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Abstract 

In sedimentary geoscience, the particle size distribution (PSD) of a sediment has a fundamental 

effect on a sediment’s ability to be entrained, eroded, and deposited. Therefore, it is crucial to 

accurately measure the PSD of sediments. Several laboratory-based methods of particle size analysis 

are commonly employed in geoscience; however, each method is based on different principles and 

the comparison of data from one technique to another is challenging. In this study, we have 

compared the output of four commonly-used laboratory-based techniques: Laser Particle Size 

Analysis (LPSA), optical point counting, 2D automated image analysis, and X-ray Computed 

Tomography (XCT). Each technique has been used to measure eight samples of spherical silica 

particles, all prepared with known particle size ranges. Spherical particles have been used to 

minimise the effects of variable sorting and particle shape on data output. Here we have compared 

the differences between the measured PSD and descriptors of each PSD, showing that, at small 

particle diameters (<150 µm), all techniques agree. However, at particle diameters >150 µm, LPSA 

overestimates the size of particles, due to limitations in the way that particle diameter is calculated 

by this technique. In contrast, 2D automated image analysis and optical point counting 

underestimate the diameters of particles, due to stereology (e.g., the effect of slicing particles during 

thin section preparation). Results from XCT analyses have the lowest values of sorting (range of 

measured particle diameters) and are therefore the most tightly constrained. In addition, XCT is the 

only 3D analysis method, allowing particle shape, orientation, and intraparticle porosity to be 

measured for a volume of material. We therefore conclude that XCT is the most accurate way to 

determine a grain size distribution in sediments. 

Key words:  

Particle size analysis; X-Ray Computed Tomography; Laser Particle Size analysis; Optical point 
counting; 2D automated image analysis 
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1. Introduction 

Particle size and morphology are fundamental physical properties of sediment and sedimentary 

rocks that affect sediment erosion, transport, and deposition (Blott and Pye, 2001). Particle size 

analysis and the measured particle size distributions (PSD) therefore provide insights into sediment 

provenance and transport, and can allow for classification prediction and reconstruction of 

depositional environment (Folk and Ward, 1957; Friedman, 1979; Simon et al., 2021; Houghton et 

al., 2023). The PSD and particle morphology in sedimentary deposits also influence important 

physical properties of the sediment, such as porosity, permeability, load strength, and surface 

roughness (Beard and Weyl, 1973; Church, 1978; Blott and Pye, 2012). Particle size analysis has a 

range of applications outside of sedimentology that include: volcanology (Buckland et al., 2021), 

ceramics (Jillavenkatesa et al., 2001), additive manufacturing (Slotwinski et al., 2014; Behnsen et al., 

2023), food processing (Devarrewaere et al., 2015), and pharmaceuticals (Gajjar et al., 2020). 

Therefore, understanding how laboratory-based methods of particle size analysis compare is 

valuable to a wide range of disciplines and users. This study aims to assess and compare laboratory-

based methods of particle size analysis that are commonly used in the field of sedimentology, that 

include; optical point counting, 2D automated image analysis, Laser Particle Size Analysis (LPSA), and 

micro-focused X-ray Computed Tomography (XCT). Here we assessed the quantification of PSDs, 

inconsistencies associated with each method, and statistical descriptors of particle size for eight 

samples of spherical silica particles. We have also evaluated how results from the four technique 

may be compared.  

Use of the terminology surrounding particle size analysis (sometimes abbreviated to PSA) has been a 

long standing debate among geoscientists (Blott and Pye, 2012). The term “particle” was noted by 

Cadle (1965) to refer to an object of any size with defined physical boundaries in all directions. In 

geoscience, sediments can be individual particles (e.g., soil, dust, or sand particles) or assemblages 

of particles (e.g. clasts) (Blott and Pye, 2012). The size of a particle is a one-dimensional 

measurement of a length that is characteristic of the particle shape and volume. Particle size can be 

measured (e.g., maximum or minimum Feret diameters (Feret, 1930)), or calculated (e.g., equivalent 

circular diameter, or equivalent spherical diameter) (Figure 1). Particle size measurements are 

influenced, to varying extents, by particle shape, density, and optical properties. Therefore, the 

results from different particle size analysis techniques may not be directly comparable; making the 

comparison of PSD datasets challenging when multiple particle size analysis techniques are used 

(Pye, 1994). The particle size analysis methods used in this study, and the way in which a PSD was 

measured are discussed in section 2. 
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To obtain a statistically valid PSD in a geological sample, a minimum number of particles need to be 

counted. Van der Plas and Tobi (1965) studied the number of particles required to obtain 

representative mineralogy from optical point counting, and produced a chart to indicate the number 

of particles that require counting to achieve a given uncertainty. According to Mulholland and Jones 

(1968), estimation of mean particle size to within 0.1 phi, with 90% accuracy, requires 270 particles 

to be measured for a poorly sorted sandstone, and fewer particles are required for sandstones that 

are moderately to well sorted. Phi is a dimensionless unit of particle size measurement. A conversion 

between millimetres and phi was presented by Krumbein (1938), where ϕ is the particle diameter in 

phi units, and D is the particle diameter in millimeters: 

𝜙 =  −𝑙𝑜𝑔2𝐷 (1) 

Recent studies have suggested that counting between 100 and 400 particles, depending on 

statistical requirements, is sufficient to obtain representative descriptors from a sediment sample 

(Church et al., 1987; Fripp and Diplas, 1993; Rice and Church, 1996).  

Statistical measurements, or descriptors, such as mean particle size and particle sorting, can be 

calculated from a PSD. Statistical measurements are regularly used to compare samples in the field 

of reservoir quality analysis (Ali et al., 2010), discrimination of sediment origin (Mason and Folk, 

1958; Friedman, 1961), or to classify sedimentary sub-environment (Simon et al., 2021). The most 

useful PSD descriptors to identify trends in sediments have been reported to be mean particle size, 

modal particle size, and particle sorting (Folk, 1966). In contrast, it has been suggested that kurtosis 

is not a useful particle size descriptor (Folk, 1966).  

The analysis of PSD data typically involves dividing a sample into a number of particle size bins, from 

which a PSD curve (or histogram) can be plotted using the sample mass, volumetric fraction, or 

percentage of the sample that lies within each particle size bin (Blott and Pye, 2001). Each particle 

size analysis technique produces data in a different manner, and it therefore remains the user’s 

responsibility to interpret the results of particle size analysis appropriately, especially when 

comparing data from different methods (Blott and Pye, 2001). Particle size analysis has a wide range 

of applications within geoscience and therefore it is vital to understand how each method calculates 

a PSD, and how the resulting PSD from each method can be compared. 

Using the measured PSD and calculated PSD descriptors, we compare for the first time, four 

independent laboratory-based particle size analysis techniques against a particle size range 

determined by sieving: Laser Particle Size Analysis (referred to as LPSA), 2D automated image 

analysis, optical point counting, and X-ray computed tomography (referred to XCT). Using a range of 

samples that vary in particle sizes (36 µm to 850 µm) to answer the following research questions:  
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1. Which laboratory-based particle size analysis method provides the most reliable measure of 

a particle size distribution? 

2. Is there any systematic bias in any of the four laboratory-based particle size analysis 

techniques? 

3. Are there any specific issues and considerations that need to be addressed when using any 

specific particle size analysis technique?  

4. Is it possible to compare results of particle size analysis from different techniques, and do 

the results correlate? 

5. How big are any statistically significant differences in the measured particle size distribution 

for a sample obtained using four different laboratory-based techniques?  

2. Methodology 

In this study, the techniques of LPSA, 2D automated image analysis, optical point counting, and XCT 

were used to evaluate eight samples composed of spherical silica particles. We measured the 

particle size distribution of each of the eight samples by mechanical sieving, and defined this range 

as the true measurement to compare the other four techniques against (Table 1). Spherical silica 

particle samples were used to evaluate the precise differences between analysis methods. Spherical 

silica particles were chosen over river or beach sediments as spherical silica particles eliminate any 

need to account for non-uniform particle shape and orientation that is common in geo-materials. All 

silica particles derive from the same bulk material, and are chemically identical, leaving the sieved 

(known) range as the only difference between samples. Each particle size analysis method used here 

is described in sections 2.1.1 to 2.1.4. 

2.1. Sample Preparation 

Bulk samples of spherical silica particles were obtained from the Wheelabrator Group. The spherical 

glass particles, as supplied, were heterogeneous in terms of particle size (Table 1); we refer to these 

as bulk samples. These bulk samples were refined into eight samples with narrow particle size 

ranges, via mechanical sieving of the bulk samples, adhering to the ASTM c136-06 standard method 

for sieving (Table 1). 1 kg of each bulk sample was placed into the top of a sieve stack and placed 

into an Endecott mechanical sieve shaker for five minutes. Each fraction was removed from the 

sieves, washed, dried, and stored in a sealed container. Samples were washed to remove fine 

material or dust, generated during sieving, that could skew the measured PSD. The particle size 

range of bulk samples and samples produced by mechanical sieving are reported in Table 1. 

Backscatter SEM images of all samples analysed in this study are presented in Figure 2.  
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Each technique outlined in this study uses a different mass of sample material and preparation 

technique to measure PSD. The differences in the minimum mass of sample required and the 

preparation techniques are detailed in sections 2.1.1 to 2.1.4. 

2.1.1. Laser Particle Size Analysis (LPSA) 

LSPA is a particle size analysis technique that was developed in the 1970s (Agrawal et al., 1991) and 

is a routine test method that is described by both ASTM (B822-20) and ISO (13322-1 2014) 

standards. In this study, a Beckman-Coulter LS13-320 particle size analyser with an aqueous liquid 

module (sometimes referred to as an ALM) was used. A schematic illustration of an LPSA device is 

shown in Figure 3. LPSA measures the PSD of a loose powder using the diffraction patterns of laser 

light, and the principle that particles of a defined size diffract light at a known angle, where the angle 

of diffraction is inversely proportional to particle diameter (Di Stefano et al., 2010). To measure PSD, 

a Fourier optic focused, parallel beam of monochromatic light, with wavelength of 750 nm passes 

through the sample cell. The diffracted light is focused onto an array of 126 photo-diode detectors 

placed at an angle of approximately 35 degrees from the optical axis (Beckman Coulter, 2011). The 

instrument measured the size of the suspended particles (equivalent spherical diameter; Figure 1), 

between 0.4 µm and 2000 µm, based on the Fraunhofer diffraction theorem, where an assumption 

is made that all particles are spherical, and no account is made for particle shape or orientation (de 

Boer et al., 1987; Blott et al., 2004). LPSA is a fast (approximately 5-10 minutes for each sample), 

non-destructive technique, and it is possible to recover the sample after analysis. Typically, LPSA 

requires less than 10 g of sample material per analysis.  

The Beckman Coulter LS13-320 aqueous liquid module has been designed to work with loose 

particles, therefore no special sample preparation was required for spherical silica particles. The 

aqueous liquid module was filled with deionised water to avoid any contamination or charging of 

particles. To measure a PSD, first any material > 2000 µm was removed from a sample using a sieve, 

as this is the maximum particle diameter accepted by the LS13-320. If a sample contains organic 

material, this must be removed prior to analysis using hydrogen peroxide. It has been shown that 

the inclusion of organic material in a sample analysed by LPSA can skew the PSD towards the coarse 

fraction (Allen and Thornley, 2004), probably due to adhesion and clumping processes. Ultrasonic 

dissociation of a sample, either before or during analysis, was not employed in this study as it has 

been shown to skew the results towards the fine fraction (Ballard and Beare, 2013), likely due to 

destruction of particles. Each sample was slowly added into the loading chamber on the aqueous 

liquid module until the obscuration (a quantification of the amount of emitted laser light reaching 

the detector) was 10% (a range of 8-12% is suggested by Beckman Coulter (2011)). Particles were 
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circulated around a closed loop, ensuring that a representative measurement of the spherical 

particles was obtained (Figure 3). Analysis of a sample was carried out three times consecutively for 

a duration of one minute per analysis (three minutes total). Results were reported in volumetric 

percentages of the bulk sample that fall within each size bin. Size bins are spaced logarithmically 

between 0.4 µm and 2000 µm, and the logarithmic centre of each bin was used for the calculation of 

PSD descriptors. The results of the three independent analyses were exported, averaged, and input 

into GRADISTATv9.1 software in order to calculate PSD descriptors (Blott and Pye, 2001).  

2.1.2. 2D automated Image Analysis by distance-watershed mapping 

2D automated image analysis is a particle size analysis technique that is able to derive particle size 

and shape. Here, 2D automated image analysis was undertaken on SEM images. However, any type 

of photomicrograph can be used, as long as sufficient contrast exists between particles and 

background. Here, Backscatter Electron (BSE) images of polished resin blocks obtained using a 

Scanning Electron Microscope (SEM) were used for 2D automated image analysis. BSE images are 

high contrast, high spatial resolution images (e.g., nanometre scale), that allowed for precise 2D 

automated image analysis to be undertaken. Although not specific to SEM images, 2D automated 

image analysis is a standard test method described by ISO 13322-1:2014.  

Spherical particles were made into polished resin blocks prior to SEM observation. 10 g samples of 

spherical particles were mixed with Struers EpoFix Resin in a 30 mm diameter mould, and placed 

under vacuum to remove air bubbles (0.17 bar for 30 minutes). Resin blocks were left to cure for 48 

hours at room temperature. Resin blocks were removed from a mould and cut on a guide saw, 

where the blade and cutting fence are parallel. This was done to ensure particles were cut in a 

statistically random manner, and that the top and bottom of the blocks were parallel. Resin blocks 

were polished using a 4-stage workflow on a Struers LaboForce-100 automatic polisher (200 grit to 1 

µm diamond solution). Polished blocks were coated with 10 nm of carbon, to prevent charging 

during SEM observation. A Zeiss Gemini 450 SEM, paired with Oxford Instruments Aztec software, 

was used to produce representative montage (stitched) images of the polished resin blocks. SEM 

imaging parameters used in this study are reported in Table 2. Montage images were imported into 

Fiji (Schindelin et al., 2012) and analysed using a 2D particle size analysis workflow. Images were first 

smoothed to remove noise by applying a bilateral filter (Thiede et al., 2019), as this has been 

suggested to preserve edges better than a median or Gaussian filter (Heim et al., 2016; 

Pashminehazar et al., 2016; Bernier et al., 2018), and converted into a binary image of particles and 

background. Particles in the binary image were separated and labelled using a 2D distance transform 

watershed algorithm within MorphoLibJ (Legland et al., 2016), which has been suggested to work 
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well for spherical particles (Behnsen et al., 2023). The parameters used for a distance transform 

watershed need to be selected appropriately, and human supervision is recommended, to avoid 

over- or under-segmenting particles (Behnsen et al., 2023). Any particles that were incorrectly 

separated were re-merged one-by-one, and clumped particles that were not correctly separated 

were split one-by-one and assigned a new label. This process prevents the introduction of artificial 

skew into the measured PSD. Any particles touching the edge of the montaged image were removed 

to avoid the measurement of non-whole particles. Labelled particles were analysed using the 

particle analyser tool within BoneJ (Domander et al., 2021). The results returned were: Feret 

minimum (fmin), Ferret median (fmed), and Ferret maximum diameter (fmax) in micrometers, and 

surface area (µm2) (Figure 1). Ferret minimum diameter is defined as the minimum measured 

diameter of a particle, and Ferret maximum diameter is defined as the maximum measure diameter 

of a particle (Figure 1). Surface area was converted into an equivalent circular diameter (µm) using 

equation 2, where A is the particle area (µm2): 

𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 =  √
4 × 𝐴

𝜋
 (2) 

 

Al-Thyabat and Miles (2006) suggested that the measurements of primary importance for the 

comparison of PSD comparison are the equivalent circular diameter, and the shape factor.  

𝑆ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥
 (3) 

 

Shape factor ranges from 0 to 1, where a perfect circle has a shape factor of 1 and a very elongate 

particle has a value approaching 0.  

Particle circularity can also be calculated using equation 4 where A is the particle area (µm2), and p is 

the particle perimeter length (µm): 

𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =  
4𝜋𝐴

𝑃2
 (4) 

Circularity, like shape factor, ranges from 0 to 1. Where a perfect circle has a circularity of 1, and a 

very elongate particle has a value approaching 0.  

2.1.3 Optical point counting by manual particle tracing 

Optical point counting is a 2D particle size analysis technique that is able to return PSD and 2D 

particle shape measurements. Optical point counting can be performed using optical microscopy or 

SEM images of thin sections, by tracing the perimeter of the particles, or measuring the long and 
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short axis of particles. Here, optical point counting was undertaken on SEM images of polished resin 

blocks using PETROG optical point counting software, developed by Conwy Valley Systems, UK. The 

images used for optical point counting were the same images that are used for 2D automated image 

analysis. Polished resin blocks were produced, and BSE SEM image obtained using the method 

described in section 2.1.2. Montage images of silica particles were imported into PETROG, and a grid 

with >400 intersection points was overlain on the images. A grid was overlain on the image to 

reduce the chance of operator bias, and to introduce statistical randomness into the selection of 

particles measured during optical point counting. At each grid intersection point a particle was 

measured, until 300 measurements were recorded. If a particle was present, then the user manually 

traced the perimeter of the particle. This systematic method ensures that each particle was only 

counted once, reducing the amount of statistical error introduced into optical point counting 

(Middleton et al., 1985). 

 PETROG automatically calculated fmin, fmax, particle perimeter length, and the particle area. These 

measurements were used to calculate equivalent circular diameter (equation 2), shape factor 

(equation 3), and circularity (equation 4). 300 particle counts were chosen as it was determined by 

Mulholland and Jones (1968) that, for the calculation of mean grain size with >90% confidence even 

in a very poorly sorted sample, at least 270 particles are required to be measured. 

2.1.4. X-ray Computed Tomography (XCT) 

XCT is a non-destructive 3D image-based method that uses the transmission of X-rays through a 

sample to mathematically produce a 3D computed tomographic image. XCT can be undertaken on a 

loose powder, or a solid sample (e.g., rock chip or core plug). XCT was the only method analysed in 

this study that can produce measurements of 3D particle size, shape, and orientation. In addition, 

XCT analysis can be used to investigate the size and geometry of intraparticle porosity (Behnsen et 

al., 2023). Here, XCT analysis has been undertaken on loose particles contained within an X-ray 

transparent polyimide tube, mounted on to the head of a steel nail. The nail was clamped into a pin 

vice sample holder and inserted into a Zeiss Xradia Versa 620 Micro-CT scanner. A schematic 

illustration of an XCT device is shown in Figure 4. The scan conditions, and resulting voxel sizes, of 

the samples analysed in this study are detailed in Table 3. Raw data were processed in Fiji using a 

workflow based on the considerations suggested for particle size analysis using XCT by Behnsen et al. 

(2023). Raw XCT volumes were pre-processed using a non-local means filter, and converted to binary 

images of particles and background. Binarization was completed using a manual threshold, which 

here proved simple due the two-phase sample (silica particles and air). In more complex samples, 

with less consistent variation in contrast, the use of an image-based machine learning tool, such as 
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trainable WEKA segmentation (Arganda-Carreras et al., 2017), might yield improved results over a 

manual threshold (Wang et al., 2015). Particle edges were touching within the polyimide tube, and 

therefore were separated and individually labelled using a distance transform watershed algorithm. 

Particle separation relies on the assumption that the particles are separate and not fused or 

cemented together in any way (Behnsen et al., 2023). We employed a 3D distance transform 

watershed algorithm from the MorphoLibJ plugin for Fiji (Schindelin et al., 2012; Legland et al., 

2016). An illustration of particle separation using a watershed algorithm can be found in Figure 6 of 

Behnsen et al. (2023). Particles in contact with the edge of the volume were removed to avoid the 

measurement of any non-whole particles. 

Once particles were separated, they were measured to obtain a PSD. An overview of the various size 

and shape parameters employed in geoscience applications are illustrated in Figure 1. 

Measurements of length (L), width (W), and breadth (B) are determined from the longest, shortest, 

and intermediate axes of the particles (Taylor et al., 2006). Particle volume was measured, using the 

number of voxels per particle, and converted into an equivalent spherical diameter using equation 5, 

where D is the particle diameter, and V is the particle volume:  

𝐷 =  √
6𝑉

𝜋

3

 (5) 

3D particle shape can also be quantified by calculating sphericity using equation 6, where Ψ is 

sphericity, V is particle volume, and SA is particle surface area: 

𝛹 =
𝜋

1
3(6𝑉)

2
3

𝑆𝐴
(6) 

 

To measure a particle accurately, it must be more than 3 voxels in diameter, otherwise there is a risk 

of confusing the particle with noise (Behnsen et al., 2023). To account for this, any particles smaller 

than 5 voxels in diameter (125 voxels in volume) were removed. Therefore, the minimum particle 

diameter measured using XCT ranged between 12 µm and 28 µm (i.e., 5 multiplied by voxel diameter 

(µm)). The number of particles that were measured ranged between 493 (sample 8) and 54,665 

(sample 1) depending on restrictions of the field of view and the diameter of the particles.  

2.2. Particle size distribution visualisation and descriptors 

Raw data produced by each particle size analysis technique were input into GRADISTAT v9.1 in order 

to generate PSD descriptors (Blott and Pye, 2001). Here we used the geometric Folk and Ward 

(1957) calculations for particle size descriptors (mean, mode, and sorting), as these have been 

shown to provide the most robust measurements for the comparison of compositionally-variable 
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geological samples (Blott and Pye, 2001). Following the geometric Folk and Ward (1957) calculations, 

sorting has been calculated using equation 7, where Dx describes the diameter of which x% of the 

sample is smaller than:  

𝑠𝑜𝑟𝑡𝑖𝑛𝑔 = exp (
𝑙𝑛𝐷16 − 𝑙𝑛𝐷84

4
+

𝑙𝑛𝐷5 − 𝑙𝑛𝐷95

6.6
) (7) 

A sample with a sorting value of: < 1.27 is very well sorted, 1.27 to 1.41 is well sorted, 1.41 to 1.62 is 

moderately well sorted, 1.62 to 2.00 is moderately sorted, and > 2.00 is poorly sorted. D10, D50, and 

D90 values have also been calculated. Particle size descriptors are reported geometrically 

(micrometers), rather than as logarithmic (Phi) units sometimes used in geoscience applications, 

because these SI units are recognised to be more applicable to a wide range of industries and 

disciplines (Blott and Pye, 2001). Visualisations of PSDs were produced within R statistical software 

(R Core Team, 2020) using the ggplot2 package (Wickham, 2016). Shape descriptors have been 

calculated for 2D automated image analysis, optical point counting, and XCT using equations 3, 4, 

and 6. 

Normalised frequency similarity plots were produced to assess how data from each particle size 

analysis methods are distributed about the measured mean particle size. The produced plots are 

dimensionless and allow the comparison of data from different samples on one plot. Negative values 

indicate particle measurements smaller than the mean value, and positive values indicate particle 

measurements larger than the mean value. Similarity plots have been produced for XCT, optical 

point counting, and 2D automated image analysis. LPSA data cannot be plotted using this approach 

as measurements of individual particles are not reported.  

Each particle size analysis method requires a different number of particle measurements to produce 

a representative PSD. To estimate the number of particles measurements required, the coefficient of 

variance for mean particle size has been calculated for each sample (where possible) using equation 

8: 

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  
𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑚𝑒𝑎𝑛
(8) 

For each particle size analysis technique, the mean coefficient of variance across the eight samples 

was calculated. Where the mean coefficient of variation plateaus, a sufficient number of particles 

have been measured to ensure that the mean particle size is statistically valid (Hinds et al., 2014). 

First order rate of change was used to determine stability of coefficient of variance.  

To assess if the results from one particle size analysis technique correlate to the results of another 

technique, Pearson’s correlation coefficients and p-values have been calculated in R using the ‘rcorr’ 

function as part of the ‘Hmisc’ package (Harrell Jr, 2019; R Core Team, 2020). Pearson’s correlation 
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coefficients range from 1 to -1, where 1 is a strong positive correlation and -1 is a strong negative 

correlation. A value of 0 indicates that no correlation is present. P-values indicate the statistical 

significance of the correlation. For p-values <0.05 (*), the correlation is statistically significant. P-

values <0.01 (**) indicate a very significant correlation and p <0.001 (***) indicate an extremely 

significant correlation.  

For techniques where individual particle measurements were reported (all techniques apart from 

LPSA), T-tests were performed to assess the similarity of the measured PSD. The T-tests performed 

were two-tailed, two-sample equal variance tests. T-tests were performed in R using the ‘t-test’ 

function as part of the ‘stats’ package (R Core Team, 2020). For p-values less than 0.05, there is 95% 

confidence that there is a statistically significant difference between the PSDs. For p-values of less 

than 0.01, there is 99% confidence that there is a statistically significant difference between the PSD. 

3. Data analysis and results 

Presented here are the results of measuring eight different samples using the four-independent 

laboratory-based particle size analysis techniques. PSD descriptors (mean, mode, D10, D50, D90, and 

sorting) were calculated for each sample and method using the Folk and Ward method in 

GRADISTATv9.1 (Folk and Ward, 1957). In addition, the full PSD data are presented as frequency 

distribution, cumulative distribution, and similarity plots (Figure 5). We compare the results for each 

sample across all techniques, assessing the degree to which techniques agree. T-tests were used to 

assess the statistical significance of measured PSDs for individual samples. The Pearson’s correlation 

coefficient was used to test the statistical significance between output from all techniques. Using the 

techniques capable of recording particle shape (e.g., length/width), the details of 2D versus 3D 

particle shape will be explored. Finally, the full morphology of particles, including the existence of 

particles with internal porosity will be analysed using XCT data. 

3.1. Particle size distribution descriptors: mean, mode, D10, D50, D90, and sorting 

PSD descriptors are shown in Table 4 and Figure 6. In the following section, we show how the 

measured PSD, and descriptors, compare for each sample and particle size analysis method. 

Samples 1 and 2 (<75 µm): At small particle diameters, there is little variation in the mean, D50, and 

mode values measured by all techniques. All values measured using LPSA fall within the known 

sieved range. 2D automated image analysis, optical point counting, and XCT typically have the mean, 

mode, and D50 values within the sieved range, but the values for D10 and D90 rarely fall into the 

sieved range, especially for 2D automated image analysis and optical point counting. A larger range 
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in particle sizes is reported by 2D automated image analysis and optical point counting compared to 

LPSA and XCT, as shown by the sorting values for samples 1 and 2. 

Samples 3, 4, and 5 (300 to 400 µm): At medium particle sizes, trends in the measured PSD, similar 

to those observed for smallest particles (samples 1 and 2), are recognised. For sample 4, the modal 

value for all techniques falls within the sieved range, but only the measurements of D50 for 2D 

automated image analysis and XCT are within the sieved range. All other descriptors are above or 

below the sieved 300 to 315 µm range. For sample 5, the values of modal particle size for LPSA, 

optical point counting, and XCT fall within the sieved range. The values of mean particle size and D50 

produced using XCT also fall into the 315 to 400 µm range. For samples 3, 4, and 5, all other values 

are outside the sieved ranges. Descriptors measured using XCT most often fall into the range of 

sieved values for samples 3, 4, and 5, as the mean, modal, and D50 particle size are in the sieved 

range. No technique is able to measure D10 or D90 values within the sieved ranges for samples 3, 4, 

and 5. 2D automated image analysis in all cases produces the highest sorting values, whereas the 

smallest values are typically produced by XCT, except from sample 5. LPSA produces the smallest 

sorting values for sample 5 (1.194), however the values measured using XCT (1.244) are close to the 

LPSA measured values. 

Samples 7 and 8 (> 600 µm): At large particle diameters, few descriptors are within the sieved 

ranges. For sample 7, only the D10 measurement for optical point counting and XCT fall in the sieved 

range. All other measurements are above the sieved range, with the measurements from 2D 

automated image analysis significantly greater than the other techniques. Optical point counting 

produces the smallest sorting values (1.046). However, the sorting values for XCT (1.063) are very 

close the optical point counting values. For sample 8, only the modal particle size value for XCT 

analysis is within the sieved range. All other values are outside the sieved range. All statistical values 

for LPSA and 2D automated image analysis are larger than the measurements produced by XCT. The 

measured values for optical point counting are smaller than the measured values for XCT. XCT 

produces the smallest sorting values for sample 8 (1.122). 

Average sorting values were calculated for each analysis technique, over the whole particle size 

range (36 to 850 µm), to determine how constrained the measured PSD are for each technique. 

Lower average sorting values equate to smaller ranges in the measured PSD. Average sorting values 

are 1.233 for LPSA, 1.716 for 2D automated image analysis, 1.224 for optical point counting, and 

1.191 for XCT. 
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3.2. Particle size distributions 

Graphic displays of the PSD for all samples are shown in Figure 5. In all samples, LPSA detects few 

particles below 40 µm in diameter, in contrast to 2D automated image analysis and optical point 

counting. 2D automated image analysis and optical point counting have the largest tails, i.e., skew 

towards smaller particle sizes (Figure 5). This pattern is consistent across all samples analysed in this 

study. The large skew seen in the PSD of 2D automated image analysis and optical point counting is 

reflected in large sorting values (Table 4; Figure 6). Skew towards small particles for 2D automated 

image analysis is also associated with a spike in the number of the smallest particles measured 

(approximately 25 µm diameter). This pattern can be seen on the 2D automated image analysis line 

for all samples except 7 and 8 (Figure 5). For samples 3, 4, 5, 6, 7, and 8, LPSA shows a skew towards 

larger particles, where the pattern is exaggerated at larger particle sizes, reflecting the high mean, 

mode, D50, and D90 values that are recorded by LPSA (Table 4; Figure 6). Low sorting values of the 

XCT method are shown in Figure 5. The peak of the XCT curve (i.e., the highest frequency particle 

bin) is the one that is most likely to fall within the sieved range (red shaded area; Figure 5), 

reinforcing the observation that XCT most commonly has a modal particle diameter that is within the 

sieved particle size range. 

Similarity plots reflect what can be seen on the frequency and cumulative distribution plots. The 

plots show that XCT is always the most evenly distributed about the mean, with optical point 

counting, and 2D automated image analysis skewed towards smaller values. SEM images analysis 

shows a larger skew towards smaller similarity values than optical point counting, particularly at 

larger particle sizes (samples 7 and 8). The average similarity plot (Figure 5) is calculated across all 

samples and particle size analysis methods. The average similarity plot shows that XCT and optical 

point counting perform to a similar degree. However, XCT has a higher frequency of measurements 

around the mean value, and shows fewer particles at both larger and smaller values than the mean, 

reflecting the smaller sorting values of XCT when compared to optical point counting.  

3.3. Particle shape  

In addition to PSD descriptors, 2D particle shape descriptors can be obtained from 2D automated 

image analysis and optical point counting using equations 2 and 4. 3D particle shape descriptors can 

be obtained from XCT using equation 5. LPSA is unable to produce any descriptors regarding particle 

shape as it is a bulk analysis technique; the Beckman Coulter LS13-320 does not report any 

measurements of individual particles, and therefore particle shape cannot be measured. 

Measurements of particle size and shape are reported in Table 7.  
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Sphericity values from XCT data are above 0.94, with a mean sphericity of 0.95. Using 2D automated 

image analysis, the calculation of circularity nearly always returns a value that is higher than the 

shape factor. The mean circularity value for 2D automated image analysis is 0.84 and the mean 

shape factor is 0.83. For optical point counting, the mean circularity is 0.95 and the mean shape 

factor is 0.86. The circularity value is higher than the shape factor value for both 2D automated 

image analysis and optical point counting. 

3.4. Particle size distribution descriptors 

T-test results are shown in Table 6 revealing that there is a > 95 % confidence that statistically 

significant difference exist between the measured PSDs for XCT, 2D automated image analysis, and 

optical point counting across all samples.  

Pearson’s correlation coefficients and p-values for each PSD statistic are shown in Table 5. Pearson’s 

correlation coefficients (lower left half of the matrices) indicate if there is a correlation present. The 

p-values in Table 5 (upper right half of the matrices) show that a very, or extremely, statistically 

significant correlation exists between all particle size measurements, except for sorting values. For 

sorting, there is a very statistically significant correlation between LPSA, optical point counting, and 

XCT, but no statistically significant correlation between 2D automated image analysis and other 

techniques.  

3.5. Coefficient of variance stability: number of particles required 

The coefficient of variance in the mean particle size for XCT, 2D automated image analysis, and 

optical point counting are shown in Figure 7. Here, individual samples are shown in dotted lines and 

the mean coefficient of variance in a solid black line. The red dashed line indicates the point of 

stabilisation in the mean coefficient of variance, and therefore the number of particles that are 

required to be measured to stabilise the variance in mean particle size. Figure 7 shows that to 

stabilise the coefficient of variance in mean particle size, >250 particles are required for XCT, >350 

particles are required for 2D automated image analysis, and >150 particles are required for optical 

point counting.  

4. Discussion 

4.1. Variation in measured particle size distribution 

Figure 5 contains a graphical representation of PSD obtained across a range of particle diameters (36 

to 850 µm) using four laboratory-based methods. It must be noted that the X-axes are different in 

each frequency distribution, and cumulative distribution plot, in order to display the range of 
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particle measured for each sample. Figure 5 shows that the PSDs agree (overlap) for some samples, 

but disagree for other samples. At all particle diameters, PSD data from both 2D automated image 

analysis and optical point counting are positively skewed (i.e., larger tails towards smaller particles). 

The positive skew identified in the distribution plots is reflected in the similarity plots. Positive skew 

is caused by the effect of stereology, or the slicing of particles through a random plane, and not 

through the particle centre, during the sample preparation stage. This known effect causes the 

measured diameter of a particle to be smaller than the maximum diameter of the particle, and is 

therefore not a true representation of the particle diameter (Sahagian and Proussevitch, 1998). 

A different effect is apparent at larger particle diameters (samples 3 to 8). LPSA overestimates the 

number of large particles in a sample for samples with large particle diameters. This is likely due to 

the method by which particle diameter is calculated using the Mei and Fraunhofer theorems by LPSA 

(Ballard and Beare, 2013). As particles increase in diameter, the diffraction pattern of laser light has 

smaller spacing, and is therefore more difficult to detect. This effect leads to the bin widths 

produced by the Beckman Coulter LS13-320 to be logarithmically spaced between 0.375 µm and 

2000 µm (increasing in width with increasing particle size). The pattern of LPSA overestimating the 

amount of coarse material has been supported by work by Ballard and Beare (2013) and Blott and 

Pye (2006). Blott and Pye (2006) used bi-modal mixtures of glass particles with the same density to 

investigate the manner of the overestimation of LPSA. They found that the overestimation of coarse 

material is exaggerated with increasing particle diameter, with up to a 300 % overestimation in the 

amount of coarse material present in the samples. Similarity plots cannot be produced for LPSA as 

the Beckman Coulter LS13-320 does not produce measurements of individual particles.  

The similarity plots in Figure 5 highlight where the particle size analysis methods show a similar 

distribution, and where they do not. Here, they show that distributions produced using XCT and 

optical point counting are similar. XCT produces a more tightly constrained PSD than optical point 

counting, but the distribution of data around the mean is comparable. The large positive skew of 2D 

automated image analysis is highlighted by the similarity plots. This skew is apparent at all particle 

diameters.  

4.2. Variation in the particle size distribution descriptors of each laboratory-based particle 

size analysis technique 

We note similar trends in the PSD descriptors (Table 4; Figure 6) as we do in the PSD plots (Figure 5) 

for the range of samples analysed here. As particles increase in diameter, fewer statistical 

measurements are within the sieved ranges (Table 4; Figure 6). However, there are some consistent 

trends which should be noted.  
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XCT most commonly has statistical measurements with values within the sieved ranges, and sorting 

values from XCT are often the lowest of all the four techniques. XCT has the lowest average sorting 

values, suggesting that XCT particle size analysis is able to better contain a PSD across a range of 

particle diameters. Similar studies have been conducted on metal powders (Whiting et al., 2022). 

Here the authors find no significant difference between the PSD for XCT and 2D automated image 

analysis for particles in the size range of 20 to 76 µm. The samples analysed by Whiting et al. (2022) 

are equivalent to samples 1 and 2 from this study, where similar conclusions can be drawn about the 

correlation of XCT and 2D automated image analysis at small particle diameters. However, the 

trends observed by Whiting et al. (2022) are not apparent in our data at particle diameters greater 

than 150 µm (samples 3 to 8).  

Values of average sorting support the observations that XCT produces the most tightly constrained 

PSD (1.191). Average sorting values for optical point counting and LPSA are close to XCT (1.224 & 

1.233 respectively), but are larger due to the measured PSD being skewed. Optical point counting 

data are slightly positively skewed and LPSA data are slightly negatively skewed. 2D automated 

image analysis has the largest average sorting values (1.716), due to the large number of small 

particles measure. The measurement of small particles by 2D automated image analysis and optical 

point counting is an effect of stereology and the slicing of particles during sample preparation, 

causing the measured PSD to be positively skewed.  

Pearson’s correlation coefficients and p-values have been calculated to assess if there is a 

statistically significant correlation between the statistical measurement calculated from one PSA 

technique to another (Tables 5a to g). For mean particle size, modal particle size, D10, D50, and D90 

there are statistically significant correlations between the values calculated for every technique. The 

values show that a strong linear relationship is present for all particle size measurements. The strong 

linear relationship, and low p-values, suggest that measurements of PSD obtained using one 

technique are comparable to the measurements generate using the other techniques.  

For sorting, there is a statistically significant correlation between XCT and LPSA, and optical point 

counting. This suggests that the data from XCT, LPSA, and optical point counting techniques are 

comparable, and that results generated using one technique can be reasonably compared to those 

generated using a different technique. There is no significant correlation between the sorting values 

of 2D automated image analysis and other particle size analysis techniques. The sorting values of 2D 

automated image analysis do not show statistically significant correlation with other particle size 

analysis methods due to the effect of stereology artificially introducing skew, which subsequently 

affects values of D10 and D90 and sorting.  
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Table 5 shows that there is statistically significant correlation between the mean, mode, D10, D50, 

and D90 value for all particle size analysis in this study, suggesting that the comparison of data from 

one technique to another is possible. A Pearson’s correlation coefficient of approaching one shows 

that there is a close to linear relationship between datasets although this good outcome does not 

mean that relationship is 1:1; a conversion factor may be required to relate data from one particle 

size analysis method to another (Hinds et al., 2014). The results from T-tests (Table 6) indicate that 

there is a significant difference between the measured PSDs for XCT, 2D automated image analysis, 

and optical point counting. The T-test results suggest that, although the statistical measured 

produced by each technique show a strong positive correlation, the comparison of data from one 

particle size analysis method to another is still challenging.  

4.3. Advantages and disadvantages of each particle size analysis technique  

Each particle size analysis technique has both advantages and disadvantages, particularly regarding 

the time involved in obtaining sample data. A summary comparing the preparation time, analysis 

time, and processing time for one sample using each technique from this study is shown in Table 8. 

This table highlights the total analysis time differences between the techniques and any additional 

data, besides a PSD and particle size descriptors, that can be obtained. Table 8 also includes 

additional advantages and disadvantages for each particle size analysis technique. 

LPSA is a quick and repeatable technique for obtaining a PSD. It provides a consistent means of 

sample comparison, which provides sufficient data for the analysis of spatial or temporal variations 

in a dataset (Blott and Pye, 2006). We find that LPSA provides accurate particle size descriptor 

measurements for small particle (<300 µm), however the PSD produced by LPSA is skewed towards 

large particles.  This agrees with prior work by Blott and Pye (2006), who found there to be 

significant differences in the PSD descriptors produced using LPSA and dry sieving, that increase in 

magnitude as particles became more irregular and elongate in shape. The results of particle size 

analysis data from LPSA must be compared carefully with data produced using a different particle 

size analysis method as only the PSD is reported and not the measurements of individual particles, 

limiting the calculation of some statistical measures (e.g. coefficient of variance in mean particle 

size).  

When comparing PSD results generated using LPSA from different origins (e.g., different 

laboratories), care must be taken to establish exactly how the results were prepared and analysed. 

Clay-rich samples are commonly mixed with Sodium Hexametaphosphate, often referred to as 

Calgon, to aid the dispersion of clay particles. It has been found that, in particularly clay-rich 

samples, the use of Calgon can cause a bimodal PSD and lead to a dramatic increase in the amount 
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of fine material measured (Ballard and Beare, 2013). Another common practice is to subject a 

sample to sonication before analysis. The use of sonication has been suggested to skew to results of 

LPSA towards fine material, due to the breaking of particles along weak planes and the rounding of 

particles during collision with one another (Storti and Balsamo, 2010; Ballard and Beare, 2013). 

However, a recent study by Maithel et al. (2019) suggested that sonication of a sandstone for up to 

20 minutes has no significant effect on the average particle size of a sample. Overall, understanding 

the exact sample preparation and analysis workflow is important for the meaningful comparison of 

LPSA results.  

As well as particle size analysis, optical point counting can be used to determine the composition or 

mineralogy of particles in a thin section, with the user’s aim typically being primarily to understand 

provenance or diagenesis. This method provides the user with numerical abundance data for the 

composition of a rock, and quantitative information about the size and shape of particles in the 

sample. Optical point counting is a slow method of obtaining a PSD, however manual measuring of 

particle perimeters it is particularly useful if particles are cemented or fragmented, and particle size 

is unlikely to be the only data that are derived (table 7). Here, we have used grid intersection points 

to introduce statistical randomness in the particles that have been measured. Where a user does not 

do this, there is a chance of artificially skewing a particle size distribution due to operator bias. 

Optical point counting can generate a wealth of data, such as mineralogy or grain coating clay 

coverage, that is not currently possible using other particle size analysis techniques (Van der Plas and 

Tobi, 1965; Wooldridge et al., 2019). However, the generation of additional data increases the 

analysis time for each sample.  

2D automated image analysis is a simple method of particle size analysis that can be conducted on 

SEM images and optical photomicrographs. It is faster than traditional optical point counting, 

however less data can be simultaneously obtained. 2D automated image analysis is able to analyse 

thousands of particles in a very efficient manner. However, during a particle segmentation workflow, 

the user must monitor the process closely to ensure that particles are not over- or under-

segmented, as this can introduce artificial skew into a dataset (Behnsen et al., 2023). Although not 

specific to particle size analysis, the use of a SEM can facilitate the collection of additional data such 

as chemical composition (SEM-EDS), and crystal orientation (SEM-EBSD). The use of an SEM to 

obtain representative images of a sample might not always be suitable, and sample preparation can 

prove time consuming (Table 8). It should also be noted that the samples used for 2D automated 

image analysis (or any sample made into a polished block or thin section) is non-recoverable.  

XCT is the only particle size analysis method presented here that is able to produce 3D particle shape 

and particle orientation data. Depending on the size of the sample being analysed, and the required 
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resolution of the XCT scan, the sample analysis time can vary greatly. Here, all analysis times were 

less than 3 hours using laboratory-based XCT, where a maximum voxel size of 5.5 µm was achieved 

(Table 3). Scan times can be longer if the sample has a high X-ray absorbance, or a higher resolution 

is required. Sample size is a major limiting factor in XCT, and is determined by the X-ray absorbance 

and transmission of the X-ray beam though a sample. We have shown here that XCT is capable of 

measuring the PSD of particles in the > 36 µm range, however the resolution of modern XCT systems 

is such that particles as small as 5 µm can be reliable scanned and segmented (Behnsen et al., 2023). 

A major advantage of XCT is that minimal sample preparation is required, and the sample can be 

fully recovered once analysis is complete. Therefore, it is suitable for a wide range of sample 

materials, and there is minimal risk of chemical alteration of a sample during preparation (e.g., 

alteration due to mixing with resin during polished resin block preparation). In addition to particle 

size analysis, XCT can also be used to investigate porosity, permeability, sedimentary structures and 

fabrics (Petri et al., 2020).  

XCT is also capable of additional measurements such as preferential particle orientation, Zingg shape 

measurements (Zingg, 1935), and the size and distribution of intra-particle porosity (Behnsen et al., 

2023). An example of these measurements is shown in Figure 8 for sample 3. The results of 

morphology analysis reveal all four Zingg classification are found within sample 3 and that 96.6% are 

spheres, 1.6% are disks, 0.4% are blades, and 3.4% are rods. The results also show that 39% of the 

particles in sample 3 have intra-particle (i.e., internal) porosity. For sample 3, the mean intra-particle 

porosity is 0.43%. 

4.4. Comparing particle size distributions from different analysis methods 

Each particle size analysis technique used in this study generated data using a different physical 

measurement, therefore comparison of data is challenging and needs to be conducted carefully. The 

quantitative outputs from each technique need to be chosen carefully, and some specific 

measurements can be more appropriate for comparing certain techniques (Whiting et al., 2022). 

Here, Pearson’s correlation coefficients (Table 5) show statistically significant correlations exist 

mean, mode, D10, D50, and D90 values got all PSA methods. However, no statistically significant 

correlations are found between the sorting values produces by 2D automated image analysis and 

other PSA methods. Here, we have shown that LPSA overestimated the number of large particles in a 

sample and introduces a negative skew to the PSD. The opposite is apparent from 2D automated 

image analysis, which tends to overestimate the number of small particles in sample and introduce 

positive skew into the PSD. Therefore, the particle size descriptors used for the comparison of 
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techniques need to be considered carefully. Here, we suggest that measures of mean, mode, and 

D50 are the most appropriate descriptors to compare.  

A longstanding problem in geoscience is the comparison of particle size descriptors obtained from 

2D and 3D datasets. Subsequently, there have been numerous studies that aimed to establish 

conversion factors and derive the stereological relationship between 2D and 3D PSD. Theoretical 

conversion approaches have been proposed for idealised particles (e.g., spheres or ellipsoids) 

(Krumbein, 1935; Greenman, 1951; Packham, 1955; Sahu, 1966; Kellerhals et al., 1975; Johnson, 

1994; Sahagian and Proussevitch, 1998; Jutzeler et al., 2012), while others developed empirical 

conversion factors, bypassing theoretical conversion factors (Friedman, 1958; Adams, 1977; Harrell 

and Eriksson, 1979; Kong et al., 2005; Jutzeler et al., 2012). A correction factor uses an equation that 

can convert a particle length measured in 2D to a more accurate representation that is equivalent to 

3D, adjusting the measured PSD of a sample. However the applicability of conversion factors to 

sands and sandstones is limited (Weltje, 2002). The problem with using spherical particles to derive 

correction factors is that perfect spheres are not common in natural geo-materials, and therefore for 

non-spherical particles surface area or volume cannot be inferred from the measured cross section 

(Switzer, 2013). The number of times this topic has been approached reveals the difficulty of 

calculating a conversion factor that is consistent across a range of particle diameter and shapes. The 

calculation of a new set of correction factors is beyond the scope of this paper.  

The advantage of collecting particle size information from thin sections, is that it can be collected 

along with mineralogical and rock fabric information that would be lost if a bulk technique such as 

sieving or LPSA were used. Thin section point count analysis is also a good method if the rock cannot 

be easily disaggregated due to cementation (Hinds et al., 2014). However, data collected from a 2D 

method such as optical point counting or 2D automated image analysis cannot be considered an 

accurate interpretation of 3D textures and fabrics within a sample, as a thin section is a cross-

sectional slice and not a true representation of the sample in 3D (Hinds et al., 2014).  

LPSA produces a smooth curve with tails that extend much further towards large particle than other 

techniques. It was suggested by Whiting et al. (2022) that the smoothness of curves produced by 

LPSA is an artefact a large sample size (more particle counted than other techniques) and that laser 

light can be refracted off multiple particle simultaneously, leading to the measurement of an 

artificial particle (multiple particles imaged as one particle) with a diameter that is larger than any 

particle in the bulk samples. Significantly, LPSA has the largest overestimation of D90 of any 

technique. Previous studies have suggested that comparing LPSA measurements with the fmax 

diameter generated using XCT analysis produces an acceptable correlation, but it will lead to an 

apparent overestimation of the PSD (Erdoğan et al., 2007). LPSA fundamentally assumes that all 
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particles are spherical, therefore non-spherical particles may have the longest edge measured, 

skewing the resulting PSD towards larger particles. The shape factor (termed “chunkiness” by Kaye 

et al. (1997)) of particles has been related to the skew of PSD measured using LSPA by Kaye et al. 

(1997). Kaye et al. (1997) demonstrated that at, lower values of shape factor (less spherical), there is 

a larger range of particle sizes measures using LPSA, therefore the calculated values of sorting will be 

larger.  

Here we have used a simplified sample set of spherical particles to determine how the differences 

between analysis techniques arise. Particles in geo-materials are not spherical and therefore it is 

important to understand how PSD techniques compare on more complex samples that contain non-

spherical particles. Cheetham et al. (2008) conducted an extensive study with the aim of quantifying 

the PSD of sand-dominated sediments using sieving, LPSA, optical point counting, and X-ray 

attenuation. The authors found a strong correlation between LPSA and sieving, suggesting that the 

measured PSDs are equivalent. It is therefore suggested that the comparison of historical sieving 

data with modern LPSA data is valid (Cheetham et al., 2008). The data presented here only partly 

agrees with this conclusion. Samples 1 and 2 show an alignment of LSPA and sieving data, suggesting 

that, at particle diameters ≤ 75 µm, data are comparable However, at particle diameters > 75 µm 

(samples 3-8 Figure 5) large particle diameters LPSA overestimates all PSD descriptors compared to 

the sieved interval, invalidating the comparison of data. This is due to the different measurements of 

particle diameter measured using each technique: sieving records the Ferret median diameter or 

breadth of a particle (Konert and Vandenberghe, 1997), whereas LPSA reports the equivalent 

spherical diameter of particles, based on the diffraction pattern of laser light (Di Stefano et al., 

2010). As particles become less spherical and shape factor and sphericity decrease, the difference 

between a PSD measured with sieving and LPSA will likely increase (Kaye et al., 1997).  

Optical point counting of thin sections and automated 2D image analysis to generate PSD are 

concepts that have been repeatedly examined (Krumbein, 1935; Greenman, 1951; Packham, 1955; 

Adams, 1977; Johnson, 1994; Cheetham et al., 2008; Maithel et al., 2019) but with variable 

outcomes. The results from these studies have determined that optical point counting and 2D 

automated image analysis underestimate mean particle diameter, and are skewed towards small 

particles when compared to LPSA (Maithel et al., 2019). The results shown in this study support the 

finding of previous authors that 2D measurements of PSD are skewed towards fine particle and tend 

to underestimate the mean particle diameter.  
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4.5. Statistically valid particle size distributions: number of particles required 

The number of particles required to obtain a representative sample has been examined. Cheetham 

et al. (2008) undertook PSD analysis on SEM images using 100 particles per sample, and concluded 

that 100 particles are too few to be representative and therefore cannot be considered a valid 

method of particle size analysis. Alternatively, the number of particles required has been determined 

based on the sorting of the particles in a sample (Mulholland and Jones, 1968; Johnson, 1994). 

Mulholland and Jones (1968) suggested that to calculate mean particle size to within 0.1Φ with 90% 

certainty requires only 33 particles in a very well sorted sample, 100 particles in a moderately sorted 

sample, and 270 particles in a poorly sorted sample. It has also been suggested that up to 500 

particles need to be measured to obtain statistically significant measurements of a PSD (Krumbein, 

1935; Greenman, 1951; Friedman, 1958; Kellerhals et al., 1975). Instead of counting a pre-

determined number of particles for every sample, Hinds et al. (2014) suggested that the variance in 

the mean particle diameter should be monitored, and when stable the number of particles required 

to obtain valid PSD descriptors has been reached. Following the methodology of Hinds et al. (2014) 

to calculate a mean variance for XCT, 2D automated image analysis, and optical point counting we 

have determined the minimum number of particle measurements needed to stabilise the variance in 

very well to moderately sorted samples (sorting values of < 1.27). For spherical particles, 250 

particles are required to stabilise the variance from XCT (average sorting value; 1.191), 350 particles 

are required for 2D automated image analysis (average sorting value; 1.716), and 150 particles are 

required for optical point counting (average sorting value; 1.224). The number of particles 

determined here falls into the ranges previously suggested (Krumbein, 1935; Greenman, 1951; 

Friedman, 1958; Mulholland and Jones, 1968; Kellerhals et al., 1975). However it must be considered 

that the samples analysed in this study are very well sorted, and therefore the number of particles 

required to stabilise the variance in mean particle diameter is likely to increase as sorting values 

increase (more poorly sorted) (Mulholland and Jones, 1968)  

5. Conclusions 

We measured the particle size distribution of eight samples of spherical particles, with different size 

ranges, using four laboratory-based characterisation methods: Laser Particle Size Analysis (LPSA), 2D 

automated image analysis, optical point counting, and X-Ray Computed Tomography (XCT). We 

presented particle size distribution and distribution descriptors from the measured particle size 

distributions to investigate the correlation of measured particle size distributions from different 

methods.  
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1. LPSA is a bulk technique that is fast, cost-effective, and requires minimal sample 

preparation. However, the results are shown to overestimate the number of large particles, 

and introduce negative skew, due to the underlying principles of the Fraunhofer theorem.  

The data produced using LPSA contain no information regarding particle shape or 

morphology.  

2. Optical point counting and 2D automated image analysis are 2D analysis methods conducted 

using photomicrographs or SEM images. Sample preparation leads to random slicing of 

particles, resulting in the majority of particle having a diameter that is less that their 

maximum. The effect of stereology positively skews the particle size distribution results. 

However, additional particle shape, morphology, and composition can be collected 

simultaneously.  

3. XCT is the most reliable method of measuring a particle size distribution. XCT produced the 

smallest sorting values across the full range of particle diameters (36 to 850 µm); suggesting 

XCT constrains particle size distributions more accurately than LPSA, 2D automated image 

analysis, and optical point counting. Sample analysis and data processing times for XCT can 

be long, however quantitative measurements of 3D particle shape and intra-particle porosity 

can be made simultaneously to particle size; measurements not possible using LPSA, 2D 

automated image analysis, and optical point counting.  

4. Statistically significant correlations exist between all techniques for mean and modal particle 

size, D10, D50, and D90 values. For sorting, a statistically significant correlation exists 

between LPSA, XCT, and optical point counting. However, there is no correlation between 

these techniques and values generated using 2D automated image analysis. This suggests 

that values mean, mode, D10, D50, and D90 values are comparable between different 

analysis methods. Values of sorting need to be compared with great care.  

Data availability 

Data will be made available on request.  
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List of figures 

Figure 1. Overview of the common particle size measurements used in geoscience. Length and width 

are commonly measured during optical point counting. Manuel sieving records the width or Ferret-

Min diameter. LPSA reports the diameter of a sphere of equal projection volume. XCT can report all 

measurements, as well as 3D particle shape measurements such as sphericity and orientation. 

Figure 2. Backscatter SEM images of the samples analysed: a. sample 1 (35 to 65 µm), b. sample 2 

(35 to 75 µm), c. sample 3 (150 to 180 µm), d. sample 4 (300 to 315 µm), e. sample 5 (315 to 355 

µm), f. sample 6 (375 to 400 µm), g. sample 7 (600 to 630 µm), h. sample 8 (800 to 850 µm).  

Figure 3. A schematic of an LPSA device. Particles are suspended in a fluid (de-ionised water) that 

circulated around the observation cell. Laser light passes through the analysis chamber and 

suspended particles refract the laser light. Larger particles produce smaller scattering angles than 

small particles. The angle of scattered light is measured by the detector. (Modified after Ballard and 

Beare 2013; Beckman Coulter 2011). 

Figure 4. Schematic of a typical laboratory microfocus X-ray CT system. Shown here is the X-ray 

source, sample holder with sample (Kapton tube), and the detector. The detector on a Zeiss Xradia 

Versa 620 is a combination of the objective lens and camera. Source-sample and sample-detector 

distances affect image magnification. A series of projection images are captured while the sample is 

incrementally rotated over 360o, which is then reconstructed into the slice images that form the 3D 

data volume (Modified after Behnsen et al., 2023). 

Figure 5. Frequency distribution (left) and cumulative distribution (centre), and similarity (right) plots 

for samples 1 to 8. XCT is shown with blue lines, LPSA with yellow lines, 2D automated image 

analysis with green lines, and optical point counting with red lines. The highlighted red area, 

bounded by dashed grey lines indicates the sieve range for each sample. Normalised frequency 

similarity plot (bottom) shows the average distribution produced by each particle size analysis 

technique. Both axes are dimensionless, allowing the comparison of all samples on one graph. LPSA 

cannot be plotted as measurements of individual particles are produced by the Beckman coulter 

LS13-320. 
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Figure 6. Visualisation of particle size distribution descriptors. The sieved range and symbols are 

coloured by sample: sample 1 (35 to 65 µm) = blue, sample 2 (65-75 µm) = orange, sample 3 (150 to 

180 µm) = green, sample 4 (300 to 315 µm) = pink, sample 5 (315 to 355 µm) = brown, sample 6 (375 

to 400 µm) = purple, sample 7 (600 to 630 µm) = red, and sample 8 (800 to 850 µm) = yellow. Data 

from each particle size analysis method has a different symbol: LPSA = stars, 2D automated image 

analysis = circles, optical point counting = squares, and XCT = triangles.  

Figure 7. Coefficient of variance curves for XCT, 2D automated image analysis, and optical point 

counting. Variance is calculated using equation 7. Individual samples are shown in dotted lines, 

mean variance is shown in solid black lines. Red dashed lines indicate the number of particles after 

which the mean variance is stable.  

Figure 8. Additional data that can be collected using XCT analysis. Shown here is an example from 

sample 3 (150 to 180 µm). Bottom: particles coloured by equivalent spherical diameter. Middle: 

particle coloured according to Zingg’s shape classification (discs (I): purple, spheres (II): grey, blades 

(III): orange, rods (IV): blue). Top: particles with internal pores (particles perimeter in blue, intra-

particle pores in red).  
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Table 1. Details of the samples analysed. Bulk samples of silica particles containing a large particle 

size distribution were sieved to extract narrow ranges of particle diameters. The bulk samples and 

the sieved fractions extracted from each bulk sample are detailed. Sieved fractions were used in the 

work here to analyse the measurement of a small, and known, grain size distribution using standard 

laboratory procedures. 

Sample number Bulk sample Sieved Fraction 

1 0 – 100 µm 36 – 65 µm 

2 0 – 100 µm 65 – 75 µm 

3 100 - 200 µm 150 – 180 µm 

4 300 – 400 µm 300 – 315 µm 

5 300 – 400 µm 315 – 355 µm 

6 300 – 400 µm 355 – 400 µm 

7 600 – 800 µm 600 - 630 µm 

8 600 – 800 µm 800 – 850 µm 

 

 

Table 2. SEM parameters used to image polished resin blocks on a Zeiss Gemini 450. All images and 

image montages were obtained using backscatter electron microscopy. 

Sample 
number 

Particle 
size range 

Magnification Beam 
Energy 

(kV) 

Beam 
Current 

(nA) 

Working 
distance 

(mm) 

Pixel 
diameter 

(um) 

1 36 - 65 µm 150 20 2 10 0.75 

2 65 - 75 µm 150 20 2 10 0.75 

3 150 - 180 
µm 

80 20 2 10 1.4 

4 300 - 315 
µm 

50 20 2 10 2.24 

5 315 – 350 
µm 

50 20 2 10 2.24 

6 375 – 400 
µm 

50 20 2 10 2.24 

7 600 – 630 
µm 

50 20 2 9.5 2.24 

8 800 – 850 
µm 

40 20 2 9.5 3 
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Table 3. XCT imaging parameters used for glass bead samples. Samples were scanned using a Zeiss 

Xradia Versa 620 X-ray Microscope.  

Sampl
e 

numbe
r 

Particl
e size 
range 

Objectiv
e 

Binnin
g 

Exposur
e (s) 

Number 
of 

projection
s 

Sourc
e 

voltag
e (Kv) 

Source 
wattag
e (W) 

Bea
m 

filter 

Pixel 
diamete
r (µm) 

1 36 - 65 
µm 

4x 2 0.8 1601 60 6.5 Air 2.25 

2 65 - 75 
µm 

4x 2 0.8 1601 60 6.5 Air 2.25 

3 75 - 
100 
µm 

4x 2 0.8 1601 60 6.5 Air 2.25 

4 300 - 
315 
µm 

4x 2 1.3 1601 80 10 Air 5.5 

5 315 – 
350 
µm 

4x 2 1.3 1601 80 10 Air 5.5 

6 375 – 
400 
µm 

4x 2 1.3 1601 80 10 Air 5.5 

7 600 – 
630 
µm 

4x 2 1.3 1601 80 10 Air 5.5 
(stitche
d scans) 

8 800 – 
850 
µm 

4x 2 1.3 1601 80 10 Air 5.5 
(stitche
d scans) 
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Table 4. particle size distribution statistics for all techniques and samples (LPSA = Laser Particle Size 

Analysis, 2D IA = 2D automated image analysis, OPC = optical point counting, and XCT = X-ray 

computed tomography). Statistical measurements were generated using GRADISTATv9.1. For 

sorting; vws = very well sorted, ws = well sorted, mws = moderately well sorted, ms = moderately 

sorted, and ps = poorly sorted following the geometrical Folk and Ward (1957) graphical measures.  

Sample 
number 

Particle 
size range 

Technique Mean Mode D10 D50 D90 Sorting 

1 36-65 µm LPSA 55.11 57.84 46.5 55.31 64.84 1.138 
(ws)   

2D IA 63.5 75 31.74 70.17 88.42 1.477 
(mws)   

OPC 55.84 65 43.09 56.76 68.49 1.192 
(vws) 

    XCT 59.26 65 50.27 59.77 68.94 1.166 
(vws) 

2 65-75 µm LPSA 64.08 63.49 55.96 64.04 74.04 1.120 
(vws)   

2D IA 60.55 95 23.03 74.86 96.86 1.730 
(ms)   

OPC 63.34 65 48.27 64.77 76.23 1.199 
(vws) 

    XCT 68.5 75 57.03 69.03 77.87 1.133 
(vws) 

3 150-180 
µm 

LPSA 191.2 177.2 160.1 188.5 245.3 1.177 
(vws)   

2D IA 113.6 165 33.27 135.4 176 1.829 
(ms)   

OPC 157.4 175 106.9 164.4 189.8 1.255 
(vws) 

    XCT 154.9 175 97.61 166.7 184.2 1.262 
(vws) 

4 300-315 
µm 

LPSA 356.9 310 286.5 339.6 499.4 1.232 
(vws)   

2D IA 232.7 305 55.83 308.4 436.3 2.065 
(ps)   

OPC 268.1 305 187.7 282.9 335.8 1.263 
(vws) 

    XCT 293.7 305 193.7 307.6 338.9 1.226 
(vws) 

5 315-350 
µm 

LPSA 364.7 340.3 304 361 465.6 1.194 
(vws) 
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2D IA 190 295 55.98 220.6 469.3 2.278 
(ps)   

OPC 304.3 345 223.3 319.6 355 1.196 
(vws) 

    XCT 315.3 345 191.5 334.8 360.9 1.244 
(vws) 

6 375-400 
µm 

LPSA 391.6 373.6 339.2 391.3 452.1 1.112 
(vws)   

2D IA 292.5 425 106.2 347.2 471.5 1.760 
(ms)   

OPC 304.6 325 237.7 312.2 372.3 1.195 
(vws) 

    XCT 374.2 375 331.6 375.1 400.9 1.169 
(vws) 

7 600-630 
µm 

LPSA 675 653.8 581.5 674.2 794.3 1.124 
(vws)   

2D IA 843.6 885 580 888.9 976 1.234 
(vws)   

OPC 644.1 645 609.5 644.1 681.7 1.046 
(vws) 

    XCT 653.8 635 617.3 648.2 720.3 1.063 
(vws) 

8 800-850 
µm 

LPSA 1008.7 949.4 791.3 972.6 1413.9 1.246 
(vws)   

2D IA 930.1 735 651 977.5 1179 1.316 
(ws)   

OPC 741.2 755 633.3 739.4 903.3 1.140 
(vws) 

    XCT 881.8 845 686 874.6 968.5 1.122 
(vws) 
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Table 5. Results of Pearson’s correlation coefficient and p-values for the particle size distribution 

statistics of all samples. The value of a Pearson’s correlation coefficient ranges from 1 to -1, where 1 

is a strong positive correlation and -1 is a strong negative correlation. A value of 0 indicates that no 

correlation is present. P-values indicate the statistically significance of the correlation. For p-values 

<0.05 (*), the correlation is statistically significant. P-values <0.01 (**) indicate a very significant 

correlation and p <0.001 (***) indicate an extremely significant correlation. LPSA = Laser Particle Size 

Analysis, 2D IA = 2D automated image analysis, OPC = optical point counting, and XCT = X-ray 

computed tomography. 

x mean.LP
SA 

mean.
2D IA 

mean.O
PC 

mean.X
CT 

x mode.LP
SA 

mode.
2D IA 

mode.O
PC 

mode.X
CT 

mean.LP
SA 

x 0.000*
** 

0.000**
* 

0.000**
* 

mode.LP
SA 

x 0.002*
* 

0.000**
* 

0.000**
* 

mean.2
D IA 

0.954 x 0.000**
* 

0.000**
* 

mode.2
D IA 

0.913 x 0.000**
* 

0.001** 

mean.O
PC 

0.984 0.98 x 0.000**
* 

mode.O
PC 

0.986 0.955 x 0.000**
* 

mean.X
CT 

0.994 0.969 0.991 x mode.X
CT 

0.987 0.94 0.989 x 

x d10.LPS
A 

d10.2D 
IA 

d10.OP
C 

d10.XC
T 

x d50.LPS
A 

d50.2D 
IA 

d50.OP
C 

d50.XC
T 

d10.LPS
A 

x 0.001*
* 

0 0 d50.LPS
A 

x 0.000*
** 

0.000**
* 

0.000**
* 

d10.2D 
IA 

0.916 x 0 0 d50.2D 
IA 

0.964 x 0.000**
* 

0.000**
* 

d10.OPC 0.973 0.967 x 0 d50.OPC 0.986 0.981 x 0.000**
* 

d10.XCT 0.977 0.956 0.989 x d50.XCT 0.993 0.971 0.991 X 

x d90.LPS
A 

d90.2D 
IA 

d90.OP
C 

d90.XC
T 

x sort.LPS
A 

sort.2
D IA 

sort.OP
C 

sort.XC
T 

d90.LPS
A 

x 0.000*
** 

0.000**
* 

0.000**
* 

sort.LPS
A 

x 0.593 0.002** 0.006** 

d90.2D 
IA 

0.966 x 0.000**
* 

0.000**
* 

sort.2D 
IA 

0.225 x 0.252 0.085 

d90.OPC 0.982 0.996 x 0.000**
* 

sort.OPC 0.907 0.46 x 0.000**
* 

d90.XCT 0.977 0.996 0.994 X sort.XCT 0.857 0.644 0.948 x 
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Table 6. T-test results for Samples 1 to 8. T-tests have been performed on XCT, SEM image analysis, 

and Point Counting data. T-tests cannot be performed on LPSA data as the Beckman Coulter LS13-

320 does not produce measurements of individual particles. For p-values less than 0.05, there is 95% 

confidence that there is a statistically significant difference between the particle size distributions. 

For p-values of less than 0.01, there is 99% confidence that there is a statistically significant 

difference between the particle size distributions. 2D IA = 2D automated image analysis, OPC = 

optical point counting, and XCT = X-ray computed tomography. 

36-65um XCT - 2D IA XCT -  OPC 2D IA - OPC 

T-statistic 0 0.01 0 

Confidence level 100 98.63 100 

65-75um 
   

T-statistic 0 0 0 

Confidence level 100 99.99 100 

150-180um 
   

T-statistic 0 0.01 0.09 

Confidence level 99.99 98.96 91.43 

300-315um 
   

T-statistic 0 0 0 

Confidence level 100 100 100 

315-350um 
   

T-statistic 0 0.05 0 

Confidence level 100 95.42 100 

375-400um 
   

T-statistic 0 0 0 

Confidence level 100 100 100 

600-630um 
   

T-statistic 0 0 0 

Confidence level 100 99.99 100 

800-850um 
   

T-statistic 0 0 0 

Confidence level 100 100 100 
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Table 7. Results of shape analysis for XCT, 2D automated image analysis, and optical point counting. 

Details of the calculations are in equations 2 and 3. Circularity, sphericity, and shape factor range 

between 0 and 1, where a perfect sphere/circle has a value of 1. 2D IA = 2D automated image 

analysis, OPC = optical point counting, and XCT = X-ray computed tomography. 

Sample Sphericity from 
XCT 

2D IA shape 
factor 

2D IA 
circularity 

OPC shape 
factor 

OPC 
Circularity 

36-65 µm 0.96 0.86 0.87 0.87 0.94 

65-75 µm 0.94 0.82 0.84 0.85 0.93 

150-180 
µm 

0.95 0.83 0.85 0.84 0.95 

300-315 
µm 

0.95 0.76 0.84 0.84 0.94 

315-355 
µm 

0.95 0.79 0.75 0.86 0.95 

375-400 
µm 

0.97 0.89 0.86 0.87 0.99 

600-630 
µm 

0.97 0.85 0.85 0.88 0.88 

800-850 
µm 

0.94 0.8 0.84 0.84 0.84 
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Table 8. Summary of the advantages and disadvantages for each particle size analysis method. The data include sample preparation time, analysis time, 

data processing time, and any additional data that can be collected. LPSA = Laser Particle Size Analysis, 2D IA = 2D automated image analysis, OPC = optical 

point counting, and XCT = X-ray computed tomography. 

Technique Sample 
preparation 

method 

Sample 
preparation 

time 

Sample 
analysis 

time 

Data 
processing 

time 

Total 
time 

Additional data Advantages Disadvantages 

LPSA Disaggregation 
and removal of 

organic material 

0-1 hours 
typically. 

10 
minutes 

5 minutes <1 
hour 

N/A Reliable 
method to 

assess spatial 
and temporal 
variation in a 

dataset 

Produces 
different particle 
size distributions 
to other common 

techniques.  

Up to 48 
hours 

Results can are 
influenced by 

sample 
preparation (e.g. 

mixing with 
Calgon, or the use 

of sonication). 

2D IA Thin section or 
polished block 

production 

4 hours 1 hour 0.5 hour 6 
hours 

2D particle shape Large datasets 
(e.g. whole thin 

sections) can 
be analysed 
quickly. Not 

subject to user 
bias.  

Time consuming 
sample 

preparation. Data 
can be artificially 

skewed during 
particle 

separation 
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OPC Thin section or 
polished block 

production 

4 hours 3 hours 5 minutes 7 
hours 

2D particle shape. 
Mineralogy. 

Sample 
composition 

can be 
determined – 

use in 
provenance 

and diagenesis 
studies.  

Time consuming 

XCT Place loose 
sample in 

Kapton tube, or 
mount solid 

sample to a nail 

0.5 hours 1-3 
hours 

1 hour 5 
hours 

3D particle shape. 
Porosity and 

Intraparticle porosity. 
Grain 

fabrics/preferential 
orientation.  

Not subject to 
the effect of 
stereology.  

Lower particle 
size limited to ~12 

µm. 
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