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Abstract: This paper presents a two-step algorithm for online trajectory planning in indoor
environments with unknown obstacles. In the first step, sampling-based path planning tech-
niques such as the optimal Rapidly exploring Random Tree (RRT*) algorithm and the Line-
of-Sight (LOS) algorithm are employed to generate a collision-free path consisting of multiple
waypoints. Then, in the second step, constrained quadratic programming is utilized to compute
a smooth trajectory that passes through all computed waypoints. The main contribution of
this work is the development of a flexible trajectory planning framework that can detect
changes in the environment, such as new obstacles, and compute alternative trajectories in real
time. The proposed algorithm actively considers all changes in the environment and performs
the replanning process only on waypoints that are occupied by new obstacles. This helps to
reduce the computation time and realize the proposed approach in real time. The feasibility of
the proposed algorithm is evaluated using the Intel Aero Ready-to-Fly (RTF) quadcopter in
simulation and in a real-world experiment.
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1. INTRODUCTION

Today, unmanned aerial vehicles (UAVs) are routinely
used in many applications ranging from rapid delivery of
goods, see Singireddy and Daim (2018), and comprehen-
sive sensing and surveillance of the environment, see, e.g.,
Risbøl and Gustavsen (2018), to various service delivery
tasks, see, e.g., Papachristos et al. (2019) and Alwateer and
Loke (2020). The growth in computing power and battery
capacity makes UAVs an interesting device in different
fields. In particular, small and mechanically simple sys-
tems such as quadcopters are becoming the most popular
flying robots. Compared to fixed-wing aircraft, such as
airplanes, quadcopters are more maneuverable because
they can hover in the air, making them more suitable
for many applications. For the autonomous operation of
UAVs, the ability to quickly plan trajectories that move
the quadcopter from an initial state to a final state is an
important prerequisite.

Typically, the system state consists of position, velocity,
orientation, and angular velocity. The planned trajectory
must be dynamically feasible and meet additional con-
ditions, such as avoiding collisions with obstacles. Quad-
copter trajectory planning has been intensively researched
on for years and can be divided into two main categories.
In the first category, the motion primitive approach is

the core concept, see LaValle (2006), where motions of
robotic systems are computed to generate a motion li-
brary, also called motion primitives. Since each motion
primitive is computed to be dynamically feasible, this
approach is often used for online quadcopter replanning,
see, e.g., Andersson et al. (2018), and Liu et al. (2018).
In Pivtoraiko et al. (2013), an incremental replanning
algorithm is proposed that uses offline motion primitives
and reuses previous computations to produce a smooth
and dynamically feasible trajectory. In addition, the use
of offline motion primitives, also known as “memory of
motions” is successfully applied in other systems such as
the gantry crane system, see, e.g., Vu et al. (2020) and Vu
et al. (2022a), and the collaborative robot system, see, e.g.,
Vu et al. (2021). In Mueller et al. (2015), a minimal jerk
primitive is generated online with a given current state
and a desired final state. Recently, the motion primitive
approach was used to estimate probabilistic maneuvers
for collision avoidance, see Florence et al. (2020). In this
approach, maneuver outputs are calculated based on un-
constrained targets and collision avoidance. Although ap-
proaches based on motion primitives have been success-
fully employed in several applications, the construction of
a motion primitive library is time-consuming. Moreover,
adapting an already computed motion primitive library in



case of a change in the corresponding environment is still
a challenge.

The second category includes a two-step approach consist-
ing of a sampling-based trajectory planning algorithm and
an optimization-based trajectory planning algorithm, see,
e.g., Gao et al. (2018). In the first step, sampling-based
trajectory planning approaches, e.g., Rapidly exploring
Random Tree (RRT*) in Ramana et al. (2016) and Vu
et al. (2022b) or Fast Marching Method (FMT) in Janson
et al. (2015), are used to generate a collision-free trajectory
consisting of multiple waypoints. Since a quadcopter is a
differentially flat system, where the position of the center
of gravity and the yaw angle serve as flat outputs, see, e.g.,
Fliess et al. (1995) and Faessler et al. (2017), waypoints
containing flat outputs are often considered in the first
planning step. In the second step, optimization-based al-
gorithms are used to generate a smooth and dynamically
feasible trajectory through all computed waypoints, see,
e.g., Liu et al. (2016). By exploiting the flatness property of
a quadcopter, all states and control inputs can be param-
eterized by the (sufficiently smooth) generated trajectory.
In Hehn and D’Andrea (2011), the authors employ the
RRT* to compute the waypoints of a quadcopter path.
Then, a constrained quadratic program is used to solve
the minimum-capture trajectory problem that fits all these
waypoints into a polynomial. Other optimization-based
approaches for the second step are presented in Mehdi
et al. (2015), and Gao et al. (2018), which optimize points
of a B-splines trajectory. By modifying the path computed
in the first step, the two-step approach can change the
shape of the previously computed trajectory to avoid col-
lisions with obstacles, see, e.g., Tordesillas et al. (2021).

In this work, the following scenario is considered. A quad-
copter with a front-facing camera needs to move from
an initial position to a target position in an indoor en-
vironment without any knowledge of the environment,
e.g., obstacles. Inspired by the effectiveness of two-stage
trajectory planning approaches, the focus of this work is
to propose an online trajectory planning algorithm with
the ability to re-plan in the event of the presence of new
obstacles. Similar to approaches in the second category,
RRT* is first used to compute a coarse collision-free path
consisting of multiple waypoints. These waypoints con-
sist of the position of the center of mass (CoM) of the
quadcopter. This coarse path is then smoothed using the
Line-of-Sight (LOS) algorithm, see Naeem et al. (2012),
which reduces the number of waypoints and increases the
computational speed of the trajectory generation in the
second step. The alignment of the quadcopter with the
flight direction is done using separately computed yaw an-
gle waypoints. Then, constrained quadratic programming
is applied in the second step to compute a polynomial that
passes through all computed waypoints. Once an obstacle
is detected that collides with the current trajectory, a sub-
algorithm is presented to quickly reconstruct a collision-
free path and generate a new trajectory. Different from
other works in the literature, only the nodes in the com-
puted path that are encountered by the new object are
recomputed. This helps to speed up the computation of
the subsequent trajectory generation process.

The main contributions of this paper can be summarized
as follows:

Fig. 1. Coordinate systems of a quadcopter. The vector r
denotes the position of the center of mass in the world
coordinate.

• The LOS algorithm is applied in the first step to re-
move unnecessary waypoints. This modification helps
to make the proposed algorithm real-time capable.

• An algorithm for detecting new obstacles using only
a front-facing RGB-D camera is proposed, which
is faster and less memory-consuming than classical
approaches, see, e.g., Dairi et al. (2018).

• The proposed online replanning algorithm is imple-
mented in both simulations and real experiments us-
ing a companion computer and the Intel Aero RTF
drone.

The paper is organized as follows. Section 2 briefly in-
troduces the differentially flat mathematical model of a
quadcopter. In Section 3, the proposed algorithm for online
trajectory replanning is presented. Section 4 presents the
experimental setup, simulations, and experimental results.
Finally, Section 5 concludes this paper and gives an out-
look on future work.

2. MODELING

This section briefly introduces the mathematical model as
well as the differential flatness property of the quadcopter.
The world coordinate system W, consisting of three unit
vectors (xW , yW , zW), and the body coordinate system
B, consisting of three unit vectors (xB , yB zB), are shown
in Fig. 1. The Z-X-Y Euler angle convention is used to
express the rotation of the quadrotor in the world frame
W in the form

RWB = Rz,ψRx,φRy,θ , (1)

where Ri,α with i ∈ {x, y, z} andα ∈ {ψ, φ, θ} denotes the
rotation around the axis i with the angle α. The three
angles ψ, φ, and θ are also called yaw, roll and pitch,
respectively. The angular velocity of the quadcopter’s
CoM in the world coordinate system ωWB = [ωx, ωy, ωz]

T

is calculated from the skew-symmetric matrix operator
S(ωWB ) as

S(ωWB ) =
d

dt
(RWB )(RWB )T =

[
0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

]
. (2)

The free-body diagram describing all forces acting on a
quadcopter is shown in Fig. 2, where Fi and Mi with
i ∈ {1, ..., 4} are the force and moment exerted by the four
rotors of the quadcopter. The control input uT = [u1,u

T
2 ]



Fig. 2. Free-body diagram of a quadcopter. L is the length
from the rotor to the CoM.

of the system consists of the net thrust u1 =
∑4
i=1 Fi, and

the moment vector

u2 =

[
L(F2 − F4)
L(F3 − F1)

M1 −M2 +M3 −M4

]
. (3)

Using Newton’s second law, equations for the linear ac-
celeration of the CoM r̈ and Euler’s equations for the
angular acceleration ω̇WB , the equations of motion of the
quadcopter can be written in the following form

mr̈ = [0, 0,−mg]T + RWB [0, 0, u1]T

ω̇WB = I−1(−ωWB × IωWB + uT
2 ) ,

(4)

where m, I, and g are the mass, the moment of inertia ma-
trix of the quadcopter, and the gravitational acceleration,
respectively.

Considering the state of the quadcopter system as xT =
[rT, ṙT, (ωWB )T, (ω̇WB )T] and using (2) and (4), the equa-
tions of motion can be expressed in the state space form
as

ẋ = f(x,u) with uT = [u1,u
T
2 ] . (5)

A quadcopter is a differentially flat system with flat
outputs chosen as its position r = [x, y, z]T and its yaw
angle ψ, see, e.g., Fliess et al. (1995) and Faessler et al.
(2017). The differential flatness property allows the state
x and the control input u = [u1,u

T
2 ]T to be parameterized

by flat outputs and their time derivatives in the form

(x,u) = Φ(σ, σ̇, σ̈,σ(3),σ(4)) , (6)

where σ =
[
rT, ψ

]T
. Due to the page restrictions, the

derivation of (6) is omitted. For more information, the
reader is referred to Faessler et al. (2017).

3. TWO-STEP TRAJECTORY PLANNING
FRAMEWORK

Since the control inputs u can be computed from the flat
outputs σ and their time derivatives by using (6), the
proposed method plans a trajectory of the flat outputs
σ from a given starting position rs and a starting heading
angle ψs to a given target position rt and a target
heading angle ψt. In the following, the proposed trajectory
planning framework is presented in detail.

3.1 Overview of the proposed method

The proposed trajectory planning framework consists of an
offline and online trajectory planning block and is depicted

Fig. 3. Overview of the proposed trajectory (re)planning
framework.

in Fig. 3. The offline block is executed at the beginning of a
motion task. The online block is executed while the quad-
copter is moving to react to possible changes in the envi-
ronment. In both blocks, the two-stage trajectory planning
algorithm is included. However, in the online block, the
two-stage trajectory planning algorithm is executed only
for those subsets of the collision-free path computed in the
offline block which is occupied by obstacles.

In the first step of the offline block, the classical RRT∗ al-
gorithm is used to compute a collision-free path of multiple
waypoints from an initial position rs to a target position
rt. To reduce the redundancy of this path, the Line-of-
Sight (LOS) algorithm is implemented to remove unnec-
essary waypoints. The Gilbert-Johnson-Keerthi (GJK) al-
gorithm, see Gilbert et al. (1988), is employed to calculate
the Euclidean distances between the waypoints and the
obstacles. The yaw waypoints are computed separately
to ensure in-flight detection of possible objects along the
planned path.

In the second step, the computed path is divided into
a sequence of polynomial segments between waypoints,
which are optimized into smooth trajectories using the
constrained quadratic programming method proposed in
Mellinger (2021) and Richter et al. (2016). Then the online
block on the right hand side of Fig. 3 is executed. During
the flight, the RGB-D camera is used to check for unknown
obstacles in the environment. As soon as new obstacles are
detected, a feasibility check of the precomputed trajectory
is initiated, resulting in a recomputation of waypoints of
the computed path and a new trajectory generation.



3.2 First step: sampling-based approaches for computing a
collision-free path

The pseudo code of the RRT* to generate a tree G
consisting of a set of nodes V and a set of edges E is
presented in Alg. 1. The set V contains nodes {r1, ..., rN}
which are the CoM positions of the quadcopter in the
collision-free space Rfree. O and N denote the set of
obstacles and the maximum size of the set of nodes V,
respectively. Additionally, the set of edges E contains the
set of parent nodes of the corresponding nodes in the set
V. A parent node Parent(r) of the node r denotes the node
that yields the least total distance to the target node rt.
When obtaining the target position rt of the quadcopter,
the RRT* algorithm starts to generate a node rrand in
Rfree at random (line 4 in Alg. 1). Subsequently, the
function AddNode adds this node to the tree G taking
into account the set of obstacles O and two user-defined
parameters, i.e., ε, and ρ. Note that rrand is not directly
added to the tree G. Instead, the function AddNode selects
the subset of the nodes in the proximity of the distance
ρ w.r.t. rrand. From this subset, the node r∗rand which
yields the smallest total distance to the target position
rt is chosen. Finally, the tree G includes the node whose
distance to r∗rand is equal to ε and lies on the straight
line between r∗rand and rrand. The function AddNode is
processed until the maximum size of the set V is reached.
In lines 9-12 in Alg. 1, the shortest collision-free path from
rs to rt is retrieved and stored in the set of waypoints Pr.

Algorithm 1: RRT* algorithm

Input: rs, rt,O, N, ε, ρ
Output: G = (V, E) ,Pr

1 V ← {rt}; E ← ∅
2 G = (V, E)
3 while size(V) ≤ N do
4 rrand ← Random (Rfree)
5 G ← AddNode (rrand,G,O, ε, ρ)
6 end
7 G ← AddNode (rs,G,O, ε, ρ)
8 Pr ← {rs}; rtemp ← rs;
9 while Parent (rtemp) 6= rt do

10 rtemp ← Parent (rtemp)
11 Pr ← Pr ∪ {rtemp}
12 end
13 Pr ← Pr ∪ {rt}

Next, the Line-of-Sight (LOS) optimization, see Alg. 2, is
used to remove redundant nodes from the set of position
waypoints Pr. Note that M is the size of the set of position
waypoints Pr. Starting from the first node rin = Pr(1), the
LOS algorithm searches for the longest possible collision-
free path from that node. If there is a collision-free path
between the node rin and Pr(M − i), the function Del wp
is used to delete redundant waypoints from these nodes,
and the length of the set of waypoints Pr is updated,
see lines 3-7 in Alg. 2. Otherwise, the counting index i
is incremented (line 8 in Alg. 2). This process is repeated
until the stopping criterion is met.

Since the RRT* and LOS algorithms define only the posi-
tion path Pr, the set of yaw waypoints Pψ = {ψ1, ..., ψM}

Algorithm 2: Line-of-Sight Optimization

Input: Pr,O
Output: Pr

1 rin ← Pr(1); i = 0
2 while rin 6= Pr(M) do
3 if IsCollisionFree(rin,Pr(M − i),O) then
4 Pr ← Del wp(rin,Pr(M − i))
5 M = length(Pr)
6 rin ← Pr(M − i); i = 0 ;
7 end
8 i = i+ 1
9 end

must be calculated accordingly. Given that the forward-
facing camera is used in the experiments to detect obsta-
cles, the yaw path is designed so that this camera points in
the direction of flight. For this purpose, the yaw waypoints
are calculated in the following form.

ψi = arctan
ri+1,y − ri,y
ri+1,x − ri,x

, i = 2, . . . ,M − 1 , (7)

where ri,x and ri,y are the first and second components of
the vector ri. Note that the start ψ1 and the target yaw
angle ψM are predefined by the user. Here, the collision-
free path of the flat output Pσ is found by the set of
position nodes Pr and the set of yaw nodes Pψ.

3.3 Second step: Constrained quadratic programming for
trajectory generation

Similar to Mellinger (2021), the trajectory generation
is split into four independent optimization problems for
each flat output parameterized by the time t. A common
notation P (t) is used for each flat output in Pσ. The
flat output trajectory P (t) of M waypoints is given by
a piecewise polynomial function of M − 1 segments in the
form

P (t) =

{
Pj(t) =

n∑
i=0

pi,jt
i

}
j ∈ {1, . . . ,M − 1}, tj ≤ t < tj+1 ,

(8)

where [tj , tj+1) is the time segment, n is the order of the
trajectory polynomials, and pi,j are the coefficients of the
polynomial Pj(t). The cost function for the jth segment
reads as

Jj =

tj+Tj∫
tj

n∑
i=1

wi

[
diP (t)

dti

]2
dt = pTj Qjpj , (9)

where pj is the vector of the n + 1 coefficients of the
polynomial Pj(t), wi > 0 is the user-defined weight of
the ith derivative, and Tj = tj+1 − tj is the segment time.
Note that Qj is a positive definite matrix. The segment
times Tj can be chosen heuristically by a desired average
velocity within the segment. To guarantee the (sufficient)
smoothness of the flat output trajectory, constraints on the
endpoints of each segment j are considered via a mapping
matrix Aj between the polynomial coefficients pj and the
time derivatives dj at the endpoints in the form

Ajpj = dj . (10)



All cost functions Jj in (9) and constraints in (10) of the
M segments are combined, which leads to the following
constrained optimization problem

min
p1,...,pM−1

M−1∑
j=1

Jj

s.t.


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . AM−1




p1

p2

...
pM−2
pM−1

 =


d1

0
...
0

dM−1

 .

(11)

3.4 Trajectory (re)planning

During the flight, the Online− ROS Loop, see, Fig. 3, is
activated to take into account changes in the environment
using the block Sense and Process and generate the new
trajectory using the block Replanning. Obstacles in the
set O are considered to be convex, i.e. cuboids. The point
clouds of the front camera are filtered in the block Sense
and Process. The pseudocode of the eight-corner obstacle
detection approach is shown in Alg. 3.

First, the captured point cloud data is clustered
and converted into 8-corner boxes using the function
convertPc2Box (line 2 in Alg. 3). If the current set of ob-
stacles is empty, all clustered 8-corner boxes (cuboids) are
added as new obstacles (lines 3− 6 in Alg. 3). Otherwise,
the function getDistanceMatrix(C,O) is employed which
computes a matrix containing the minimum distance be-
tween each detected cuboid C ∈ C w.r.t. each known
obstacle O ∈ O (line 7 in Alg. 3). Here, if the smallest
distance d between C and the closest known obstacles in
O is greater than the threshold value δ, the cuboid C
is considered as a new obstacle (lines 9 − 11 of Alg. 3).
When the clustered cuboid C ∈ C intersects with one or
more known obstacles in O, they are both merged (lines
12 − 15 in Alg. 3). To further remove redundancy due
to the measurement noise, the distance of each corner of
the newly clustered cuboid C ∈ C to the closest known
obstacle O ∈ O is computed and analyzed (lines 16-20,
Alg. 3). If the minimum distance d of C w.r.t. a known
obstacle O ∈ O is smaller than δ, and one corner point
of C is further away than the threshold, both cuboids are
merged. This helps to merge falsely detected clusters which
are surfaces of a real obstacle. The falsely detected clus-
ters are, among others, caused by camera noise, lighting
conditions, and transformation errors due to measurement
accuracy.

Once new obstacles are detected, the block Replanning
activates the RRT* algorithm for those parts of the com-
puted tree G which are occupied by new obstacles. Once
a new collision-free path is obtained from the LOS algo-
rithm, two additional position waypoints are inserted into
the first two segments of the path. In detail, if there are
two or more path segments from the current position of
the quadcopter to the target, the first two segments are
bisected via additional position waypoints, which guide the
polynomial-shaped trajectory more strictly past the pre-
viously recognized object. This prevents the final position
trajectory from overshooting at higher speeds. Moreover,
a faster alignment of the heading of the quadcopter is

Algorithm 3: 8-corner obstacle detection.

Input: O, clusters, δ
Output: Onew,O

1 Onew ← {}
2 C ← convertPc2Box(clusters)
3 if (size(O) == 0) & (size(C) > 0) then
4 Onew ← C
5 end

6 D, I← min
(
getDistanceMatrix(C,O)

)
7 for C ∈ C do
8 d← D(i); idx← I(i);
9 if d > δ then

10 Onew ← Onew ∪C
11 end
12 if d == 0 then
13 Onew ← Onew ∪mergeBoxes(C,O(idx))
14 O ← O \ O(idx)
15 end
16 dcorner ← getCornerDistances(C,O(idx))
17 if (max (dcorner) > δ) & (d < δ) then
18 Onew ← Onew ∪mergeBoxes(C,O(idx))
19 O ← O \ O(idx)
20 end
21 end

achieved, which ensures the recognition of possible further
objects in the flight path. Finally, the yaw waypoints are
defined and trajectory optimization including the current
initial state of the quadcopter is executed, yielding a
smooth collision-free trajectory to the target.

4. RESULTS

To verify the feasibility of the proposed trajectory replan-
ning framework in experiments, the Intel Aero RTF drone
equipped with a front-facing RealSense R200 RGB-D cam-
era is used. This quadcopter consists of two main compo-
nents, the compute board running the Robot Operating
System (ROS) middleware and the flight controller board
running the PX4 flight stack, see Fig. 4. The RealSense
R200 camera is used to acquire point cloud data for obsta-
cle detection. The proposed online trajectory (re)planning
is processed on a laptop, also named the Ground Control
Station, with 1.8 GHz Intel Core i7 and 16 GB RAM. The
calculated trajectory is sent to the quadcopter via Wi-Fi
at a rate of 6 Hz.

For the simulations, the quadcopter model is created in
the open-source simulator Gazebo. This simulator provides
a link to ROS and enables software-in-the-loop (SITL)
simulation of the PX4 flight stack, which is also the
firmware of the Intel Aero RTF drone. In addition, ROS
provides a simulator for the RealSense R200 camera.

4.1 Simulation results

Fig. 5 illustrates snapshots of the simulation environment
and the corresponding collision-free paths computed with
the proposed algorithm. The quadcopter takes off from
the lower left corner of the flight space, see Fig. 5(a).
The real sizes of the obstacles are shown in Fig. 5(a)
and (c), while the corresponding inflated obstacles are
depicted in Fig. 5(b) and (d) are considered in the
proposed algorithm for safety reasons. Initially, t = 0 s,
the quadcopter scans the environment and computes a



Fig. 4. Overview of the simulation and experiment setup.

collision-free path shown in Fig. 5(b) in yellow. As soon as
a new obstacle appears at t = 5.66 s (shown in Fig. 5(c) in
red), the proposed trajectory replanning algorithm quickly
computes the new collision-free trajectory, as shown in Fig.
8(d) in green color. The time evolution of the calculated

Fig. 5. Snapshots of the collision-free path in the sim-
ulation. (a) The captured environment in Gazebo
at t =0 s with 3 obstacles. (b) Collision-free path
computed from the offline block in Fig. 3. (c) The
detected environment in Gazebo at t = 5.66 s when
a new obstacle appears (in red color). (d) Collision-
free path computed from the online block in Fig. 3
considering the new obstacle.

trajectory in the simulation is shown in Fig. 6. The
waypoints are marked by asterisks. Overall, the trajectory
generation results in a smooth trajectory that passes all
waypoints. Moreover, smooth transitions are achieved at
t = 5.66 s for all flat outputs, cf. Fig. 6. Since obstacle
detection plays an important role in the proposed online

Fig. 6. Time evolution of the generated trajectory in the
simulation. The black vertical dashed line marks the
time when the trajectory replanning is activated at
5.66 s. The asterisks indicate the waypoints of the
calculated trajectory and the upper index (i) refers to
the ith time derivative of the corresponding quantity.

trajectory replanning algorithm, the comparison between
the proposed 8-corner method and the classical point cloud
method is investigated using Monte Carlo simulations.
Different from the proposed 8-corner method, the classical
point cloud method uses the k-nearest neighbor (k-NN)
search on the clustered point cloud data, see Pinkham
et al. (2020), to find the distances of the newly discovered
clusters to the already known clusters. Then, this method
decides whether a newly discovered cluster is an additional
obstacle or not based on the corresponding distance.
Instead of storing only 8 corners of a convex obstacle,
this classical point cloud method processes all point cloud
data. In Fig. 7, the run times of the two approaches
for the scenario in Fig. 5 over 81 frames were calculated
statistically. The results show that the 8-corner approach
is faster than the classical point cloud approach. Moreover,
the standard deviation of the computing time (≈ 83 ms)
of the proposed approach is much smaller compared to the
standard deviation of the computing time (≈ 248 ms) of
the point cloud method. However, the 8-corner approach



suffers from the possible false fusion of multiple objects in
the presence of poor position estimates.

Fig. 7. Monte Carlo simulations of the run times of obstacle
detection approaches.

4.2 Experimental results

In Fig. 8(a), the flight environment of size
3.5 m×2.5 m×2 m contains a fixed obstacle on the ground.
Since the obstacle is located between the start and end
positions, a collision-free trajectory is calculated, shown as
a green line in Fig. 8(b) at t = 0.33 s. Then the quadcopter
follows this trajectory until the human operator steps into
the path. This activates the replanning algorithm that
leads to the new collision-free path shown in green in Fig.
8(d) at t = 3.33 s. When the RealSense camera captures
the operator, the merging mechanism of the proposed
algorithm is processed step-wise, resulting in an additional
replanning step. Although the camera’s viewpoint cannot
capture the entire scene, the replanning capability helps
to safely navigate the quadcopter to the target position.
The time evolution of the computed trajectory in the
experiment is shown in Fig. 9. All derivatives of each flat
output are continuous at the replanning time. In the time
between 3.33 s and 5 s, a very sharp yaw maneuver takes
place, the drone has to rotate around its own axis in a very
short time to be reoriented in the flight direction. This
results in a high yaw rate and strong spikes in angular
acceleration. However, the quadcopter controller limits
the yaw rate by default to increase safety. A video of the
presented experiment and other scenarios is available at
https://www.acin.tuwien.ac.at/en/9d0b/.

5. CONCLUSIONS

In this paper, a two-step online trajectory planning al-
gorithm is proposed that can autonomously navigate the
quadcopter from a start position to an end position in
the presence of unknown obstacles using only a forward-
facing RGB-D camera. In the first step, a collision-free
path is computed by using the optimal Rapidly explor-
ing Random Tree (RRT*) and the Line-of-Sight (LOS)
optimization. Then, a trajectory is generated using con-
strained quadratic programming. Simulations and exper-
iments verify the effectiveness of the proposed algorithm.
The results show that the proposed algorithm is able to
compute collision-free trajectories with sufficiently smooth
system inputs. When unknown obstacles are detected in
the flight path, a new collision-free trajectory is planned.
The LOS algorithm plays an important role in reducing

Fig. 8. Snapshots of the experiment. The computed tra-
jectories and detected obstacles with time stamps are
illustrated on the right-hand side.

the number of waypoints of the path computed with the
RRT* algorithm, which curbs the computational effort
for the subsequent trajectory optimization. Moreover, the
proposed 8-corner approach for obstacle detection is faster
compared to the classical point cloud method.

To improve the performance and quality of the proposed
approach, several aspects can be considered in future work.
First, the inclusion of dynamic constraints on the yaw
angle in the estimation of segment times could ensure
sufficient time for the drone to align with the flight path.
In addition, the bending angle between successive edges
can be considered in the cost of the RRT* algorithm to
obtain a better linear path from the start point to the end
point.
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