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Abstract: Reliability-based design optimization (RBDO) can fulfill both 8 

reliability and economic requirements by considering the stochastic properties of 9 

structure and excitation. However, the computational efficiency of this optimization is 10 

hindered by the nested loops involved in reliability analysis and optimization 11 

processes. In order to overcome this limitation, a novel method is proposed for 12 

structures subjected to random excitation, which is based on the mapping between 13 

operator norm and reliability index. This approach necessitates effectuating the 14 

transformation of the optimization objective from reliability indexes to operator 15 

norms with a small number of samples, thereby eliminating the laborious process of 16 

nested loops. It can effectively solve design optimization problems with reliability 17 

constraints, particularly for structures with explicit structural response under random 18 

excitation. Four examples are presented to demonstrate the effectiveness and 19 

applicability of the proposed method. 20 
Keywords: Reliability-based design optimization, Operator norm, Dynamic 21 

reliability, Random excitation, Function fitting 22 

1. Introduction 23 

The response of structures under natural disasters such as earthquakes, typhoons, 24 

and tsunamis is typically a stochastic dynamic process. In order to guarantee the 25 

safety of structures throughout their service life, it is essential to consider the 26 

reliability of structures under random excitation. The first excursion reliability is the 27 

most relevant performance measure for the design of engineering structures, as it 28 

effectively describe the reliability performance of structures under random excitation. 29 

However, it is also the least analytically tractable [1]. Thus, it is necessary to evaluate 30 

the safety performance of structures from a probabilistic perspective, and 31 

reliability-based design optimization (RBDO) can better ensure structural safety. 32 



 

 

With the advancement of reliability analysis technology, the application of 33 

RBDO has expanded to various engineering fields. RBDO allows for the assessment 34 

of economic feasibility among different design alternatives while simultaneously 35 

meeting reliability specifications [2-3]. However, the direct implementation of RBDO 36 

in practical engineering designs is constrained by the nested loops involved in the 37 

optimization process. These nested loops result in high computational costs for each 38 

optimization result, which is particularly significant in dynamic reliability problems. 39 

To improve the efficiency and practicality of RBDO, several methods have been 40 

proposed [4], including the improved double-loop method [5-6], single-loop method 41 

[7-9], surrogate model method [10-12], and decoupling method [13-16]. 42 

Among these methods, the improved double-loop method aims to increase the 43 

computational efficiency of the inner loop by employing efficient reliability analysis 44 

techniques e.g. probability density evolution [17-18], importance sampling [19], and 45 

subset simulation [20]. This method assesses the failure probability of the current 46 

sample group in inner loop. Subsequently, the outer loop then identifies the optimal 47 

solution that satisfies the probability constraint based on the results of the reliability 48 

analysis. On the other hand, the single-loop method simplifies the double-loop 49 

optimization problem into a single-level problem and solves it as a standard 50 

optimization problem. In this approach, the most commonly used methods replace the 51 

lower-level optimization problems with their Karush-Kuhn-Tucker (KKT) conditions. 52 

The surrogate model method utilizes various surrogate models obtained through 53 

interpolation or fitting of training samples in reliability analysis. These surrogate 54 

models approximate implicit performance functions and corresponding limit states. 55 

Optimization based on the fitted surrogate models significantly improves efficiency, 56 

although the accuracy depends greatly on the chosen form of the surrogate model e.g. 57 

multiple response surfaces [11], Kriging surrogate models [22], and polynomial chaos 58 

expansion [23]. Lastly, the decoupling method employs mathematical transformations 59 

to decouple the inner loop and outer loop, thereby enhancing optimization efficiency. 60 

By adopting suitable decoupling strategies, the complexity of optimization problems 61 

can be greatly reduced when addressing with specific RBDO objectives[24-26]. 62 

In the case of dynamic RBDO problems involving discrete design variables 63 



 

 

under Gaussian excitation, Feas and Valdebenito [27] utilize the operator norm as a 64 

measure of structural reliability under random excitation. They employ an operator 65 

norm framework to minimize the failure probability of linear systems influenced by 66 

random excitations. This approach can also extended to nonlinear systems through 67 

statistical linearization methods [28]. Additionally, it can be applied to fuzzy 68 

reliability evaluation in the presence of cognitive uncertainty and to assess the failure 69 

probability of structures using the operator norm under imprecise conditions [29]. 70 

Although some studies have demonstrated the potential of operator norms to achieve a 71 

fully decoupling of RBDO under specific circumstances, the existing research in this 72 

area remains relatively limited and lacks a clear association between operator norms 73 

and reliability indexes. Jerez et al. [30] summarized the reliability-based design 74 

optimization methods for structural systems under random excitation and pointed out 75 

that a heuristic framework based on operator norm optimization can effectively handle 76 

reliability optimization subject to standard constraints. The main idea is to 77 

heuristically replace the original failure probability objective function, with a function 78 

defined in terms of a matrix norm. 79 

The motivation of this study is to expand the application of operator norms to 80 

RBDO problems. The proposed mapping method aims to satisfy both efficiency 81 

and accuracy requirements, while only analyzing a small number of samples to 82 

transform optimization objectives from reliability indexes to operator norms. This 83 

approach allows the entire optimization process to be independent of dynamic 84 

reliability analysis. The remaining sections of this contribution are organized as 85 

follows: Section 2 presents the RBDO method and its limitations. Section 3 86 

introduces the mapping method for reliability constraints using operator norms. 87 

Section 4 utilizes four examples to demonstrate the rationality and effectiveness of 88 

the proposed method. Finally, Section 5 provides a summary of the conclusions. 89 

2. Problem statement 90 

The RBDO problem involves discrete design variables and probabilistic 91 

constraints, and it usually required that the response at a specific position in the 92 

structure does not exceed the safety threshold. This problem can be classified into two 93 

primary types: one aims to constrain the consumption of construction material while 94 

maximizing the reliability index, and the other aims to constrain the reliability indexes 95 

while minimizing the consumption of construction material. Mathematically, these 96 



 

 

types can be formulated as follows: 97 
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where xj and Vj correspond to the number and material volume of discrete design 98 

variables, respectively; βi represents the reliability index of the structure, i=1,2,...,nR; 99 

nR depends on the response parts of interest. The reliability index βi can be calculated 100 

by: 101 

1 , 1, 2,..(1 ) .,i f i Ri nPβ − == Φ −  (3) 

The failure criterion for the structure is determined by whether its response under 102 

Gaussian load excitation exceeds the safety limit bi, which is assessed through the 103 

first excursion probability [31]. The failure probability Pf can be expressed as: 104 
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where nT is the total number of time instants considered. The failure probability of the 105 

structure can be computed using the Monte Carlo sampling method, which is 106 

determined by: 107 
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Among these equations, u(t) represents the dynamic response of the structure at 108 

any given time, which can be calculated by: 109 
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where ( )mi kh t t−  represents the structural response induced by a pulse load at any 110 

given time. 111 

This current RBDO procedure entails the computation of the reliability index for 112 

every design sample, followed by the utilization of algorithms to search for the 113 

optimal solution. However, the extensive sampling required in Eq.(5) and Eq.(6) 114 

results in a time-consuming analysis of the reliability for each sample group. 115 

To address this challenge, we propose a novel method based on a mapping 116 

transformation. This method converts the optimization objective from the reliability 117 

index to the operator norm, thereby eliminating the need for the laborious reliability 118 

analysis procedure. By employing the operator norm as a surrogate, which is 119 

comparatively easier to calculate, the RBDO process can be carried out more 120 

efficiently. 121 

3. Mapping between operator norm and reliability index in RBDO 122 

3.1 Operator norm of structural dynamic response 123 

The operator norm can be used to measure the size of certain linear operators, for 124 

a matrix A of dimensions m×n and a vector v of dimensions n×1, the theory of 125 

operator norm can be summarized as follows: the operator A never amplifies the 126 

length of any vector v by more than a certain factor c. In other words, there exists a 127 

lower bound c such that the aforementioned inequality holds true for all vectors v. 128 

This concept can be expressed as: 129 

{ }(1) ( 2) (1) ( 2),
inf 0 :

p p p p
c v c v= ≥ ≤A A     

 (8) 

where inf{·} denotes the infimum value and ǁ·ǁp(1),p(2) denotes the operation rules for 130 

the operator norm, which can be found in Table 1. 131 

Table 1 Operation rules for the operator norm[29] 132 

Operation 

rules 

p(1) 

l1 l2 l∞ 

p(2) 

l1 
Maximum l1 norm of 

column 
Maximum l2 norm of 

column 
Maximum l∞ norm of 

column 

l2 NP-hard Maximum singular value Maximum l2 norm of row 

l∞ NP-hard NP-hard Maximum l1 norm of row 



 

 

In the case of the first excursion failure mechanism, the structural failure 133 

depends on whether the maximum value of the dynamic response process surpasses 134 

the safety threshold. In order to ensure that the operator norm value of the structural 135 

response remains unaffected by randomness, the process can be formulated as a linear 136 

superposition of a series of orthogonal functions and products of random variables, 137 

employing the Karhunen-Loève (K-L) expansion within the operator norm framework 138 

[32]. If the Gaussian random excitation is denoted by ( , )f t ξ , the random process can 139 

be expanded as: 140 

( ) ( ) ( )n n nf t f t tφ λ ξ= +  (9) 

In this context, f (t) represents an nT×1 random load vector, whereas ( )f t  141 

represents the average value of the random process. φn and λn represent the 142 

eigenvectors and eigenvalues of the auto-covariance matrix of the random process 143 

with dimensions of nT×nKL and nKL×nKL matrices, respectively. The vector ξn 144 

represents the realization of standard Gaussian random variables, which is a nKL×1 145 

vector. For a discrete Gaussian process with a mean of zero, that is ( ) 0f t = , the 146 

random process can be represented as: 147 

( )f ξ φ λξ=  (10) 

Based on the established definition of first excursion reliability, it is desirable for 148 

the absolute values of the responses of interest to remain below the predetermined 149 

threshold levels. As a result, the normalized response function within the operator 150 

norm framework is defined as follows: 151 

 (11) 

Here, y represents the discrete design variables of the structure.  is a 152 

(nRnT)×nKL matrix, where the matrix elements correspond to the operator norm values 153 

of the structural response. By setting p(1)→∞ and p(2)=2 in Eq.(8), the following 154 

relationship can be established through the operator norm theorem and the calculation 155 

of the normalized response function [15]. 156 

{ },2 2( ) inf ( ) 0 : ( ) ( )A y c y A y c yξ ξ∞ ∞= ≥ ≤       (12) 

In the scenario involving multiple degrees of freedom, is a matrix that 157 

collects all matrices associated with the calculation of the i-th response, normalized 158 

by threshold levels, which is defined as: 159 

( , ) ( )r y A yξ ξ ∞= 

( )A y

( )iA y
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where bi represents the security boundaries corresponding to different cases. 160 

According to Table 1, the solution for the matrix ǁA(y)ǁ∞,2 is equivalent to the 161 

maximum row of matrix A(y), which can be expressed as: 162 

( ),2 ik ik1, ,
1, ,

( ) max
R
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T
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(14) 

where aik represents the row of matrix A, which is calculated based on the response at 163 

any discrete time. 164 

The dynamic response of the structure under random excitation can be calculated 165 

using the motion equations of the structure, as described in: 166 

( ) ( , , ) ( ) ( , , ) ( ) ( , , ) ( , )t t t f tξ ξ ξ ρ ξ+ + = M y x y C y x y K y x y  (15) 

where M, C and K are matrices representing the mass, damping, and stiffness of the 167 

system, respectively, with dimensions of nD×nD. Here, nD represents the number of  168 

freedom degrees. The vector y encompasses the discrete design variables that 169 

influence the mass, damping, and stiffness matrices, and t denotes time. Furthermore, 170 

ρ is a nD×1 vector corresponding to the coupling load ( , )f t ξ , while ( , , )t ξx y , 171 

( , , )t ξx y and ( , , )t ξx y  represent the acceleration, velocity, and displacement, 172 

respectively, each with dimensions of nD×1. 173 

Based on the Duhamel's integral method, the response of the structure is obtained 174 

by summing up the dynamic responses caused by all discrete impulse loads occurring 175 

before the given time. The structural response can be expressed as shown in: 176 
t

0
( ) ( ) ( ) , 1,...,i i Ru t f h t d i nτ τ τ= − =∫  (16) 

where ( )ih t τ−  represents the unit impulse response function. If the structural 177 

displacement vector x is adopted as the response of interest, the impulse response can 178 

be expressed as: 179 
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where ζn represents the structural damping ratio; ωn and ωd represent the natural 180 

frequency and damping frequency, with the relationship n
2

d nω ζω = （1- ）. In 181 



 

 

addition, ,i vα  are the model participation factor matrix, which is defined as: 182 
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where ( )v yφ represents the eigenvectors associated with the eigenproblem of the 183 

undamped equation of motion, and iq  is a vector such that T
i iu q x= . 184 

By discretizing the time units and expanding the random excitation through 185 

Eq.(10), Eq.(16) can be transformed into: 186 
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where φm,n represents the element at the position of the matrix φ(m,n), and m  187 

takes the value of 0.5 when m=1 or k, otherwise it is set to 1. ( )m,i kh y t t−  signifies 188 

the response induced by the impulse load at any given time. 189 

By eliminating the standard Gaussian random vector, the expression of the row 190 

vector ak of the operator norm matrix can be obtained. In this case, the largest row of 191 

matrix A(y) corresponds to the operator norm of the structural response, as illustrated 192 

in: 193 
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(20) 

Significantly, the calculation of the operator norm does not necessitate a 194 

substantial number of samples, as it can be obtained through a single time integration 195 

calculation. Furthermore, the operator norm value remains unaffected by the standard 196 

Gaussian random vector ξn, and this characteristic makes the calculation of the 197 

structural response operator norm very efficient. Therefore, a mapping between the 198 

operator norm and reliability performance can be established, with the operator norm 199 

serving as a more computable surrogate, leading to improved efficiency in RBDO. 200 

3.2 Mapping function for constraint transformation in RBDO 201 

Based on the aforementioned approaches, the operator norm ǁA(y)ǁ∞,2 and 202 

dynamic reliability index β of the structural response can be calculated. In order to 203 

establish the mapping relationship between β and ǁA(y)ǁ∞,2, a function φ is constructed 204 



 

 

through Eq.(21). Conventionally, various functions can be chosen for φ, such as 205 

polynomial functions, exponential functions, logarithmic functions, trigonometric 206 

functions, etc. Herein, the polynomial function is selected as the fitting function. By 207 

employing least squares fitting, the mapping function can be obtained with limited 208 

sample points, as shown in: 209 

( ) 2
,2 0 1 2( ) ... n

n∞ ϕ β α α β α β α β= = + + + A y  (21) 

where n is the degree of polynomial fitting function. It is recommended to use an 210 

initial polynomial fitting function with a degree of n=3, and the degree of function can 211 

be adjusted to achieve accurate results. 212 
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where m is the number of samples in the data set. In order to ensure the high accuracy 213 

of the fitted mapping function, a leave-one-out cross validation is used for error 214 

checking. If the fitting function effectively predicts the test samples and satisfies 215 

Eq.(23) as well, it can be considered as the output for the mapping function. It is 216 

recommended to set ε as 0.001. If the fitted mapping function fails to meet the 217 

accuracy requirements, the degree of the mapping function can be increased and the 218 

fitting process repeated. 219 

( )( )2test test
,2( )i iA y ∞ϕ β ε− ≤ 

 (23) 

Based on this mapping function, the constraint can be reformulated, and the 220 

original optimization problem can be transformed into: 221 
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By utilizing the operator norm inequality to eliminate Gaussian random vectors, 222 



 

 

the safety of the structure can be assessed using the operator norm. The operator 223 

norm ǁA(y)ǁ∞,2 is a dimensionless constant that is inversely proportional to the 224 

reliability index β. Therefore, a mapping relationship between ǁA(y)ǁ∞,2 and β can be 225 

established. This transformation simplifies the extensive sampling analysis into a 226 

single calculation of the dynamic response operator norm, significantly reducing 227 

computational efforts. Upon verification, it has been determined that the 228 

computational efficiency can be improved by over 100 times when faced with 229 

high-capacity optimization problems. 230 

3.3 Flowchart of RBDO based on mapping 231 

By transforming the optimization objective into the operator norm, RBDO can 232 
bypass the cumbersome process of reliability analysis, and significantly enhance 233 
optimization efficiency. The proposed method for RBDO under random excitation is 234 
shown in Fig. 1, a solution procedure is given as follows: 235 

(1) Establish RBDO problem formulations based on discrete variables and 236 
probability constraints. 237 

(2) Randomly select m sample groups as the data set from the discrete design 238 
variables. It is recommended to take 1/500 of the total number of optimized samples 239 
and not less than 50. 240 

(3)Calculate the operator norm and reliability index of the data set through Eq.(3) 241 
and (20). 242 

(4) Take one sample in the dataset as the test set, and use the remaining samples 243 
as the training set for function fitting according to Eq.(21) and (22). Repeat the above 244 
process m times to ensure that each sample is used as a test set. 245 

(5) Substitute each test set sample into the corresponding mapping function and 246 
use Eq.(23) to measure the error. If there is a mapping function φ that meets the error 247 
requirements, output the one with the smallest fitting error. Otherwise, let n=n+1 and 248 
return to Step 3. 249 

(6) Transform the reliability index constraint into a deterministic constraint in the 250 
initial RBDO problem by mapping function φ. Use the transformed operator norm as 251 
the objective for optimization. Output the desired optimization results based on the 252 
optimization objective. 253 



 

 

 254 
Fig. 1 Flowchart of RBDO based on the proposed method 255 

4. Examples 256 

4.1 Example 1: Optimization of mass and stiffness for single-degree-of-freedom 257 

oscillators 258 

The first example focuses on a single-degree-of-freedom oscillator subjected to 259 

discrete Gaussian white noise excitation. The Gaussian white noise has a mean of zero, 260 

a spectral density of S0=5×10-4m2/s3, a duration of T=10s, and a discretization time 261 

unit of ∆t=0.01s. The mass of the oscillator and the stiffness of the spring are discrete 262 

design variables, with values of m={2.50, 2.51, 2.52, ..., 2.99, 3.00}×104kg and 263 



 

 

k={4.50, 4.51, 4.52, ..., 4.99, 5.00}×106N/m. The damping ratio is ζ=3%. It is 264 

assumed that failure occurs when the displacement of the oscillator exceeds 5mm. 265 

Two types of reliability design optimization problems are conducted, considering a 266 

total of m=2000 sample groups. 267 

Optimization Case 1: The objective is to determine the maximum mass for the 268 

oscillator with the reliability index not less than 2.40. 269 

Optimization Case 2: The objective is to determine the minimum stiffness for 270 

the oscillator with the reliability index not less than 2.40. 271 

The two reliability optimization problems are described as follows: 272 
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The reliability index of each sample point is calculated through 1 million Monte 273 

Carlo sampling cycles, and the operator norm of the structural response can be 274 

calculated according to Eq.(5). The distribution of operator norms and reliability 275 

indexes in 50 sample groups is shown in Fig. 2, and the fitting for operator norm and 276 

reliability index of these sample points is shown in Fig. 3. 277 

 278 
(a)Operator norm                    (b)Reliability index 279 

Fig. 2 Distribution of operator norms and reliability indexes 280 



 

 

 281 
Fig. 3 The fitting situation of the mapping function 282 

The order of the fitting function meets the accuracy requirement after reaching 283 

six, and the function is shown as follows: 284 

6 5 4 3 2( ) 12.08 151.49 787.27 2170.00 3345.60 2735.50 925.48β β β β β β βϕ = − + − + − + −  (27) 

The original reliability optimization problem is transformed into a deterministic 285 

optimization problem with Eq(24). The transformed optimization problem can be 286 

expressed as follows: 287 
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Based on the transformed constraint objectives, an optimization analysis was 288 

conducted on this example, and the results were compared with alternative 289 

methodologies in terms of efficiency and accuracy. The optimization results are 290 

shown in Table 2, and all computations were performed on a desktop computer with 291 



 

 

32 GB of RAM and 12th Gen Intel(R) Core(TM) i7-12700 CPU @ 2.10 GHz. 292 

Table 2 Optimization results for Example 1 293 

Method Case 1 
Efficiency 

Case 2 
Efficiency 

Time/h Ratio Time/h Ratio 

Proposed 

method 

m = 2.69×104 kg 

k = 5.00×106 N/m 

β=2.40 

0.16 1.0 

m = 2.50×104 kg 

k = 4.65×106 N/m 

β=2.41 

0.16 1.0 

AK-MCS 

[33] 

m = 2.70×104 kg 

k = 5.00×106 N/m 

β=2.39 

0.55 3.4 

m = 2.50×104 kg 

k = 4.62×106 N/m 

β=2.36 

0.54 3.4 

Response 

surface [34] 

m = 2.72×104 kg 

k = 5.00×106 N/m 

β=2.36 

0.57 3.6 

m = 2.50×104 kg 

k = 4.58×106 N/m 

β=2.36 

0.57 3.6 

Monte Carlo 

m = 2.69×104 kg 

k = 5.00×106 N/m 

β=2.40 

5.26 32.9 

m = 2.50×104 kg 

k = 4.65×106 N/m 

β=2.41 

5.28 33.0 

It is evident that the proposed method presents notable advantages in terms of 294 

efficiency in comparison to existing reliability design optimization methods. When 295 

compared to the direct Monte Carlo method, the proposed method demonstrates a 296 

significantly higher efficiency, approximately 33 times greater. In comparison to the 297 

AK-MCS method and the response surface method, the efficiency is still approximately 298 

3.5 times higher. It was determined that the maximum attainable mass was 2.69×104 299 

kg, and the minimum attainable stiffness was 4.65×106 N/m while meeting the 300 

requirement of a reliability index no less than 2.4. 301 

4.2 Example 2: Optimization of stiffness for a three-degree-of-freedom spring 302 

damping vibration system 303 

The second example focuses on a three-degree-of-freedom spring damping 304 

vibration system, as illustrated in Fig. 4. The system experiences identical excitation 305 

parameters as Example 1. The masses of the objects, from left to right, are known to 306 

be m1=5×104kg, m2=12×104kg, and m3=25×104kg. The stiffness of the springs is 307 

considered as discrete design variables, with values of ki={2.00, 2.10, 2.20, ..., 3.90, 308 

4.00}×106N/m for i=1,2,3,4. The damping ratio is c1=c2=c3=c4=0.03. Each research 309 

object's response is treated as an independent case, and failure occurs if the 310 



 

 

displacement exceeds 5mm. The reliability indexes corresponding to the three mass 311 

objects are β1, β2 and β3. 312 

The optimization problem aims to minimize the sum of the stiffness coefficients 313 

of the four springs while ensuring that the reliability index of each case is not less 314 

than 2.40. Considering a total of m=5000 sample groups, the reliability index for each 315 

case in this optimized scenario is calculated. The reliability optimization problem can 316 

be expressed as: 317 
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 318 
Fig. 4 Schematic diagram of a three-degree-of-freedom series spring system 319 

 320 
Fig. 5 Operator norm-reliability index mapping function for Example 2 321 

   



 

 

In Fig. 5, a total of 50 sample points are considered for three separate failure 322 

cases. The reliability index of each sample point is calculated by 1 million Monte 323 

Carlo sampling cycles. A mapping function is then established to relate the operator 324 

norm-reliability index for the three objects, as shown below: 325 

6
1

5 4 3 2( ) 0.12 1.54 7.72 19.42 25.32 15.48 2.29β β β β β βϕ β= − + − + − + −  (30) 

6 5 4 2
2

3( ) 0.77 10.45 58.27 170.13 274.00 230.76 80.29β β β β β β βϕ = − + − + − +  (31) 

4 3
3

2( ) 0.04 0.35 1.27 2.15 2.44ϕ β β β β β= − + − +  (32) 

This mapping facilitates the transformation of the optimization objective from 326 

the reliability index to the operator norm. The initial optimization problem is 327 

transformed into: 328 
4
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Based on the transformed optimization problem, a total of 5000 sample groups 329 

were optimized and analyzed. The obtained results are presented in Table 3. It is 330 

evident that the proposed method achieves a higher level of efficiency while also 331 

ensuring accurate calculations. 332 

Table 3 Optimization results for Example 2 333 

Optimization parameters Proposed method AK-MCS 
Response 

surface 

Monte 

Carlo 

Stiffness 

k1 (×106N/m) 2.90 3.60 2.30 2.40 

k2 (×106N/m) 3.10 2.50 3.40 3.30 

k3 (×106N/m) 3.20 3.20 3.40 3.40 

k4 (×106N/m) 3.30 3.20 3.50 3.40 

i
k∑ (×106N/m) 12.50 12.50 12.60 12.50 

Reliability 

index(operator 

norm) 

β1(ǁA1(y)ǁ∞,2) 2.43 (0.6273) 2.41 2.44 2.42 

β2(ǁA2(y)ǁ∞,2) 2.40 (0.7454) 2.44 2.43 2.46 

β3(ǁA3(y)ǁ∞,2) 2.53 (0.9168) 2.41 2.46 2.42 

Efficiency 
Time/h 0.55 1.83 1.96 17.30 

Ratio 1.0 3.32 3.56 31.5 



 

 

4.3 Example 3: Cost design optimization of six-story steel frame structure 334 

The third example focuses on a six-story planar steel frame structure, as 335 
illustrated in Fig. 6. Each floor of the structure has a mass of m=5×104kg, with a floor 336 
height of h=3 meters. The beam stiffness is assumed to be infinite. The columns on 337 
each floor are selected from HM steel sections whit specific specifications. The 338 
moment of inertia Ix and section area A of the HM steel sections are considered as 339 
discrete design variables, which can be obtained from Appendix 1. The elastic 340 
modulus of the steel is E=210GPa. Considering a damping ratio of ζ=5% for all 341 
modes, failure occurs if the top displacement of the structure exceeds 0.5m under 342 
Clough-Penzien filtered possesses. 343 

 344 
Fig. 6 Six-story steel frame structure under Clough-Penzien model excitation 345 

The excitation experienced by the structure is modeled using the Clough-Penzien 346 

non-stationary earthquake power spectrum model [35]. The power spectral density 347 

function of the excitation is expressed as: 348 
4 2 2 2 4

02 2 2 2 2 2 2 2 2 2 2 2

4
( )

( ) 4 ( ) 4
g g g

x
g g g f f f

S S
ω ξ ω ω ωω

ω ω ξ ω ω ω ω ξ ω ω
+

=
− + − +

 (34)
 

In this equation, S0 represents the spectral density, which is a constant that is 349 

associated with the intensity of ground motion. The parameters ωg and ξg represent the 350 

characteristic frequency and damping ratio of the soil layer at the site, respectively. 351 

The parameters ξf and ωf are used to filter out the low-frequency portion of the 352 



 

 

earthquake motion. Generally, ξg=ξf and ωf=0.1-0.2ωg. The known parameter values 353 

are: ωg=17.95Hz, ξg=0.72, ωf=0.0856Hz, ξf=0.72, and S0=50.045×10-4m2/s3 under 354 

medium seismic conditions. 355 

The total duration of the excitation is 15s, and the time step for discretization is 356 

∆t=0.01s. The non-stationary process is modulated by a three-stage function [36], as 357 

shown in: 358 
2
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The optimization problem is focused on designing the structure using a total of 359 

20,000 sample groups, with the objective of ensuring that the reliability indexes are 360 

not less than 3.20, while simultaneously minimizing the steel usage. Assuming that 361 

the cross-sectional area of the steel on the i-th floor is represented as Ai, the 362 

optimization objectives are transformed through Eq(34), and the optimization problem 363 

is expressed as: 364 
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 365 
Fig. 7 Operator norm-reliability index mapping function for Example 3 366 

3 2( ) 0.0023 0.0258 0.1236 0.3986β β β βϕ = − + − +  (37) 



 

 

Fig. 7 shows the mapping function for Example 3, with a total of 50 sample 367 

points. This transformed operator norm is employed as a constraint condition within 368 

the optimization algorithm, facilitating to the design and optimization of 20,000 369 

sample groups. 370 

In Fig. 8, the response operator norm for these 20,000 sample groups was 371 

calculated and illustrated. The the red points on the left side correspond to valid 372 

samples with a reliability index greater than 3.2, and the blue points on the right side 373 

represent invalid samples with a reliability index lower than 3.2.Among them, the 374 

optimal design scheme is represented by a pink solid hexagon. 375 

 376 
Fig. 8 Scatter plot of operator norm-steel usage 377 

Table 4 Optimization results for Example 3 378 

Optimization parameters Proposed 
method AK-MCS Response 

surface 
Monte 
Carlo 

Steel 

specification 

6th floor HM244×175 
×7×11 

HM244×175 
×7×11 

HM244×175 
×7×11 

HM244×175 
×7×11 

5th floor HM294×200 
×8×12 

HM244×175 
×7×11 

HM294×200 
×8×12 

HM294×200 
×8×12 

4th floor HM294×200 
×8×12 

HM294×200 
×8×12 

HM294×200 
×8×12 

HM294×200 
×8×12 

3rd floor HM294×200 
×8×12 

HM294×200 
×8×12 

HM340×250 
×9×14 

HM294×200 
×8×12 

2nd floor HM294×200 
×8×12 

HM340×250 
×9×14 

HM340×250 
×9×14 

HM294×200 
×8×12 

1st floor HM340×250 
×9×14 

HM482×300 
×11×15 

HM340×250 
×9×14 

HM340×250 
×9×14 

β (ǁA(y)ǁ∞,2) 3.21 (0.1886) 3.27 3.26 3.21 

Steel usage（m3） 26.99×10-2 30.39×10-2 32.50×10-2 26.99×10-2 

Efficiency 
Time/h 0.97 4.98 5.29 60.50 

Ratio 1.0 5.13 5.45 62.4 



 

 

The steel specifications used on each floor are provided in Table 4. By 379 

comparing with the alternative methods, it can be found that the proposed method 380 

meets both accuracy and efficiency requirements. In the optimization result, the 381 

minimum steel consumption of the structure that can meet the probability constraint is 382 

26.99×10-2m3. 383 

4.4 Example 4: Topology optimization of twelve-story braced composite steel 384 

frame 385 

The fourth example focuses on a twelve-story planar braced composite steel 386 

frame, as illustrated in Fig. 9. Each floor of the structure has a mass of 25×104kg, with 387 

a floor height of 4.2 meters and a bay width of 6.0 meters. The stiffness of the beams 388 

is assumed to be infinite. The columns are constructed by HM594×302×14×23 389 

specification steel materials, with an elastic modulus of E=210GPa and a section 390 

moment of inertia of Ix=137000cm4. The structure incorporates diagonally-crossed 391 

rods as braces, providing a lateral stiffness of k=0.67×108N/m. Considering a damping 392 

ratio of ζ=5%, the structure is subject to the same excitation model as in Example 3, 393 

except with S0=200.177×10-4m2/s3 for rare earthquakes. Failure occurs if the top 394 

displacement of the structure exceeds 0.8m, considering a total of m=50000 sample 395 

groups. Two types of reliability design optimization problems are conducted for the 396 

structure. 397 

Optimization problem 1: The objective is to minimize the number of braces 398 

while ensuring that the reliability index of the structure is not less than 3.20, and 399 

provide the best layout plan. 400 

Optimization problem 2: The objective is to calculate the maximum reliability 401 

index of the structure while keeping the number of braces arranged below 40, and 402 

provide the best layout plan. 403 



 

 

 404 
Fig. 9 Model of a 12-story braced composite steel frame 405 

 406 
Fig. 10 Operator norm-reliability index mapping function for Example 4 407 

6 5 4 3 2( ) 0.02 0.39 2.57 8.79 16.52 16.02 5.20β β β β β βϕ β= − + − + − + −  (38) 

Fig. 10 presents a mapping function for Example 4 with 100 sample points. Based 408 

on Eq(35), the original optimization problems are transformed. Optimization problem 409 

1 can be expressed as follows: 410 
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 411 
Fig. 11 Scatter plot of sample operator norm-brace quantity for Problem 1 412 

Table 5 Optimization results for Problem 1 of Example 4 413 

Method Floor 
Brace 
No. 

Floor 
Brace 
No. 

Floor 
Brace 
No. 

Total 
No. 

β 
Efficiency 

Time/h Ratio 

Proposed 
method 

1st 5 5th 3 9th 1 

32 3.21 1.47 1.0 
2nd 5 6th 3 10th 1 
3rd 4 7th 2 11th 1 
4th 4 8th 2 12th 1 

AK-MCS 

1st 4 5th 5 9th 0 

33 3.21 10.54 7.17 
2nd 4 6th 5 10th 0 
3rd 5 7th 5 11th 0 
4th 3 8th 1 12th 1 

Response 
surface 

1st 5 5th 3 9th 1 

33 3.20 11.36 7.73 
2nd 4 6th 3 10th 0 
3rd 5 7th 4 11th 0 
4th 4 8th 4 12th 0 

Monte 
Carlo 

1st 5 5th 4 9th 0 

33 3.23 152.39 103.7 
2nd 4 6th 3 10th 1 
3rd 5 7th 5 11th 1 
4th 4 8th 1 12th 0 



 

 

With Eq(35), Optimization Problem 2 can be transformed into: 414 

 415 
Fig. 12 Scatter plot of sample operator norm-brace quantity for Problem 2 416 

Table 6 Optimization results for Problem 2 of Example 4 417 

Method Floor 
Brace 
No. 

Floor 
Braces 

No.  
Floor 

Brace 
No. 

Total 
No. 

β 
Efficiency 

Time/h Ratio 

Proposed 
method 

1st 5 5th 5 9th 2 

40 3.54 1.42 1.0 
2nd 5 6th 5 10th 0 

3rd 5 7th 4 11th 2 

4th 5 8th 2 12th 0 

AK-MCS 

1st 5 5th 5 9th 3 

40 3.46 9.92 6.99 
2nd 4 6th 2 10th 0 

3rd 5 7th 5 11th 3 

4th 5 8th 3 12th 0 

Response 
surface 

1st 4 5th 5 9th 2 

40 3.41 10.13 7.13 
2nd 5 6th 4 10th 2 

3rd 5 7th 4 11th 0 

4th 5 8th 3 12th 1 

Monte 
Carlo 

1st 5 5th 3 9th 0 

40 3.46 150.87 106.2 
2nd 5 6th 5 10th 0 

3rd 5 7th 4 11th 3 

4th 5 8th 4 12th 1 

The calculation and analysis of the structural dynamic response operator norm 418 

for the extracted samples are based on the transformed optimization problems. The 419 

distribution maps of the operator norm-bracing quantity for the 50000 sample groups 420 

are presented in Figs. 11 and 12. In these sample points, the red region represents 421 



 

 

valid samples, while the blue region represents invalid samples. The optimal design 422 

points are identified by finding the minimum number of brace layouts and the 423 

minimum operator norm value from the valid samples. These optimal design points 424 

are depicted as black solid hexagonal in Figs. 11 and 12. 425 

The analysis findings demonstrate that in order to satisfy the reliability index is 426 

not less than 3.20, a minimum of 32 braces must be installed in the structure. 427 

Furthermore, it is possible to achieve the highest reliability index of 3.54 while 428 

ensuring that the number of braces does not exceed 40.. After comparison, it is 429 

evident that the proposed method exhibits significant efficiency advantages, and 430 

achieved better design schemes. The optimal layout schemes for braces in the two 431 

optimization problems are provided in Tables 5 and 6 respectively, while the specific 432 

layout scheme is illustrated in Fig. 13. The analysis demonstrates that placing a larger 433 

number of brace rods at the bottom of the structure and gradually transitioning 434 

upwards can enhance the reliability performance and improve the rationality of the 435 

design. 436 

 437 
(a)Optimization result 1               (b)Optimization result 2 438 

Fig. 13 Optimization layout scheme for Example 3 439 

5. Conclusion 440 

This study proposes an efficient method based on mapping between reliability 441 

and operator norm for dynamic reliability-based design optimization. With the 442 



 

 

mapping, the probability constraints can be transformed into deterministic constraints 443 

in reliability optimization problems, effectively improving the efficiency of RBDO 444 

under random excitation. The accuracy and applicability of the proposed method are 445 

verified through numerical examples, leading to the following key findings: 446 

(1) Based on the K-L expansion of random excitations, the mapping relationship 447 

between first excursion reliability and operator norm can be effectively established 448 

within the the operator norm framework. 449 

(2) The established mapping function enables the transformation of complex 450 

reliability design optimization problems into deterministic optimization problems, 451 

eliminating the need for reliability analysis in the optimization process while 452 

preserving the original optimization objectives. Compared to conventional RBDO 453 

methods, the proposed method demonstrates higher accuracy and efficiency. In certain 454 

scenarios, the optimization efficiency can be improved by over 100 times. 455 

(3) The proposed method proves to be effective in addressing 456 

reliability-constrained or cost-constrained optimization problems and demonstrates 457 

wide applicability in various optimization scenarios, including parameter optimization, 458 

cost optimization, and topology optimization. 459 
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Appendix 

Appendix Table 1 HM Steel Specification Table 

HM Steel Specification 

h×b×t1×t2(mm) 

Cross-sectional 

area A(cm2) 
Mass m(kg/m) 

Moment of 

inertia Ix(cm4) 

148×100×6×9 27.25 21.4 1040 

194×150×6×9 39.76 31.2 2740 

244×175×7×11 56.24 44.1 6120 

294×200×8×12 73.03 57.3 11400 

340×250×9×14 101.5 79.7 21700 

390×200×10×16 136.7 107 38900 

440×300×11×18 157.4 124 56100 

482×300×11×15 146.4 115 60800 

488×300×11×18 164.4 129 71400 

582×300×12×17 174.5 137 103000 

588×300×12×20 192.5 151 118000 

594×302×14×23 222.4 175 137000 
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