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Abstract

The identification of patterns and underlying characteristics of natural or engineering

time-varying phenomena poses a challenging task, especially in the scope of simulation mod-

els and accompanying stochastic models. Because of their complex nature, time-varying

processes such as wind speed, seismic ground motion, or vibrations of machinery in the

presence of degradation oftentimes lack a closed-form description of their underlying evolu-

tionary power spectral density (EPSD) function. To overcome this issue, a wide range of

measurements exist for these types of processes. This opens up the path to a data-driven

stochastic representation of EPSD functions. Rather than solely relying on time-frequency

transform methods like the familiar short-time Fourier transform or wavelet transform for

EPSD estimation, a probabilistic representation of the EPSD can provide valuable insights

into the epistemic uncertainty associated with these processes. To address this problem, the

evolutionary EPSD function is relaxed based on multiple similar data to account for these

uncertainties and to provide a realistic representation of the time data in the time-frequency

domain. This results is the so-called relaxed EPSD (REPSD) function, which serves as

a modular probabilistic representation of the time-frequency content of stochastic signals.

For this purpose, truncated normal distributions and kernel density estimates are used to
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determine a probability density function for each time-frequency component. The REPSD

function enables the sampling of individual EPSD functions, facilitating their direct appli-

cation to the simulation model through stochastic simulation techniques like Monte Carlo

simulation or other advanced methods. Even though the accuracy is highly dependant on

the data available and the time-frequency transformation method used, the REPSD rep-

resentation offers a stochastic representation of characteristics used to describe stochastic

signals and can reduce epistemic uncertainty during the modelling of such time-varying pro-

cesses. The method is illustrated by numerical examples involving the analysis of dynamic

behaviour under random loads. The results show that the method can be successfully em-

ployed to account for uncertainties in the estimation of the EPSD function and represent

the accuracy of the time-frequency transformation used.

Keywords: Evolutionary power spectral density function, Stochastic processes, Stochastic

dynamics, Uncertainty quantification, Stochastic signals, time-frequency transformation

1. Introduction1

The description of natural phenomena in the context of simulation models is a chal-2

lenging problem. These phenomena such as wind and wave movements, seismic activities3

or climate changes are related to complex, interacting high-dimensional physical models.4

Also, engineering problems, such as vibrations of a component under changing material5

behaviour, can often only be modelled with an acceptable level of accuracy using complex6

models and experiments. Since these phenomena present time-varying properties in engi-7

neering they are often referred to as environmental processes or from a mathematical and8

modelling perspective, stochastic processes. In civil engineering, stochastic dynamics, and9

structural analysis, stochastic processes play a crucial role [1, 2, 3]. Stochastic dynamics is10

concerned with the study of probabilistic systems that evolve over time and has applications11

in structural reliability analysis. Specifically, the treatment of random vibrations is impor-12

tant in this field [4, 5, 6, 7]. To ensure the reliability of a structure, analysts need to consider13
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the potential impact of environmental processes such as wind, wave, or seismic loads at the14

design stage or carry out analyses for existing structures [8]. This often requires complex15

simulations to accurately predict how the structure will respond to these processes and to16

ensure that it meets safety requirements.17

In addition to the physical models, it is possible to introduce a complementary stochastic18

model, which includes the formulation of suitable stochastic processes. To approximate19

stochastic processes mainly three branches of approaches have been established up to now20

[9]:21

• The Karhunen-Lòeve (K-L) expansion, in which for engineering processes orthogonal22

functions in time and space are combined linearly [10]. To describe the stochastic23

processes, a formulation of the corresponding covariance functions must be available.24

K-L can be used to simulate non-Gaussian and non-stationary stochastic processes25

[11].26

• Sampling representations, which are in the classical representation mostly suitable for27

reproducing a full signal by deterministic samples available, however, methods like the28

Withaker-Shannon interpolation require a limited bandwidth of the analysed processes29

[12].30

• Spectral representation methods, based on the formulation of a power spectral density31

(PSD) function [13].32

From an engineering perspective, when regarding environmental loads, formulating PSD33

functions has advantages in vibration analysis, as they provide a method of directly char-34

acterising the frequency content of stochastic signals. Artificial stochastic signals can be35

considered as deterministic realisations of stochastic processes, whereas signals themselves36

can also be measurements. Via PSD function estimation procedures, a signal can be decom-37

posed into its harmonic components. In particular, the amplitudes and their distribution38

over the frequencies are determined. However, to accurately calculate the PSD function39

of a signal, certain mathematical conditions are necessary, such as dealing with continuous40
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signals and signals of infinite length. Since these requirements cannot be met in practice,41

estimators are used.42

Over time, different spectral density estimators have been developed that offer certain43

advantages and disadvantages. In the stationary case, common estimators such as the44

periodogram [7], Welch’s method [14], or Bartlett’s method [15, 16] are widely employed.45

For an overview, refer to [17]. These estimators all rely on the discrete Fourier transform46

(DFT) [18]. Since signals of environmental processes often have a non-stationary character47

which results in a frequency power change in time, so-called evolutionary PSD (EPSD)48

functions need to be considered. These take into account the time-varying behaviour of49

a signal and thus provide a more realistic representation in the resulting time-frequency50

domain [19, 20, 21]. Different time-frequency transformation methods exist, with certain51

advantages and disadvantages, particularly in the quality of the transformation as well as52

the resolution in the time-frequency domain. An EPSD function can be estimated using,53

among others, the short-time Fourier transform (STFT) [7, 22], wavelet methods [23, 24],54

or the recently developed multi-taper S-transform (MTST) [25].55

Once a suitable estimation of a PSD or EPSD is available, artificial stochastic signals56

can be generated using the Spectral Representation Method (SRM), either in the stationary57

case [13] or in the non-stationary case [26]. The latter is of interest in this work. For the58

generation of stochastic signals, all stochastic simulation methods are applicable, such as the59

widely used Monte Carlo (MC) simulation [27, 28] but also the usage of advanced techniques60

such as subset simulation [29], line sampling [30], or directional importance sampling [31]61

are possible.62

However, determining these signals via a transformation method of choice and even63

further utilise these representations for e.g. structural reliability analysis is challenging64

due to the presence of uncertainties [32]. Uncertainties can be divided into aleatory and65

epistemic uncertainties [33], while on the one side, aleatory uncertainties describe irreducible66

stochastic conditions, epistemic uncertainties are referred to as reducible uncertainties. If67

both types of uncertainties occur simultaneously and are not separable, they are called68

hybrid uncertainties [34, 35]. The assessment of uncertainties in simulations, analyses, and69
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engineering systems is ubiquitous. If uncertainties are incorrectly quantified, consequences70

can be disastrous. For example, a building under given loads could suffer devastating damage71

that severely compromises the structural reliability. Different approaches to quantify and72

propagate uncertainties are available, such as precise probabilistic methods [36, 37], non-73

probabilistic methods [38] or imprecise probabilities [39].74

In general, stochastic signals and specifically real data records are subject to uncertain-75

ties. These can result, for example, from poorly calibrated sensors, measurement errors,76

an insufficient amount of data, while damaged or failed sensors can result in records with77

missing data. Furthermore, the presence of uncertainties is a direct result of the inherent78

complexity found in natural environmental processes. In addition, due to the mentioned79

mathematical requirements on the signal for the time-frequency transformations, only esti-80

mates of the EPSD function can be determined, which leaves the epistemic uncertainty of81

the EPSD functions unidentified. To overcome these issues, a range of PSD and EPSD func-82

tion estimation techniques involving uncertainty quantification have been proposed. Missing83

data problems are treated in [40, 41, 42], an interval-valued PSD function from similar data84

has been derived in [43], while in [44] a set of accelerograms is analysed to derive reliability85

bounds. An interval-valued signal can be transformed to an interval-valued PSD function86

using the interval DFT transform [45]. In particular, the steadily growing databases, for87

instance [46, 47, 48], contribute to a better understanding of environmental processes and88

the quantification of uncertainties.89

In addition to the above mentioned approaches, the authors of this work derived a prob-90

abilistic model of a set of similar PSD functions, the relaxed PSD function [49]. However,91

the proposed methodology is only valid for stationary and Gaussian stochastic signals. The92

non-stationary case needs to involve the EPSD function estimation for a more accurate rep-93

resentation of environmental processes. Additionally, the spectral representation by SRM94

and the stochastic simulation need to be reconsidered. In this work a modular framework for95

the representation of non-stationary stochastic signals via EPSD functions using artificial96

stochastic signals generated by the SRM is proposed. The EPSD function estimation will97

be carried out using the recently developed MTST [25]. Once the ensemble is derived, each98
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spectral density per time-frequency component will be transformed into a probability density99

function. To underline the modularity of the construction of a REPSD function, simple trun-100

cated normal distributions will be used as basis, additionally kernel density estimations are101

implemented to construct custom probability density functions (PDF) in the time-frequency102

space and to show, that arbitrary PDF types could be implemented. Both approaches have103

their advantages and disadvantages, depending on the amount and appearance of the data.104

The resulting REPSD function is used to perform numerical simulations of the dynamic105

behaviour of systems subjected to environmental processes by sampling individual EPSD106

functions applied to the model via MC simulation.107

This work is organised as follows: Basic concepts of the SRM and EPSD function es-108

tablishment, important for the remainder of this work will be explained in Section 2. In109

Section 3 the methodology of constructing the REPSD function will be elaborated. The110

obtained REPSD model will be validated by MTST estimations of EPSD functions and com-111

pared to the source EPSD of an artificial environmental process. To illustrate the strengths112

and advantages of the REPSD function, two different numerical examples are presented in113

Section 4. The final conclusions and a critical discussion of the obtained results are given in114

Section 5.115

2. Preliminaries116

In this section necessary methodologies for the REPSD representation are introduced.117

These mainly include the representation of non-stationary stochastic processes by a spectral118

representation (Section 2.1), the estimation of EPSD functions from generated stochastic119

signals by the state of the art MTST method (Section 2.2) and revisiting the kernel density120

estimation (KDE), which is used to determine PDF representations during the REPSD121

construction (Section 2.3).122

2.1. Representation of non-stationary stochastic processes123

A convenient way to generate sample functionsX(t) that represent non-stationary stochas-124

tic processes in a time-domain is presented in [26]. For a source EPSD SX(ω, t) the spectral125
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representation of non-stationary stochastic processes can be stated as126

X(t) =
√
2
Nω−1
∑

n=0

√

2SX(ωn, t)∆ω cos(ωnt+ ϕn), (1)

in which,127

ωn = n∆ω, n = 0, 1, 2, . . . , Nω − 1,

and ∆ω =
ωu

Nω

,
(2)

t ∈ [0, T ] is the time domain with T being the ultimate time. ωn are discretised frequency128

values and ωu = fs/4π is the upper cutoff-frequency determined by the time discretisation129

∆t and sampling ratio fs = 1/∆t. ϕn, with n = 0, 1, . . . , Nω − 1 are uniformly distributed130

phase angles in the range [0, 2π]. Nt is the desired number of time instances, such that131

∆t = T/Nt. SX(ωn, t) in Eq. (1) is the source EPSD and could be of arbitrary shape. A132

non-separable EPSD as in [50] has been chosen as source EPSD:133

SX(ω, t) =
( ω

5π

)2

· exp [−0.15t] · t2 · exp
[

−
( ω

5π

)2

t

]

. (3)

For a discretised time-frequency space this relation is depicted in Fig. 1. As already estab-134

lished in the SRM [13], if Nω → ∞ it can be assumed that the sample function in Eq. (1)135

presents an accurate simulation for a non-stationary stochastic process. Since only a limited136

number Nω of approximation terms in Eq. (3) is feasible, the sample functions in X(t) are137

referred to as stochastic signals or simply signals.138

2.2. Evolutionary power spectral density estimation139

The generated sample functions in Eq. (1) are regarded as arbitrary stochastic signals140

but with the same source EPSD. A challenging task remains to find a robust estimator for141

this source EPSD when considering only a finite number of generated stochastic signals.142

In [25] the MTST method, which exhibits a significant variance reduction in comparison to143

other EPSD estimation procedures such as the Priestley method and wavelet-based methods,144

has been presented. Given a non-stationary stochastic signal X(t) and M time-frequency145
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Figure 1: Non-separable EPSD function (Eq. (3)) for ω ∈ [0, 32.17] rad/s and t ∈ [0, 50] s.

Hermite windows, denoted as Ψm(ω, t), m = 0, 1, ...,M − 1, with zero-padding X0(t) =146

{01, . . . , 0Nt/2, X(t), 01, . . . 0Nt/2−1}, the so-called S-transform is given to be147

sm(ω, t) =
c̄

∑

k=−c
Ψm(ω, k∆t− t) ·X0(k∆t) · exp [−i2πωk∆t] ·∆t (4)

in the case that c, c̄,→ ∞, Eq. (4) has the maximum accuracy dependant only on M . In this148

study c = ⌈Nt/2⌉+ 1 and c̄ = ⌊Nt/2⌋. Please note that with the zero-padding a continuous149

window over the time-domain can be regarded, i.e. X0(t) is treated as a periodic signal.150

The Hermite windows are constructed as following151

Ψ0(ω, t) = π−1/4 ·
√

w(ω) · exp
[

−1/2 · w(ω)2 · t2
]

,

Ψ1(ω, t) =
√
2π−1/4 · w(ω)3/2 · t · exp

[

−1/2 · w(ω)2 · t2
]

,

Ψm(ω, t) =
√

2/m · w(ω) · t ·Ψm−1(t, ω)−
√

(m− 1)/m ·Ψm−2(t, ω).

(5)

With the shape function152

w(ω) = a

[

1 +
b2 · |ω/fs||c|+1

|b| · |ω/fs||c|+1 + 1

]

, (6)

and parameters a, b, c. A detailed study on the choice of these parameters can be found in153

[51]. With the full definition of the Hermite windows, the estimator for SX(ω, t) is established154
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as155

ŜX(ω, t) =
1

M

M−1
∑

m=0

s∗m(ω, t)s
T
m(ω, t). (7)

Here (·)∗ represents the conjugate operator, and (·)T the transpose operator.156

2.3. Kernel density estimation157

The KDE is a method of probability theory and statistics that allows to estimate the158

PDF of a random variable without assuming a specific distribution. A brief explanation is159

given here, while the reader is referred to [52, 53, 54] for a detailed explanation.160

A PDF is estimated by applying a kernel function to each individual data point. The161

kernel function serves as a weighting factor to account for the contributions of each data162

point to the estimated density. Summing up all kernel functions will result in the estimated163

PDF. The choice of kernel function and its width is crucial for the accuracy of the estimate164

because it determines the shape of the estimated PDF. Typical kernel functions include the165

Gaussian distribution or the Epanechinikov function. The KDE is often used to gain an166

understanding of the distribution of the data, or as a basis for further analysis.167

The estimation of the PDF using KDE can be expressed by168

f̂ (x) =
1

n

n
∑

i=1

1

h
Kh

(

x− xi

h

)

, (8)

where f̂ is the estimated probability density, Kh is the kernel function, h is the bandwidth169

of the kernels, x is the point at which the PDF is estimated and xi are the observations, i.e.170

the available data points. In this work, a Gaussian kernel is utilised.171

The bandwidth has a significant impact on the quality of the resulting estimated PDF.172

For example, setting the bandwidth too high can lead to an over-smoothed result, while173

choosing a bandwidth that is too low can overweight individual data points, leading to an174

under-smoothed PDF characterised by multiple sharp peaks. There are several ways to find175

an optimal bandwidth for the kernels. Assuming that the PDF to be estimated is Gaussian176

distributed, a well-known rule is Scott’s rule [55], which incorporates the number of data177
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points n as well as their standard deviation σ178

hopt =

(

4σ5

3n

)1/5

≈ 1.06σn−1/5. (9)

Another rule is Silverman’s rule [52], which takes into account the interquartile range179

IQR in addition to the number of data points n and their standard deviation σ180

hopt = 0.9min

(

σ,
IQR

1.34

)

n−1/5, (10)

where IQR = Q3 −Q1 with Q1 as lower quartile and Q3 as upper quartile.181

3. Methodology182

In this section the novel estimation procedure for the REPSD function is presented.183

3.1. Relaxed evolutionary power spectral density function184

The novel construction of REPSD functions is particularly suitable when many records185

are available for particular phenomena. The aim is to reduce the epistemic uncertainty when186

describing stochastic signals. When records of environmental or natural processes such as187

wind loads, seismic ground motions, or other vibrations are available, it is still not deter-188

mined which EPSD function is a good approximation for this signal aggregation. For a189

thorough analysis, it is also interesting to examine whether these phenomena can be con-190

sidered directly related or not. The latter challenge is not part of this method and would191

require additional preliminary data analysis. However, from a modelling perspective, a com-192

mon characteristics formulation of environmental processes is essential to obtain simulation193

results. Furthermore, a stochastic, relaxed representation of EPSD functions for stochastic194

signals could lead to a new modelling perspective, as the representation of main features,195

such as first and second order moments, of natural processes can then be determined by196

statistical methods. Consider an ensemble that consists of a number of different EPSD esti-197

mations from stochastic signals. Fig. 2(a) shall represent signals from a natural process. The198

estimation procedure can be chosen according to the analyst’s needs, throughout this work199

the presented MTST method in Section 2.2 with the estimator in Eq. (7) is used. This set of200
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0 10 20 30 40 50

-4

-2

0

2

4

(a) Non-homogeneous stochastic signals with Nω = 256

(b) Ensemble {ŜXi
}, i = 1, 2, ..., 50 for t ∈ [7.6, 8.8] s and

ω ∈ [4.75, 5.4] rad/s

Figure 2: 50 source signals obtained from Eq. (1)(left), boxplot with full range and quartiles for the ensemble

in {ŜXi
} (right).

EPSD estimations with cardinality Ne can be stated as an ensemble: {ŜXi
}, i = 1, 2, ..., Ne.201

Here Ne is determined by the number of regarded records available, containing either mea-202

surements or artificially generated stochastic signals (as in Fig. 2(a)). Each EPSD function203

estimation, denoted by the index i, is discretised over the frequency and time domain, i.e.204

si,ωn,tk = ŜXi
(ωn, tk), n = 0, 1, . . . , Nω − 1, k = 1, . . . , Nt. The ensemble consists of the205

data-driven input collection of EPSD estimations which lay the foundation of the stochastic206

input space for the REPSD function described below. In Fig. 2(b) the MTST estimations207

of the EPSD functions are shown, the label abbreviations of the boxplot for each discretised208

frequency-time point represent the following: Min.: minimum value, Q1: lower quartile,209

Median: median value, Q2: upper quartile, Max.: maximum value of the data. It is obvious210

that the time-frequency transformation from stochastic signals delivers a massive amount of211

statistical data.212

From the ensemble, following statistical moments are derived for each discretised point213
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of the EPSD ensemble214

µωn,tk =
1

Ne

Ne−1
∑

i=0

si,ωn,tk , (11a)

σωn,tk =

√

√

√

√

1

Ne

Ne−1
∑

i=0

(si,ωn,tk − µωn,tk)
2, (11b)

with ωn = n∆ω, n = 0, 1, . . . , Nω − 1, and tk = k∆t, k = 1, 2, . . . , Nt. Eq. (11a) and215

Eq. (11b) need to be calculated for each discretised frequency ωn and time instance tk.216

With this statistical information for each discretised point a probability density function217

can be constructed. In theory, establishing arbitrary distribution types is possible. For the218

sake of clarity, first, a simple distribution type is chosen. Assume a truncated normal (TN)219

distribution for each point. These are then given to be220

fTN
ωn,tk

(s;µωn,tk , σωn,tk , lωn,tk , uωn,tk) =

1

σωn,tk

φ(
s−µωn,tk

σωn,tk

)

Φ(
uωn,tk

−µωn,tk

σωn,tk

)− Φ(
lωn,tk

−µωn,tk

σωn,tk

)
,

(12)

and φ(η) = 1√
2π

exp
(

−1
2
η2
)

is the standard normal distribution, Φ(ζ) = 1
2

(

1 + erf(ζ/
√
2)
)

is221

the corresponding cumulative distribution function. The lower and upper truncation bounds222

are given to be lωn,tk and uωn,tk . The influence of the truncation bounds has been discussed for223

the frequency domain in [49]. In this study the configuration lωn,tk = 0 and uωn,tk = 2µωn,tk224

proved to be more robust. The TN distribution yields a smooth representation of the EPSD225

function values for each discretised point. Thus, outliers or gaps in the EPSD function value226

are weighted less.227

In some cases, however, it may be useful to represent the data more in its natural228

appearance. In such a case, the KDE provides a much more inclusive representation of the229

data. This can result in multiple peaks instead of smooth curve as in the case of the TN230

distribution. If the data set is to be represented by KDE, Eq. (8) can be reformulated into231

its KDE-driven REPSD form232

f̂KDE
ωn,tk

(x; si,ωn,tk , hωn,tk) =
1

Ne

Ne
∑

i=1

1

hωn,tk

Khωn,tk

(

x− si,ωn,tk

hωn,tk

)

. (13)
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This equation is evaluated for each time-frequency point (ωn, tk). The parameter hωn,tk de-233

scribes an adaptive bandwidth for the KDE, which will be determined according to Eq. (10)234

and the respective available EPSD values at the corresponding time-frequency point.235

For both types of distribution functions it can be argued why they are superior, but this236

always depends on the individual case, as the form and number of data are important for237

this assessment. For a high number of data, a truncated normal distribution may be better,238

as this may well lead to a smooth representation. Also, if a clear interval of the ensemble239

data can be identified the TN approach would be better because this would make the choice240

of truncation bounds for the PDF definition easier. If there is less data or multiple PDF241

peaks are expected, a KDE may provide better results, since gaps and multiple peaks, for242

instance, can be represented easier. However, here over-fitting could appear, in these cases243

a careful examination of the sampled REPSDs about the ensemble and the underlying data244

needs to be carried out. Special consideration to outliers must be given, in particular for245

KDE approaches, because again here an over representation of outlier data could occur.246

Note that the distributions presented are only two possibilities that could be used for the247

REPSD model. Additionally, no correlations or dependencies have been considered so far.248

To obtain a realisation of a truncated normal REPSD (TN-REPSD) named TSX(ωn, tk), for249

each ωn and tk a sample is generated from the respective distributions in Eq. (12). To obtain250

a realisation of a kernel density estimated REPSD (KDE-REPSD) named KSX(ωn, tk), for251

each ωn and tk a sample is generated from the respective distributions in Eq. (13). In a252

sense, Eq. (12) and Eq. (13) can be seen as the description of uncorrelated random fields.253

3.2. Optimised MTST parameters & error estimates254

The MTST estimation for each signal in Fig. 2(a) is dependant on the choice of the255

parameters a, b, c of the window function in Eq. (6) and the number of Hermite window256

orders M used. Since the source EPSD for the regarded signals is known as in Eq. (3), it257

is possible to formulate an objective function. The objective function, also later on used as258

error estimate, is formulated according to the Frobenius norm of matrices. Respectively for259

two arbitrary EPSDs a residual matrix of the comparison of the two is stated as Sres(ωn, tk) =260
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S1(ωn, tk) − S2(ωn, tk) for n = 0, 1, . . . , Nω − 1, k = 1, . . . , Nt. For this residual matrix the261

Frobenius norm is used to formulate an objective function and error estimate by262

||Sres(ωn, tk)||F =

√

√

√

√

Nω−1
∑

i=0

Nt
∑

j=1

|Sres(ωi, tj)|2. (14)

Following constraints for the MTST parameters are introduced 0.001 ≤ a ≤ 1, 0.001 ≤263

b ≤ 30, 0.001 ≤ c ≤ 1, and M ∈ 1, 2, . . . 10, these constraints were chosen by the authors264

after assessing the parameter discussion in [51]. For the minimisation of the residual matrix265

a genetic algorithm optimisation was used as established in [56]. Following objective is266

minimised once before the REPSD is constructed:267

argmin
a,b,c,M

{

||Sres0(ωn, tk, a, b, c,M)||F
}

, (15)

where in this specific case Sres0(ωn, tk) = SX(ωn, tk)−ŜX(ωn, tk), which defines the Frobenius268

norm between the source EPSD and the mean of one a priori chosen ensemble. The formal269

calculation of the first and second order moments for the ensemble date can be found in270

Appendix A.271

3.3. Error analysis272

In Fig. 3, a single MTST estimation of one arbitrarily chosen signal in Fig. 2(a) is273

depicted. In Fig. 4, a single realisation of the TN-REPSD is shown. Whilst the MTST274

estimation is showing gaps for specific parts of the EPSD, the by TN-REPSD generated275

sample EPSD is resembling the source EPSD in Fig. 1.276

The mean of the MTST estimations for all ensemble members is robust and yields a277

good approximation. But a single TN-REPSD sample, as in Fig. 4, shows in comparison to278

a single MTST estimation a better resemblance to the source EPSD due to the construc-279

tion of a non-correlated random field that describes the ensemble’s statistics in frequency280

and time domain. For all error evaluations, the direct absolute differences between two281

EPSD functions, differences between the ensemble’s mean and REPSD sample’s mean, or282

the equivalent difference for the standard deviation are regarded. Also, the errors according283
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Figure 3: Single MTST estimation for one signal as

depicted in Fig. 2(a).

Figure 4: Single TN-REPSD sample generated

according to Eq. (12).

to the Frobenius norm introduced in Eq. (14) are shown. The error and convergence anal-284

ysis for the TN-REPSD representation and sampling has been performed. The results are285

shown in Fig. 5, here following notations were used: The source EPSD function is described286

as SX(ω, t), the ensemble mean estimated by MTST is ŜX(ωn, tk), the mean of generated287

TN-REPSD samples is denoted as TSX(ω, t).288

In Fig. 5(a) the error between the source EPSD and the mean of the MTST estimates289

is shown. The maximum deviation amounts to ≈ 0.2. This error is the reference, since it290

measures the deviation of the MTST estimation to the source EPSD function. In Fig. 5(b)291

the error between the mean of N10k = 10000 generated TN-REPSD samples and the source292

EPSD is shown. Here it can be seen that the error is similar to the error of the MTST293

estimation mean. This leads to the conclusion that the constructed TN-REPSD is mainly294

dependant on the quality of the EPSD estimation.295

TN-REPSD is not adding any errors but offering a fully stochastic description of an296

estimated EPSD. In Fig. 5(c) the error between the mean of the MTST estimated ensemble297

is compared to the mean of the N10k generated TN-REPSD samples. From the three results298

Fig. 5(a) - 5(c), the error map in Fig. 5(c) exhibits the smallest error. This is expected,299

because the TN-REPSD is constructed out of the Ne = 50 ensemble members. In Fig. 5(d)300
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a convergence analysis based on the MC method has been carried out for different number301

of generated TN-REPSD samples N ∈ {1, 2, 2.5, 3, 4.5, 4, 4.5, 5} · 104. For larger numbers of302

N , the error between the TN-REPSD mean and the ensemble mean is decreasing (blue line,303

blue axis), the error between the source EPSD and the mean of the TN-REPSD is constant304

(orange line, orange axis). The dashed black line refers to the direct error of the source EPSD305

function in comparison to the mean of the MTST ensemble in the Frobenius norm. This306

error serves here as a reference and corresponds to the orange axis. The orange line is below307

this value. All these results in Fig. 5 indicate that the TN-REPSD does not introduce any308

additional error and delivers a good representation of the provided input ensemble (data).309

Additionally, the convergence of the MC simulations follows the law of large numbers, i.e.310

with a larger sample size the error reduces. Similar considerations are carried out for the311

KDE-REPSD in Fig. 6.312

In Fig. 6, the notations are equivalent to the previous graph, KSX(ω, t) denotes the313

mean of the by KDE-REPSD generated EPSD samples. The general trend of these error314

and convergence results are similar. Which again indicates that the stochastic representation315

of the EPSD ensemble is mainly reliant on the EPSD estimation procedure. Please note316

that a different ensemble has been used for the KDE-REPSD analysis, resulting in a slightly317

different error in Fig. 6(a) compared to Fig. 5(a). In Fig. 6(c) higher local errors are observed.318

Especially when comparing with the previous results of the TN-REPSD in Fig. 5(c). Also319

for the KDE-REPSD generated samples it can be observed, that the dashed black line,320

which is the reference error value for the source EPSD estimation, is always larger than321

the orange line. This leads to the conclusion that no additional error is introduced by the322

KDE-REPSD.323

Additionally, for specific time instances t ∈ {0.88 s, 9.86 s, 19.92 s} the EPSD function’s324

frequency space is analysed. The REPSD functions first and second order moment, that are325

used for the construction of the REPSD (input for the distribution functions) are denoted by326

µ[TSX(ω, t)] and µ[KSX(ω, t)], the mean parameter and σ(TSX(ω, t)) and σ(KSX(ω, t)),327

the standard deviation parameter. For the MC sampling of the TN-REPSD and KDE-328

REPSD the same N10k samples from the previous results were used, the mean of the samples329
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(a) Difference of source EPSD SX(ω, t), vs. the mean of the

MTST estimations ŜX(ωn, tk).

(b) Difference of source EPSD and the mean of TN-REPSD

generated samples TSX(ω, t).

(c) Difference of the mean of the MTST estimation and the

mean of TN-REPSD samples.

10000
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20000
25000
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35000

40000
45000
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(d) Three Frobenius norm residuals, the black constant value

belongs to the right (orange) axis.

Figure 5: Errors, differences and convergence analysis for the TN-REPSD samples.
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(a) Difference of source EPSD SX(ω, t), vs. the mean of the

MTST estimations ŜX(ωn, tk).

(b) Difference of source EPSD and the mean of KDE-REPSD

generated samples KSX(ω, t).

(c) Difference of the mean of the MTST estimation and the

mean of KDE-REPSD samples.
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(d) Three Frobenius norm residuals, the black constant value

belongs to the right (orange) axis.

Figure 6: Errors, differences and convergence analysis for the KDE-REPSD samples.
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Figure 7: Stochastic modelling parameters in comparison to the MC samples statistics.

is denoted by TSX(ω, t) and KSX(ω, t), the standard deviation of the samples is denoted330

by σ(TSX(ω, t)) and σ(KSX(ω, t)). The mean over the frequency space Fig. 7(a) and the331

standard deviation over the frequency space Fig. 7(b) were compared.332

3.4. Relaxed non-homogeneous spectral representation method333

In this section the influence of the REPSD models to the generated time signals is334

evaluated. For this purpose, samples from both TN-REPSD (Eq. (12)) and the KDE-335

REPSD (Eq. (13)) are drawn and time signals are generated by using Eq. (1). A total of336

10,000 EPSD samples and corresponding signals are compared to each other. As a reference337

value, time signals generated from the source EPSD given in Eq. (3) are used. The quantity338

considered for comparison is the absolute maximum value max(|ẍ(t)|) of the respective time339

signal ẍ(t), which represents an earthquake ground motion in this case.340

The respective results are given in Fig. 8, where the histograms of the three respective341

cases are given in Fig. 8(a) and the corresponding empirical CDF are depicted in Fig. 8(b).342

It can be clearly seen that the time signals generated by the three models result in a very343

similar behviour in terms of maximum acceleration. All histograms show a similar shape344

and distribution of the maximum values, which consequently is also visible in the empirical345
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(a) Histogram of the maximum acceleration
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(b) Empirical CDF of the maximum acceleration

Figure 8: Histogram and empirical CDF of the maximum acceleration of the generated signals from the

sampled EPSD.

CDFs. It should further be notet, that none of the models has some extreme values in any346

direction, thus the results can be considered of equal quality. However, minor differences can347

be seen, which may result from the influence of the random variables used in the stochastic348

process generation.349

3.4.1. Energy of generated signals350

As a further criterion for comparison, the total energy in the generated signals is con-351

sidered. This analysis was carried out again for both the TN-REPSD (Eq. (12)) and the352

KDE-REPSD (Eq. (13)). The total energy of the signal can be determined by the following353

expression354

E =
Nt
∑

n=0

|x(n)|2. (16)

The analysis has been carried out with the identical signals generated in the previous section.355

In Fig. 9 an overview of the energy content of the signals is given. For better comparability,356

the energy content of the individual signals is arranged in ascending order. It can be clearly357

seen that all models result in signals with similar energy content and energy distribution.358

In addition, Table 1 shows the min, max, mean and median for the 10,000 generated359
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Figure 9: Energy of the generated signals in ascending order of energy content.

Table 1: Comparison of the energy content of the generated signals from the source EPSD, TN-REPSD and

KDE-REPSD. Units are given in [m2 s−4].

Source EPSD TN-REPSD KDE-REPSD

min 89.7147 100.771 103.5557

max 268.484 261.6281 290.2797

mean 170.8195 166.7248 170.7418

median 169.7479 165.661 169.8419

signals. The min value of the source EPSD seems to be slightly smaller than for both360

relaxed models and the max value of the KDE-REPSD is also somewhat higher that the361

other values. However, since these are the extreme values, such a behaviour can be expected.362

In addition, those outlier values may only be reached by a very small portion of samples.363

In this comparison, the mean and median are more meaningful as often a high number of364

samples is applied to the system under investigation. For these two values, it is clear to365

see that they are in the similar range. Thus, it can be concluded that the signals have an366

identical energy content, at least in an averaged sense.367
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4. Numerical examples368

To show possible applications of the REPSD approach, two numerical examples are369

investigated in this work.370

4.1. Finite element model of a steel frame structure with irregular mass371

Underlining the versatility of the REPSD approach, the seismic response of a steel mo-372

ment resisting frame Finite Element Model (FEM) is analysed. The FEM is inspired by the373

results presented in [57], here a numerical model of a low rise moment steel frame with an374

irregular mass on the top storey has been presented and validated. In Fig. 10(a) the steel375

frame’s dimensions, nodes and elements are depicted. White dots represent the conjunction376

nodes, the black dot represents a mass node. The beams and columns are consisting of377

H-shaped fibre steel material elements which are implemented displacement-based via the378

Open System for Earthquake Engineering Simulation (OpenSees) [58, 59]. Following length379

quantities are defined: h0 = 680mm, h1 = 630mm, W = 1600mm, b = 800mm, bF =380

45mm, hT = 100mm, bS = 6mm, hF = 8mm. The material properties of the steel is char-381

acterised by the skeleton stress-strain curve, which defines compression and tension points,382

see Fig. 10(b). Within OpenSees the uniaxial material with hysteretic properties has been383

chosen. The stress-strain points in Fig. 10(b) define the envelope. The model’s columns are384

fixed within the foundation assuming a damping ratio of 0.02.385

For the seismic ground motion, the SRM and both REPSD approaches with the relaxed386

SRM approach have been tested. The source EPSD as in Eq. (3) has been chosen, the SRM387

and relaxed SRM generated processes are scaled down by a factor of 10. MC simulation388

results of the SRM generated signals are depicted in Fig. 11(a), the generated signals serve389

as artificial seismic ground motion signals applied to the FEM. The displacements of the390

FEM’s 4-th storey centre node has been chosen as quantity of interest. Exemplary results391

for the displacement are shown in Fig. 11(b). Each artificial seismic ground motion again392

leads to a different EPSD estimation, as respectively depicted in Fig. 12(a). In Fig. 12(b)393

respectively 3 different response EPSDs of the 50 generated ensemble members are shown.394
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(a) FEM layout and dimensions of the OpenSEES model.
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Figure 10: OpenSEES FEM dimensions and stress-strain relations of the material.

Thus the FEM input as well as output are treated as signals from which EPSDs ensembles395

are constructed.396

For the REPSD generation, in each case the same input signal and therefore EPSD397

ensemble with 50 members has been used. The number of 50 reflects the limited availability398

of data, in this case artificial ground motion records. The same ensemble for each estimation399

has been used in order to ensure comparability between the TN-REPSD and KD-REPSD400

approach. Both REPSD models are then compared with results of 5000 MC simulations.401

The procedure for the input signal, is already validated in the preliminaries. Only a linear402

scaling was applied to the signals, which only leads to smaller EPSD function values but no403

change of the time-frequency components.404

First a comparison of the full time history of the FEM response is carried out, the results405

are shown in Fig. 13(a). A closer comparison of the results for a time interval of 2s is shown406

in Fig. 13(b). In these results it can be seen that the stochastic model of the TN- and407

KDE-REPSD ground motion data is representing the stochastic properties of the process408

with satisfying accuracy.409

During the analysis of the FEM, no closed-form solution of the response EPSD is avail-410

able, therefore the comparison with the MC simulation is considered as benchmark. To411
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(a) Three artificial seismic ground motion signals (obtained by

SRM).
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(b) Corresponding three response results of the FEM’s top

centre node.

Figure 11: FEM frame structure model input and response. The abbreviation gm refers to ground motion.

(a) Three deterministic EPSD estimations by MTST for the

signals in Fig. 11(a).

(b) Corresponding three response EPSD estimations by MTST

for Fig. 11(b).

Figure 12: EPSD estimations by MTST for model input (artificial seismic ground motion) and output

(displacement responses).

24

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



0 5 10 15 20

-30

-20

-10

0

10

20

30

40

MC

TN-REPSD

KDE-REPSD

 

min/max
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KD-REPSD generated signals

0 0.5 1 1.5 2

-30

-20

-10

0

10

20

30

40
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Figure 13: Full response statistics of each 5000 realised displacement histories of the FEM (both figures

share the same legend)

further analyze the accuracy of the REPSD representation, for specific time steps the mean412

µ in Fig. 14 and standard deviation σ in Fig. 15, for the unrelaxed MC EPSD and the413

TN- as well as the KDE-REPSD model are regarded. Unrelaxed refers to the fact, that414

no stochastic model for the EPSD function is considered. Additional stochastic signals are415

generated via MC with the respective REPSD representation, which would be impossible if416

only data or records of signals were available.417

In Fig. 14(a) the mean value of 5000 MC realisations and their unrelaxed MTST es-418

timation of the response EPSD is compared with the constructed TN- and KDE-REPSD419

functions. Please remember that the constructed REPSD representations are estimated out420

of 50 ensemble members. The mean value is compared for different time instants over the421

full frequency range. The different time instants are depicted in a different colour. From422

the results in Fig. 14(a) it can be seen that the TN-REPSD function seems to overestimate423

the benchmark EPSD function. This is specifically true for larger EPSD function values.424

The KDE-REPSD representation yields a better fit. For a closer comparison the frequency425

interval ω ∈ [10 ,15 ] rad/s is regarded in Fig. 14(b). These results also show that the KDE-426

REPSD does yield a better representation of the mean. Here in particular for the peak427
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(a) Comparison of the mean value µ from the unrelaxed MC

simulation result with the TN- and KDE-REPSD mean µ for

different time instances.
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(b) Close up for the peak frequencies mean values.

Figure 14: Comparison of mean EPSD values obtained from direct MC simulation (unrelaxed) and TN- and

KDE-REPSD representation over the frequency for different time instances of interest.

EPSD values.428

Analogous to the analysis of the EPSD functions mean value, the standard deviation σ429

is analyzed in Fig. 15. Different time instants are regarded and the corresponding EPSD430

function values over the frequency space are shown. The full frequency space is depicted in431

Fig. 15(a), where again the TN-REPSD representation is overestimating peak values of the432

response EPSD function standard deviation. For a closer comparison a smaller frequency433

interval can be seen in Fig. 15(b). These results indicate that for the standard deviation of434

the unrelaxed EPSD functions in comparison to the TN- and KDE-REPSD functions, the435

KDE-REPSD representation can reproduce the second order moment accurately from an436

ensemble with just 50 members.437

4.2. Modulated Davenport’s power spectral density function for time dependant fluctuating438

wind speed simulation439

In this example, the empirical Davenport’s spectrum for near ground wind velocities as440

in [60] is regarded and modulated to simulate a time-dependant change of parameters. To441

achieve this, the basic Davenport’s PSD function is modulated by a time dependant term442
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(a) Comparison of the standard deviation σ from the unrelaxed

MC simulation result with the TN- and KDE-REPSD

standard deviation σ for different time instances.
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(b) Close up for the peak frequencies.

Figure 15: Comparison of the standard deviation σ for different EPSDs obtained from direct MC simulation

(unrelaxed) and TN- and KDE-REPSD representation over the frequency for different time steps of interest.

A(t). Similar as in [61] Davenport’s power spectral density function can be written as443

SD
X (ω, t) = A(t)v2∗

(

1200
2πA(t)U10

ω
)2

|ω|
(

1 +
(

1200
2πA(t)U10

ω
)2
)4/3

, (17)

where v∗ = 1.691m/s is the shear velocity of the wind and U10 = 31.88m/s is the 10−min444

average wind speed in 10m height. These are empirically estimated parameters.445

A crude approach is suggested now. The hypothesis is that these two quantities could446

change in time. They could also have a correlation if a change in time is assumed. Without447

respecting the full physics of this complex coupled process at this point and only for the448

purpose of generating a challenging benchmark problem, we can assume that a time mod-449

ulation function of these quantities exists. This time modulation is denoted as A(t) and450

formulated by the following function451

A(t) =

∣

∣

∣

∣

sin

(

1

2
t

)∣

∣

∣

∣

+
1

2
. (18)

With this simple relation, an oscillatory change of the shear velocity and the the 10 −min452
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Figure 16: Modulated Davenport’s separable EPSD function Eq. (3) for ω ∈ [0 ,20 ] rad/s and t ∈ [0 ,30 ] s

average wind speed in 10m height is modelled. This modulation leads to a so-called separa-453

ble EPSD function. This modulated Davenport’s power spectral density function is denoted454

as SD
X (ω, t) and depicted in Fig. 16. Please note that this is an artificial benchmark problem,455

this modulation has not been tested or validated on any real processes connected to Daven-456

port’s PSD function. The resulting wind speed signals and their magnitude, are of course457

highly dependant on the modulation function. And in the spirit of the original Davenport’s458

approach, should be validated through experiments empirically.459

In this work, since the EPSD function is now fully analytically available, the SRM approach460

can be used to model stochastic processes that are non-homogeneous in time and frequency.461

Following parameters are used for the SRM and the domain specification: The total simu-462

lation time TD = 30 s, the upper cutoff-frequency ωD
u = 20 rad/s, the number of discretised463

time steps ND
t = 512, resulting in ∆tD = TD/ND

t . SRM yields again the artificial record464

set of 50 signals, depicted in Fig. 17. From these signals in Fig. 17, respectively the EPSD465

function ensemble members are estimated via the MTST approach. The same optimisation466

procedure as presented in Section 3.2 has been performed resulting in following MTST pa-467

rameters: MD = 2, aD = 0.4104, bD = 25.8864, cD = 0.3738. Three EPSD estimations468
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Figure 17: 50 artificial wind speed signals of the modulated Davenport’s PSD (obtained by SRM)

by MTST are depicted in Fig. 18(a) and the MTST estimation mean of the ensemble is469

represented in Fig. 18(b). The deterministic results as well as the statistical mean of the470

MTST estimations in Fig. 18 suggest that the variance and accuracy of the MTST estima-471

tion is limited. The source EPSD function in Eq. (17) represents a highly nonlinear relation,472

therefore the direct relation of the SRM and the MTST estimation of the EPSD functions473

can introduce further errors, which are not the research focus of this work. The modulated474

Davenport’s PSD function can pose a challenging benchmark example for signal generation475

and EPSD function estimation procedures.476

In this work, it is assumed that due to a limited amount of data, the estimation by MTST477

is the only information of the simulated signals in Fig. 17 that is present. However, applying478

other EPSD estimation procedures like Wavelet, STFT, Hilbert-Huang, or surrogate mod-479

elling techniques is beyond the scope of this work. This means, that the information present480

in Fig. 18 is considered to be the baseline. The hypothesis is, that for some natural pro-481

cesses like earthquakes, wind speed loading and sea wave loading, no source EPSD function482

is available or known. Only measurements and records are available.483

The goal is now to establish an accurate relaxed representation of the EPSD function infor-484

mation within the ensemble, displayed in Fig. 18. This ensemble is hypothetically stemming485

purely from measurements and records. To achieve the relaxed representation of the EPSD486

function, first, the two presented REPSD representations TN-REPSD denoted by T ŜD
X (ω, t)487

and KDE-REPSD, denoted by KŜD
X (ω, t) are constructed as discussed in the preliminar-488
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(a) Three deterministic EPSD estimations by MTST,

representative ensemble members (b) Mean of the MTST EPSD ensemble

Figure 18: The MTST estimation of the EPSD for the by SRM and Eq. (17) generated wind speed signals

in Fig. 17

ies. Then the two representations are analysed for the accuracy of the MTST estimations.489

Therefore, a MC simulation is performed to generate 1000 new EPSD samples from the490

respective REPSD functions. From these samples, the deviation towards the MTST estima-491

tion is analysed. These results are compiled in Fig. 19. Note that for the KDE approach492

in this example, a manual adjustment of the quartiles, introduced in Eq. (10), was nec-493

essary to reduce the modelling error: Q1 = 35.0646 and Q2 = 45.0650, were chosen. In494

particular when looking at the mean of the 1000 generated MC samples for the TN-REPSD495

approach in Fig. 19(a) and the KDE-REPSD approach in Fig. 19(b) it is observable, that496

the TN-REPSD approach does model the mean of the ensemble better. The aforementioned497

adjustment of the quartiles was necessary because outliers of the ensemble were weighted498

too heavily into the establishment of the KDE. For the mean of the generated samples in499

Fig. 19(b), still some outliers can be identified. From this example it seems that the mean500

estimation of the TN-REPSD approach is more robust. This is also reflected in the error501

comparison. Here the mean of the samples for TN-REPSD are compared with the mean502

of the MTST estimated ensemble in Fig. 19(c), and the KDE-REPSD ensemble mean in503

Fig. 19(d). The KDE-REPSD representation does exhibit larger errors over the whole do-504
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main. A contrary result can be observed for the standard deviation of the generated relaxed505

samples in comparison to the standard deviation of the MTST EPSD function ensemble.506

The TN-REPSD generated samples exhibit large areas of a larger error of the standard devi-507

ation, see Fig. 19(e). The KDE-REPSD generated samples on the other hand, even though508

having a similar maximum error range, exhibit errors in a smaller area Fig. 19(f). This509

benchmark example highlights the importance of the choice of the underlying distribution510

type for the relaxed representation of EPSD functions. Since for the TN-REPSD only the511

mean value influences the parameter of the standard deviation (Eq. (11b)), no accurate rep-512

resentation of varying data can be achieved. The KDE approach, with regard to an adjusted513

IQR proofs to be more robust in terms of representing varying data.514

All in all it must be pointed out that any relaxed representation of EPSD functions is515

highly dependant on the EPSD function estimation procedure. For the proposed approaches516

in this example, the REPSD (of any distribution type) can only be as good as the EPSD517

estimation procedure. But several techniques could be applied to improve the stochastic518

model beneath the REPSD representations, such as Bayesian updating procedures, surrogate519

representations or adaptive sampling approaches.520

5. Conclusions521

In this work, a relaxed representation of EPSD functions for natural phenomena mod-522

elled by stochastic processes has been proposed. The scope of this work was built around523

the assumption, that for a battery of natural processes (e.g. seismic ground motion signals,524

wind speed signals, wave load signals, or random vibrations in general) no prior informa-525

tion about the source EPSD functions exists. However, data in the form of measurements526

and records is available. It is possible to estimate EPSD functions deterministically by527

time-frequency transformation methods, such as wavelet transformation, STFT, HHT, or528

the recently developed MTST method. These transformations are only estimators and usu-529

ally are underlying a large variance, especially for complex natural processes. The REPSD530

function representation allows for the straightforward construction of a stochastic model531

of the EPSD function, given data for the analysed processes is available. Not only the532
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Figure 19: Error analysis of the relaxed representations of the MTST estimated EPSD ensemble for the

modulated Davenport’s PSD.
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choice of time-frequency transformation method is modular, but also the underlying distri-533

bution type for the REPSD functions can be adaptively chosen to the specific problem at534

hand. For two simple approaches, a TN and KDE distribution type, this procedure has535

been presented in this work. In addition, it has been shown the the presented method is536

suitable for non-separable as well as separable EPSD functions. Convergence studies have537

been carried out to validate the results and analyse the accuracy. Additionally, the standard538

SRM method has been extended to a relaxed SRM approach, to be able to generate new539

stochastic signals, from the REPSD model. However, at several points in this work, it has540

been shown that the EPSD construction is not only dependant on the choice of the un-541

derlying distribution type, but is also heavily reliant on the accuracy of the time-frequency542

transformation method. An optimisation procedure for the MTST method has been pro-543

posed, which is applicable if further information on the EPSD function space is available.544

The REPSD formulation is applied to practical benchmark examples, where a FEM of an545

multiple degree of freedom system is analysed, here the input, as well as the response, are546

then modelled using the relaxed approach. Additionally, an academic benchmark example547

of a separable EPSD has been established, based on the empirical Davenport’s PSD func-548

tion, which has been modulated to incorporate temporal features. The relaxed approach549

is used to construct a model that represents a relaxed stochastic EPSD for signals gener-550

ated by the modulated PSD. Overall, it can be stated that the REPSD representation’s551

accuracy is as good as its underlying time-frequency transformation method. Nonetheless,552

the REPSD offers a stochastic representation of a stochastic processes model, already for553

a limited amount of data and records. The accuracy of these terms should further be val-554

idated by experiments and empirical investigations. Additionally, further information such555

as a correlation between the REPSD sample points could be considered. Also, a Bayesian556

updating procedure could be incorporated if the data set is of variable size, changing, or if557

additional parameters e.g. for the correlation are introduced. It is also possible to replace558

the probability distribution approach with surrogate modelling approaches, such as Gaus-559

sian process regression or Neural-Network-Representations. Thus, by the introduction of the560

REPSD concept, a generalised modular stochastic model for the representation of stochastic561
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Appendix A. First and second order moments for matrices761

Given the nature of the time-frequency transformation of stochastic processes, the avail-762

able data of the EPSD functions in the set {ŜXi
} appear in matrix form. For the sake of763

completeness here are the formal calculations of the first and second order moments. The764

first order moment is given to be765

SX(ω, t) =
1

Ne

Ne
∑

i=1

SXi
(ω, t). (A.1)

The second order moment is given to be766

σ (SX(ω, t)) =

√

√

√

√

1

Ne

Ne
∑

i=1

(

SXi
(ω, t)− SX(ω, t)

)

. (A.2)
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