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Abstract

Landslides are widely acknowledged as among the most prevalent natural disasters. Peridynamics

(PD), a mesh-free computational method, offers distinctive advantages in circumventing mesh

distortion issues. However, limited attempts to employ PD in landslide simulation. Utilizing

the features of non-ordinary state-based peridynamics (NOSBPD), we propose a computational

method to analyze the entire process of slope run-out. Moreover, the occurrence and progression

of landslides are notably affected by soil strength uncertainties. Hence, a coupling procedure is

proposed to integrate random fields with NOSBPD, investigating the impact of spatial variability

in soil strength on landslides. Results indicate that considering soil heterogeneity leads to a 12%

increase in run-out distance compared to homogenous soil analyses. This highlights the significance

of accounting for soil spatial variability to avoid underestimating landslide run-out distances.

Additionally, this study compares the influence of ground motion types containing non-pulse

ground motions and pulse-like ground motions (PLGMs) on entire landslide process. The findings

suggest that landslides under PLGMs exhibit larger run-out distances and demonstrate a more

concentrated spatial distribution, indicating higher susceptibilities to landslides under PLGMs.

Lastly, we explored the interaction of two uncertainty sources on landslides. The findings can

guide engineers in implementing assessments of potential uncertainties associated with landslides.
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variability, Pulse-like ground motion

1. Introduction1

Landslides are widely acknowledged as among the most prevalent natural disasters, posing a2

substantial risk to both human lives and property (Corominas et al., 2014; Wicki et al., 2020).3

Nowadays, computational approaches to slope stability analysis and slope failure pattern remain4

an active research field in geotechnical engineering, both in theory and in practice (Bui et al.,5

2011). This involves two most important aspects, the development of appropriate numerical tools6

and the accurate description of uncertainties.7

When it comes to numerical tools, various methods have been proposed in the past decades. In8

early time, limiting equilibrium methods(LEM), which include the methods proposed by Fellenius9

(1936), Bishop (1955), Morgenstern and Price (1965), Janbu (1968), and Spencer (1967) played10

important roles in study of slope stability. Due to their simplicity and computational efficiency,11

LEMs have been widely appreciated by researchers and geotechnical engineers. However, the12

prior determination of critical slip surface, which is one of the crucial inputs of those methods13

may not always be available, especially when encountering complex conditions such as spatially14

non-uniform soil properties and multiple loading patterns, LEMs cannot always yield accurate15

predictions. Under this context, a more general computational framework was adopted in slope16

stability analysis, i.e., finite element method (FEM). FEM was formulated based on continuum17

mechanics. Once the local constitutive law of soil is properly determined, the location as well as18

shape of the critical slip surface can be computed automatically without making any assumptions19

in advance. In addition, FEM is compatible with the variation of soil mechanical properties,20

which has been demonstrated in the work done by Griffiths and Fenton (2004), Hicks and Li21

(2018), Liu et al. (2018). However, when it comes to large deformation and failure behavior of22

slopes such as landslides and collapses, numerical analysis carried out by FEM is hard to converge.23

The underlying reason is that the distorted mesh under large or even discontinuous deformation24

will cause severe numerical singularity problems. To address this issue, some adaptive re-meshing25

techniques were developed (see Bathe et al., 1975; Ghosh and Kikuchi, 1991; Hu and Randolph,26

1998).27

Alternatively, mesh-free methods have recently drawn great interests in research fields of28

geotechnical engineering. Since mesh-free methods describe problems at particle or material point29
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scale, they can successfully avoid the mesh distortion problem and therefore be adopted in the30

large deformation or even failure study of slopes. Some representative mesh-free methods include31

the smoothed particle hydrodynamics (SPH) method (Gingold and Monaghan, 1977; Lucy, 1977),32

material point method (MPM) (Sulsky et al., 1994, 1995; Kularathna and Soga, 2017; Wang et al.,33

2018a) and peridynamics (PD) (Wang et al., 2016, 2018b, 2019). A lot of research has shown the34

applicability of using SPH or MPM in analyzing the stability problems of soil slopes under both35

static and dynamic loading patterns (Bui et al., 2007, 2008, 2011; Huang et al., 2020; Liu et al.,36

2021; Liu and Wang, 2021; Liu et al., 2022a; Xu and Stark, 2022; Zhang et al., 2022). However,37

to the best knowledge of the authors, only a few papers reported the application of PD in slope38

stability studies under merely gravity load (Lai et al., 2015; Zhang and Zhang, 2022). PD was39

initially proposed by Silling (Silling, 2000; Silling et al., 2007) as a non-local continuum theory.40

There are two distinct branches in PD, namely bond-based peridynamics(BBPD) and state-based41

peridynamics(SBPD). The SBPD, in particular, can derive the correspondence model, which is42

compatible with arbitrary constitutive relations in classic continuum mechanics such as Drucker-43

Prager model, and thus possesses the possibility to be applied directly in geotechnical problems.44

Despite the similarities between PD and SPH or MPM reported in previous literature (Zhou et al.,45

2021; Zeng et al., 2022), PD is somehow rarely applied in geotechnical problems compared with46

the other two. To the authors’ best knowledge, no attempt has been made so far to adopt the47

SBPD theory in stability or run-out analysis of slope under dynamic loading such as earthquake.48

Aside from numerical tools, accurate description of uncertainties is another crucial issue in slope49

stability analysis. One source of uncertainty arises from the soil heterogeneity. Natural soils are50

proven to exhibit spatial variability due to a range of factors, including geological sedimentation,51

weathering of natural soils, and chemical influences (Phoon and Kulhawy, 1999; Wang et al., 2021a;52

Li et al., 2023). Sedimentary processes within a given formation typically result in greater variation53

along vertical axis compared to horizontal axis (Zhang and Liu, 2020), which exerts a substantial54

influence on the stability and post-failure evolution behaviors. Due to technical limitations, the55

majority of prior investigations into soil heterogeneity have predominantly centered on small-strain56

analysis (e.g., Wang et al., 2020). Qu et al. (Qu et al., 2021) explored the impact of soil spatial57

variability on post-failure behavior based on MPM. However, current research has been limited in58

its exploration of large-deformation analysis based on PD. However, in large-deformation scenarios,59

adopting a uniform assumption for soil strength may result in non-conservative outcomes.60
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Besides, another source of uncertainty arises from the randomness of ground motions. As is61

well-known, the failure behavior of slopes is intimately linked to the ground motions. Currently,62

ground motions are primarily categorized into two types: non-pulse ground motions (NPGMs)63

and pulse-like ground motions (PLGMs). Near-fault PLGMs, known for their high amplitude64

and extended velocity record periods, have garnered significant attention since being reported by65

Housner and Hudson (Housner and Hudson, 1958). Numerous studies have delved into various66

aspects of this field, encompassing topics such as generation principles (Somerville et al., 1997),67

identification (Baker, 2007), simulation (Mavroeidis and Papageorgiou, 2003). However, the extent68

to which these two types of ground motions and the randomness of ground motions impact the69

landslide process remains unclear.70

This study aims to propose a computational method to analyze the entire process of slope run-71

out by utilizing the features of PD. Besides, a novel coupling procedure is proposed to integrate72

random fields with PD with the ability to evaluate the run-out distance of a wide range of soil73

strength with spatial variability. The impacts of two distinct sources of uncertainty on landslides74

are examined: ground motion types, specifically NPGMs and PLGMs, and soil heterogeneity. To75

explore the relationship between run-out distances and heterogeneous properties, various random76

samples with different coefficients of variation are explicitly discussed. As a result, the coefficients77

of variation have remarkable effects on run-out distance and soil heterogeneity cannot be neglected78

in assessing landslide risk. This study also sheds light on the impact of the interaction between79

two sources of uncertainty on the landslide process and provides guidelines on implementing a80

more accurate assessment of the potential uncertainties associated with landslides.81

2. Methodology82

2.1. Non-ordinary state-based peridynamics83

PD is a differential-integral and mesh-free approach based on the non-local averaging concept.84

It exhibits significant adaptability in handling discontinuity-related issues such as damage, cracks85

propagation, and fragments. PD contains two theories: BBPD and SBPD. Both theories offer86

different perspectives and modeling techniques. BBPD specifically focuses on the interactions and87

dynamics of bonds between material points. On the other hand, SBPD emphasizes the overall88

state and properties of the material points. One important trait of SBPD is its ability to establish89

correspondence models, which can link the particle states together with the classical continuum90
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theories. Due to our aims of simulating system macro-scale time-history behaviors, we propose a91

computational method to analyze the entire process of slope run-out by utilizing the features of92

NOSBPD.93

Unlike molecular dynamics and smoothed particle hydrodynamics, which utilize the updated94

Lagrangian approach, NOSBPD usually employs total Lagrangian approach in computing non-95

linear and failure behaviors of materialsBergel and Li (2016). This implies that the search of96

neighboring particles at each time step is not required in NOSBPD. According to the prevailing97

convention in continuum mechanics, under the assumption of Cartesian coordinates, variables98

containing subscripts 0 or capitalized subscripts (such as XI) are used to denote the quantities99

defined in reference (undeformed) configuration. Conversely, lowercase characters with lowercase100

subscripts (such as xi) are employed to represent quantities in a deformed configuration. Herein,101

all material mediums are assumed a non-local continuum. The schematic of NOSBPD is illus-102

trated in Figure 1. Taking material particle XA as an illustration, XA exhibits interactions with103

adjacent particles within a distance denoted as δ. The zones in interaction distance are called104

‘horizon’ (denoted as HXA in this study). XB represents the adjacent particles fall into HXA ,105

where B = 1, 2, 3, ..., na and ξAB = XB − XA is the bond vector. Note that the deformation106

state of the material particle is assessed through deformation state function Y⟨·⟩, which is a local107

quantity.108

The total free energy of XA is expressed as a non-local integration of neighbor bond vectors109

within HXA ,110

HXA

XA

δXB

ζAB
χA

χB

Y(ζAB)

Deformation

Y(∙)

Figure 1: Schematic of NOSBPD.

Φ(xA) =

∫
H

XA

ϕ(YA⟨ξAB⟩,YB⟨ξBA⟩)dV B (1)

where V B is the volume of particle B falls into HXA ; ϕ is the free energy per unit reference volume.111
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Based on the concept of bond, we can have ξAB = −ξBA.112

Based on the principle of virtual work, the free energy of the material particle XA can be113

expressed as,114 ∫
H

XA

ϕY A(YA⟨ξAB⟩,YB⟨ξBA⟩)δYA(ξAB)+

ϕYB(YA⟨ξAB⟩,YB⟨ξBA⟩)δYB⟨ξBA⟩dV B = 0

where ϕYA = ∂ϕ

∂YA =: TA and ϕYB = ∂ϕ

∂YB =: TB are Gâteaux derivative of the total free energy115

function for XA and XB.116

Also, one can easily obtain that the virtual displacements δYB⟨ξBA⟩ = −δYA⟨ξAB⟩. Then, a117

non-local integration could be utilized to represent the general variation form of linear momentum118

as follows,119

∫
H

XA

TA
[
YA⟨ξAB⟩,YB⟨ξBA⟩

]
−TB

[
YA(ξAB),YB⟨ξBA⟩

]
dV B = 0 (2)

where T = ϕYY(ξ) is named as force state by Silling et al. (2007). On the other hand, the first120

law of thermodynamics requires121

δϕ = P : δF (3)

where P is the first Piola-Kirchhoff (PK-I) stress and F is non-local deformation gradient. Com-122

bining Cauchy-Born rule (Ren and Li, 2012), the deformed bond can be expressed as,123

Y(ξ) = F · ξ (4)

The Cauchy-Born rule assumption establishes a connection between the non-local PD equation,124

denoted as Eq. 2, and the theory of local continuum mechanics. Evaluating F involves considering125

both the initial and changed horizons. According to previous studies regarding PD differential126

operator Madenci et al. (2016) and non-local differential operator Kan et al. (2021), the non-local127

deformation gradient can be computed by128

F = N · K−1 (5)
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where the square matrix N writes as129

N =
∑

B∈H
XA

ω(|ξ|)Y⟨ξ⟩ ⊗ ξV B (6)

and the invertible matrix K writes as130

K =
∑

B∈H
XA

ω(|ξ|)ξ ⊗ ξV B (7)

Assuming a sufficient number of particles exist within the horizon, the singularity of K and131

the ill-definition of F will not arise. The significance of Eq. 5 lies in its pivotal role in establishing132

the non-local deformation state at a specific material point. This equation can be used as an133

approximate deformation gradient in various constitutive relations to deduce stress measures,134

encompassing model.135

Once stress is computed using these constitutive relations, for instance, stress measure P, the136

connection between the force state T and stress measure P are straightforwardly deduced. Our137

subsequent focus will be on elucidating this connection through the lens of the principle of virtual138

work and we can derive the free energy density variation as,139

δΦ(xA) = P : δF = P :

∫
H

XA

ω(|ξ|)δY(ξ)⊗ ξ ·K−1dV =

∫
H

XA

T · δY(ξ)dV (8)

We can write it into discrete summation with indicial notations as140

∑
B∈H

XA

ω(|ξ|)PiJδYi(ξ)ξKK
−1
KJV

B =
∑

B∈H
XA

TiδYi(ξ)V
B (9)

Then, we can have stress measure and force state,141

T = ω(|ξ|)PK−1 · ξ, or (10)

Ti = ω(|ξ|)PiJξKK
−1
KJ (11)
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2.2. Bond-associated deformation gradient142

Zero-energy mode is a known problem in NOSBPD, which results from inaccurate approxi-143

mation of the deformation gradient at bond level (Breitzman and Dayal, 2018; Chen, 2018). A144

common solution is to add penalty terms when computing the peridynamics force state, see work145

done by Breitenfeld et al. (2014); Bobaru et al. (2016); Li et al. (2018); Tupek and Radovitzky146

(2014); Yaghoobi and Chorzepa (2017). However, the choice of penalty terms and their magni-147

tudes usually depends on researchers’ experience and trial-and-error process. Chen and Hu (2023)148

proposed a novel method to compute the bond-associated deformation gradient. The core idea of149

the method is to apply a biased weight function instead of traditional step kernel, Gaussian kernel150

or polynomial kernel in Eq. 6 and Eq. 7. The biased weight function for bond ξ is defined as151

ωξ(ξ, ξ
′) = exp

(
−m1

||ξ′| − |ξ||
ξ

)(
1

2
+

1

2
cos(ξ̂ξ′)

)m2

(12)

where ξ′ is a bond between the center particle and its arbitrary neighboring particle; the symbol152

·̂ indicates the angle between two bonds; the symbol | · | refers to the Euclidean norm; and m1,m2153

are two controlling parameters, which are adopted as m1 = 3,m2 = 3 respectively. Consequently,154

Eq. (5), Eq. (6) and Eq. (7) should be rephrased as155

Fξ = Nξ · Kξ
−1 (13)

Nξ =
∑

B∈H
XA

ωξ(ξ, ξ
′)Y⟨ξ⟩ ⊗ ξV B (14)

Kξ =
∑

B∈H
XA

ωξ(ξ, ξ
′)ξ ⊗ ξV B (15)

It has been demonstrated that this method can measure the deformation gradient at bond level156

accurately. Therefore, the zero-energy problem in NOSBPD does not exist anymore.157

2.3. Failure criteria158

This paper uses two criteria to evaluate failure: bond failure and particle failure. Bond failure159

occurs when the length of the deformed bond surpasses a critical threshold. The deformation of160

bond is measured by a scalar quantity that is defined as161

s :=
|Y(ξ)| − |ξ|

|ξ|
(16)
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The certain threshold, which is usually referred to as ‘critical bond stretch’ is given by Bobaru162

et al. (2016) as:163

s0 :=



√
5Gc

9κδ
, 3D case√

πGc

3κ′δ
, 2D case√

3Gc

Eδ
, 1D case

(17)

where Gc is the energy release rate of materials; δ is the radius of the peridynamics horizon;164

κ := E/(3(1−2ν)) refers to the bulk modulus for three dimensional problem; κ′ = E/(2(1−ν)) is165

the bulk modulus for plane stress problem while κ′ = E/(2(1−ν−2ν2)) for plane strain problem;166

and E is the Young’s modulus of the material. Once s ≥ s0 is satisfied, the bond will be broken167

and the interactive forces will no longer be calculated.168

To improve the numerical stability, the particle failure criterion is used along with bond failure169

criterion. Before computing the nonlocal deformation gradient, the Kξ matrix given in Eq.15170

should be verified for its invertibility. The Kξ matrix is derived from the unbroken bonds within171

the horizon of each particle. If the matrix is singular, it implies that the particles have very few172

intact bonds left and this particle should be considered as a failed particle with zero force state. If173

Kξ is invertible, then the determinant of Fξ shall be checked. It is known that det(Fξ) corresponds174

to the change of volume of the particle, and a negative value indicates the particle has a negative175

volume, which is physically impossible. In this sense, if det(Fξ) < 0, then the particle should also176

be marked as failed and excluded from force computation process.177

2.4. Drucker-Prager plastic model178

The NOSBPD has the merit of integrating the constitutive models to assess the effective179

stresses. It is well-known that soil material is highly intricate and complex so the response of180

soil behavior under seismic loading exhibits highly nonlinear characteristics. Nowadays, Drucker-181

Prager (DP) plastic model has been widely utilized in simulating the nonlinear characteristics of182

soils in geotechnical fields (Fan et al., 2016, 2021; Lai et al., 2015). Therefore, we incorporated183

DP plastic model into NOSBPD in order to establish the yield surface of the soil and the general184

DP yield function can be written as,185
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f = ∥s∥ − (Aφc

′ −Bφp
′
) ≤ 0

Aφ = 2
√
6cosφ

′

3+βsinφ′

Bφ = 2
√
6sinφ

′

3+βcosφ′ ,−1 ≤ β ≤ 1

(18)

where s denotes deviatoric stress tensor; p′ is mean hydrostatic pressure; c′ denotes effective186

cohesion; φ′ is effective friction angle. Specifically, the DP model is close to triaxial extension187

(TE) corner of Mohr-Coulomb (MC) yield surface if β = 1; and that close to triaxial compression188

(TC) corner if β = −1. Then, the non-associative plastic potential function is expressed as,189


g = ∥s∥ − (Aϕc

′ −Bϕp
′
)

Aϕ = 2
√
6cosϕ

′

3+βsinϕ′

Bϕ = 2
√
6sinϕ

′

3+βcosϕ
′ ,−1 ≤ β ≤ 1

(19)

where ϕ′ is effective dilation angle.190

The Helmholtz free energy function ρsΦ per unit deformed soil skeleton volume consists of the191

elastic component and plastic component as,192

ρsΦ(ϵ
e, ζ) =

1

2
ϵe : De : ϵe +

1

2
ζ ·H · ζ (20)

where ϵe denotes elastic strain tensor; De is elastic modulus tensor; H denotes hardening or193

softening modulus matrix and ζ is a parameter related to internal state variables.194

Based on Eq. 20, we can have the expressions of stress and internal state variable as,195

σ̇
′
=
∂(ρsΦ)

∂ζ̇
= De : ϵ̇e = De : (ϵ̇− ϵ̇p) (21)

q̇ζ =
∂ρsΦ

∂ζ̇
= H · ζ̇ (22)

where q̇ζ = {c′, φ′, ϕ′}T , is a stress-like internal state variable. Besides, the hardening or softening196

modulus matrix can be calculated as,197

10



H =


Hc 0 0

0 Hφ 0

0 0 HΦ

 (23)

where Hc, Hφ, HΦ are hardening or softening moduli. Based on the non-associative plastic poten-198

tial function, we can have199

ϵ̇p = γ̇
∂g

∂σ′ = γ̇(
∂ ∥s∥
∂σ′ +BΦ ∂p

′

∂σ′ ) = γ̇(n̂+
1

3
BΦΠ) (24)

where n̂ denotes the normal vector for s. Here, s is the deviatoric stress and we can have that200

n̂ = s
∥s∥ . Π denotes the second-order identity tensor. Also, the evolution of the stress-like internal201

state variable q̇ is written as,202

q̇ζ = H · ζ̇ = γ̇H · h(σ,qζ). (25)

From the principle of maximum plastic dissipation, the hardening function h can be derived203

as,204

h = − ∂f

∂qζ
(26)

due to205

∂f

∂ϕ′ = 0, (27)

and we also have206

hϕ = − ∂g

∂ϕ′ , (28)

Based on Eqs. 26 - 28, we can rewrite the hardening function h as,207

h =


Aφ

∂Aφ

∂φ′ c
′ − ∂Bφ

∂φ′ p
′

∂AΦ

∂Φ′ c
′ − ∂BΦ

∂Φ′ p
′

 (29)

The plastic multiplier γ̇ is calculated by208

γ̇ =
1

χ

∂f

∂σ′ : D
e : ϵ̇, (30)
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and209

χ =
∂f

∂σ′ : D
e :

∂g

∂σ′ −
∂f

∂qζ
: H · h. (31)

Eqs. 21, 22, 30 and 31 are the equations to update and calculate the increments of nonlinear210

elastoplastic DP constitutive relationship. To solve the system of equations, one way is to utilize211

Newton–Raphson method. More details on Newton–Raphson method can be found in references212

(Ypma, 1995; Akram and Ann, 2015).213

σ
′,tr
n+1 = σ

′

n +De : ∆ϵ (32)

f tr
n+1 =

∥∥str∥∥− (Aφnc′n −Bφn(p′)trn+1 (33)

where f tr
n+1 is an index to determine if the material has entered the yielding stage; when f tr

n+1 < 0,214

the material is still in the elastic phase. Then we can have σ
′
n+1 = σ

′,tr
n+1; q

ζ
n+1 = qζ

n. When215

f tr
n+1 ≥ 0, the material enters the plastic phase and we can obtain the expressions of ∆γ, σ′

n+1216

and qζ
n+1 as,217

∆γ =
f tr
n+1

2µ+KBφBΦ +Hc (Aφ)2
(34)

σ′
n+1 = σ

′,tr
n+1 −∆γ(KBΦΠ+ 2µn̂n+1) (35)

qζ
n+1 = qζ

n +∆γH · h(σ, qζ) (36)

Combining with Hughes-Winget algorithm, we can obtain a nonlinear formula that could218

break free from the constraints of small deformation assumptions, which is the foundation of219

large-deformation analysis. More details and applications of Hughes-Winget algorithm can be220

found in references (Liu et al., 2022b; Staubach et al., 2023).221

xn+α = (1− α)xn + α∆u (37)

Equation 5 represents the PD expression for the first derivative of x in reference configuration222

X. Also, the deformation gradient in the current configuration xn+α should be written into,223
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Fn+α =
∂xn+α

∂X
= (

∑
B∈H

XA

ω(|ξ|)(xB
n+α − xA

n+α)⊗ ξ ·K−1 (38)

Also, the gradient ∆u in X is expressed as,224

C =
∂(∆u)

∂X
= (

∑
B∈H

XA

ω(|ξ|)(∆uB −∆uA)⊗ ξ) ·K−1 (39)

Then, following the chain rule, ∆u in xn+α is written as,225

G =
∂(∆u)

∂xn+α

= C · F−1
n+α (40)

where G is deformation gradient increment which is consisted with strain γ and rotation ω226

increments,227

γ =
1

2
(G + GT ) (41)

ω =
1

2
(G − GT ) (42)

The objective effective stress increment is expressed by,228

∆σ′ = De : γ (43)

Then, we can derive the constitutive update Equation 32 into,229

σ′
n+1 = σ̂′

n +∆σ′ (44)

σ̂′
n = RT · σ′

n ·R (45)

R = Π+ (Π− αω)−1 · ω (46)

2.5. Validation of NOSBPD algorithm230

To validate the NOSBPD algorithm, two typical cases are selected to perform. The first231

validation case is to simulate the failure process of a soil slope under gravity and with homogeneous232
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soil. The slope has a horizontal base length of 45 meters, a height of 15 meters, and a crest length233

of 12 meters. The left and right boundaries are characterized by free-roller boundary conditions,234

whereas the bottom exhibits complete fixity. The soil mechanical parameters are listed in Table235

1. For more details regarding the modelling information about the slope, readers are referred to236

Bui et al. (2011).237

Figure 2 depicts the contour of slip surface for validation case by NOSBPD (white band),238

compared with the results obtained by SPH method (red dashed line) (Bui et al., 2011) and also239

limit equilibrium critical slip surface (solid line). It can be found that the critical slip surface240

obtained by NOSBP is close enough to the one determined by limit equilibrium analysis, which241

demonstrates the effectiveness and reliability of NOSBPD. Furthermore, NOSBPD results fall242

within a similar range to those obtained through SPH calculations, further confirming the efficacy243

of the NOSBPD algorithm in simulating slip surfaces. It should be noted that the NOSBPD244

can provide a narrower, more distinct prediction of the slip surface when compared with the245

results obtained from finite element analysis. In conclusion, the first case study demonstrates the246

capability of NOSBPD in capturing the critical sliding surface of a soil slope under gravitational247

loading.248

Table 1: Soil mechanical parameters of validation case.

Mechanical parameter Symbol Unit Value

Young’s modulus E MPa 100
Density ρ g/cm3 2
Poisson’s ratio µ - 0.3
Friction angle φ (◦) 20
Dilatancy angle ψ (◦) 9
Cohesion c kPa 10
Slope height H m 10
Slope angle α (◦) 26.6

To further validate our NOSBPD algorithm, the second validation case is a large-deformation249

collapse process of a sand column after releasing the right boundary. As depicted in Figure 3,250

the sand column has dimensions of 50 mm × 50 mm. Validation simulation is based on the251

physical experiment data by Shi et al. (2018), while they also conducted numerical simulations252

by MPM method. In the current parameter selection, we have maintained consistency with253

their parameters, with cohesion set to 0 kPa and the friction angle set at 35◦. The density of254

soil is 1,450 kg/m³, Poisson’s ratio is 0.31, and Young’s modulus is 2.6 MPa. The simulation255
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Figure 2: Validation case. (a) Schematic of geometry and boundary conditions. (b) Contour of slip surface by
NOSBPD (white band), compared with the results obtained by SPH method (red dashed line) and also limit
equilibrium critical slip surface (solid line).

boundaries are set the same as in Shi et al.’s study. In PD, dealing with contact is a complex task256

Mohajerani and Wang (2022). However, by using the approach outlined by Huang et al. (2020),257

we can simplify the interaction between particles and ground by treating it as particle-to-rigid258

body contact type. This means the displacements and velocities of particles in z direction will259

be adjusted if their z-coordinates are negative. The self-contact problem between particles is260

neglected in this study though, as it is not considered a significant factor in slope run-out problem261

and this way computational efficiency can be improved greatly.262

The deformation profile of sand column after releasing the right boundary at t = 40 ms, t = 80263

and t = 320 ms is depicted in Figure 4, including the results from NOSPBD (this study), physical264

experiment (dashed line), and MPM (Shi et al., 2018). After releasing the right boundary, the265

deformation profile of sand column at t = 40 ms, t = 80 ms and t = 320 ms is depicted in Figure266

4, including the results from NOSPBD (this study), physical experiment (dashed line), and MPM267

(Shi et al., 2018). It can be observed that the current NOSPBD algorithm successfully simulates268

the collapse process of the sand column, and the deformation profile obtained by NOSBPD closely269

resembles that of the physical experiment, outperforming the MPM simulation results. This270

indicates that the current NOSBPD algorithm exhibits reliable performance.271

2.6. NOSBPD modeling of landslides272

In this study, we aim at demonstrating the capability of the proposed computational method273

in simulating landslide problems. The geometry as well as boundary conditions of the model is274

depicted in Figure 5. The constructed slope model has dimensions of 60 meters in length, 10275

meters in height, and a slope angle of 26.6 degrees with a total of 2047 material points. The side276

boundaries are characterized by normal restrictions, while the bottom boundary is fully fixed.277

The model adopts free boundaries for the other conditions. The entire slope model is subjected278

15



5
0

 m
m

50 mm

Parameters of sand collapse

c = 0 kPa

φ =35°
Material points: 10202

Figure 3: Geometry and modeling details of validation case.
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Figure 4: Deformation contour for validation case by NOSBPD (solid line), compared with the results obtained by
MPM method (dot-dash line) and also physical experiment (dashed line) at (a) t = 40 ms; (b) t = 80 ms; (c) t =
320 ms and physical experiment results by Shi et al. (2018) at (d) t = 40 ms; (e) t = 80 ms; (f) t = 320 ms.

to earthquake loading, which is exerted as body forces in the direction of x-axis. The boundary279

settings are consistent with the landslide large-deformation simulation studies conducted by Liu280

et al. (2022c) and Ren et al. (2023). More details about the mechanical parameters of soils are281

listed in Table 2. In this deterministic analysis and the following random field analysis, all the282

mechanical properties of soil except the soil cohesive strength are set uniformly all across the283

domain. In dynamic analysis, the determination of the minimum time step is crucial for the entire284

computation process. Smaller time steps enhance computational precision and contribute to the285

convergence of the model’s calculations. In this study, the minimum time step is determined286

following the Courant–Friedrichs–Levy condition (Bui et al., 2008), set at 1.2 × 10−3 seconds,287

and the output data is extracted every 500 steps. In the current research, our model operates288

in a two-dimensional (2D) context. This is the first step that facilitates a 2D analysis as a basic289
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solution, solving the key utilization of the novel method. It is imperative to highlight that our290

future research endeavors will encompass the extension of this methodology to 3D analysis.291

1
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m
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x

Free boundary
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Boundary conditions:

• Bottom: Fixed

• Side: Normal 

restrictions

• Top: Free

Material points:

• Number: 2047

Modelling details:

• Slope angle: 26.6°
• H = 10 m

Figure 5: Geometry and boundary conditions of analyzed soil slope model.

Table 2: Soil mechanical parameters and modeling information.

Mechanical parameter Symbol Unit Value

a. Deterministic analysis
Density ρ g/cm3 2.5
Young’s modulus E MPa 30
Poisson’s ratio µ - 0.25
Dilation angle ψ ◦ 0
Friction angle φ (°) 15
Cohesion c kPa 5
Slope height H m 10
Slope angle α ◦ 26.6
Input peak ground acceleration PGA g 0.2g; 0.3g; 0.4g; 0.5g

b. Statistical properties of lognormal random field for c of heterogeneous soils
Mean average of cohesion ca kPa 5
Coefficient of variation CoVRF - 0.2; 0.5
Horizontal correlation length Θx m 20
Vertical correlation length Θy m 4

2.7. Input ground motions292

In order to ensure that the input ground motions exhibit a pulse-like velocity profile and adhere293

to the specified seismic criteria, the artificial ground motion simulation process diligently regulates294

both time-domain and frequency-domain characteristics for pulse-like ground motions (PLGMs).295

This regulation is achieved through the application of amplitude modulation functions and the296

alignment with target spectra (Chen et al., 2023). Consequently, it is plausible that the associated297

uncertainty in these simulations is underestimated when compared to natural seismic records.298
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To further investigate the influence of near-fault PLGMs on landslides, PLGM records and299

NPGM records from the PEER NGA-West2 database based on earthquake magnitude and prox-300

imity criteria were selected. The specific selection criteria for recorded PLGMs are as follows: the301

moment magnitude greater than 6 Mw, a rupture distance less than 20 km, and a peak ground302

velocity (PGV) exceeding 80 cm/s. We have identified a total of thirty PLGMs meeting these303

stringent criteria. In alignment, we have selected thirty NPGMs with comparable magnitudes and304

rupture distances. Horizontal seismic excitations have been considered for these selections. The305

detailed list of the chosen ground motions is presented in Table 3, with comprehensive insights306

into the ground motion selection process available in the work by Mo et al. (2022).307

Table 3: PLGMs and NPGMs from PEER NGA-West2

No. RSN (P) RSN (NP) No. RSN (P) RSN (NP) No. RSN (P) RSN (NP)

1 171 160 11 1084 949 21 4847 5262
2 180 162 12 1085 1048 22 6906 5656
3 181 165 13 1120 1513 23 6911 8063
4 182 284 14 1244 1521 24 6927 8118
5 723 727 15 1492 1535 25 6962 8157
6 828 728 16 1503 1549 26 1119 1495
7 879 741 17 1510 1787 27 1505 1611
8 1044 753 18 2114 4457 28 1529 4013
9 1045 765 19 3548 4865 29 8119 8165
10 1063 848 20 4040 4886 30 8123 8166

Note: RSN denotes record sequence number; RSN (P) and RSN (NP) represent the RSN code of
PLGMs and NPGMs from PEER NGA-West2 flatfile, respectively.

2.8. Simulation of heterogeneous soils308

The characteristic strength of soil can be described by cohesion parameter c. Briefly, the309

spatial variability of soil has been verified through field investigations and laboratory tests (Wang310

et al., 2021c). The log-normal distributed random field of cohesion is commonly adopted to depict311

the spatial variability of soil as many scholars did (see Ouyang et al., 2021; Wang et al., 2021b).312

Hence, the log-normal distributed cohesion random field is generated by modified linear estimation313

method (MLE) (Liu et al., 2014) in the current study. To begin with, a spatially continuous and314

stationary Gaussian random field is generated following the steps provided by the MLE method.315

That is, we generate a stationary G(x, y) with squared exponential autocorrelation function ρ(x, y)316
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as,317

ρ(x, y) = exp

{
−π(∆x

Θx

)2 − π(
∆y

Θy

)2
}

(47)

where Θx and Θy are the scales of fluctuation along x-, y-directions; ∆x and ∆y represent the318

difference in absolute distance between two points along x− and y−directions. Then, exponential319

transformation is conducted to transfer the generated Gaussian random field into log-normal ran-320

dom field. Due to the computation approach adopted in this study, we simplify our consideration321

by neglecting the anisotropy of every single material point and directly assigning the generated322

random field values to every material point. The specific parameters of the generated cohesive323

strength random field are presented in Table 2. In this context, our study considers a mean value324

of 5 kPa for cohesion (cmean, with two distinct cases for coefficient of variation (CoV), denoted as325

0.2 and 0.5. Conversely, in the case of homogeneous soil, a fixed value of 5 kPa for cohesion is326

employed for deterministic analysis.327

3. Results and discussions328

3.1. Entire process of landslides with homogeneous soils329

Figure 6 illustrates the entire process from the initiation to the failure of horizontal run-out330

distance of landslide in homogeneous soils subjected to a typical ground motion NPGM RSN331

162 with PGA = 0.3g. The velocity (v), acceleration (a), 5% damped spectral acceleration (Sa)332

and Fourier spectrum (Ef ) of typical NPGM RSN 162 are illustrated in Figure 7. Note that the333

simulations were carried out with a two-step process. The geostress equilibrium was established334

first, followed by the application of seismic loads. In the presented results, it can be observed that335

the run-out will happen at the foot of the slope accompanied with subsidence at the top of the336

slope simultaneously when subjected to seismic loading. With the earthquake going on, the extent337

of both subsidence at the slope’s top and the displacement of soil particles at its foot progressively338

intensify.339

Figure 6 (a) shows the change of horizontal displacement during the entire process of landslide.340

When t = 6s, under the influence of a significant seismic load, the initiation of the sliding surface341

on the slope has begun. By t = 10s, still subjected to a substantial seismic load, the sliding surface342

on the slope has further expanded, and the horizontal run-out distance continues to increase. As343

we reach t = 20s, the seismic load has reduced to extremely low amplitudes, essentially coming to344

a halt. At this point, the horizontal run-out distance is now twice that of the sixth second, and345
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the slope continues to slide under the effect of inertia forces. Nevertheless, the rate of horizontal346

run-out distance increase decelerates as a result of the soil’s shear resistance. At t = 38s, the347

seismic load has ceased entirely, and the calculations have finally converged. It is important to348

acknowledge that the run-out distances of this research may differ from those of other researchers,349

such as Feng et al. (2021). These discrepancies can be attributed to the variations of of soil350

properties and ground motion types.351

In addition, NOSBPD offers a significant advantage in the present study due to its capacity352

to effectively address substantial deformations and the post-failure behavior of soil. As depicted353

in Figure 6 (b), the final slope configuration following collapse is illustrated. Notably, NOSBPD354

excels in simulating the extensively discontinuous failures along potential slip surfaces within355

the soil, a task that proves challenging for FEM. In the simulation by NOSBPD, the observed356

failure pattern in the slope corresponds to a ‘toe failure’ pattern. In contrast to the extensive357

sliding surface obtained by FEM, the sliding surface is clearly visible by NOSBPD, which yields358

a narrower and more localized shear band. Another intriguing observation lies in the realm of359

NOSBPD, where we can discern that particles, subjected to seismic loading, accumulate at the360

base of the slope due to being expelled under pressure, resulting in a ‘pile-up’ effect.361

Moreover, in this study, the influence of the magnitude of PGA values on the horizontal362

run-out distance of the slope under a single input ground motion is also investigated. Figure 8363

illustrated the final termination horizontal run-out displacement and plastic strain contours under364

various values of input ground motion PGA including 0.2g, 0.3g, 0.4g and 0.5g. By comparing the365

horizontal run-out distances at different PGA values, it can be observed that prior to reaching366

0.4g in loading, the run-out distance exhibits a roughly linear increase, while after reaching 0.4g,367

the rate of increase decreases slightly. The decrease in the rate of increase is likely due to the368

pronounced nonlinearity of the soil. Under seismic loading with higher PGA values, it is possible369

that the pile-up effect at the base of the slope could lead to a more substantial increase in the370

horizontal run-out distance, creating an impediment.371

Note that all computations were performed on a computer equipped with an Intel(R) Core(TM)372

i7-9700 CPU running at 3.00 GHz. The computational process for a single run required approx-373

imately 15 minutes. Computers boasting higher performance specifications are anticipated to374

yield even shorter computation time. Despite our relatively modest computer setup, it is worth375

emphasizing that our computation time is still considerably shorter in comparison to the use of376
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Eulerian-Lagrangian finite element methods (on a high-end computer configuration), as cited in377

Chen et al.’s report (Chen et al., 2021). Also, to enhance computational speed and efficiency, the378

inclusion of CPU parallelization may be considered in the upcoming phases of this work.379
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Figure 6: Horizontal run-out distance and plastic strain contours of landslide from initiation to termination within
homogeneous soil under NPGM RSN 162 with PGA = 0.3g. (a) Horizontal run-out displacement contours; (b)
plastic strain contours.
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Figure 7: Velocity (v), acceleration (a), 5% damped spectral acceleration (Sa) and Fourier spectrum (Ef ) of typical
NPGM RSN 162.

3.2. Effects of ground motions380

The ground motions play a pivotal role in the entire landslide process. However, previous381

studies on large deformations have generally overlooked the investigation of ground motion types382
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Figure 8: Final termination horizontal run-out displacement and plastic strain contours with various values of
input ground motion PGA. (a) Horizontal run-out displacement contours; (b) plastic strain contours.

(e.g., Liu et al., 2022c). In fact, in the majority of existing research, ground motions are solely383

represented by PGA. Therefore, based on the NOSBPD algorithm, we aim to compare the destruc-384

tive effects of two types of input ground motions, namely, NPGMs and PLGMs, on landslides. As385

described in Section 2.7, we utilize recorded ground motions to avoid underestimating the associ-386

ated uncertainties resulting from the use of artificial ground motions (the artificial ground motion387

simulations rigorously adjust the time-domain and frequency-domain characteristics of PLGMs,388

which may lead to a certain degree of neglect of relevant uncertainties during the amplitude mod-389

ulation process). The statistical results for the calculation of the final horizontal run-out distance390

in homogeneous soil for both types of input ground motions, with 30 instances each, are depicted391

in Figure 9 (a). It is evident from the boxplot that under PLGM loading, both the overall and392

mean values of the final horizontal run-out distance are greater than the results obtained with393

NPGM, approximately 1.2 times higher. That is, compared to NPGM, PLGM is found to induce394

more severe landslides. Figure 9 (b) illustrates the scatter of horizontal run-out distance values395

induced by two types of input ground motions. It is evident from the scatter that both NPGM-396

induced and PLGM-induced results exhibit a similar range in the magnitudes of their maximum397

and minimum horizontal sliding distances. NPGM-induced results fluctuate within a relatively398

smaller overall numerical range, while PLGM-induced results display higher numerical values over-399

all. The maximum values are attributed to PLGM-induced events, whereas the minimum values400

are linked to NPGM-induced events. Moreover, in terms of data dispersion, NPGM-induced data401
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exhibits a greater degree of variability when compared to the data associated with PLGMs. This402

suggests that PLGM-induced landslides not only have larger run-out distances but also a more403

concentrated distribution, implying a higher probability of PLGM-induced landslide occurrences.404
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Figure 9: Boxplot and scatter of horizontal run-out displacement (Unit: m) in homogeneous soils subjected to
NPGMs and PLGMs.

3.3. Effects of soil heterogeneity405

To control the variables involved, typical input ground motion RSN 162, as shown in Figure 7,406

were utilized as seismic loads in this section. A total of 100 random fields were generated through407

the MLE method for Monte Carlo simulations. Furthermore, in order to investigate the degree of408

soil heterogeneity, this section primarily focuses on two scenarios of random field parameters with409

CoVRF values set at 0.2 and 0.5, allowing for a comparative analysis.410

Figure 10 displays a representative sample generated using the random field parameters from411

Table 2, with a CoVRF of 0.2. The diagram illustrates the interconnection of three clouds with412

relatively low cohesion (Figure 10 (a)). Following the application of seismic loading, this specific413

area exhibits diminished shear resistance, ultimately resulting in the formation of a sliding plane414

(see Figure 10 (b)). This is also the reason why the final horizontal run-out distance obtained from415

this random sample is greater than the horizontal run-out distance of uniform soil. The latter416

overlooks the contribution of the weaker soil layers resulting from soil heterogeneity in facilitating417

the formation of the slope sliding surface.418

Figure 11 provides a more detailed entire process simulation of the landslide occurring in419

this random sample. The entire process of a slope landslide with heterogeneous soils, analogous420
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Figure 10: Typical realization of cohesion random field. (a) Initial state; (b) final state.

to deterministic analysis of landslide processes, follows a similar pattern. Initially, there is a421

formation of depression at the slope, followed by an overflow of soil particles at the toe of the422

slope. Under the sustained loading of seismic loads, the slope progressively diminishes its shear423

strength, culminating in a landslide event. What sets it apart from deterministic analysis is that,424

in terms of run-out distance, the homogeneous slope exhibits a run-out distance of 1.79 meters425

at the 6-th second (see Figure 6), as opposed to the 2.46 meters observed in the inhomogeneous426

soil slope, representing a 1.4-fold increase. This is under conditions with a CoVRF of 0.2. By427

the 10th second, the heterogeneous slope has already slid approximately 3.6 meters, approaching428

the run-out distance observed in the homogeneous slope after 20 seconds of loading. That is, the429

heterogeneity of soil distributed within the typical random sample accelerates the slope landslide430

process.431

Figure 12 presents statistical data results for the horizontal run-out distance from Monte Carlo432

simulations. To illustrate the convergence of the Monte Carlo simulation results as the number433

of simulations increases, the convergence processes for two cases are depicted in Figure 13. It434

is evident that for a random field parameter with a CoVRF of 0.2, the average run-out distance435

when considering soil heterogeneity is 4.00 m, whereas the run-out distance for homogeneous soil436

is 3.90 m. For a random field parameter with a CoVRF of 0.5, the average horizontal run-out437

distance when considering soil heterogeneity is 4.35 m, representing a 12% increase compared438

to deterministic analysis. That is, neglecting the spatial variability of the soil can lead to an439

underestimation of the landslide run-out distance.440
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Figure 11: Typical landslide process within heterogeneous soils following distribution in Figure 10. (a) Horizontal
run-out distance contours; (b) plastic strain contours.

Table 4: Statistical results accounting for multiple sources of uncertainty

Scenario Trigger CoV Value

Considering input ground motion types
NPGMs 0.24
PLGMs 0.20

Considering soil heterogeneity
CoVRF = 0.2 0.11
CoVRF = 0.5 0.22

To clarify, the simulation results for two different sets of random field parameters show that441

when CoVRF is 0.2, the simulation data has a CoV of 0.11, whereas when CoVRF is 0.5, the442

simulation data has a CoV of 0.22. This means that an increase in the degree of soil spatial443

variability leads to a significantly higher level of variability in the landslide run-out distance data,444

approximately doubling it. Moreover, when considering the influence of two types of ground445

motions (Section 3.2), the resulting data has a CoV of 0.24 for NPGMs (i.e., CoVNP = 0.24) and446

has a CoV of 0.20 for PLGMs (i.e., CoVP = 0.20), two values very close to the CoV obtained447

when the random field parameter CoVRF is set to 0.5, as listed in Table 4. This implies that in448

this scenario, the impact of soil spatial variability and the type of input ground motion on the449

landslide process is quite comparable. Therefore, both soil spatial variability and the type of input450

ground motion play crucial roles in landslide process.451

3.4. Coupling effects of ground motion and soil heterogeneity452

In this section, to investigate the coupling effects of ground motion and soil heterogeneity and453

to ensure the representativeness of data, spatially variable samples with CoVRF = 0.5 have been454
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(a) (b)

Figure 12: Histogram and scatter of horizontal run-out displacement (Unit: m) subjected to NPGM RSN 162 in
heterogeneous soil with random field parameter (a) CoVRF = 0.2; (b) CoVRF = 0.5.
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Figure 13: Convergence plot as Monte Carlo iterations increase.

chosen that closely approximate the mean values of Monte Carlo simulations. This selection is455

based on the results obtained in Section 3.4. Also, based on the results illustrated in Section 3.2,456

which indicated a higher level of variability in NPGMs. Hence, NPGM type of ground motion457

has been selected as the input ground motion. The top 25 NPGMs (as presented in Table 3)458

were chosen for analysis. The objective here is to examine whether ground motion randomness459

amplifies this level of variability for soil heterogeneity.460

One hundred Monte Carlo simulations were performed, and the resulting run-out distances461

are illustrated in Figure 14 (a). The scatter indicates that both mean value and CoV value462

have increased. The mean value of run-out distances is 4.90 m, representing an increase of 8.4%463
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when compared to the computed results for homogeneous soil (Mean value = 4.49 m). Also, the464

scatter reveals that the dispersion of the obtained run-out distance values (CoV = 0.25) exhibits a465

slight increase when compared to the results in homogeneous soil (CoV = 0.24, see Figure 9 (b)).466

This difference is relatively minor which attributed to the deliberate control of soil uncertainty.467

Nonetheless, in Figure 14 (b), it is still evident that the spatial variability of the soil under different468

seismic waves is amplified to varying degrees, particularly for RSN 949, RSN 1535, and RSN 5262.469

Notably, the CoV value for RSN 1535 reaches 0.135. In other words, different ground motions470

lead to varying degrees of amplification in the spatial variability of the soil, resulting in increased471

variability compared to considering uncertainty from a single source alone. The mechanism behind472

the amplification of soil spatial variability by ground motion will be a part of future research. This473

underscores the necessity of considering the coupling effect of these two sources of uncertainty in474

earthquake-induced landslide risk assessment.475

(a) (b)

Figure 14: Coupling effects of ground motion and soil heterogeneity. (a) Scatter of Monte Carlo simulations; (b)
histogram of CoV value of each NPGMs on random samples.

4. Conclusions476

In this study, we proposed a computational method to analyze the entire process of slope477

run-out by utilizing the features of PD. Moreover, we performed NOSBPD modelling on large-478

deformation landslide processes in random soils subjected to stochastic ground motions. Para-479

metric studies were conducted to explore the impacts of spatial variability of soils, input ground480

motions types, and coupling effects on entire process and failure mechanism of earthquake-induced481

landslides. The conclusions can be summarized as follows.482
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(1) The effectiveness of modeling large-deformation landslide processes based proposed compu-483

tational method was investigated by numerical case studies. The results have indicated that PD is484

a promising and reliable method for simulating large-deformation phenomena. In comparison to485

mesh-based methods, PD offers the capability to simulate discontinuous soil failure, capturing the486

entire process of slope landslides while providing a more localized representation of shear bands.487

(2) Moreover, we introduced random field theory into PD and proposed a coupling procedure.488

By doing so, the varying degrees of heterogeneous spatial variability in soil strength and its489

effects on landslide behavior were investigated. For a random field parameter with a coefficient490

of variation of 0.5, the average horizontal run-out distance, when considering soil heterogeneity,491

was found to be 4.35 meters. This represents a 12% increase compared to homogeneous soil492

analyses, highlighting the importance of accounting for spatial variability in soil properties to493

avoid underestimating landslide run-out distances.494

(3) Recognizing the significant impact of input ground motions on landslides, this study de-495

liberately examined the influence of two distinct types of seismic motions, namely NPGMs and496

PLGMs, on the landslide process. The findings suggest that landslides under PLGMs not only ex-497

hibit statistically larger run-out distances but also smaller variation, implying a higher likelihood498

of landslides under PLGMs.499

(4) The extent to which the individual and coupling effects of ground motion types and spatial500

variability affect earthquake-induced landslides was explored. The results indicate that both un-501

certainty sources exert significant influences on landslide behavior. Neglecting the uncertainties502

stemming from both sources can lead to an underestimation of the landslide run-out risk. Fur-503

thermore, the necessity of considering the coupling effect of these two sources of uncertainty in504

earthquake-induced landslide risk assessment.505
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Appendix. Convergence analysis on material point number511

The number of material points can have a certain range of impact on computational results;512

however, a larger number of material points concurrently escalates computational costs. In order to513

rigorously examine this influence, we conducted a convergence analysis on material point number514

to demonstrate that the adopted quantity of material points in this study is sufficient to attain515

convergent results. Here, we employed five different ratios of area to the number of material points516

(e) for simulation, namely 20%, 24%, 40%, 55%, and 100%. They correspond to material point517

numbers (β) of 2369, 2047, 1201, 925, respectively.518

In Figure 15, as the ratio e decreases from 100% to 20%, corresponding to an increase in β from519

925 to 2369, the horizontal run-out displacement (L) gradually increases, ultimately converging to520

3.5 m. Figure 16 depicts distributions of plastic strain for the five different e ratios. It is observed521

that the thickness of the shear band decreases with an increase in the number of material points522

and remains nearly constant after the e ratio drops to 24%. Between e ratios of 24% and 20%,523

there is no significant difference in horizontal run-out displacement and shear band thickness.524

Therefore, the adopted number of material points in this study is sufficient to achieve convergent525

results.526
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Figure 15: Convergence analysis on material point number β for horizontal run-out displacement L.
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