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Abstract—Radio frequency fingerprint (RFF) identification
(RFFI) is a promising technique for device authentication at the
physical layer of the communication stacks. However, practical
challenges, particularly in low signal-to-noise ratio (SNR) scenar-
ios, and the lack of comprehensive studies on open-set recognition
hinder the widespread application of RFFI. This paper presents
an unsupervised open-set RFF identification algorithm designed
to address the robustness challenges associated with low SNR.
Our approach integrates the Noise2Noise method for denoising,
drawing inspiration from its successful applications in image and
speech processing. The proposed framework utilizes an image-
based autoencoder (AE) to extract features from the differential
constellation trace figure (DCTF) of the signals after Noise2Noise
denoising. The open-set recognition task is performed by cosine
distance measurement. We carried out extensive experimental
evaluation involving 18 ZigBee devices and a USRP software-
defined radio platform. Our proposed method can achieve a gain
up to 25% under low SNRs.

Index Terms—Radio frequency fingerprint, Noise2Noise, au-
toencoder, open-set recognition

I. INTRODUCTION

Radio frequency fingerprint (RFF) originates from unique
hardware imperfections that occur during the manufacturing
process, making it difficult to clone or tamper with [1]. It can
serve as a mechanism for device access authentication, which
can enhance network security at the physical layer without
impacting upper-layer protocols. Numerous RFF identification
(RFFI) prototypes have been developed for various wireless
communication technologies, including Wi-Fi [2], ZigBee [3],
LoRa [4], Bluetooth [5], and so on.

RFF is a multiple-class classification problem, hence deep
learning is very suitable thanks to its excellent feature ex-
traction capability [6]. Most of the existing deep learning-
based RFFI work focuses on closed-set recognition [6], which
means the devices remain the same during the training and
test stage. However, it is not practical for a security protocol
because there will always be rogue devices. Therefore, open-
set recognition (OSR) [7] is more applicable for RFFI, which
considers both known devices and unknown devices.

There have been research efforts exploring OSR in RFFI.
Hanna [8] et al. carried out a comprehensive study on deep
learning-based OSR in RFFI, including binary classifier, dis-
criminating classifier, autoencoder (AE), and OpenMax. The
work in [9] designed an RFF database to save the RFF
features of the legitimate (known) devices and then use k

nearest neighbour (kNN) to detect rogue (unknown) devices by
comparing their features with the RFF database. However, the
approach uses supervised learning to train the RFF extractor,
which needs labeled data. However, in practical applications,
acquiring a large volume of labeled data is often challeng-
ing. A novel classification network training methodology was
introduced in [10], leveraging a combination of adversarial
samples and outer samples. Although such method can fulfill
the OSR task, the effectiveness of this method relies heavily
on the generation of adversarial samples.

It is common in wireless communications that noise affects
signal qualities. Because RFFs between different devices are
very similar, noise has an even more severe impact on RFF,
which requires designing noise robust RFFI approaches [11].
Shen et al. used integrated signals from multiple receivers
and multiple packets, which achieved a 40% improvement
at SNR of 10 dB [11]. Yu et al. designed a deep learning-
based Denoising Autoencoders to extract RFF features of
signals, obtaining a 14% improvement at SNR of -10 dB [12].
Wu et al. proposed a convolutional neural network (CNN)
with a dynamic shrinkage threshold, which achieved a 20%
enhancement at SNR of 0 dB [13]. Wang et al. proposed a
signal data augmentation solution consisting of construction of
sampling points and smooth filtering, which achieved a 10%
enhancement at SNR of 3 dB [14]. Zhao et al. used the SG-
filtering method in the signal processing stage to improve the
SNR, achieving a classification accuracy of 93.85% at SNR
of -5 dB [15].

In order to address the aforementioned challenges, this
paper proposes an unsupervised and robust open-set RFFI
method. The approach incorporates a denoising step using
the Noise2Noise method, inspired by [16]. OSR is achieved
by comparing the features of test samples with pre-saved
templates, which are obtained by an unsupervised autoencoder
(AE). We carried out extensive experimental evaluation using
ZigBee devices and USRP software-defined radio (SDR) plat-
form. The main contributions of this work are summarized as
follows:

• We employ the Noise2Noise method for denoising to
enhance the detection accuracy. This method does not
rely on precise noise models; instead, it learns how to
remove noise from pairs of noisy signals.

• We propose an image-based AE model as the feature



extractor to obtain RFF from the differential constellation
trace figure (DCTF) of I/Q signals after denoising with
Noise2Noise method. The open-set recognition task can
be performed by comparing feature similarity scores with
a pre-defined threshold.

• We conducted an extensive experimental evaluation using
7308 packets collected from 18 ZigBee devices in a line-
of-sight (LOS) scenario. Experimental results demon-
strate that the proposed approach can successfully detect
unknown devices with high accuracy. The accuracy of
unknown device detection reaches 0.7519 even at -5 dB
SNR. Our proposed method outperforms the AE without
denoising by up to 25% (achieved at 0 dB) under low
SNRs (-5∼15 dB).

The remainder of this paper is organized as follows: In
Section II, we briefly introduce the key technologies of the
proposed framework, including model formulation and model
architecture. Section III elaborate on the implementation de-
tails and show the results of the proposed method at different
SNRs. Finally, we conclude the paper in Section IV.

II. SYSTEM DESIGN

The proposed robust open-set RFF identification scheme is
illustrated in Fig. 1. The protocol includes the training and
identification stage. The key algorithms include signal pro-
cessing, Noise2Noise, DCTF generation, RFF feature extractor
training, and identification. These algorithms will be explained
in detail.

This paper uses ZigBee/IEEE 802.15.4 as a case study.
The overall architecture of the approach is applicable to other
wireless technologies.

A. Signal Processing

The denoising process in Noise2Noise requires the signals
compensated with frequency and phase offsets. In this paper,
we employed the algorithms described in [17] to estimate and
compensate for carrier frequency offset (CFO) and phase offset
(PHO). Interested readers please refer to [17] for the technical
details.

B. Noise2Noise for Denoising

Noise2Noise has been successful in image and speech
denoising applications [18], [19]. Considering a deep neural
network (DNN) with parameters, loss function L , input x,
output fθ, and target y, the DNN learns denoising of input
I/Q signals by solving the optimization problem:

argmin
θ

E{L(fθ(x), y)}, (1)

where E(·) denotes the expectation operator.
The Noise2Noise method is based on the following two key

assumptions:
1) The noise added to the input and target is sampled from

a zero-mean distribution and is uncorrelated with the
input.

2) The correlation between the input noise and target noise
is close to zero.

In the RFFI context, noisy I/Q signals are clean I/Q signals
affected by noise. Considering a clean I/Q signal y, two noisy
I/Q signals x1 and x2 are generated by independently sampling
noise distributions n1 and n2. We can use x1 = y + n1 and
x2 = y+n2 as the input and output of the DNN, respectively.
The optimization objective can be redefined as

argmin
θ

E{L(fθ(x1), x2)}. (2)

Although the optimization objective has changed, our mapping
objective remains y = fθ(x), because the noise between I/Q
signals is independent. fθ(x1) can be represented with ŷ. For
the specific form of the loss function, taking L2 loss as an
example, we can represent the loss function as follows:

L2(ŷ, y + n2) =
1

N

N∑
n=1

[
y(n) + n2(n)− ŷ(n)

]2
=

1

N

N∑
n=1

{[y(n)− ŷ(n)]2 + 2n2(n)[y(n)− ŷ(n)] + n2(n)
2}

= L2(ŷ, y) + σ(n2)
2 +

2

N

N∑
n=1

n2(n)[y(n)− ŷ(n)]. (3)

For Gaussian random noise, the second term, σ(n2)
2, tends

towards 0 because the noise is independent of the clean I/Q
signals, and its mean is 0. The second term represents the noise
variance, which is independent of model parameters, and thus,
it does not affect the training. In summary, the uniqueness
of the Noise2Noise method lies in its use of noisy inputs
and noisy targets during the training phase, as opposed to the
traditional use of clean training data. This approach enables the
Noise2Noise method to better handle noise and imperfect data
present in practical application scenarios, providing a powerful
tool for the field of signal processing.

In this paper, we employed the U-Net neural network
architecture for I/Q signal denoising. The U-Net architecture
consists of symmetric blocks of encoders and decoders. Typ-
ically, U-Net is applied to 2D images, but in this study, we
modified the structure for 1D inputs by using 1D convolutional
layers. The network is portrayed in Fig. 2 and comprises
5 encoder and 5 decoder blocks. In each encoder block,
two convolutional layers with a rectified linear unit (ReLu)
activation function are employed. In each decoder block, three
convolutional layers with a ReLu activation function are used,
and except for the last layer, they are followed by a leaky
ReLU activation function. In each decoder stage, the size of
the feature maps is increased using ConvTranspose1d layers,
while skip connections are utilized to combine features from
the encoder with those from the decoder (see the grey blocks
in Fig. 2), preserving important feature information. As the
input data in this model is I/Q signals, the number of input
and output channels is 2, representing the real and imaginary
parts of I/Q signals. The number of channels used in this work
are 32, 48, 64 and 96 in the bottleneck.
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Fig. 1. The proposed open-set RFF identification scheme.
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Fig. 2. U-Net architecture used in our experiments.

C. DCTF Generation

The DCTF is a specially designed feature in previous studies
on RFFI [17]. Reflecting the features of RFF through statistical
information, such as the contour and point distribution of
DCTF, enables a more intuitive identification of ZigBee de-
vices. Obtaining a stable DCTF does not require the estimation
and compensation of carrier frequency offset, implying that
preserving frequency offset features is beneficial for improving
RFF identification accuracy. Therefore, we first reintroduce
the frequency offset estimated by signal processing to the I/Q
signals Y [n] after Noise2Noise denoising, given as

Y ′[n] = Y [n] · ej2π∆̂fnTs , (4)

where ∆̂f is the estimated CFO in Section II-A. Then, we
perform a differential operation on the Y ′[n] , given as

D[n] = Y ′[n] · Y ′[n+ λ], (5)

where λ is the differential interval and D[n] is the result which
is a complex vector. D[n] can then be mapped to the I/Q
complex plane to generate a constellation diagram, namely
DCTF. More specifically, a two-dimensional matrix Γ with
a size of

[
n× n

]
ranging from −T to T is defined. The

coordinate
(
i, j

)
of D[n] in Γ is given by

i =
⌈DI [n] + T ⌉

2T
· n,

j =
⌈DQ [n] + T ⌉

2T
· n,

(6)

where DI [n] and DQ[n] are real and imaginary part of D[n],
respectively. Then the DCTF can be generated by the density
of the sampling points in each pixel Γ.

D. AE-based RFF Extractor Training

In the training stage, we can create a training dataset with
DCTF diagrams extracted from legitimate known devices.
In this paper, we used an AE model, whose architecture is
illustrated in Fig. 3. The encoder part includes 4 Conv2d layers
and 4 MaxPool2d layers to progressively extract and reduce
the dimensions of the input DCTF features. The decoder part
includes 4 Conv2d layers and 4 ConvTranspose2d layers to
reconstruct the DCTF.

The central fully connected layer in the AE is commonly
referred to as the embedding layer, and the latent features are
denoted as z = {z1, ..., zm, ..., zM} in the embedding layer.
In this paper, after the training is completed, we can get one
latent feature for each training sample of the known devices,
denoted as {zkdj }. In addition, we also used the encoder part
as the RFF extractor.

E. Open-Set RFF Identification

In the identification phase, the collected IQ samples are
first processed by the same signal processing algorithms
from the training stage. Then, the samples are denoised by
the Noise2Noise denoiser trained in the training stage. The
denoised IQ samples are converted to the DCTF diagram,
which is then input to the RFF extractor. Finally, the extracted
feature, z, is compared with the feature representation of
known devices, {zkdj }. The cosine distance is adopted to
calculate the similarity score S, defined as

S = max
1≤j≤N

∥z∥ · ∥zkdj ∥
z · zkdj

, (7)

where N is the number of training set samples.
The decision can be made by comparing S with a pre-

defined threshold γ, given as

Ĉ =

{
Unknown device, when S < γ

Known device, when S ≥ γ
(8)
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Fig. 3. AutoEncoder architecture used in our experiments.

(a) Photo of the 18 ZigBee devices. (b) Photo of the USRP receiver.

Fig. 4. Experimental platform.

III. EXPERIMENTAL EVALUATION

A. Experimental Setup

1) Experimental Hardware Settings: The photos of the
experimental devices are shown in Fig. 4, comprising a USRP
receiver and 18 ZigBee devices. We utilized an Ettus Research
X310 USRP software-defined radio (SDR) platform as the
receiver. The USRP X310 was configured with a center fre-
quency of 2507 MHz and a sampling rate of 10 MSamples/s.
We also used a total of 18 TI CC2530 ZigBee devices, with
devices 1-12 designated as known-class devices and devices
13-18 designated as unknown-class devices. The ZigBee de-
vices use IEEE 802.15.4 physical layer standard.

2) Neural Network Training Settings: The training process
was conducted on a PC with the Ubuntu 18.04 operating
system and equipped with a GeForce RTX 2080 Ti GPU.
We utilized two models: a Noise2Noise network model and
an AE network model. These models operate in a sequential
manner, with the output of the Noise2Noise model serving
as input for the AE model for further processing. For both
the Noise2Noise model and the AE model, we employed the
Adam optimizer with a learning rate of 0.001 and a batch size
of 64. The training process involved minimizing the mean
squared error (MSE) loss. We repeated the training process
until the validation accuracy did not improve over ten epochs,
and stored the best validation parameters for performance
evaluation.

B. Datasets

The dataset used in this work comprises signals collected
from ZigBee devices 1-18. Each transmission includes the
same bit sequence. A total of 7308 I/Q signal frames trans-
mitted by ZigBee devices were collected. The dataset was
collected with line-of-sight between ZigBee devices and USRP
X310.

To verify the performance of the proposed scheme at
different SNR levels, additive white Gaussian noise (AWGN)
with varying power levels, {-5, 0, 5, 10, 15, 20, 25, 30} dB,
was applied to each captured signal using MATLAB. In the
Noise2Noise model, the ratio of the training, validation, and
test sets was 7:1:2. The training and validation sets were
augmented with AWGN featuring a random SNR ranging
from -5 dB to 30 dB, enabling the model to learn features
across the entire SNR spectrum for denoising purposes. The
validation and test sets comprise seven groups with fixed SNRs
of -5 dB to 30 dB to evaluate the denoising performance of
Noise2Noise. In the AE model, the data is derived from the
DCTF. A five-fold cross-validation was conducted during the
performance evaluation.

C. Evaluation of Denoising

The concept of Dynamic Time Warping (DTW) was
introduced in the field of speech recognition to address
the drawbacks arising from inflexibility along the time
axis [20]. The DTW distance between two sequences A =
[a1, a2, . . . , ai, . . . , am] and B = [b1, b2, . . . , bj , . . . , bn] is
D(m,n), which is calculated employing dynamic program-
ming to assess the following recurrence:

D(i, j) = min

 D(i, j − 1)
D(i− 1, j)
D(i− 1, j − 1)

+ d(ai, bj), (9)

where d(ai, bj) is the distance between the points ai and bj .
A smaller DTW distance indicates higher similarity and better
denoising performance. We used the Matlab ‘dtw’ function to
calculate the DTW distance1.

Table I provides the DTW distance between the origi-
nal I/Q signals and the reconstructed I/Q signals using the
Noise2Noise method, the smoothing-based denoising method
in [14], and the SG filter-based denoising method in [15].
Regardless of the SNR, the Noise2Noise method consistently
exhibits lower DTW distance values compared to the other two
methods, indicating a better denoising performance. Fig. 5 and
Fig. 6 exemplifies the denoising performance of Noise2Noise
showcasing IQ samples and DCTF, respectively. The IQ sam-
ples denoised by the Noise2Noise method are very close to
the original IQ samples. The denoised DCTF also resembles
the original DCTF quite well.

1https://www.mathworks.com/help/signal/ref/dtw.html



TABLE I
COMPARISON OF DTW DISTANCE FOR DIFFERENT DENOISING METHODS

AT VARIOUS SNR

SNR(dB) SG-filter Smooth Noise2Noise
-5 1116.05 1134.48 843.83
0 847.83 883.59 544.69
5 623.99 661.35 419.52
10 454.85 487.13 258.37
15 422.68 450.77 235.73
20 415.14 440.13 228.17
25 414.15 436.96 225.38
30 414.83 435.20 225.15
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Fig. 5. Original IQ samples, 0 dB noisy IQ samples, and denoised IQ samples
by Noise2Noise.

(a) Original DCTF (b) Noisy DCTF (c) Denoised DCTF

Fig. 6. DCTFs of the original signal, 0dB noisy signal, and denoised signal
by Noise2Noise.

D. Evaluation of Unknown Device Detection

To gain an intuitive understanding of the detection perfor-
mance for unknown devices, we used t-SNE to visualize the
feature space embeddings of known and unknown devices.
Fig. 7 illustrates the t-SNE visualization feature map at 0 dB
SNR. Even under such low SNR, it is evident that the feature
clusters of unknown devices in the test set are distinct from
both the feature clusters of unknown devices in the training
set and the known devices in the test set. On the other hand,
the feature clusters of known devices in the training set and
test set exhibit significant overlap.

The receiver operating characteristic (ROC) curve is of-
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Fig. 7. t-SNE visualization of features at 0 dB SNR.
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Fig. 8. ROC curves of unknown device detection at different SNR levels.

ten used to evaluate unknown device detection. The AUC
quantifies the discriminative power of a classification model
by measuring its ability to distinguish between positive and
negative instances across various decision thresholds. Fig. 8
depicts the ROC curve at different SNRs. It can be seen that
even at -5dB SNR, the AUC remained high, reaching 0.9635,
which indicates the robustness of our approach.

While ROC and AUC describe the overall detection perfor-
mance with all the possible thresholds, the detection accuracy
is also a key metric given a particular threshold. After selecting
a threshold of 0.9, we can calculate True Positives (TP), True
Negatives (TN), False Positives (FP), and False Negatives
(FN). The detection accuracy can then be defined as

accuracy =
TP + TN

TP + TN + FP + FN
. (10)

The comparison of unknown device detection performance
under different SNRs, including the DCTF trained with the AE
without denoising (Benchmark) and the AE with Noise2Noise,
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is presented in Fig. 9. The model with the highest accuracy was
selected as the best model in the five-fold cross-validation for
each method. It can be obtained from Fig. 9 that even at -5 dB
SNR, the accuracy remained robust, reaching 0.7519, which
indicates the robustness of our detection methodology. With
the increase in SNR, the accuracy also rises. In the range of
0 to 30 dB, the accuracy fluctuates between 0.89 and 0.97. In
addition, our proposed approach outperforms the benchmark
up to 25% (achieved at 0 dB), i.e., 90%−72%

72% , at low SNRs
under AWGN channels.

IV. CONCLUSION

In this paper, we proposed a robust open-set RFF identifica-
tion scheme that incorporates denoising using the Noise2Noise
method and unsupervised feature extraction based on the AE.
Firstly, the Noise2Noise approach denoised the IQ samples,
which can significantly improve the signal quality. The IQ
samples were then converted to DCTF diagrams. The RFF
features were extracted from DCTF by unsupervised AE mod-
els. In the inference stage, RFF features of the known devices
and test devices were compared with their similarity and a
decision can be made based on their cosine similarity. Our
experiments demonstrate that the proposed scheme exhibits
excellent recognition performance. Specifically, the proposed
method achieves robust accuracy in unknown device detection,
reaching 0.7519 even at -5 dB SNR. Within the SNR range of
0 to 30 dB, the accuracy consistently hovered around 0.89 to
0.97 and outperformed the benchmark by up to 25% at low
SNRs (-5∼15 dB).
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