch clamper much more 

than a strip of data with several open and closed events a few of which have been missed.   

Electrophysiologists would most likely look for events (“sojourns”), rather than numbers 

of correct or incorrect points.  In theory it should be possible to calculate metrics that 

represent events rather than points, but as we thought about this during the project, the 

problem became surprisingly complex.  What proportion of the event would have to be 

detected to be called correct, how closely aligned to the original would it need to be etc.  

Nevertheless, in the future, a custom metric that could be formally validated would allow 

better selection of optimal models.  

9.4.1.1 Data Synthesis 

Significant work was done in this paper to generate synthetic data for training deep 

learning models; through theoretically based probabilistic Markovian simulations with 

crafted noise added in post, or a more data driven approach of GAN data generation from 

a small seed set of labelled data. As deep learning is so reliant on the data used to train; 

this is where I believe the major improvements could be made. 

Perhaps the most important omission from the current work is the lack of incorporating 

real artifacts or “extreme” noise elements in the simulated dataset. In practice, there are 

several scenarios that can happen in an ion channel recording; from sharp spikes in the 

ion channel apparatus being disturbed to 50 cycle noise being visible in the output signal. 

Currently, the simulated data does not reflect this reality, assuming perfect recording 

conditions for analysis. Ideally the model should be able to (internally or externally via 

labelling) identify problematic sections of a recording trace and deal with them 

appropriately. 
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9.4.1.2 Improved Pre-processing Pipelines 

Currently the pre-processing pipeline is fairly involved and has many parameters with 

sensible, but untuned defaults (such as the peak detection parameters for anomaly 

detection). Tuning these parameters is a long and difficult process, and it’s not clear if the 

best settings for one dataset would be the same for another; so some work could be done 

in trying to dynamically choose these parameters depending on characteristics of the data 

in a similar way to how the dynamic data scaling currently works. 

Similarly, the scaling process showed to be a key factor in getting helpful outputs from 

the deep learning model. However the current method is rather rudimentary and is likely 

to have room for improvement. In detecting the number of channels, the peak fitting 

algorithm also outputs the mean channel size normalising the data to make this size 

constant was attempted, but the peak fitting algorithm on the amplitude histograms was 

not robust enough for this to be a viable option. Again; improvement in the peak fitting 

algorithm (or perhaps a different approach entirely) would likely result in a better pre-

processing pipeline, and therefore better model performance. 
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9.4.2 Alternative Deep Learning Approaches 

9.4.2.1 Transformers 

 

Figure 9.3: Transformer architecture adapted from (Vaswani et al., 2017) 
Transformers are a relatively new architecture using attention layers in order to build long and short term 
dependencies in the input data. Transformer networks have seen significant usage in natural language processing 
tasks, as well as image classification tasks using Visual Transformers. 

The bulk of the work in this thesis is based on convolutional networks, however perhaps 

entirely different architecture could be useful. One such example is the new transformer 

development.  Transformers are a relatively new type of deep learning model that have 

recently made a particular impact in the world of natural language processing with 

models such as the GPT family (GPT3, GPT4, ChatGPT etc), Google’s Bard, and Meta’s 

LLAMA models. These models are extremely large, and use a vast dataset (usually 

scraped from the entire internet), but share a new, attention based mechanism developed 

by Google in late 2017 (Figure 9.3). 

Transformers were first used in the context of natural language processing for translation 

processes; the central concept of how transformers work is the concept of attention, which 

can be compared to a “fuzzy dictionary”; instead of returning a single value when queried 

as in a normal dictionary, it instead outputs a vector of probabilities corresponding to the 
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relation of the key to the values; in other words how much “attention” should be paid to 

each value.  

Transformer models have several advantages to convolutional counterparts; they are 

computationally fast due to processing entire sequences at a time, consider the entire 

sequence at once through the use of matrix multiplication in the attention layers, and are 

more interpretable due to the attention matrices having clearer meanings than the 

convolutional layers. 

In a parallel to CNNs being used on natural language processing (NLP) tasks, Visual 

Transformers (Dosovitskiy et al., 2010) are now being used on image recognition tasks by 

segmenting images into portions, embedding them in a space and continuing as in the 

language case. Visual transformers are seeing state-of-the-art performance on image 

datasets, perhaps due to their ability to consider global trends in the data (relating image 

segments from opposite sides of the image, for example). 

Transformers are a relatively new technology in the space of deep learning, and so it is 

unsurprising that they did not come up during a literature review on deep learning in 

electrophysiological signals. However - we have attempted to use transformers in our 

work; in both the sequence to sequence (predicting the next point’s idealisation value 

based on the historical idealisation and current signal) and in a visual transformer 

method similar to the CNN methods we have used earlier. We experienced that the models 

would fail during testing, predicting the same class throughout the entire file (Figure 9.4). 

There are several reasons this might happen; transformers are known to require relatively 

more data than a CNN to perform well, but perhaps more importantly is that the 

behaviour we are interested in for a successful idealisation is mostly local; events happen 

over the course of a few samples, with relatively little relation to points hundreds of 

samples further on, in comparison to long sequences of text for example. Therefore, the 

model architecture might be too general for the application and considers too much 

information in the process of idealisation.  
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Figure 9.4: Example 1s (10,000 data points) data trace (A) with ground-truth labels (B) and transformer 
predictions (C) for a transformer model trained on the “Static Three State Model without Drift” dataset for 
channel idealisation. 
Transformer models are currently the best in class model for natural language processing tasks, and are also showing 
very promising performance in image segmentation tasks via Visual transformers. However when applied to our 
data, we see total modal collapse in testing, with the model predicting a total number of  channels open as 1 for the 
entire file. 
 

9.4.2.2 Accessibility of Models (Webapp) 

Currently, the requirements for using the deep learning models covered in this work are 

fairly complex; users are required to have a CUDA enabled GPU for training, with a 

specific combination of GPU drivers, CUDA versioning and Tensorflow versioning for the 

code to run correctly; although for idealisation this isn’t strictly required. Achieving a 

working set up for this is infamously difficult and technical; to the extent where 

Tensorflow providers have produced a virtual machine image using Docker to bundle all 

these systems together. 

All these problems form barriers for researchers to use our tools; and so some work was 

done into making these models accessible to as many people as possible. The result of this 

was the DeepChannel webapp (Figure 9.5); a platform for users to be able to use any of 

the pretrained models in this work themselves, without having to install Python or other 

technical tools. 
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Figure 9.5: Web application interface for using Deep learning models. 
The models trained in this work can be uploaded to the DeepChannel platform to allow for in-browser idealization. 
The major advantages of this method are twofold – it allows researchers to get idealisations in browser without 
installing any deep learning software or Python; and also allows data to be idealized without the sensitive data 
leaving the researchers’ system due to the analysis being performed client side.  
 

This approach comes with a few advantages; firstly, all the models are stored on a host 

platform and fetched by the user as and when needed; this allows for new versions of the 

model to by uploaded without affecting existing users’ workflows. Secondly, the data being 

analysed never leaves the user’s machine; the model is downloaded, and all analysis 

occurs within the browser using TensorflowJS. This is particularly ideal for security; 

potentially sensitive data never leaves the users’ machine. Finally; building as a webapp 

allows for extremely fast prototyping at little cost to model performance; TensorflowJS 

uses either the WebGL or newer WebGPU backends to utilise GPU resources for speed 

where available; without the installation of the required drivers. My pilot app 

experimentally is now being developed in partnership with AstraZeneca by the 

Computational Biology Facility at the University of Liverpool. 

Several Nobel Prizes have been awarded for ion channel work in the past 50 years, but 

there are fewer labs that perform this research to day, as biology becomes swamped with 

the powerful, but technically easier ‘omic research. The combination of my best models 

developed within this thesis, which can deliver fast and accurate results (for example a 
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Kappa score of 0.9906 for single channel idealisation) together with wide deployment via 

a successful web app mean that these methods could become the future of single channel 

analysis in Universities and in industry. This would potentially re-invigorate single 

channel biology, one of the most powerful single molecule biological techniques ever 

invented for understanding pharmacological effects and discovering new, novel therapies, 

but currently under-exploited due to the skill needed to both acquire and analyse the data. 
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10 Appendix 

10.1  Chapter 6 Supplementary Figures: F1-Scores 

 

Figure 10.1: Model Training F1 Scores for “Static Three State Model without Drift” Dataset.  
Two way ANOVA showed significant differences of the models for F1 score (p < 0.001) and between the datasets (p 
< 0.001); post-hoc tests were performed for each model pair within the datasets – all Viterbi/non-Viterbi pair of 
models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no 
significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 

 

Figure 10.2: Model Training F1 Scores for “Static Three State Model with Drift” Dataset. 
Two way ANOVA showed significant differences of the models for F1 score (p < 0.001) and between the datasets (p 
< 0.001); post-hoc tests were performed for each model pair within the datasets – all Viterbi/non-Viterbi pair of 
models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no 
significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 
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Figure 10.3: Model Training F1 Scores for “Perturbed Three State Model without Drift” Dataset. 
Two way ANOVA showed significant differences of the models for F1 score (p < 0.001) and between the datasets (p 
< 0.001); post-hoc tests were performed for each model pair within the datasets – all Viterbi/non-Viterbi pair of 
models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no 
significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 

 
Figure 10.4: Model Training F1 Scores for “Perturbed Three State Model without Drift” Dataset. 
Two way ANOVA showed significant differences of the models for F1 score (p < 0.001) and between the datasets (p 
< 0.001); post-hoc tests were performed for each model pair within the datasets – all Viterbi/non-Viterbi pair of 
models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no 
significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 
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Figure 10.5: Model Training F1 Scores for “Static Five State Model without Drift” Dataset 
Two way ANOVA showed significant differences of the models for F1 score (p < 0.001) and between the datasets (p 
< 0.001); post-hoc tests were performed for each model pair within the datasets – all Viterbi/non-Viterbi pair of 
models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no 
significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 

 
Figure 10.6:Model Training F1 Scores for “Static Five State Model with Drift” Dataset 
Two way ANOVA showed significant differences of the models for F1 score (p < 0.001) and between the datasets (p 
< 0.001); post-hoc tests were performed for each model pair within the datasets – all Viterbi/non-Viterbi pair of 
models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no 
significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 
 



 
315 

 
Figure 10.7: Model Training F1 Scores for “Perturbed Five State Model without Drift” Dataset 
Two way ANOVA showed significant differences of the models for F1 score (p < 0.001) and between the datasets (p 
< 0.001); post-hoc tests were performed for each model pair within the datasets – all Viterbi/non-Viterbi pair of 
models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no 
significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 

 
Figure 10.8: Model Training F1 Scores for “Perturbed Five State Model with Drift” Dataset.  
Two way ANOVA showed significant differences of the models for F1 score (p < 0.001) and between the datasets (p 
< 0.001); post-hoc tests were performed for each model pair within the datasets – all Viterbi/non-Viterbi pair of 
models were significantly different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no 
significance (p > 0.05), black pairs with a single star “*” denote significance between 5% and 1%. Black pairs with 
two stars denote significant between 1 and 0.1%. 
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10.2  Chapter 7 Supplementary Figures: F1-Scores 

 

Figure 10.9: Model Training F1 Scores for “Static Three State Model without Drift” Dataset.  
Two way ANOVA showed significant differences of the models for F1 (p < 0.001) and between the datasets (p < 
0.001); post-hoc tests were performed for each model pair within the datasets – all models were significantly 
different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p > 0.05), black 
pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote significant 
between 1 and 0.1%. 

 

Figure 10.10: Model Training F1 Scores for “Static Three State Model with Drift” Dataset.  
Two way ANOVA showed significant differences of the models for F1 score (p < 0.001) and between the datasets (p 
< 0.001); post-hoc tests were performed for each model pair within the datasets – all models were significantly 
different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p > 0.05), black 
pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote significant 
between 1 and 0.1%. 
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Figure 10.11: Model Training F1 Scores for “Perturbed Three State Model without Drift” Dataset.  
Two way ANOVA showed significant differences of the models for F1 score (p < 0.001) and between the datasets (p 
< 0.001); post-hoc tests were performed for each model pair within the datasets – all models were significantly 
different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p > 0.05), black 
pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote significant 
between 1 and 0.1%. 

 

 
Figure 10.12: Model Training F1 Scores for “Perturbed Three State Model with Drift” Dataset 
Two way ANOVA showed significant differences of the models for F1 score (p < 0.001) and between the datasets (p 
< 0.001); post-hoc tests were performed for each model pair within the datasets – all models were significantly 
different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p > 0.05), black 
pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote significant 
between 1 and 0.1%. 
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Figure 10.13: Model Training F1 Scores for “Static Five State Model without Drift” Dataset.  
Two way ANOVA showed significant differences of the models for F1 score (p < 0.001) and between the datasets (p 
< 0.001); post-hoc tests were performed for each model pair within the datasets – all models were significantly 
different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p > 0.05), black 
pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote significant 
between 1 and 0.1%. 

 
Figure 10.14: Model Training F1 Scores for “Static Five State Model with Drift” Dataset.  
Two way ANOVA showed significant differences of the models for F1 score (p < 0.001) and between the datasets (p 
< 0.001); post-hoc tests were performed for each model pair within the datasets – all models were significantly 
different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p > 0.05), black 
pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote significant 
between 1 and 0.1%. 
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Figure 10.15: Model Training F1 Scores for “Perturbed Five State Model without Drift” Dataset.  
Two way ANOVA showed significant differences of the models for F1 score (p < 0.001) and between the datasets (p 
< 0.001); post-hoc tests were performed for each model pair within the datasets – all models were significantly 
different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p > 0.05), black 
pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote significant 
between 1 and 0.1%. 

 

Figure 10.16: Model Training F1 Scores for Perturbed Five State Model with Drift” Dataset.  
Two way ANOVA showed significant differences of the models for F1 score (p < 0.001) and between the datasets (p 
< 0.001); post-hoc tests were performed for each model pair within the datasets – all models were significantly 
different (p < 0.001) unless stated otherwise. Red pairs labelled with an “NS” denote no significance (p > 0.05), black 
pairs with a single star “*” denote significance between 5% and 1%. Black pairs with two stars denote significant 
between 1 and 0.1%. 
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10.3 Chapter 8 Dwell Time Area Parameter Plots 

 
Figure 10.17: Dwell Time Parameter Plots for Closed Area Parameters for both the manual (QuB) and model 
(Auto TANE B5D)  idealisations at 40mV. 
For both idealisations, the open and closed dwell times were recorded and the corresponding histograms fitted with 
three exponential curves (with area and tau parameters). Here we show the distribution of these closed area 
parameters for both idealisations. A two way ANOVA showed no significant effect of the drug on the closed areas 
for either the QuB or model idealisations (p > 0.05, n = 34). Furthermore, while the model exhibits a tighter clustering 
of parameters, it is not significantly so via an F-Test (p > 0.05, n= 34). Two way ANOVA across all the area and tau 
parameters showed a significant difference overall between the QuB and Model parameters (p = 0.0319, n = 34); 
however this does not necessarily imply one is better than the other.  

 
Figure 10.18: Dwell Time Parameter Plots for Open Area Parameters for both the manual (QuB) and model 
(Auto TANE B5D)  idealisations at 40mV. 
For both idealisations, the open and closed dwell times were recorded and the corresponding histograms fitted with 
three exponential curves (with area and tau parameters). Here we show the distribution of these open area 
parameters for both idealisations. A two way ANOVA showed no significant effect of the drug on the open areas for 
either the QuB or model idealisations (p > 0.05, n = 34). Furthermore, while the model exhibits a tighter clustering of 
parameters, it is not significantly so via an F-Test (p > 0.05, n= 34). Two way ANOVA across all the area and tau 
parameters showed a significant difference overall between the QuB and Model parameters (p = 0.0319, n = 34); 
however this does not necessarily imply one is better than the other. 
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Figure 10.19: Dwell Time Parameter Plots for Closed and Open Area Parameters for the model (Auto TANE 
B5D)  idealisations at -60mV. 
For the idealisations, the open and closed dwell times were recorded and the corresponding histograms fitted with 
three exponential curves (with area and tau parameters). Here we show the distribution of these area parameters 
for the model idealisations. A two way ANOVA showed  no significant effect of the drug on the closed or open areas 
(p > 0.05, n=73). 
 

 

Figure 10.20: Dwell Time Parameter Plots for Closed Area Parameters for both the manual (QuB) and model 
(Auto TANE B5D)  idealisations at 40mV. 
For both idealisations, the open and closed dwell times were recorded and the corresponding histograms fitted with 
three exponential curves (with area and tau parameters). Here we show the distribution of these closed area 
parameters for both idealisations. A two way ANOVA showed no significant effect of the drug on the closed areas 
for either the model idealisations or QuB idealisations (p > 0.05, n = 70). Furthermore, while the model exhibits a 
tighter clustering of parameters (apart from here in the third area), it is not significantly so via an F-Test (p > 0.05, 
n= 70). Two way ANOVA across all the area and tau parameters showed a significant difference overall between the 
QuB and Model parameters (p < 0.001, n = 70); however this does not necessarily imply one is better than the other. 
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Figure 10.21: Dwell Time Parameter Plots for Open Area Parameters for both the manual (QuB) and model 
(Auto TANE B5D)  idealisations at 40mV. 
For both idealisations, the open and closed dwell times were recorded and the corresponding histograms fitted with 
three exponential curves (with area and tau parameters). Here we show the distribution of these open area 
parameters for both idealisations. A two way ANOVA showed no significant effect of the drug on the open areas for 
either the model idealisations or QuB idealisations (p > 0.05, n = 70). Furthermore, while the model exhibits a tighter 
clustering of parameters (apart from here in the third area), it is not significantly so via an F-Test (p > 0.05, n= 70). 
Two way ANOVA across all the area and tau parameters showed a significant difference overall between the QuB 
and Model parameters (p < 0.001, n = 70); however this does not necessarily imply one is better than the other. 
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