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Abstract

Crystal structures are typically classified discretely by their symmetry groups - however,
given the huge growth in deposited crystal structures, and the ability of crystal structure
prediction methods (CSP) to generate thousands of potential structures, many of which may
be nearly identical in a geometric sense, for a given set of input molecules classification of
this nature is potentially too coarse to allow careful exploration of the space of existing or
potential structures. Our research aim is therefore to develop a continuous classification of
periodic structures.

In this work we focus on the simplest of these structures- the two dimensional lattice,
defined as the infinite set of integer combinations of a basis of R2. Our approach in this work
is to consider any two lattices lattices identical if they are related by isometry - or, if we wish
to distinguish such structures which are related by reflection, by a rigid motion. We seek to
map any given lattice to some mathematical object which is the same for any pair of lattices
related by these transformations, and different otherwise - a complete invariant. We want
this invariant to vary continuously, in the mathematical sense, under perturbations of the
lattice, such that we may map lattices to a metric space in which their geometric similarity
may be rigorously compared.

The key contribution of this thesis is a full solution of this problem for two dimensional
lattices and the development as a result of a visualisation of all possible lattice configurations
as a compact space. We have implemented this solution and applied it to large datasets of
actually existing lattices from the Cambridge Structural Database and elsewhere. To our
knowledge the various maps shown in this thesis give the first visualisations of the set of real
world periodic structures in a continuous space.
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Notation

Existing Notation Used in this Thesis
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2
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xiii



Notation Defined in this Thesis
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Chapter 1

Introduction

The aim of this first chapter of the thesis is to formalise the research problem that we
address. It is divided into four sections. The first discusses the general motivation behind
our research approach and states our goal in an informal sense, the second states the basic
mathematical tools that we use in that approach, and the final section applies those tools
to the mathematical objects under consideration, closing with a formalised statement of the
research aim which applies specifically to those objects.

1.1 Motivation: Exploring Structural Space

The work in this thesis is motivated by the explosive growth in the number of structures
of solid crystalline materials available in recent years. Even before the tools to fully under-
stand their structure were built, crystals were being used as detectors of EM radiation [5],
and indeed it was that property, applied to X-rays, that led to the discovery of the key
methodology for understanding their structure [6]. This in turn has led to a growing un-
derstanding of how the periodic nature of crystal structures can give rise to their physical
properties, resulting in their widespread employment in the generation of solar power [7], for
the storage of energy [8]] and for carbon capture [9], among a plethora of other applications.

The increasing accuracy and effectiveness of structure determination methods, and the
analysis of their output to determine the atomic structure of a material means that that the
determination of crystal structures has become a routine element not just of materials science,
but also of the biosciences, where the Protein Data Bank [10] currently holds structural data
on 200, 000 biomolecules, with over 10, 000 new structures deposited in any given year.

Beyond this growing repository of experimentally determined structures, improvements
in computing power allow for sufficiently accurate simulation of the atomic forces both within
and between molecules [11] to explore the possible crystal structures that those molecules
may form entirely in silico. This approach to Crystal Structure Prediction (CSP), is com-
putationally expensive and relies on a random sampling of initial configurations from which
the simulation can develop. It can give rise to tens of thousands of potential structures (see
for example [12]).
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As a result, several large and growing databases of both real and simulated struc-
tures now exist - as well as the aforementioned Protein Data Bank, the Crystallography
Open Database [13] holds over half a million crystal structures ranging across many types
of molecule, while the Inorganic Crystal Structure Database (ICSD) [14] contains nearly
300, 000 entries which are a mixture of both real and simulated structures. The c.170, 000
structures in the Materials Project [15], by contrast, are entirely simulated.

In this thesis we use as a test dataset the Cambridge Structural Database (informally
known as the CSD) [16], which largely contains crystals derived from organic molecules and
which as of the current time of writing contains 1.2 million deposited CIF files (the standard
format for crystallographic structural data [17]), ranging from simple to extremely complex
arrangements of organic and inorganic molecules (see Figure 1.1).

Figure 1.1: Diversity of structures deposited in the CSD. Left: one of multiple depositions
of the structure of Oxalic Acid crystals with a water solvent- a simple organic molecule used
in the testing of structure determination. Right: Complex crystalline structure formed of
rare earth metals bound to small organic molecules in a ribbon formation [1].
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In CSP, many simulated structures can immediately be ruled out by looking at the mod-
elled values of global structural properties such as lattice density and energy and excluding
anything known to be unphysical - for example, with lattice energies too high to be com-
patible with stability under feasible physical conditions, and densities (in terms of atomic
mass per unit cell of the lattice) above those normally observed in solid state material [2] (see
Figure 1.2). A harder problem is identifying (in an informal sense) genuinely ’different’ struc-
tures among the remaining data from those related by just a small geometric perturbation
of the structure (e.g. a small rotation about a bond).

Figure 1.2: Energy/density maps for thousands of simulated crystalline structures of a sim-
ulated molecule, taken from [2]. Marked structures have been successfully synthesised.

The extent to which CSP explores all possible - or indeed physically feasible - solid state
periodic structures that a molecule could form is unknown, as is the larger question of whether
the millions of existing structures represent a full exploration of all possible configurations,
or whether they are confined to some particular subset of them. Indeed, this informally
posed question leads us to consider what a rigorous ’exploration of structures’ might mean.
In the late 19th century Dimitri Mendeleev noted that certain groups of atomic elements had
shared physical properties which suggested an informative spatial arrangement - a positioning
of each element in a two dimensional plane such that elements sharing chemical properties
occupy the same column (that is, have the same x co-ordinate). The resulting periodic table of
elements persists to this day as the primary organising principle of the totality of the chemical
elements. In highlighting ‘gaps’ where predicted elements with certain properties should
exist, and in driving the search for physical reasons that elements might share particular
properties, the key insight that using a spatial arrangement to classify materials can create a
framework for explanation and discovery has driven significant advances in physics, chemistry
and materials science.

3



The overall aim of our research is to contribute to the development of a similar spatial
arrangement for periodic structures, greatly simplifying the search for model materials with
desired properties and providing a tool for designing structures with specific geometries (for
example, large pores for gas absorption). To do this with effective mathematical rigour,
we will need to work with an idealised model of crystal structures. The representation of
molecular and crystal structures has been driven to some extent by the need to use these
structures as inputs to machine learning models - see [18] for a recent example. They include
to some extent aspects of the physical modelling of molecular structures, in particular the
forces governing atomic interactions. A recent review of these approaches can be found in [19]
- this illustrates that the mathematics which ensures that such representations are invariant
under transformations which are known not to affect the physics of atomic interactions
(including the isometries defined formally later in this chapter) can become quite complex.
Many such representations are also best adapted to finite molecular structures and in the
periodic setting are approximated by simply choosing an arbitrary cut-off radius beyond
which interatomic forces from the structure are not computed.

The notion of a periodic graph [20] abstracts away the physics of atomic interactions
completely and represents atoms and their interactions as a purely topological object: the
nodes and edges, respectively, of a graph. Periodicity can be accurately represented by
appropriate edge labelling and atom identities (if required) by the labelling of nodes. This
representation still captures a large amount of structural information, and allows for rigorous
investigations of a crystal structure’s topology via well-developed software tools such as
TopCryst [21]. However, in this case comparison of structures for similarity is equivalent to
deciding whether or not two (potentially labelled) graphs have the same topological structure.
Algorithms which efficiently solve this graph isomorphism problem remain an open problem
(see [22] for a recent overview).

A further simplification - the one employed in our research - is to ignore any information
about bonds, and not to incorporate any physical modelling at all into our view of periodic
structures. Our general model for a crystal is the periodic point set defined below and
illustrated with an example in figure 1.3:

Definition 1.1.1 (see for example [23], Section 1). Given a linearly independent {v1, . . . vn}
in Rn, the lattice is the set

Λ =

{
x : x =

n∑
i=1

aivi, ai ∈ Z

}
of all integer combinations of the basis vectors. A motif is a set of points

M =

{
p1, . . . pk : pi =

n∑
i=1

civi, ci ∈ [0, 1]

}
finite in number and lying within, or on the boundaries, of the closed parallelepiped deter-
mined by the basis vectors.
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A periodic point set is the Minkowski sum of Λ+M - that is, the infinite discrete set of
points given by applying translations of the points in M by the vectors in Λ.

Figure 1.3: A periodic point set consisting
of Minkowski sum of the lattice generated
by v1 = (1, 0), v2 = (0.3, 0.7) (thick black
lines) with a motif consisting of a single point
p1 = (0.3, 0.2) (the red dot)

Our justification in choosing this sim-
plified representation of chemical structures
is founded in the crystal isometry principle
(CRISP) discussed in Section 7 of [23]. If an
atom of an element in a crystal or molecu-
lar structure is replaced by one of a different
element, the geometry of the structure will
always be perturbed to some extent, since
any interatomic forces governed by the re-
placed atom will not be identical. Several
complete characterisations of periodic point
sets of this nature exist for different appli-
cations. A recent development for general
periodic point sets is the continuous Point-

wise Distance Distributions ( [24], Definition 3.3) which has detected unexpected duplicates
in the CSD and which has been used to predict new materials [25].

In this thesis, we will develop and apply an approach to exploring the space of simpler
structures - periodic lattices - essentially crystalline structures where the motif consists
of a single atom. The study of lattices as mathematical objects has spanned centuries.
Quite apart from their inherent geometric interest, they have links to mathematical fields as
disparate as number theory [26] and cryptography [27] - see [28] for a thorough overview of
the many topics where lattices have played a part and [29] for a comprehensive introduction
to the surprisingly subtle and complex mathematics that arise from these apparently simple
structures.

For the rest of this chapter we will develop the formal mathematical machinery involved
in determining whether any two objects - whether geometric structures like lattices or more
complex mathematical entities, are ‘the same’, and if they are different formally quantifying
‘how different’ they are. We will give formal and rigorous definitions of these high level
concepts ,which will allow us to close the chapter by posing the question outlined informally
above in more formal, rigorous manner which allows us to make mathematical progress in
answering it.

In Chapter 2 we will provide a general survey on past work in the categorisation of
lattices and attempts to quantify lattice similarity. Chapters 3 and 4 represent the key
contributions of this thesis. In Chapter 3 we will go into further detail of our approach for
two dimensional lattices, resulting in a development of the first known isometry invariant for
these simple structures, which is the key step on the path to situating them in an explorable
space. Even in two dimensions the non-trivial nature of the mathematics behind this is
clear. Having implemented the algorithm for computing the invariant, we demonstrate its
power by applying it to a very large database of lattices generated from the CSD, giving
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the first continuous map of real-world periodic structures. In Chapter 4 we actually use
this invariant not only to situate two dimensional lattices in a metric space, but to develop
continuous chirality distances - essentially quantifying ‘how asymmetric’ a two dimensional
lattice is. Again, the code for computing these distances is implemented, and we apply it
both to the large CSD lattice database and two publicly available databases of monolayer
materials. Finally in Chapter 5 we discuss the implications of our work and potential future
directions.

1.2 Invariance, Metric Spaces and Isometry

The question of how to determine when any two crystal structures are the same or different
is one that involves surprising subtleties -indeed it remains a subject of active discussion in
mathematical crystallography [30]. One way to address the challenge is to adhere to some
formally rigorous mathematical notion of ‘sameness’, which we define below.

Definition 1.2.1 (Equivalence). An equivalence relation ∼ on a set X is a binary relation
between pairs of objects in the set satisfying the following axioms:

1. Identity: x ∼ x for all x,∈ X

2. Symmetry: x ∼ y ⇐⇒ y ∼ x for all x, y ∈ X

3. Transitivity: x ∼ y, y ∼ z =⇒ x ∼ z for all x, y, z ∈ Y .

The usefulness of an equivalence relation is that it separates objects in the set into
discrete non-disjoint equivalence classes - any x ∈ X is in one unique discrete class. This
follows directly from the transitivity axiom: if some object x is in the intersection of classes
Y, Z,⊂ X then y ∼ x for all y ∈ Y and x ∼ z for all z ∈ Z implies y ∼ z or all y ∈ Y, z ∈ Z.

We illustrate this principle with a classical example::

Example 1.2.2. Let d be an integer, and for integers z1, z2. If the remainder of z1 when
divided by d is the same as the remainder of z2 is divided by d - that is, if z1 = r + qd and
z2 = r + q′d for integers r, q, q′, then we write z1 ≡ z2 mod d.

This is clearly an equivalence relation - identity is obvious since if z1 = z2 then q = q′

while symmetry and transitivity arise directly from the definition. The relation partitions the
integers into a set of d distinct classes.

Often equivalence relations can be defined in ways which do not make it immediately
explicit whether or not any two objects are the same. An invariant is a mathematical tool
for probing the equivalence classes of a set.

Definition 1.2.3 (Invariant). Let (X,∼) be a set X partitioned by the equivalence relation
∼ and Y be some arbitrary set. An invariant on X is some function I : X → Y , such that
for any x, y ∈ X, x ∼ y =⇒ I(x) = I(y). An invariant is complete if the converse relation
also holds.
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A function fd which maps any integer to its remainder f when divided by d is, for
example, a complete invariant of the equivalence relation of Example 1.2.2 by definition.

If we are interesting in comparing equivalence classes then ideally the set Y is equipped
with some additional mathematical structure which allows for such comparisons - for exam-
ple, a metric. A set equipped with a metric is a metric space.

Definition 1.2.4 (Metric Space). A metric space is a pair (X, d) where X is a set and
d : X × X → R+ is a function from pairs of elements of the set to the non-negative real
numbers satisfying the following axioms:

1. Identity: d(x, y) = 0 if and only if x = y

2. Symmetry: d(x, y) = d(y, x) for all x, y ∈ X

3. Triangle Inequality: For all x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

The axioms replicate the behaviour of the familiar straight line distance between objects
in the plane as illustrated in Figure 1.4.

The simplest example of a metric space is given by the discrete metric:

Example 1.2.5 (Discrete Metric). For any set X, define d : X ×X → R+ as follows:

d0(x, y) =

{
0 x = y

1 x ̸= y

Satisfaction of the identity axiom is immediate from the definition, symmetry is guaran-
teed by the symmetric nature of the equality relation, while the triangle inequality can be
verified simply by computing all possible cases.

Metrics can however be defined on any sort of set

Example 1.2.6 (Hamming). Let Bn be the set of all binary sequences of length n (for
example 101 ∈ B3). The Hamming distance dH between any two such sequences in the set is
given by the number of positions in which they differ - again, as an example dH(101, 011) = 2.

The identity and symmetry axioms arise obviously from the definition, and as with the
discrete metric the triangle inequality is easily checked by considering the limited number of
possible cases that can arise at each position in any three sequences.

Obviously, the discrete metric is not particularly useful if we wish to use a metric as a
criterion to determine the similarity of objects in a set, and the Hamming distance applies
only to a specific set of objects which are not the topic of this thesis. A more practical
example, and the one used throughout this thesis, is defined specifically on Rn:
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Example 1.2.7 (Minkowski Metrics). For two vectors u = (u1, . . . un), v = (v1, . . . vn) ∈ Rn

and q ∈ N, define the q-Minkowski metric Lq : Rn × Rn → R+ as:

Lq(x, y) =

(
n∑

i=1

|vi − ui|q
) 1

q

For q =∞ we formally define the Chebyshev metric

L∞ = max
i∈{1,...n}

|vi − ui|

Let u = (3, 0), v = (0, 4) be two vectors in R2, then

L2(u, v) =
√

(−3)2 + 42 = 5.

We may similarly compute L1(u, v) = 7 and L∞(u, v) = 4.

Figure 1.4: The metric axioms
for straight line distances in
the plane

The satisfication of metric axioms for Minkowski metrics
is a classical result, with the triangle inequality following
from Cauchy’s inequality. Clearly for q = 2 we have recov-
ered the standard Euclidean distance in the plane illustrated
in Figure 1.4, and indeed Minkowski developed this formu-
lation as the sort of generalisation of the Euclidean notion
of distance required to handle computations in special rela-
tivity.

Definition 1.2.8 (Isometry on a general metric space). Let
(X, d), (Y.d′) be metric spaces and f : X → Y a function
between them. The function f is an isometry if it preserves
the metric structure of the space - that is, for all x, y ∈ X,
d(x, y) = d′(f(x), f(y)).

Example 1.2.9. For any vector in R2 equipped with any
of the Minkowski metrics, let t↑ be the function such that
for u = (u1, u2), t↑(u) = (u1, u2 + 1). Since for any pair of
vectors u, v

v1 − u1 + v2 − u2 = v1 − u1 + v2 + 1− u2 − 1,

the map t↑ is an isometry

One key concept we will discuss throughout this thesis is continuity. There are many
formal definitions of continuity that apply in different circumstances, but all of them capture
the fundamental notion that if we have some function f : X → Y between metric spaces
then a small perturbation of some x ∈ X should results in a small (or at least bounded)
perturbation in the value of f(x) ∈ Y . In relation to the spaces and metrics we are using
the following formal definition is particularly relevant:

Definition 1.2.10 (Hölder continuity). Let (X, d) be a metric space and f : (X, d)→ (Y, d′)
a map to another metric space. The map f is Hölder continuous if whenever d(x, y) = δ,
d′(f(x), f(y)) ≤ Cδα for some real-valued constants C, α > 0.
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1.3 Lattices

We now define the objects to which we will apply these mathematical ideas - as mentioned
in the previous section these are the periodic point sets of Definition 1.1.1 with just a single
point in the motif. However, since we may without loss of generality place this point at the
origin of Rn it is clearer to do away with the notion of motif in the definition altogether.

Definition 1.3.1 (Lattice Λ, Unit Cell U). Let B = {v1, . . . vk} be a set of linearly inde-
pendent vectors in Rn, k ≤ n. The lattice Λ(B) generated by B is the set of all integer
combinations of vectors in B:

Λ(B) =

{
k∑

i=1

aivi|ai ∈ Z

}

The value k is the rank of the lattice in Rn. The lattice is of full rank if k = n.

The parallelipiped enclosed by the vectors v1, . . . vk, given by the set of vectors

U =

{
k∑

i=1

civi|ci ∈ [0, 1]

}

is a primitive unit cell of the lattice

The following notational and terminological conventions relating to lattices will be used
throughout this thesis:

� All lattices are of full rank unless otherwise stated.

� Unless we are comparing two bases of a lattice, the presence of a basis will be assumed
- we will use Λ rather than Λ(B) to denote a general lattice.

� Since we may equally consider a lattice as a discrete periodic point set with a single
point or an infinite set of lattice vectors that translate that point from the origin, for
ease of readability we will not distinguish between the two. A lattice vector will be
denoted by v rather than using strict notation such as v⃗ or v.

� Unless otherwise stated, Rn is equipped with the L2 metric as given in Example 1.2.7
and the standard inner product u · v. The distance between two vectors u, v denoted
by ||u− v|| :=

√
(u− v) · (u− v), and the Euclidean length of a particular vector will

be given by ||v|| :=
√
v · v.

� When referring to isometry-invariant parameters of a lattice (lengths and angles) we
will adopt crystallographic conventions. In three dimensions the lengths of vectors are
given a, b, c. The angle between a and b is denoted by γ, between a and c by β and
between b and c by α. For two dimensional lattices we will use vector lengths a, b and
angle γ.
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From the general notion of isometry in Definition 1.2.8, we may construct a specific
definition in the lattice case, which allows us to distinguish two specific types of lattice
transformation which will be important in later sections of the thesis.

Definition 1.3.2 (Lattice isometry, rigid motion). Let Λ be a lattice in Rn. A lattice
isometry is a function f : Rn → Rn such that for any pair of vectors u, v in Λ, |u − v| =
|f(u)− f(v)|.

Two lattices Λ,Λ′ are isometric if they are related by an isometry - we write Λ ≃ Λ.
They are related by a rigid motion if there is a continuous family of functions ft, t ∈ [0, 1]
such that f0 = Λ, f1 = Λ′ and ft is an isometry for all t.

A rigid motion is any combination of translations and rotations, while isometry also allows
refections. Figure 1.5 shows a two dimensional example of lattices related by isometries and
rigid motions.

Figure 1.5: Illustration of isometries and rigid motions. The third lattice is related to the
second by a rigid motion (a rotation) but to the first only by an isometry, since a reflection
is required.

Since an isometry is a linear transformation of the basis vectors, we may consider it in
terms of the group of such linear transformations in Rn.

Definition 1.3.3 (Matrix Groups GLn, On, SOn). The general linear group of real-valued
linear transformations GLn(R) is the group (under matrix multiplication) of real valued n×n
matrices with nonzero determinant. The subgroup On(R) is the orthogonal group of real
valued linear transformations which have determinant ±1, and which preserve inner products
between all vectors. The special orthogonal group SOn(R) is the subgroup of those matrices
with determinant 1.

The fact that these are indeed groups is obvious from the property det(AB) = detA detB
for any matrices A,B, the fact that linear transformations are composed by matrix multi-
plication and the invertibility of any matrix if its determinant is nonzero. We may similarly
define groups GLn(Z), On(Z) and SOn(Z) for the integers. An isometry is then any applica-
tion of an element of On(R) to the lattice, and a rigid motion the application of an element
from SOn(R) only.
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Figure 1.6: Multiple alternate basis choices for the square lattice generated by the basis
v1 = (1, 0), v2 = (0, 1).

Since det(A)−1(A) = 1/ det(A) the only invertible matrices in GLn(Z) with inverses have
determinant ±1, and so in fact GLn(Z) = On(Z), and the only proper subgroup is SOn(Z).

From this it follows that isometry and rigid motions are equivalence relations on the set
of lattices - the identity matrix is in both the orthogonal and special orthogonal groups, the
inverse of any matrix in each group exists and has determinant ±1, or determinant 1 in the
case of SOn(R).

We have been careful to speak of ‘a’ unit cell because the choice of cell is not unique. If we
consider for example the simple square two dimensional lattice given by v1 = (1, 0), v2 = (0, 1)

then the same lattice could be generated by a basis given by v1 = (1, 0), v
(n)
2 = (n, 1) for

any n ∈ Z. As with isometry and rigid motion, we may express this change of basis in

terms of a linear transformation represented by the matrix

1 n

0 1

. Indeed, any basis

transformation in the group GLn(Z) of integer matrices with determinant 1 gives the same
lattice, as illustrated in Figure 1.6.

A transformation of this nature is not an isometry of the lattice basis, which we can see
by noting that ||v(k)2 || ≠ ||v

(k+1)
2 || in the above family of bases for the square lattice. It is,

however, an isometry of the lattice in the sense of definition 1.3.2, since the distance between
any pair of points remains the same. A simple invariant which addresses all isometries is the
volume.
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Definition 1.3.4 (Lattice volume V (Λ)). The volume V (Λ) of a two dimensional lattice is
the absolute value of the determinant of the matrix whose columns are the vectors v1, v2 of a
primitive unit cell.

Example 1.3.5. The lattice of figure 1.3 has volume∣∣∣∣∣∣∣
1 0.3

0 0.7

∣∣∣∣∣∣∣ = 1× 0.7 = 0.7

Since isometries and change of basis matrices have determinant ±1, and transform the
matrix of Definition 1.3.4 by multiplication, the volume is invariant under any isometry and
any change of basis (including permutation of the basis vectors, which only changes the sign
of a determinant). It is not, however, complete in the sense of Definition 1.2.3 - the lattices
given by v1 = (2, 0), v2 = (0, 2) and v1 = (1, 0), v2 = (0, 4) are clearly non-isometric but have
the same volume.

An appropriate choice of ‘canonical’ basis vectors is known as a lattice reduction. The
choice of reduction is crucial to the results in this thesis, and the development of reduction
theory (including the reason that ‘reduction’ is an appropriate description for a canonical
basis choice) will be addressed in more detail in Chapter 2 . However, to understand the
nature of the problem this thesis addresses we will in this chapter simply state an important
example of a reduction specifically for two dimensional lattices, defined by Niggli in his
foundational work on lattice geometry [31].

Definition 1.3.6 (Niggli Reduction for 2D Lattices). A basis v1, v2 of a two dimensional
lattice is reduced if the following two inequalities hold:

1. ||v1|| ≤ ||v2||

2. −1
2
||v1|| ≤ v1 · v2 ≤ 0

Example 1.3.7. The lattice in figure 1.3 is not described with a Niggli reduced basis since
||v2|| ≈ 0.76 < ||v1|| and v1 · v2 = 0.3 > 0. However if we let u1 = v2 and u2 = −v2 = (−1, 0)
then ||v1|| < ||v2|| = 1, v1 · v2 = −0.3 and −1

2
||v1|| ≈ −0.38 and all conditions are satisfied

for Niggli reduction.

This reduction gives a unique basis up to isometry in two dimensions, but not up to rigid
motion. If the lattice basis is ’general’ in terms of the reduction inequalities and (that is,
||v1|| < ||v2|| and v1 ·v2 < 0) then the only two possible basis choices are ±v1,±v2, which can
be transformed into each other through a rotation of π about any lattice point. However,
the two bases of a rectangular lattice given by v1 = (a, 0) and v2 = ±(0, b) are both reduced,
but can only be transformed into each other by reflection in the x axis.
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If we are not interested in the scale of a lattice, but only its geometry, we may classify
lattices up to a ‘coarser’ equivalence class as below:

Definition 1.3.8 (Lattice similarity). Two lattices Λ,Λ′, generated by v1, v2 and u1, u2 re-
spectively are similar up to isometry (resp.rigid motion) if for some λ > 0 ∈ R the lattice
λΛ generated by λv1, λv2 is isometric to Λ′ (resp. related to Λ′ by rigid motion).

Example 1.3.9. The square lattice generated by u1 = (1, 0), u2 = (0, 1) is isometric to the
lattice

u′1 =

(
1√
2
,− 1√

2

)
, u′2 =

(
1√
2
,
1√
2

)
since one can be derived from the other by a clockwise rotation of 45◦ about the origin.

The lattice of Figure 1.3 generated by the Niggli reduced basis v1 = (−1, 0), v2 = (0.7, 0.3)
is related to the lattice generated by the basis v1, v

′
2 = (0.7,−0.3) by an isometry, but they are

not related by a similarity, since one may only be transformed into the other by a reflection
in the y axis

In general, to avoid ugly and confusing grammatical constructions such as ‘invariant up
to similarity up to isometry’, where it is clear that the non-scaling part of this relation is
isometry or rigid motion, we will simply refer to ‘similarity’.

If we wish to select a unique basis up to rigid motion we can, of course, add special con-
ditions until we have dealt with every conceivable case (for example, one might additionally
insist for a rectangular lattice as described above that a, b > 0). Ultimately if we want to
classify lattices up to isometry (or rigid motion), a unique selection of basis vectors will give
rise to a unique selection of isometry-invariant lattice parameters (lengths and angles) from
which we may derive some quantity which allows for classification.

However, such a selection leads to an difficulty in describing the mathematical space of
all possible lattices, even in two dimensions, as elegantly as we would like - we encounter the
issue of continuity, as defined in Definition 1.2.10.

The reason we might be interested in a continuous deformation is encapsulated in the
following proposition:

Proposition 1.3.10 (see for example Figure 1 in [32].). Any two lattices in different isometry
classes (or classes up to rigid motion) can be continuously deformed into each other.

Proof. Suppose Λ is generated by the basis {u1, . . . un} and Λ′ by the basis {v1, . . . vn}. Since
the two lattices are in their isometry class, we may assume that they are rotated so that
u1, v1 share an axis and u1 = λv1 for some λ ∈ R, λ > 0.

We may continuously deform u1 until its length matches v1. For any i ≥ 2 we can
continuously rotate vi until it is parallel to ui and rescale it in the same way

13



This justifies formally defining the set of all lattices in any given dimension as a space:

Definition 1.3.11 (Lattice Isometry Space). The lattice isometry invariance space LIS(Rn)
is the space of all isometry classes of lattices of dimension n. The orientation-aware lattice
isometry invariance space LISo(Rn) is the space of all classes of lattices of dimension n
equivalent under rigid motion.

Where the dimension is either obvious from context or not relevant, we will omit the Rn

for ease of reading and simply refer to LIS or LISo.

We may consider deriving an invariant from LIS by computing some quantity related to
isometry invariant parameters of the reduced bases of a lattice - vector lengths or angles.
However, the following counterexample illustrates how such an invariant may be discontin-
uous under a continuous deformation of the lattice itself.

Example 1.3.12 (Discontinuity of a Reduced Basis). Consider a family of lattices initially
described by the basis vectors v1 = (1, 0), v2 = (t, 1) for t ∈ [0, 1] - the lattices where t = 0
and t = 1. Each lattice in this family is related to the other by a continuous deformation
parameterised by t.

At t = 0 or t = 1. In the interval t ∈ (0, 1
2
] the reduced basis vectors (in the reduction of

Definition 1.3.6) are v1 itself and u2 = −v2 = (−t,−1). At t = 1/2 there is an ambiguity in
that we may select u2 = ±v2 = (−1/2,±1).

However, for some small ε, where t = 1
2
+ ε, the reduced basis vector becomes u2 =

v2 − v1 = (t− 1, 1).

Figure 1.7 illustrates Example 1.3.12 - if I derive some isometry invariant I(Λ) of the
lattice purely from the isometry invariant parameters (lengths and angles) of its reduced
basis, the value of that invariant will be subject to a discontinuity, even though the lattice
itself is being deformed continuously.

1.4 Problem Statement

All of the above leads us to the specific problem that is addressed for 2 and 3 dimensional
lattices in this thesis, and then applied to real materials databases.

Problem 1.4.1. Find an invariant I(Λ) of lattices up to basis change and isometry (or rigid
motion) with the following properties:

1. Completeness: I should be a complete invariant in the sense of Definition 1.2.3.

2. Metric Space: I should map lattices to a space equipped with a metric obeying all
axioms given in Definition 1.2.4.

3. Continuity: If two lattices Λ,Λ′ differ from each other by a small geometric pertur-
bation δ, then d(I(Λ), I(Λ′) should satisfy some formal continuity requirement as in
Definition 1.2.10
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4. Invertibility: It should be possible to recover Λ (up to isometry/rigid motion) from
I(Λ).

5. Computability: Both the computation of the invariant and its inverse should be achiev-
able with modest resources, ideally via a direct analytic computation from the input
lattice parameters.

Figure 1.7: Reduced bases in the sense of Definition 1.3.6 of the family of lattices v1 =
(1, 0), v2 = (t, 1) for t ∈ [0, 1]. For some small ϵ, v2 continuously deforms from (1/2− ϵ, 1) to
(1/2 + ϵ, 1) there is a discontinuous change in the lattice basis.

One approach to Problem 1.4.1 is to consider lattices as a special case of the periodic
point sets of Definition 1.1.1. The density function of such a set is described in [33], and an
algorithm exists for its computation [34] which has been applied in the investigation of one-
dimensional periodic structures [35, 36]. It is not, however, provably invertible. The isoset
of a periodic point set [37], is provably a complete invariant, but is not easily computable.

Provided some canonical choice of unit cell can be made it is not difficult to find isometry
invariants of lattices - any quantity constructed from the lengths of lattice vectors and the
angles between them will suffice. Indeed, the volume of Definition 1.3.4 is one such invariant.
However, it is certainly not complete in the sense of Definition 1.2.3 - one can make a
continuous non-isometric deformation of a unit cell which preserves its volume.

The primary focus of this thesis is on lattices as the fundamental building blocks of
crystallographic structures. Throughout this thesis, we will therefore focus on full rank
lattices in 2 dimensions, although we will indicate where particular methodologies may apply
more generally.
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Chapter 2

Previous Work on Lattices

There has to our knowledge been no work which successfully addresses Problem 1.4.1 in
its totality for lattices. A possible reason for this is that the study of lattices touches,
as mentioned in Chapter 1, on disparate topics where some aspects of the problem - and
indeed some types of lattice - have been more important than others. That range of topics
also means that a complete survey of the mathematics of lattices would go far beyond the
scope of the original research conducted in this thesis. In analysing past work , we will
therefore concentrate on three different research areas which are particularly relevant to our
own approach.

A canonical lattice basis is more commonly known as a reduction for reasons we will
discuss below. The theory of lattice reductions has given rise to a selection of different but
related approaches as well as a rich field of algorithmics dedicated to computing (or approx-
imating) a particular reduction given an input set of lattice parameters or some arbitrary
linearly independent basis in Rn, which we will survey in section 2.1 of this chapter. Ulti-
mately, as we will discuss in Chapter 3, we address the the problem of basis selection by
picking a reduction which is not widely used in traditional crystallography, but which is algo-
rithmically computable and from which continuous invariants which address Problem 1.4.1
can be derived.

The traditional approach to classification of lattices has focussed on at discrete sym-
metries of lattice geometry rather than isometry equivalence. This has given rise to the
’standard’ crystallographic approach of distinguishing lattices by the set of non-translational
symmetries (the ‘crystallographic systems’) as well as a number of finer and coarser classi-
fications. In section 2.2 we will give details of this classification approach, and in particular
the development of the Bravais types which are perhaps the best known discrete lattice clas-
sifications. In the development of the invariants and metrics discussed in Chapters 3 and 4,
these discrete lattice classifications will arise as subspaces in the continuous lattice space.
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Attempts to quantify lattice similarity via comparison of some quantity or set of quantities
derived from lattice parameters have usually fallen short in some way from a solution to
Problem 1.4.1 - typically the similarity fails to satisfy the metric axioms, or the invariant
chosen is discontinuous with respect to the chosen canonical (’reduced’) basis. In section 2.3
we will look at these attempts, highlighting the non-triviality of Problem 1.4.1 even for
simple two dimensional lattices.

2.1 Lattice Bases and Reduction Algorithms

In this section, we consider some of the more widely used approaches to choosing a ‘canonical’
lattice basis from the infinite number of possible selection discussed in Chapter 1. We will
focus in particular on the approaches most commonly used in mathematical crystallography.
We will briefly mention the particular reduction we use for our own work at the end of this
section, although it will be given a more thorough exposition in Chapter 3, where we prove
various results which demonstrates its suitability for our purposes.

The description of a canonical lattice basis as ‘reduced’ comes from the fact that early
work on the question was viewed as a particular kind of minimisation problem in number
theory. It arose from the work of Gauss [38] and Lagrange [39] on quadratic forms (see
Chapters 3 and 4 of [40] for a recent English language review).

Definition 2.1.1 (Quadratic Form). An n-ary integral quadratic form is a polynomial equa-
tion with integer coefficients in variables x1, . . . xn where all terms are of degree two - that
is, an equation of the form.

Q(x1, . . . xn) =
n∑

i,j=1

aijxixj

with all aij ∈ Z. The form is positive if for any n-tuple p = (p1, . . . pn) of integers Q(p) ≥ 0

Two such quadratic forms Q1, Q2 can be considered equivalent if for all p = (p1, . . . pn),
Q1(pn) = Q2(pn) - it is immediate that this is an equivalence relation in the formal sense of
Definition 1.2.1. Both Lagrange and Gauss were interested in finding the particular form in
each equivalence class that minimised the coefficients of xixj. Lagrange in [39] proved the
following result for a form of two variables x, y.

Theorem 2.1.2 (Reduced Quadratic Form). Let

Q(x, y) = q11x
2 + q12xy + q22y

2

be a positive integral binary quadratic form. Then there is a equivalent reduced form Q′ with
coefficients q′11, q

′
12, q

′
22 such that 0 < q11 ≤ q22 and −q′11 ≤ q′12 ≤ 0. If Q is positive, then the

reduced form is unique.

Lagrange and Gauss considered this question to be of a purely number-theoretic nature,
but its connection to the geometry of lattices can be expressed through the notion of the
Gram matrix.
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Definition 2.1.3 (Gram matrix). Let v1, . . . vn be a linearly independent basis of Rn. The
Gram matrix of the basis is the matrix A whose entries are given by aij = vi · vj.

If the basis is being considered as generating a lattice, then its Gram matrix is sometimes
referred to as the metric tensor of the lattice. The diagonal entries of the metric tensor are
thus the squared lengths of lattice basis vectors, while the symmetry of the inner product
(i.e. vi · vj = vj · vi) means that the matrix is symmetric about this diagonal.

Example 2.1.4. The gram matrix of the Niggli reduced bases v1 = (0.3, 0.7), v′2 = (−1, 0) of

figure 1.3 is

 1 −0.3

−0.3 0.58


Any n×n gram matrixA can be written as the quadratic form xTAx where x = (x1, . . . xn)

are the n variables of the form, resulting in the polynomial
∑n

i=1 aiix
2
i + 2

∑n
i,j=1 aijxij. If

the Gram matrix is that of a lattice, then minimising the coefficients of this quadratic form
is equivalent to finding basis vectors of that lattice which are both as short as possible (to
minimise the aii) and as close to orthogonal as possible (that is, with minmial aij). The
problem of finding short lattice vectors is thus strongly connected to the problem of finding
minimal quadratic forms as defined by Gauss and Lagrange.

Definition 2.1.5 (Successive minima, Minkowski reduction). The successive minima of a
lattice Λ of rank n are the lengths of the shortest vectors fully spanning the lattice - more
formally, the lengths λ1, . . . λn of lattice vectors such that any vectors v ∈ Λ such that ||v|| ≤
λk span a lattice of rank k.

A lattice basis consisting of vectors whose lengths are λ1, . . . λn is Minkowski reduced.

Example 2.1.6. The lattice presented in Figure 1.3 with the basis given in its caption is
Minkowski reduced. The alternative basis v1 = (1, 0), u2 = v2 − v1 = (−0.7, 0.7) is not
Minkowski reduced since ||u2||2 = 0.98 ≤ ||v2||2. Note that the alternative Niggli reduced
bases for this lattice given in example 1.3.7 is also Minkowski reduced.

In considering the possible lengths of the first minimum λ1 (that is, the length of the
shortest vector in any lattice) Hermite derived a lattice isometry invariant which he showed
has an upper bound for all lattices of a particular dimension.

Theorem 2.1.7 ( [41], p265). Let λ1(Λ) and V (Λ) denote the first successive minimum and
volume (see definition 1.3.4) of a lattice Λ of rank d . Hermite’s invariant is given by:

H(Λ) :=
λ1(Λ)

2

|V (Λ)|2/d

Hermite’s Constant is the maximal value of H(Λ) over all lattices of rank d: γd := sup
Λ⊂Rd

H(Λ).

This maximal value exists and has an upper bound:

γd ≤
(
4

3

)(d−1)/2

.
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Precise values of Hermite’s constant are known for dimensions 1 to 8 [42], and for dimen-
sion 24 [43]. In particular, γ2 = 2/

√
3.

Example 2.1.8. For the Minkowski reduced basis in example 2.1.6 of the lattice Λ in fig-
ure 1.3,

H(Λ) =
0.58

0.7
≈ 0.83 <

2√
3
≈ 1.15

In dimensions 2 and 3, any set of 2 (resp. 3) non-parallel vectors which achieve the
successive minima of the lattice also form a basis for that lattice. In four dimensions,
however, this is no longer necessarily the case - the classical example being the lattice whose
co-ordinates sum to an even number. This lattice can have vectors of norm no less than√
2. It is spanned by the basis v1 = (1,−1, 0, 0), v2 = (1, 0, 1, 0), v3 = (1, 0, 0, 1), v4 =

(1, 0, 1, 0), all with |vi| = 2. The four vectors u1 = (1,−1, 0, 0), u2 = (1, 1, 0, 0), u3 =
(0, 0, 1,−1), u4 = (0, 0, 1, 1) also achieve four successive minima and do not span the lattice.
In n ≥ 5 dimensions Korkine and Zolotareff proved [44] (see paragraph 14, p.270) that in
fact any set of vectors in a lattice achieving n successive minima will not span that lattice.

Minkowski described and explored the connection between successive minima and quadratic
forms.

Theorem 2.1.9 ( [45] (p.247)). Let Λ be a lattice of full rank in Rn with determinant d(Λ),
in the sense of Definition 1.3.4, and let S be a convex subset of Rn which is symmetric about
the origin and whose interior volume is at least 2n|d(Λ)|. Then there exists at least one point
of Λ other than the origin in the interior of S.

In two dimensions, it can be derived from this theorem that a Minkowski-reduced basis is
not only unique, but precisely the one whose Gram matrix gives the coefficients of a unique
reduced quadratic form. Unfortunately this does not hold for lattices of dimension three
and above - three dimensional lattices can have several Minkowski reduced bases, only one
of which gives rise to the Lagrange-reduced quadratic form, while in dimensions n ≥ 4 and
above the fact that n successive minima may not be the lengths of vectors which span the
lattice effectively ‘decouples’ the Minkowski and Lagrange reductions completely.

The development of X-ray crystallography generated interest in the geometry of lattices
in 2 and 3 dimensions themselves , rather than as objects which facilitated proofs in number
theory, giving rise to an increased interest in the field of mathematical crystallography. In
the 1920s the mathematician Paul Niggli explored lattices directly from their geometry, and
in the second of his trilogy of papers on the topic [31], he recovered the Lagrange reduction
in this way - it transpires that in those terms it is exactly the reduction of Definition 1.3.6,
which we reiterate here for ease of reference.

Definition 2.1.10 (Niggli Reduction in 2D). Let Λ be a lattice in R2 with basis v1, v2. The
lattice is (obtuse) Niggli Reduced if ||v1|| ≤ ||v2|| and −1

2
|v1| ≤ v1 · v2 ≤ 0.

19



Note that it is also possible to select an acute Niggli reduction by reversing the signs in
the second condition of Definition 2.1.10. In two dimensions a Niggli reduced basis is also
reduced in the terms of Lagrange and Minkowski. Niggli showed that the geometric meaning
of this reduction could be expressed as the selection of the two vectors whose (obtuse) angle
was closest to 90◦.

Figure 2.1 illustrates this geometric meaning more clearly - if we apply an isometry to
place v1 along the x-axis then v2 is constrained to occupy a narrow strip of the plane above
the circle of radius ||v1||.

Niggli’s extension of this reduction to three dimensions [46] is the standard approach to
stating reduced lattice bases for crystallographic structures. While the inequalities of the
Niggli reduction are a straightforward extension of the two dimensional case for pairwise
combinations of each of the three vectors, the ‘special conditions’ handling various equalities
expand considerably. In addition, the Niggli reduction can give rise to two ‘types’ of lattice.

Definition 2.1.11 (Niggli Reduction in 3D - see for example [47], Section 3). Let G be the
gram matrix of a lattice given by a basis v1, v2, v3, whose entries gij = vi · vj (see Defin-
tion 2.1.3) have absolute values |gij|.

The basis is Niggli-reduced of type 1 (acute) if the following conditions hold:

g11 ≤ g22 ≤ g23 (2.1)

g12 ≤ g13 ≤
1

2
g11 (2.2)

g23 ≤
1

2
g22 (2.3)

gij > 0 for all i ̸= j (2.4)

If g11 = g22 then g23 ≤ g13 (2.5)

If g22 = g33 then g13 ≤ g12 (2.6)

If g12 =
1

2
g11 then g13 ≤ 2g23 (2.7)

If g13 =
1

2
g11 then g12 ≤ 2g23 (2.8)

If g23 =
1

2
g22 then g12 ≤ 2g13 (2.9)

It is Niggli-reduced of type 2 (obtuse) if the following conditions hold:
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Conditions 2.1, 2.2 for type 1 lattices. (2.10)

(|g12|+ |g13|+ |g23|) ≤
1

2
(g11 + g12) (2.11)

gij ≤ 0 for all i ̸= j (2.12)

If g11 = g22 then |g23| ≤ |g13| (2.13)

If g22 = g23 then |g13| ≤ |g12| (2.14)

If g12 =
1

2
g11 then g13 = 0 (2.15)

If g13 =
1

2
g11 then g12 = 0 (2.16)

If g23 =
1

2
g22 then g12 = 0 (2.17)

If (|g12|+ |g13|+ |g23|) =
1

2
(g11 + g12) then g11 ≤ 2|g13|+ |g12| (2.18)

Figure 2.1: Constraints on
vectors for an (obtuse) Niggli
reduction in 2D

The complexity of these conditions arises from the need
to ensure that the resulting reduced basis is unique to any
lattice. Buerger defined a reduced lattice which can be
stated rather more simply in terms of extremal conditions
on vector lengths:

Definition 2.1.12 (Buerger cell [48] ). A Buerger cell of
a lattice is given by a basis v1, v2, v3 of the lattice such that
||v1||+ ||v2||+ ||v3|| is minimal among all basis selections.

Unfortunately, this simple definition does not give a
unique cell - in three dimensions a lattice can have up to five
possible Buerger cells [49], although Gruber [50] proved that
the unique Niggli cell can be recovered by imposing the addi-
tional conditions on the angles α, β, γ between the basis vec-
tors such that | cosα|+| cos β|+| cos γ| and | cosα cos β cos γ|
are maximal among all possible selections of Buerger cell.
The definition is also not necessarily constructive - as we will see in the next section, finding
efficient algorithms that minimise lattice basis vector lengths is a topic of open research.

Our final example of lattice reduction is one which will be foundational for the work of
this thesis - we therefore give only a brief definition here.

Definition 2.1.13 (Selling Reduction). Let v1, . . . vn be a lattice basis and define

v0 = −

(
n∑

i=1

vi

)
The basis is Selling reduced if for all pairs vi, vj with i ̸= j ∈ {0, . . . , n} the inner product
vi · vj is negative.
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Note that the Selling reduction condition does not, unlike the Niggli reduction condition,
impose an ordering on the lengths of vectors in the basis.

Example 2.1.14. The Niggli reduced basis of the lattice given in figure 1.3 is v1 = (−1, 0), v2 =
(0.3, 0.7). We compute the v0 of definition 2.1.13 as (0.7,−0.7) and thus

v1 · v2 = −0.3
v0 · v1 = −0.7
v0 · v2 = −0.28

and the basis is also Niggli reduced.

The lattice basis v1 = (1, 0), v2 = (0, 2) is not Niggli reduced since ||v1|| < ||v2||, but is
Selling reduced since in this case v1 · v2 = 0 and since v0 = (−1,−2) all of the other inner
products of definition 2.1.13 are negative.

Selling reduction can be simply defined, but it is not immediately clear from the definition
whether or not a Selling reduced basis exists for any particular lattice. The answer to these
questions is dependent on lattice dimension, and we will focus on it in Chapter 3.

Example 2.1.14 also shows that if a reduced basis does exist, it is not, in some sense,
unique. In the first example, we may simply multiply all vectors by −1 and the reduction
conditions will still hold. The second is even more complex - I can multiply either vector by
−1 and leave the other fixed and still have a Selling reduced basis. Thus,for a crystallogra-
pher seeking a genuinely unique representation of the data of any given lattice, the Selling
reduction is not suitable

However, note that all of the possible alternate Selling reduced bases of example 2.1.14
discussed above are related to each other by isometries - to replace each vector by its negative
is simply to rotate the basis by 180◦ about the origin, while the various options for a basis
with two orthogonal vectors are related by reflections in the x and y axis. This makes it an
attractive target for the solution of problem 1.4.1.

2.1.1 Reduction Algorithms

Given a definition of a reduced basis, a key problem is to practically derive such a basis
from any arbitrary set of linearly independent input vectors. This has typically been done
using reduction algorithms - each vi in a lattice basis is subjected to stepwise subtractions
of some appropriate linear combination of the remaining basis vectors (which by the original
Definition 1.3.1 will result in some other lattice vector) until some set of conditions are
reached which are either exactly those of the reduction or satisfy some criterion which is
proven to hold for a basis which approximates the reduction conditions.

The first such algorithm for two dimensional lattices was proposed by Lagrange [39], and
can be simply stated below in the form of modern pseudocode (adapted here from [51], p.42).

The vector v1− v1·v2
|v2|2 v2, which is not necessarily a lattice vector unless the scalar quantity

happens to be integral, is the projection of the vector v2 on to the line orthogonal to v1. Line
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Algorithm 1 Lagrange Reduction in 2 Dimensions

Input: Any linearly independent vectors v1, v2
Output: A Lagrange-reduced basis for the lattice generated by v1, v2.

1: repeat
2: if |v1|2 > |v2|2 then swap v1 and v2
3: end if
4: u← v1 −

⌊
v1·v2
|v2|2

⌉
v2

5: v1 ← v2
6: v2 ← u
7: until |v1|2 ≤ |v2|2

4 of Algorithm 1 selects a vector which is ’as close to orthogonal’ as possible. The algorithm
is guaranteed to terminate since it decreases the length of one of the input vectors at every
iteration, and since a lattice is discrete eventually some finite lower bound in length must
be reached. The resulting lattice is reduced in all the senses discussed above, since they are
equivalent in 2D.

Because of their applicability to real world crystal structures, reductions for three dimen-
sional lattices have been of particular interest. Křivý and Gruber’s algorithm for finding the
Niggli reduced cell [52] modifies Gruber’s initial reduction algorithm to the Buerger cell [49],
and relies on a specific presentation of the parameters of a basis - the Niggli form [46, 53] -
which is related to the invariant we will discuss in Chapter 3.

Definition 2.1.15 (Niggli form). Let Λ be a Niggli reduced lattice basis {v1, v2, v3}, with
gram matrix G (see Definition 2.1.3) The 2× 3 matrix g11 g22 g33

2g23 2g13 2g12


is the Niggli form of the lattice.

Křivý and Gruber’s algorithm begins with the parameters of a Niggli form for an arbitrary
basis, reordering them so that a2 ≤ b2 ≤ c2. It then reduces the length of input vectors
whenever the various conditions of Definition 2.1.11 are not satisfied for either positive or
negative inner products. A pseudocode implementation is shown as algorithm 2.
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Algorithm 2 Křivý-Gruber Niggli Reduction Algorithm (adapted from [52])

Input: an arbitrary basis v1, v2, v3
Output: the Niggli form of the lattice generated by the input basis

1: Compute gij for i, j ∈ {1, 2, 3}
2: For i ̸= j, gij ← sign(g12g13g23)|gij|
3: while Niggli conditions not fulfilled do
4: if g11 > g22 then
5: Swap v1, v2
6: Recompute g11, g22, g13, g23
7: end if
8: if g22 > g33 then
9: Swap v2, v3
10: Recompute g22, g33, g12, g13
11: end if
12: for all i, j, k ∈ {1, 2, 3} do
13: if gii > 2gij or (gii = 2gij and gik > 2gjk) or (gii = −2gij and gik < 0) then
14: vj ← vj+ sign(gjk)vk
15: Recompute gij, gjj, gjk
16: end if
17: end for
18: if 2|g12|+ 2|g13|+ 2|g23|+ g11 + g12 < 0 or (2|g12|+ 2|g13|+ 2|g23|+ g11 + g12 = 0 and

g11 > 2|g13|+ |g12|) then
19: v3 ← v1 + v2 + v3
20: Recompute g13, g23, g33
21: end if
22: end while

Gross-Kunstleve et al. noted [54] that this algorithm is not numerically stable - that is,
repeated floating point calculation errors can cause the algorithm to fail to terminate. They
proposed a simplified version in which termination occurs if the the updated lengths after a
cycle of the algorithm differ from the input lengths by less than 10−5 Ångstroms.

The most recent modification to the Křivý and Gruber algorithm is by Shi and Li [55],
which is intended to deal with the slightly different problem of measurement errors. Unlike
floating point calculation errors, these can be magnified at each step of a reduction - thus,
after each step of the reduction process, parameters are updated with actual measured vectors
of the lattice within some defined error tolerance of the theoretical Niggli-reduced cell before
the next step.
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For our purposes, however, such approaches are incompatible with constructing a formal
equivalence relation under isometry or rigid motion as described in Proposition 1.3.10, since
if two lattices are declared to be isometric (or similar) if they can be transformed into each
other by some small deformation, then since any lattice can be transformed to any other by
a series of such small deformations, all lattices effectively collapse into the same isometry
class (see Figure 2.2 for an illustration of this principle).

Figure 2.2: Any lattice is equivalent to any other under by a series of small deformations.

To conclude this subsection, we will briefly discuss generalised reduction algorithms for
higher dimensions - a more detailed overview, and in particular the reasoning and proofs
behind the application of the LLL-algorithm whose description closes this section, can be
found in [51]. The challenge in higher dimensions is that only an upper bound on the length
of the shortest set of spanning vectors can be found.

The challenge of extending Křivý-Gruber type algorithms into higher dimensions is one
of mounting computational complexity - the number of conditions needed to specify a re-
duced cell grow rapidly with dimension. Approaches extending the Lagrange algorithm
(Algorithm 1) to higher dimensions are more common. Here the barrier is that in higher
dimensions the order in which the input basis vectors are selected can affect the output basis,
and the output is therefore not unique. Higher dimensional extensions use the weaker notion
of size reduced lattices, where the lengths of all vectors in the basis have lengths below some
upper bound.

The Lenstra-Lenstra-Lovasz (LLL) algorithm [56], with various modifications, adds an
additional condition on the relative lengths of vectors, and is the most widely used ap-
proach in current practice. The algorithm relies on the well-known process of Gram-Schmidt
orthogonalisation, which derives an orthogonal output basis from any given input basis:

Definition 2.1.16. (Gram-Schmidt orthogonalisation) Let v1, . . . vn be a full rank lattice in
Rn. The Gram-Schmidt orthogonalisation u1, . . . un is given by the vectors

ui = vi −
i−1∑
j=1

µi,juj

where µi,j =
vi·uj

|uj |2 .
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The LLL algorithm generates a basis of any lattice in any dimension which satisfies the
following condition:

Definition 2.1.17 (LLL condition [56]). Let v1, . . . vn be a basis of a lattice Λ and u1, . . . un
be its Gram-Schmidt orthogonalisation with constants µi,j of Definition 2.1.16. The basis is
LLL-reduced if |µi,j| ≤ 1

2
, and for all ui, ui+1 and some δ ∈ [1

4
, 1]:

||ui + µi+1,iui+1||2 ≤
4δ

3
||ui||2

Briefly, the Lovasz condition ensures that the difference between vectors vi and vi+1 in
any basis is not ’too large’. At any step of the LLL algorithm if any pair of vectors ui, ui+1

do not satisfy the Lovasz condition, the vectors vi, vi+1 are and the algorithm repeated until
the condition is satisfied.

The bases arising from all of these reduction algorithms do not satsify the continuity
condition of Problem 1.4.1. The Niggli reduced cell has long been known to behave discon-
tinuously under continuous lattice deformation [57], and indeed it is proved in [23] that any
reduced basis changes discontinuously under a continuous deformation of the lattice itself.

Our own work relies on the less well-known approach of Selling reduction - this still results
in discontinuous bases but ‘keeps track’ of a third lattice vector, from which continuity can
be recovered. The nature of and algorithm for Selling reduction, and a proof that it always
terminates and outputs a Selling reduced basis for n = 2, will be discussed in Chapter 3.

2.2 Discrete Lattice Classification

Recall that our aim in Problem 1.4.1 is to classify lattices continuously. However, the
general classification of lattices has been discrete - placing them in some finite set of classes.
We provide an outline of the more important classification approaches in two and three
dimensions in this section- a more detailed introduction which extends these ideas to higher
dimensions can be found in [29]. The approaches used in mathematical crystallography are
definitively codified in section A of the International Tables of Crystallography, which also
includes a detailed mathematical exposition of the topic [58].

We have so far described lattices as purely geometric entities - sets of vectors in Rn.
However, they can also be described in rather more abstract mathematical terms as finite
sets of group actions (considered as translations, rotations etc.) in Rn. Indeed, since these
actions remain the same regardless of the relative orientation of the lattice in the plane they
will prove useful in addressing the ‘isometry’ element of Problem 1.4.1

Lattices can be described by considering their set of automorphisms - that is, the set
of isometries which map any lattice to itself. We will begin Section 2.2 by describing these
automorphisms in more formal terms. This will enable us to discuss those discrete lattice
classifications which are based in one way or another on distinguishing two lattices by some
subset of their automorphism group. We will consider the most well-known of these to
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crystallographers: the Bravais types, of which there are five in 2 dimensions and 14 in three
- we will discuss the former in some detail as an illustrative case and summarise the latter.
We will explore how these interact with other classification systems, and giving rise to a
variety of lesser known (but also discrete) classification system based on parameters of the
Niggli reduced lattice basis.

To understand the construction of the Bravais classes, we recall from chapter 1 Defini-
tion 1.3.3 of the matrix groups representing isometries in Rn. We will also require some
notions from group theory - that of the conjugacy class and of a group action:

Definition 2.2.1. (Conjugacy class) Let G be a group. Elements g, k ∈ G are conjugate if
k = hgh−1 for some h ∈ G. The conjugacy class of an element g is the set K ≤ G of all k
that are conjugate to g.

Conjugacy is an equivalence relation: any group has an identity element e which is its
own inverse, g is conjugate to itself through ege = g, all group elements have an inverse so
if g = hkh−1 then k = h−1gh. Finally if g = hkh−1 and k = ala−1 for some a, l ∈ G then
g = hala−1h−1 = (ha)l(ha)−1, which confirms transitivity.

Definition 2.2.2. (Group Action, Orbit, Stabilizer - see Chapter 2 of [29]) Let X be an
arbitrary set and let H be the group of its automorphisms (that is, the set of all functions
f : X → X. An action of a group G on X is a group homomorphism ρ : G → H. To
avoid unnecessary brackets the automorphism given by ρ(g)(x) is generally written as gx if
the specific group homomorphism is understood. The orbit xG of x ∈ X is the set of all
elements of X under the action of all g in G. The stabiliser Gx of an element x ∈ X is the
set {g ∈ G|gx = x} of elements in g which leave x fixed. A group action is effective if the
only element of g which stabilises every element of x is the identity.

Extending the notation above, we consider the stabiliser of a group action Ggx. Now if
h ∈ Ggx then hgx = gx, and thus (g−1hg)x = x showing that the stabiliser of a group action
on an element x ∈ X is in the same conjugacy class as the stabiliser of x. Since the group
itself is partitioned into its conjugacy classes, this gives a natural classification of X with
respect to the action of G.

Definition 2.2.3. (Orbifold - see Chapter 2 of [29]) Let G be a group acting on the set X.
Two orbits xG, yG are of the same type if the stabilisers of xG, yG are in the same conjugacy
class. A stratum X||G of X with respect to G is a set of orbits of the same type. An orbifold
of X with respect to G consists of a single representative of each stratum of X with respect
to G.

This rather technical set of definitions can be illustrated with a simple but pertinent
example:
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Example 2.2.4. (See Figs 2.1, 2.5, 2.7 of [29]) Denote by D3 the group of six symmetries of
an equilateral triangle, consisting of the identity element, the anticlockwise rotations r1, r2 by
2π/3 and 4π/3 respectively, and the reflections s1, s2, s3 through the bisectors at each vertex
of the triangle.

We define the group action ρ : G → O2(R) by mapping any symmetry element to linear
transformations which preserve the symmetry of an equilateral triangle whose barycentre is
at the origin of R2, so that (for example) r1 is the anticlockwise rotation element given bycos 2π/3 0

0 − sin 2π/3

 and s1 is the reflection

−1 0

0 1

 in the y axis.

There are three conjugacy classes of D3, given by the identity element which is conjugate
to itself), the rotations r1, r2 (which together with the identity element form a subgroup
isomorphic to the cyclic group Z3) and the reflections s1, s2, s3. Figure 2.3 illustrates how
the orbits of points in R2 are split into different types in the sense of Definition 2.2.3 - any
pair of brown and purple points represent the orbit type of the reflection conjugacy class
while three identically coloured dots represent the orbit type of the rotation conjugacy class.

Figure 2.3: Left: Symmetry group D3 of the equilateral triangle. Centre: Orbits and strata
of the group action of D3 on R2. Right: Orbifold of the action of D3 on R2 - the yellow
area contains all points of the same type

The automorphism group of a lattice falls into two types. There is an infinite group
of translations mapping any point in the lattice to any other point. No individual point
of the lattice is fixed under such translations. There is also some (possibly trivial) set of
automorphisms that fix a single lattice point - this latter is the point group of the lattice.
More formally:

Definition 2.2.5. (Lattice point group - see for example [59], Definition (5), p.273) The
point group of a lattice Λ in n dimensions is the subset of On which stabilises the orbits of
all points in Λ.
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In a crystallographic context, the point group is also called the crystallographic system
of a lattice. The periodic structure of a lattice places crystallographic restrictions on the
contents of its crystallographic system - it was proven by Bieberbach ( [60], see [61] for a
short proof in English) that the cardinality of the point group must be finite for lattices in
any dimension.

For a lattice in one dimension, consisting of all values ka, k ∈ Z for a fixed real a,
it is obvious that any point group can contain only the identity transformation, and the
’centrosymmetric inversion’ given multiplication of all values by −1, and indeed that every
one dimensional lattice in R must have this point group, and can have no other.

Indeed for a lattice in any dimension d it is similarly clear that the point group must at
least contain the identity transformation given by multiplication of all vectors by the d× d
identity matrix I and also the centrosymmetric inversion given by multiplication by −I.

Attempts to compute which point groups are possible in higher dimensions rely on under-
standing what finite subgroups of GLn(R) (Definition 1.3.3)may exist (in fact it is sufficient
to prove results in the general linear group GLn(Q) of matrices with rational entries), and
the following theorem places limits on which such subgroups of what order may exist in any
dimension.

Theorem 2.2.6 ( [62], Theorem 2.7). Let m = px1
1 p

x2
2 . . . pxm

m with all pi prime
The general linear group with rational GLn(Q) has an element of order m if and only if:{∑n

i=1(pi − 1)pxi
i − 1 ≤ n px1

1 = 2∑n
i=1(pi − 1)pxi

i px1
1 ≤ m ̸= 2

In two dimensions this means that any lattice can only contain elements of order 2, 3, 4 or
6. We can demonstrate this less formally by considering two points p, q in a lattice such that
||p−q|| = λ1 is the shortest possible separation distance in a lattice (see Definition 2.1.5). We
consider the image q′ of q under a rotation by θ about p, and likewise the image q′′ of p under
a rotation by −2π/n about q. We encounter a contradiction if q′ ̸= q′′ and ||q′ − q′′|| ≤ λ1.
As shown in Figure 2.4, this limits us to point groups containing elements of order 6 or order
≤ 4.

Figure 2.4: A lattice in two dimensions can only map to itself by a rotation about a fixed
point of order 2, 3, 4 or 6.
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In Figure 2.5 we show the subsets of R2 whose points are the orbits of rotations of order
2, 4 and 6. In addition to the cyclic group of rotations, three of these include a reflection of
order 2 that can be combined with these rotations, forming the well known dihedral groups
D2, D4 and D6. For the rotation group of order 2 it is also possible to build a lattice that
excludes the reflection element - in two dimensions the inversion is geometrically equivalent
to a rotation by π, and the resulting subset is a rhombus. We omit the rotation of order 3,
since a lattice constructed with this symmetry also has a rotation of order 6.

Figure 2.5: The four crystallographic systems in 2 dimensions.

When constructing lattices with the different crystallographic systems, we find as in
Figure 2.6 that there is only one way of constructing a lattice with rotational symmetry order
4 (as a primitive square) and one way in which we can construct a lattice with rotational
symmetry of order 6 (as a hexagonal lattice). There are two ways in which we may construct
a lattice with D2 symmetry. These differ geometrically in terms of the unit cell encompassed
by their (Niggli) reduced basis - in one case the cell is rhomboid, in the other it is rectangular.
The latter unit cell is referred to as primitive, the former as centred. Figure 2.6 illustrates
the intuition behind this terminology - a centred lattice can be constructed from a primitive
one by adding a lattice point at the centre of its unit cell.

Figure 2.6: Lattices constructed with the permitted crystallographic symmetries

30



A more formal way of distinguishing these two lattice geometries is in terms of their
automorphism groups. We consider the change of basis matrices in GL2(Z) that are also
automorphisms of the lattice. If the two D2 point group lattices have the bases shown in
Figure 2.6, then a reflection through the vertical axis in Figure 2.5 in the primitive case can

be represented by the matrix Mp =

1 0

0 −1

, in the centered case by Mc =

0 1

1 0

. If

it were possible to convert the symmetries of the primitive lattice into those of the centered
lattice by some change of basis , then these reflections should be in the same conjugacy class
in GL2(Z) - that is, there should exist some B ∈ GL2(Z) such that BMpB

−1 =Mc and vice
versa. It can be discovered either by direct computation or by noting that this amounts to
the primitive and centred versions of the lattice being isometric (since otherwise B would
not be invertible at all) that there can be no such B. This distinction was first explored by
Auguste Bravais [63], and the classification based on it is thus named after him.

Definition 2.2.7 (Bravais Class - see [59], Definition (7) p.274). The Bravais class of a
lattice in Rn is the conjugacy class of its crystallographic system in GLn(Z).

Bravais classes are typically denoted in 2 and 3 dimensions, as shown in Figure 2.7, by
Hermann-Mauguinn notation [64]. The symbol opens with a p or c which indicates whether
we are in the primitive or centered case. The point group is then in this notation by a
number indicating the order of any rotation symmetries followed in the 2 dimensional case
by a number of ms which indicate the presence of orthogonal mirror planes along different
axes. Primitive and centered cases (with the former a ‘default’) are distinguished by a lower
case prefix.

Figure 2.7: The five distinct Bravais lattice types in 2 dimensions. The two systems with
Hermann-Mauginn symbol p2mm and c2mm have the same crystallographic system, but one
cannot be transformed into the other by a change of basis.

The Bravais types are in fact related by continuous deformations - from a general Niggli
reduced lattice basis (see Definition 1.3.6) given by v1 = (a, 0), v2 = (−b, c) with a, b, c > 0,
we may continuously deform the parameter value b in the range [−a/2, 0] whose extremes
produce, respectively, a centered and a primitive rectangular lattice. The primitive rectan-
gular lattice (a, 0), (0, c) may further have c deformed continuously until it is equal to a,
giving a square lattice. From a centered rectangular lattice , we may continuously scale v1
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until ||v1|| = ||v2||, giving rise to a hexagonal lattice in which all lattice vectors are of equal
length, or continuously change the angle between the two vectors to recover a square lattice.
These relationships are summarised in Figure 2.8.

We have illustrated in detail the construction of point groups and Bravais classes in two
dimensions. The approach to the three dimensional case is similar - since the main results of
this thesis involve the two dimensional case (and in any case we aim to replace all discrete
classifications with a continuous one), we will only briefly summarise the results. Explicit
computation of point and Bravais groups in three dimensions can be found in rigorous
technical detail in Louis Michel’s exposition of the topic [59].

While we can compute the crystallographic restrictions for lattices in R3 directly, the
process is simplified by the following theorem, which is proved for the rational numbers but
extends to the reals:

Theorem 2.2.8 ( [62], Corollary 2.9). For k ∈ {1, 2, . . .}, GL2k(Q) has an element of order
n if and only if GL2k+1(Q) also has an element of that order.

Setting k = 1 this means that the construction of point groups can begin with the
assumption that just as in dimension 2, point groups in dimension 3 can contain only elements
of orders 2, 3, 4 and 6. We consider the number of elements of order 2 in the lattice. If there
are none then the lattice is triclinic and inversion (multiplication by −I, where I is the
3 × 3 identity matrix) is the only lattice symmetry If there is only one then the lattice
is monoclinic If there is more than one, then it is either a plane of reflection, or by the
restriction on rotation orders it must be a rotation of π/k where k = 2 (an orthorhombic
lattice) , 3, 4 (a tetragonal lattice) or 6 (a hexagonal lattice). In the case of k = 3 it is
possible for there to be either just a single set of three order 2 elements (a trigonal lattice)
or two such sets lying in orthogonal planes (the lattice is then cubic).

For each of these seven crystallographic systems, Bravais classes may be constructed by
’centering’ in the same way as for the 2 dimensional case - that is, for any lattice where an
orthogonal pair of basis vectors exist (and thus there is a D2 symmetry about the lattice in
that plane) we may place an additional lattice point at the centre of the 2 dimensional ’unit
cell’. As with 2 dimensional lattices, if no centering occurs then the lattice is of primitive
Bravais subtype. We may thus enumerate Bravais types by considering what centerings may
give rise to distinct conjugacy classes of lattice in GL3(Z).

For monoclinic and orthorhombic lattices, we may centre at a single unique pair of or-
thogonal vectors to give the base-centered subtype. For cubic, tetragonal and orthorhombic
lattices all basis vectors are orthogonal, and thus all unit cell faces may be centred, giving
rise to a face centred Bravais subtype for each. Cubic, orthogonal and tetragonal systems
also admit points at the centre of their unit cells, giving rise to a body centered lattice.
Thus, of the 7 crystallographic systems, the monoclinic admits only two distinct centerings
(primitive and base-centered), tetragonal and cubic admit three and orthorhombic four. The
total count of possible centerings is thus 15. However, the ’face-centered tetragonal lattice’
is conjugationally equivalent by a change of basis in GL3(Z) to a body-centered orthogonal
lattice and so in fact there are only 14 distinct Bravais classes.
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Figure 2.8: Bravais classes of
two dimensional lattices, re-
lated by continuous deforma-
tions.

Table 2.1 lists these in full, along with the common
crystallographic reference system used in the International
Tables to denote them [58], and their Hermann-Mauguinn
symbol. The latter requires expansion from the 2 dimen-
sional version - since inversion and rotation are distinct in
three dimensions if a number is barred (as in Fm3̄m for a
face centered cubic lattice) it indicates that an axis of rota-
tion also has an inversion centre at the lattice point it fixes.
(a ’rotoinversion’). The slash in N/m, where N is the order
of a rotation element, indicates that the plane of reflection
denoted by m is orthogonal to the rotational element of or-
der N denoted in the symbol. Finally, a capital letter prefix
denotes the particular type of centering present.

Similar computations can and have been made in higher
dimensions showing the number of classes to grow rapidly
- there are 64 known Bravais classes of in 4 dimension [65],
while in 5 and 6 dimensions there are 189 and 826 respec-
tively [66]. We have not been able to find any explicit com-
putations for Bravais classes of higher dimension done since,
possibly because alternative approaches to discrete classifi-
cation in dimension ≥ 4 have since been suggested [66].

A more granular, although less rigorously defined, classification of lattices was developed
initially by Niggli [67], and is based on what he described (without further rigorous definition)
as ’essential geometric relations’ within a lattice. In two dimensions, Niggli subdivided
centered rectangular lattices into two separate characters, depending on whether the two
shortest vectors in the lattice were of equal or unequal lengths, as illustrated in Figure 2.9.

Figure 2.9: Niggli’s two characters for centered rectangular lattices in 2D.

In three dimensions, Niggli defined 41 characters through direct computation, although
later careful analysis by Mighell [68] increased this to 44. However, it was not until much
later that the lattice characters were rigorously defined in terms of all possible relations
(within a particular Bravais class) of reduced basis lengths and inner products [69].
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The relationships between crystallographic systems, Bravais types and lattice characters
are summarised in Figure 2.10.

Figure 2.10: Summary of discrete lattice classifications discussed in this chapter for two
dimensional lattices.

The Selling reduction discussed in the previous section gives rise to a different discrete
classification based on the Voronoi cells of the lattice. Again, we will reserve detailed dis-
cussion of these to the next chapter, where they contribute to our new work and its results.
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System Bravais Class Crystallographic Symbol H-M Symbol

Triclinic Primitive aP 1̄

Monoclinic Primitive mP P2/m

Monoclinic Base-Centered mS C2/m

Orthorhombic Primitive oP Pmmm

Orthorhombic Base-Centered oS Cmmm

Orthorhombic Face-Centered oF Fmmm

Orthorhombic Body-Centered oI Immm

Rhombohedral Primitive rP R3̄m

Tetragonal Primitive tP P4/mmm

Tetragonal Body-Centered tI I4/mmm

Hexagonal Primitive hP 6/mmm

Cubic Primitive cP Pm3̄m

Cubic Face Centered cF Fm3̄m

Cubic Body Centered cI Im3̄m

Table 2.1: The 14 distinct Bravais lattice types in three dimensions - their common crystal-
lographic symbol as well as their Hermann-Mauguinn symbol is shown
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2.3 Invariants and Similarity Measures on Lattices

All of the classifications of lattices in the previous section have been discrete, and there-
fore cannot be used to devise the continuous metric required by requirements 2 and 3 of
Problem 1.4.1, although they should (and indeed do) arise as meaningful subsets of that
continuous classification. In this section we will briefly discuss work towards the develop-
ment of isometry invariants that are intended to support the continuous comparison of two
lattice geometries.

The most straightforward isometry invariant of any lattice, if not the most tractable,
is simply an ordered list of all distances in a lattice. It is obvious that this is an isometry
invariant since it is by definition a collection of precisely those quantities which do not change
under an isometry. Is it, however, a complete invariant?

The list of distances is usually defined in terms of a series which counts the multiplicity
of vectors of a certain length:

Definition 2.3.1 (see [70], Definition 2.1.4). Let Λ be a lattice. The theta series of the
lattice is defined as

θ(Λ) =
∑
v∈Λ

e2πi||v||
2

and its coefficients give the count of lattice vectors with length ||v|| for all v ∈ Λ. Two lattices
Λ,Λ′ are isospectral if θ(Λ) = θ(Λ′).

In these terms we may frame the question of completeness by asking ’do isospectral,
non-isometric lattices exist’?

In one dimension the answer is trivial - the list of distances in any 1D lattice will be a
multiset of pairs of identical values {ka, ka|k ∈ Z} where a is the regular distance between
points along the real line specifying the lattice. The lattice is clearly uniquely determined
by the value a.

In two dimensions it is similarly easy to generate the list of distances (see Figure 2.11),
but less clear that no two non-isometric latties will have the same list. In fact, the question
was answered positively in 1978 [71], and in four dimensions it was answered negatively
by Conway and Sloane [72], who discovered an infinite family of counterexamples. If a
counterexample exists in dimension d, then one may generate a counterexample in dimension
d+1 by embedding some pair of isospectral lattices of rank d into Rd+1 and adding the unit
vector orthogonal to the basis vectors of each - in each case an equal number of vectors of
length 1 will have been added to the lattice. This result thus settled the question for every
dimension d ̸= 3.
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The problem proved surprisingly non-trivial in three dimensions. Schiemann developed
a proof in 1990 (published in English at [73] - a excellent detailed exposition can be found
in [70]). The proof is based on the construction of an algorithm which would terminate (in
any dimension) if and only if no isospectral, non-isometric lattices existed. On being run for
dimension 3, the algorithm did indeed terminate after 14 steps.

Figure 2.11: An ordered list
of distances for the square lat-
tice with orthogonal basis v1 =
(1, 0), v2 = (0, 1).

Since the theta series for a lattice is infinite, it is obvi-
ously rather unwieldy to work with - certainly not fulfilling
the computability requirement of Problem 1.4.1. It is possi-
ble to induce a metric on the space of any two power series
- for two theta series θ1, θ2 a classical approach would be
to define d(θ1, θ2) = 2−k where k is the first position in
the series at which the coefficients differ. This may require
computation of many terms of each series. However, it is
possible that there is some length at which one may trun-
cate the series - some minimal set of lattice distances which
are sufficient to completely recreate a lattice of dimension
less than 4. Indeed, as we will show in the next chapter,
in two dimensions just three lattice vectors are sufficient to
uniquely reconstruct a lattice.

Some of the most extensive work on developing a con-
tinuous space of lattices in three dimensions has been done
by Andrews and Bernstein. Most recently they have pro-
posed an ordered list of lattice distances for a Niggli reduced
cell [74], consisting of the three reduced basis vectors, the
face diagonals of the unit cell and all body diagonals. They
suggested that the seven smallest such distances should be
sufficient to reconstruct it completely. However, after a fam-
ily of counterexamples was found suggesting this was incom-
plete, this was updated to use a specific unordered distance set - the unit cell lengths, the
three shortest face diagonals and the shortest body diagonal [75].

Their other approaches have suggested the use of values from the Gram matrix (see
Definition 2.1.3) - that is, including both inner products and cell lengths. They have noted
that the three vector lengths and three inner products from the Gram matrix of the Niggli
cell represent a point in R6 [76] which they define as the G6 vector, with the various Bravais
types and characters being subspaces. They have conducted an exhaustive analysis of these
subspaces [47], and their relation to the various discrete lattice classifications. They have
also discussed the use of Selling rather than the Niggli reduced cell has been previously
discussed [77], again considering a exhaustive investigation of the subspaces of the G6 vector
of this reduction. In each case, the discontinuity of the basis has led to highly complex
subspaces in which it is not clear how to compute a stable metric that will compare two
lattices.
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A practical quantification of the the similarity between two lattices is given by the com-
putation of the strain tensor, which is a measure of the physical deformation required to
convert one cell into the other [78]. It is derived from the length and angle parameters of
each of the two lattices involved. Strain tensor computation is implemented in the Bilbao
Crystallographic Server [79]. However, the strain tensor can be shown not to be a metric,
since it does not satisfy the triangle inequality (a counterexample is computed in Appendix
A of [80]), and therefore does not address the metric space requirement of Problem 1.4.1.

Other approaches to determining lattice similarity have been designed specifically to aid
in Bravais lattice classification from (possibly erroneous) crystallographic data by determin-
ing if the parameters of its reduced form is within some small perturbation of any of of the
finite number of possible reduced bases of a ’model’ Bravais type - see for example similar-
ity definitions in [81], or the algorithms for determining lattice type from data with errors
in [82].

These approaches are highly effective in terms of discrete classification, but as discussed in
previous sections, approaches which assign lattices to a particular class if their parameters
are within some given tolerance are again not suitable for addressing Problem 1.4.1 - as
illustrated in Figure 2.2, such an approach makes a single equivalence class of all lattices.

2.4 Conclusion

In this chapter we have discussed three key foundations to the work in this thesis from the
field of lattice geometry. From the various reduced lattice bases investigated, none are (or,
as proved in [23], can be) in themselves continuous, but our own work selects one that is less
commonly used in crystallography, but may have continuous quantities derived from it.

This same reduction leads to a particular discrete categorisation of lattices which again
is not commonly used, since it is less granular that either point groups, Bravais lattices
or lattice Characters. As we show in the following chapter, however, that the continuous
space we derive from this classification has the Bravais lattices and indeed characters arising
’naturally’ arising as subspaces, and thus its parameters are the most suitable for addressing
the problem of continuous lattice classification and comparison.

We have, finally, discussed previous approaches to continuous classification and compar-
ison of lattices, and discussed a number of approaches which have proved effective in the
practical discrete classification of lattices, but fall short of fully and rigorously addressing all
of the requirements of our research problem. In the rest of the thesis we will close this gap.
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Chapter 3

Continuous Classification of 2D
Lattices

(This chapter is adapted from the paper ’Geographic-style Maps for Two Dimensional Lat-
tices’, authored by M.B. A. Cooper and V. Kurlin, published in Acta Crystallographica A in
2023).

3.1 Contributions and Chapter Outline

In this section our main contribution is the rigorous solution of sub-problems 1, 4 and 5
(completeness, invertibility and computibility) of Problem 1.4.1 for two dimensional lattices,
and a less formal demonstration of continuity by deriving a complete isometry invariant which
can easily be adapted to be invariant under the stronger condition of rigid motion. We show
that this invariant is easy to compute, and that a lattice may be uniquely reconstructed
from the invariant up to the correct equivalence relation. We have implemented the code
to compute this invariant and used it to provide the first view of the continuous space of
all existing lattice structures of real crystals, decomposed into a set of three 2D lattices. In
this work we build on a number of statements made by Conway in his series of papers on
lattices [83], which had truncated or incomplete proofs which can be found in expanded and
corrected forms in [84], leading to the development of the maps in [32]. We will demonstrate
in this chapter that the invariant varies by a small defined amount under small lattice
perturbations. In Chapter 4 we will impose explicit metrics and by showing that they have
formal continuity properties under lattice perturbation, rigorously demonstrate that the
invariant also provides a solution to sub-problems 2 and 4.

We will begin by focussing on the specific view of lattice symmetries and lattice reductions
which allow for our continuous approach, which was the Selling reduction outlined in Chapter
2 (see Definition 3.2.9). As promised in chapter 2, we will provide a detailed view of this topic,
and the resulting simpler but more geometrically informative - and, crucially, continuous -
classification of lattice symmetries.
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We will then work through the key proofs that the Selling reduction does in fact lead to a
continuous lattice invariant, and explain how this invariant gives rise to a three dimensional
space in which we can visualise the space of all equivalence classes of lattices up to isometry
(or rigid motion), and define maps for visualising equivalence classes of lattices up to isometry
or rigid motion and similarity in two. We will apply two different versions of these maps to a
large dataset of crystals from the Cambridge Structural Database [16], and thus demonstratee
that real, physical crystals occupy a continuous subset of that space, justifying our continuous
classification approach.

All empirical results in this section appear in [32] and arise from computations using the
code written by the author of this thesis at
https://github.com/MattB-242/Lattice_Invariance.

3.2 Theoretical Background

3.2.1 Voronoi Domains, Voforms and Coforms

We have already encountered two different ways of looking at n-dimensional lattices: as
a selection of n linearly independent basis vectors, divided into equivalence classes up to
isometry (or rigid motion) and change of basis, and as a discrete subgroup of linear trans-
formations of Rn. We will now consider a third view of lattices, as a specific instance of a
more general definition of discrete sets of points in Rn, introduced by Delone (the anglicised
spelling is sometimes given as Delauney, although we will use Delone throughout) [85]:

Definition 3.2.1 (Delone Set). A discrete subset X ⊂ Rn is a Delone Set if the following
two conditions apply:

1. There exists some positive real number r such that every open ball in Rn of radius less
than r contains at most one point of X (equivalently, for x, y ∈ R, ||x− y|| < r)

2. There exists some positive real number R such that every closed ball in Rn of radius
greater than R contains at least one point of X.

Informally, points in a Delone set are separate (the first condition) but never infinitely
far apart (the second condition). For every point in a Delone set we define a particular
geometric structure:

Definition 3.2.2 (Voronoi Cell). Let p ∈ X ⊂ Rn be a point in a Delone set. The Voronoi
cell of p is the set of all points in Rn that are closer to p than to any other point of X.

V (p) = {x ∈ X|||p− x|| ≤ ||p− y||}∀y ∈ X

Voronoi cells for a point in a Delone set are constructed by taking the hyperplanes normal
to and bisecting line segments of the star of the point - the lines between that point and all
other points in the set. A subset of these hyperplanes will enclose a polytope surrounding
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the point - since that polytope is an intersection of convex sets, it will itself be a convex
set. In two dimensions the bisectors are lines, and the polytopes are more usually called
parallelotopes

Clearly a lattice is an example of a Delone set, since every point is at least at a distance
of the first successive minimum (see Definition 2.1.5) λ1 away from any other, and any closed
ball of diameter greater than λ1 must contain at least one point of the lattice.

Furthermore, since any point in a lattice maps to any other point in the lattice, the set
of distances of any point in a lattice to its neighbouring points is identical. Conversely, if
the Voronoi cells of any pair of points in a Delone set are identical, then the set of distances
between those points and their neighbouring ones must be identical. This proves the following
geometrically intuitive theorem, which means we may speak of ‘the Voronoi cell’ of a lattice:

Theorem 3.2.3 ([86], Lemma A2). A Delone set is a lattice if and only if all of its Voronoi
cells are related to each other by a translation.

Thus, a lattice can be defined by the configuration of its Voronoi cell. Figure 3.1 shows
the Voronoi cells for the five 2D Bravais types. The comparison of Voronoi cells is thus
another potential continuous classification approach, and indeed such a metric, based on the
comparison of two such cells over all of their rotational orientation to each other has been
developed [87] - in fact this this represents the first formal approach to Problem 1.4.1. It
falls short as a solution only because computability involves comparison over the infinite,
continuous set of all rotational orientations. It has been implemented as an approximate
algorithm which selects a discrete subset of these orientations, and has successfully used in
this case as a descriptor in the prediction of lattice energies via machine learning [88].

Figure 3.1: Voronoi cells for the five Bravais lattice types in 2 dimensions

If a Delone set is embedded in Rn then clearly every point in Rn must be in some Voronoi
cell since it is closest to at least one point of the set. From this fact and Theorem 3.2.3 it is
immediately clear that some polytope is the Voronoi cell of a lattice if and only if it tiles Rn

- that is, Rn can be completely covered by translates of the Voronoi cell. In particular, we
see that R2 can be tiled only by a rectangle (of which squares are a special case), a rhombus
and a hexagon whose parallel sides are of equal length (of which the regular hexagon is a
special case). This is illustrated in Figure 3.1, from which it is visible that the discrete
classification of lattices by the shape of their Voronoi cells is coarser than any approach
discussed in Chaper 2. We can more formally define the notion of ’shape’ in the context of
a polytope as follows:

41



Definition 3.2.4 (Combinatorial equivalence of polytopes). Two d−dimensional polytopes
P1, P2 are combinatorially equivalent if there is a one-to-one mapping between every face
of every dimension - that is, both P1 and P2 have the same number of d-dimensional faces,
and for every k − 1-dimensional face arising from the meeting of n k−dimensional faces
in P1 there is a k − 1-dimensional face arising from the meeting of the same number of
k-dimensional faces in P2

Example 3.2.5. The Voronoi cells in the C2 and D6 case of Figure 3.1 are combinatorially
equivalent - they have six one-dimensional faces (edges), and every pair of such faces meets
in a 0-dimensional face (a vertex). They are not combinatorially equivalent to the D2 and
D4 cases since these have only 4 faces.

There are thus really only two types of Voronoi cell of a two Dimensional lattice in
the sense of definition 3.2.4 - a hexagon and a quadrilateral. As with Bravais types there
is a continuous relationship between the two Voronoi types in that one may retrieve the
quadrilateral type by continuously shortening a pair of parallel of the hexagonal type. In
three dimensions, there only five combinatorial types of Voronoi cell - these were orginally
identifed over a century ago by Fedorov [89], and their relation to the continuous classification
of crystals, again by continuous deformations of one polytope into another, is still a subject
of active discussion [90].

Clearly only a finite subset of the (infinite) set of bisectors of the star of a point in
the lattice will actually form the boundaries of its Voronoi cell. The following definition
specifically distinguishes vectors which determine these bisectors.

Definition 3.2.6 (Voronoi vector). A Voronoi vector of a lattice in Rd is any vector v whose
bisecting hyperplane {x : v · x = 1

2
||v||} intersects the Voronoi cell (Definition 3.2.2) about

the lattice point at the origin. The vector is strict if the bisecting hyperplane also intersects
a d− 1 dimensional face of the Voronoi cell, and non-strict otherwise.

To understand why Voronoi vectors are useful in both reduction and continuous classifi-
cation, we require the following definition:

Definition 3.2.7 (Quotient Lattice). For a lattice Λ we denote by nΛ the sublattice con-
sisting of all lattice vectors of the form nv for v ∈ Λ.

If u, v ∈ Λ and u − v ∈ nΛ then u and v are equivalent in nΛ. It is easily checked that
this is indeed an equivalence relation, and we denote by Λ/pΛ the quotient lattice whose
members are such equivalence classes of lattices.

Definition 3.2.7 allows us to state the following key theorem.

Theorem 3.2.8 ( [83], Theorem 2). A vector v of a lattice Λ is a Voronoi vector if and only
if it is the shortest lattice in its equivalence class in the quotient lattice Λ/2Λ. It is a strict
Voronoi vector if ±v are the only two vectors in their equivalence class.

.
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3.2.2 The Obtuse Superbase

Figure 3.2: A rectangular lattice,
with its Voronoi cell (brown) and
Voronoi vectors indicated - the green
arrows indicate strict vectors, the
purple ones are non-strict since they
pass through a vertex (0-dimensional
face) of the Voronoi cell rather than
a face. The red points indicate rep-
resentative elements of the lattice
Λ/2Λ.

The obtuse superbase of a lattice was briefly discussed
in Chapter 1 (see Definition 3.2.9). As promised,
we now give a more detailed mathematical exposi-
tion that will enable us to relate it to our new lattice
invariant.

Definition 3.2.9. (Selling Reduction) Let v1, . . . vn
be the basis of a lattice. The superbase is the basis
augmented with an additional vector v0 = −

∑n
i=1 vi.

A basis is Selling reduced if the superbase is obtuse
- that is, for all i ̸= j the Selling parameters pij =
−(vi · vj) ≥ 0.

While ’Selling reduction’ is the standard nomen-
clature for this approach in crystallographic litera-
ture, it has been proposed separately by not only Sell-
ing [91] but also Seeber [92], both of whom considered
only three dimensional lattices (in both cases from
the point of view of their gram matrices as ternary
quadratic forms). Charve [93] extended the idea to
four dimensions, and Delone [85] suggested a more
general version.

An important theorem of Delone [94] allows us to
use the Selling reduction in the analysis of lattices in
dimensions 2 and 3.

Theorem 3.2.10 ( [94], Theorem 1). Every lattice of dimension d ≤ 3 admits an obtuse
superbase.

If a lattice has an obtuse superbase with Selling parameters pij, then the squared norm of
any vector u ∈ Λ, can expressed in terms of the Selling parameters using Selling’s formula:

Theorem 3.2.11 (Selling [91], p169). Let Λ have an obtuse superbase {v0, . . . vn} in Rn.
We may express any vector v in Λ as the integer sum

∑d
i=0 aivi of superbase vectors, and

||v||2 =

∣∣∣∣∣
∣∣∣∣∣

d∑
i=0

aivi

∣∣∣∣∣
∣∣∣∣∣
2

=
n∑

0≤i<j

(ai − aj)2pij

From this equation, Conway derives the following crucial theorem, which connects the
obtuse superbase to the Voronoi vectors.
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Theorem 3.2.12. [ [83], Theorem 3] Let {v0, . . . vn} be an obtuse superbase of a lattice of
the first kind. Then for S ⊂ {0, . . . , n},

vS :=
∑
i∈S

vi

are the Voronoi vectors of the lattice. If U is the complement of S in {0, . . . n} then vU = −vS,
otherwise U ̸= S =⇒ vU − vS /∈ 2Λ - that is, vU , vS are in different equivalence classes of
the quotient lattice Λ/2Λ

Proof. By Theorem 3.2.8 the Voronoi vectors are the shortest vectors in their equivalence
class in Λ/2Λ - these will be the ones where the integer coefficients of all basis vectors are
equal to ±1 or 0. By Selling’s formula we minimise the norm of any vector, expressed as a
sum of obtuse superbase vectors, by minimising the coefficients (ai− aj)2 of Theorem 3.2.11
for any i, j for which pij > 0. Since all the coefficients (ai − aj)2 will be in Z2, they will be
exactly the vectors defined in Theorem 3.2.12.

We can use the above to demonstrate that the obtuse superbase provides a source of
isometry invariants for a two dimensional lattice.

Lemma 3.2.13. [ [84], Theorem 3.7] A pair of two dimensional lattices Λ,Λ′ are related
by isometry if and only all of their obtuse superbases are isometric. If Λ is not of primitive
rectangular Bravais type (see Figure 2.7) , then the lemma also holds for rigid motion. If Λ
is of primitive rectangular Bravais type then it has two isometry classes of obtuse superbase,
related by a reflection.

Proof. =⇒ Any isometry between B and B′ extends to an isometry between the lattices
Λ,Λ′ generated by the superbase vectors.

⇐= : By Theorem 3.2.12 the only two superbases of a non-rectangular lattice are given
by the vectors {v1, v2,−v1 − v2} and {−v1,−v2, v1 + v2}, which are related by a rotation of
π about the origin.

Any rectangular lattice with orthogonal reduced basis vectors v1, v2 has a superbase
related by reflections in the line along v1 or v2, so that as well as the two superbases
{v1, v2,−v1 − v2}, {−v1,−v2, v1 + v2} related by rigid motion, we also have obtuse super-
bases {v1,−v2, v2 − v1} and {−v1, v2, v1 − v2}. If the lattice is square then ||v1|| = ||v2|| and
these bases are once again isometric, related by rotations of π/2 about the origin.

Note that as part of the proof of Theorem 3.2.13 we state that any isometry of a lattice
extends to an isometry of an obtuse superbase of that lattice. To avoid unnecessary verbiage
or notation, unless it is important to point out the multiplicity of possible obtuse superbases,
references to ’an obtuse superbase B of a lattice Λ’ should be taken to refer to the equivalence
classes of both objects up to to isometry.
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3.2.3 Finding the Obtuse Superbase

If we are to satisfy the computability requirement of Problem 1.4.1, then there must be some
algorithmic way of finding an obtuse superbase. Such an algorithm is outlined, but not fully
detailed, for two dimensional lattices in [83]. Geometrically, if any pair of vectors vi, vj give
rise to a positive inner product, the vector vi is replaced by −vi

Algorithm 3 Obtuse Superbase in 2 Dimensions (adapted from the description in [83])

Input: Any linearly independent vectors v1, v2
Output: An obtuse superbase u1, u2, u0 for the lattice generated by the basi vectors

v1, v2.

1: Compute superbase vector v0 = −(v1 + v2)
2: Compute pij = −vi · −vj for all i < j ∈ {0, 1, 2}
3: while pij > 0 for some i, j ∈ {0, 1, 2} do
4: for i < j ∈ {0, 1, 2}
5: if pij < 0 then
6: u1 ← −vi
7: u2 ← vj
8: u0 ← vj − vi
9: pij ← −ui · uj
10: end if
11: end while

The effectiveness of the algorithm is stated in the following theorem, which was asserted
but not formally proved by Conway:

Theorem 3.2.14 ( [86], Appendix A). Algorithm 3 terminates and outputs the unique (up
to isometry) superbase of the lattice generated by the input vectors.

Proof. Suppose v1 ·v2 > 0. In the next step of the algorithm, the vector norms ||u1||2 = ||v1||2
and ||u2||2 = ||v2||2 unchanged. However, ||u0||2 = ||v2 − v1||2 = (v2 − v1) · (v2 − v1) =
||v1||2 + ||v2||2 − 2v1 · v2 ≤ ||v1||2 + ||v2||2 ≤ ||v1 + v2||2 = ||v0||2.

Thus each step of the algorithm shortens one superbase vector, while leaving the rest
unchanged. Since the lattice generated by the input vectors is discrete, it cannot contain
any vectors of zero length, and the algorithm must therefore terminate when some shortest
vector has been reached.

By Theorem 3.2.10 an obtuse superbase exists, so we must reach it at some point prior
to the termination of the algorithm, and by Lemma 3.2.13, the resulting obtuse superbase is
unique up to isometry (or rigid motion, if the lattice does not have rectangular symmetry).
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3.3 Defining Lattice Invariants

In the previous section, we demonstrated that for two dimensional lattices the obtuse su-
perbase is unique up to isometry, and that an obtuse superbase is in principle computable
from any set of input basis vectors. We are now in a position to define invariants under rigid
motion, isometry and similarity that solve Problem 1.4.1 for two dimensional lattices. We
begin by recalling the terminology and notation used by Conway [83] to define the geometric
parameters of the obtuse superbase.

Definition 3.3.1 (see [83], Theorems 4 and 6). Let Λ be a lattice of Voronoi’s first kind and
v0, . . . vn an obtuse superbase. For S ⊂ {0, . . . , n} the vonorms are the squared lengths of all
Voronoi vectors:

v2S := ||vS||2

The pairwise Selling parameters
pij = −vi · vj

of an obtuse superbase of the lattice are its conorms

The removal of the standard notation for norms in this case is simply for ease of reading
since we will refer to these quantities repeatedly in the text - in what follows the notation v2S
will be used exclusively for the norms of vectors in an obtuse superbase, while the standard
notation will be employed for norms of any other kind.

The following simple computation on vonorms in general dimension follows from
v0 = −

∑
i=1n vi:

v2S =

(∑
i∈S

vi

)
·

−∑
j /∈S

vj

 =
∑

i∈S,j /∈S

pij

and gives us some useful algebraic relationships between the vonorms and conorms of an
obtuse superbase of a two dimensional lattice:

v20 = p01 + p02, v
2
1 = p01 + p12, v

2
2 = p02 + p12

and hence

p12 =
1

2
(v1 + v2 − v0), p01 =

1

2
(v0 + v1 − v2), p02 =

1

2
(v0 + v2 − v1)

These relationships combined with the Selling formula of Theorem 3.2.11 give rise to a
useful theorem regarding the vonorms, proved in [83]:

Theorem 3.3.2 ( [83], Theorem 7). The vonorms v21, v
2
2, v

2
0 of an obtuse superbase of a lattice

in R2 are the squares of the three successive minima of the lattice (see Definition 2.1.5.
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Proof. The Selling formula means that the length of any vector v in the lattice is given by

||v|| =
∑

0≤i<j≤2

(ai − aj)2pij, ai, aj ∈ Z

If a0 = a1 = a2 than v is the null vector, so for v to be a superbase vector at least one of
the three coefficients must be unequal.

Suppose (without loss of generality) that a0 ̸= a1 and a1 = a2. Then v = a1(v1 + v2) −
a0(v0) = (a0−a1)(v1+ v2) which is some multiple of v0 which is minimised for a0 = ±1, a1 =
0or a0 = 0, a1 = ±1 and in either case v = ±v0.

The final case is a0 ̸= a1 ̸= a2. Then ||v||2 ≥ p12 + p01 + p02. But since any vi = pij + pik
for i ̸= j ̸= k ∈ {0, 1, 2}, v must be longer than any vi.

3.3.1 The Root Invariant

We are now in a position to define the contributions to lattice classification discussed in
this work, and to begin the work of proving that they have all of the properties required to
address Problem 1.4.1.

Definition 3.3.3 ( [84], Definition 3.1). Let B = v0, v1, v2 be the obtuse superbase of a lattice
Λ, with lengths ordered such that v21 ≤ v22 ≤ v20

The root products of Λ are the roots of the Selling Parameters rij =
√−vi · vj for

i, j ∈ {0, 1, 2}.
The Root Invariant is given by

RI(Λ) = (r12, r01, r02)

.

The relationship between the parameters of an obtuse superbase discussed above means
that the ordering of the root products induces an ordering on the lengths of the vectors in
the obtuse superbase:

Proposition 3.3.4 (see Appendix A in [80]). For the root invariants of any lattice, if
r12 ≤ r01 ≤ r02 then v21 ≤ v22 ≤ v20.

Proof. Working for ease of computation with the conorms, we compute:

p02 = −v0 · v2 = −v0 · v2 = (v1 + v2) · v2 = |v2|2 − p12,

and similarly p01 = −v0 · v1 = (v1 + v2) · v1 = |v1|2 − r212. Taking the difference,
p202 − p201 = |v2|2 − |v1|2 > 0 and thus p01 ≤ p02. We can also express

p01 = −v0 · v1 = v0 · (v0 + v2) = |v0|2 − p02

p12 = −v1 · v2 = (v0 + v2) · v2 = |v2|2 − p02
Again, taking the difference p01 − p12 = |v0|2 − |v2|2 > 0 and thus p12 ≤ p01.
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Example 3.3.5. A primitive rectangular lattice Λp2mm with basis v1 = (a, 0), v2 = (0, b)
has an obtuse superbase consisting of these two vectors and v0 = (−a,−b). It has another
obtuse superbase related by reflection, given by v′1 = (a, 0), v′2 = (0,−b), v0 = (−a, b). The
root product of both bases is given by RI(Λp2mm) = (0, a, b).

Let a centered rectangular lattice Λc2mm have an obtuse superbase v1 = (a, b), v2 =
(a,−b), v0 = (−2a, 0). Its root products are given by r12 =

√
b2 − a2, r01 = r02 =

√
2a.

The root invariant is given by

RI(Λc2mm) =


(
√
b2 − a2,

√
2a,
√
2a) b2 > 3a2

(
√
2a,
√
2a,
√
2a) b2 = 3a2

(
√
2a,
√
2a,
√
b2 − a2) b2 > 3a2

In the second case above, note that the vonorms v21 = v22 = v20 and the lattice is in fact
hexagonal (that is, all vectors in the lattice are of equal length).

The examples above form part of the proof of the following lemma:

Lemma 3.3.6 ( [84], Lemma 3.3). An obtuse superbase generates a lattice Λ with a mirror
symmetry if and only if one of the following conditions for the root invariant hold:

1. One of the root products in RI(Λ) takes the value zero

2. Some pair of the root products in RI(Λ) are equal.

Proof. =⇒ Suppose there is a zero value in the root product. Then the two vectors which
are orthogonal to each other generate a primitive rectangular superbase, which has a mirror
symmetry. Suppose two root products are equal, say p01 = p02. Then

v20 + v21 = v20 + v22

and thus v1, v2 in the obtuse superbase have the same length. We may permute v1, v2 through
a reflection in their bisector, which will not affect v0 = −(v1 + v2).

⇐= The only lattices with a mirror symmetry are either primitive rectangular, centred
rectangular, square or hexagonal. The computations of Example 3.3.5 show that a primitive
rectangular lattice has a zero in its root product, and a square lattice is simply a primitive
rectangular lattice with two equal basis vectors. Similarly, a centered rectangular lattice has
two equal root products, and a hexagonal lattice is a centered rectangular lattice where the
angle between any pair of superbase vectors are equal.

Definition 3.3.7 ( [84], Definition 3.4). Let B = v1, v2, v0 be the obtuse superbase of a lattice
such that ||v1|| ≤ ||v2|| ≤ ||v0||. The sign sign(B) of the superbase is equal to 0 if it has a
mirror symmetry, otherwise it is equal to the sign of the determinant of the matrix whose
columns (in order) are v1, v2.

The Orientation Aware Root Invariant is the decorated ordered triple

RIo(B) := (r12, r01, r02)ε

where ε = sign(B).
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For notational clarity the subscript of RIo is omitted for the ordered triple of a lattice
with mirror symmetry, since by Lemma 3.3.6 this will be immediately visible in the root
invariant from either r12 = 0 or some pair of values being equal.

Lemma 3.3.8 ( [84], Lemma 3.8). The sign of an obtuse superbase (Definition 3.3.7 is an
invariant of a lattice up to both rigid motion (Definition 1.3.2) and similarity under rigid
motion (Definition 1.3.8).

Proof. If Λ,Λ′ have obtuse superbases ordered by length B = {v1, v2, v0}, B′ = {u1, u2, u0}
related by a rigid motion, then the matrix M whose columns are v1, v2 may be transformed
into the matrix M ′ whose columns are u1, u2 via multiplication by some rotation matrix
R ∈ SO2(R), which has determinant 1, and which therefore will not change the sign of the
determinant of M . Similarly, if Λ and Λ′ are similar then M may be transformed into M ′

via multiplication by some scaling matrix λI for λ ∈ R+, and since λ > 0 this matrix also
has positive determinant and therefore will not change the sign of M .

In what follows, we may therefore refer to the sign of the obtuse superbase of defini-
tion 3.3.7 as the sign of the lattice itself.

Example 3.3.9. The signs of the lattices in Example 3.3.5 are all zero, since they are mirror
symmetric.

Let v1 = (3, 0), v2 = (−1, 3), v0 = (−2,−3) be a superbase B of a lattice. All inner
products are negative so the superbase is obtuse and ||v1|| ≤ ||v2|| ≤ ||v0||.

The root invariant is RI(B) = (
√
3,
√
6
√
7) - by Lemma 3.3.6 the lattice is not mirror

symmetric. Since det

3 −1

0 3

 = −9, sign(Λ) = −1 and RIo(B) = (
√
3,
√
6
√
7)−.

A mirror reflection in the x axis gives a superbase B′ generated by v1 = (3, 0), v2 =
(−1,−3), v0 = (−2, 3). The root products remain unchanged, but

det

3 −1

0 −3

 = 9, sign(Λ′) = +1 and RIo(B′) = (
√
3,
√
6
√
7)+

Figure 3.3 illustrates the computations of Example 3.3.9, and their geometric meaning.
Since we order the length of the superbase vectors the values of root products do not change,
but they are ordered ’clockwise’ rather than ’anticlockwise’.

The following Theorem shows that all these invariants satisfy the completeness require-
ment of Problem 1.4.1:

Theorem 3.3.10 ( [84], Theorem 4.2). The Root Invariant is a complete invariant of two
dimensional lattices up to isometry, and the orientation-aware root invariant is a complete
invariant of two dimensional lattices up to rigid motion.
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Figure 3.3: Computing the oriented root invariant RIo for the reflected lattices of exam-
ple 3.3.9

Proof. By Lemma 3.2.13, the obtuse superbase is an isometry invariant of a lattice, and since
an isometry by definition does not change lengths of vectors or the angles between them, the
inner products of the superbase will also not change.

To prove completeness, suppose that we have two non-isometric lattices Λ,Λ′ such that
RI(Λ) = RI(Λ′) = (r12, r01, r02). Now since the vonorms of the obtuse superbase can be
computed directly from the root products, all vectors of the obtuse superbase must have the
same length, so if Λ,Λ′ are non-isometric then some pair of superbase vectors must have
unequal angles. But in this case the inner products (and hence the Selling parameters) of
the obtuse superbase must be unequal, leading to a contradiction.

We have thus have mapped the rather complicated space of isometry classes of two
dimensional periodic lattices - the Lattice Invariance Space of Definition 1.3.11 - to a much
simpler set which consists simply of ordered triples of positive real numbers (which we can
consider as a subset of three dimensional Euclidean space). Theorem 3.3.10 allows us to
simplify our notation somewhat - for a given lattice Λ we may speak of the (orientation-
aware) root invariants of a lattice RI(Λ) and RIo(Λ).

Theorem 3.3.10 confirms that a lattice most be uniquely determined by its root invariant.
However, we may go further and address the computability requirement of problem 1.4.1:

Theorem 3.3.11 ( [86], Lemma 4.1). Any two dimensional lattice can be directly recon-
structed as a unique basis in R2 up to isometry from its root invariant, and up to rigid
motion from its oriented root invariant

Proof. We demonstrate the unique computation of a lattice from its (oriented) root invariant
RIo(Λ) = (r12, r01, r02)ϵ. Now v21 = r212 + r201, so we may orient the shortest vector along the
x axis of R2 as

v1 = (
√
r212 + r201, 0)

Similarly, we may calculate the length of v2, and the (obtuse) angle between the two vectors
is then given by θ = arccos (−r12/||v1||||v2||). If the root invariant is oriented and ε =
sign(Λ) ̸= 0 then

v2 = (||v2|| cos θ, ε||v2|| sin θ)

otherwise the factor ε is omitted in the calculation of v2.
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3.3.2 Similarity Invariants

If we are interested in lattices only up to similarity as in Definition 1.3.8, then any scaling
factor λ on the length of basis vectors mutiplies the root invariants by λ2 - thus the root
invariants of similarity classes of lattices are related by multiplication by some constant
factor.

The usual quantity indicating the scale of a lattice is its volume V (Λ) (Definition 1.3.4).
However, the volume has no theoretical lower bound - scaling a root invariant by 1/V (Λ)
therefore gives the possibility of infinitely large root products in the root invariant. We
define the following alternative quantity, which also simplifies computation of the resulting
invariant.

Definition 3.3.12. (Lattice size) The size σ(Λ) of a lattice Λ with root invariant RI(Λ) =
(r12, r01, r02) is

σ(Λ) := r12 + r01 + r02,

the sum of all the root products in its root invariant. For any root product rij of a two
dimensional lattice, we define r̄ij := rij/σ.

Lemma 3.3.13 ( [84], Lemma 7.4). Let a lattice Λ have obtuse superbase B = {v0, v1, v2}
such that maxv∈B ||v|| = l. Then σ(Λ) ≥ l.

Proof. The proof follows from computation using the relationships between vonorms and
conorms. Suppose without loss of generality that |v1| = l. Then v21 = l2 = p01 + p12. Now
σ(Λ) =

√
(r12 + r01 + r02)2 ≥

√
r212 + r201 + r202 =

√
p12 + p01 + p02 ≥ l.

The size has an additional benefit in an applied context, in that like the root product it
retains the same units as the length parameters of the lattice vectors. In general where it is

obvious from context which lattice is being referred to, we will refer to the size of a lattice
simply by σ. Using this quantity, we define the following similarity invariant

Definition 3.3.14 ( [84], Definition 4.5). Let a lattice have (oriented) root invariant RI(Λ) =
(r12, r01, r02). The projected invariant of the lattice is given by

PI(Λ) := (r̄02 − r̄01, 3r̄12)

Its oriented projected invariant PIo(Λ) is defined in the as its projected invariant with a
signed subscript matching that of RIo(Λ).

We have chosen this particular mapping of the values of the root invariant to assist in
visualisation of similarity classes of lattices in a manner that will be discussed in subsequent
sections.
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Theorem 3.3.15 ( [86], Proposition 4.9). The (oriented) root invariant of any lattice Λ can
be uniquely computed up to a scaling factor from an (oriented) projected invariant.

Proof. Let PIo(Λ) = (x, y)ϵ. Clearly r12/σ = y/3. Now recall that by the definition of σ(Λ),
r̄12 + r̄01 + r̄02 = 1 and therefore x + y = 1 − (2r01 + 2r12/σ =⇒ r01/σ = (3 − 3x − y)/6,
from which we immediately compute r02/σ = 1− y/3− r01/σ = (3 + 3x− y)/6. Thus

1

σ
RIo(Λ) =

(
3− 3x− y

6
,
3− 3x+ y

6
, y/3

)
ε

where ε is the sign of the lattice (if nonzero).

This computation illustrates the following corollary:

Corollary 3.3.16 ( [84], Corollary 4.6). The projected invariant is a complete similarity
invariant of a lattice.

Proof. The computation proving Theorem 3.3.15 shows that a projected invariant is a com-
plete invariant up to scaling of a root invariant, and from Theorem 3.3.10 any root invariant
is a complete invariant of a lattice.

Example 3.3.17. The isometry class of hexagonal lattices Λp6mm all have root invariants
RI(Λp6mm) = (a, a, a) for a > 0, and thus are identical up to a scaling factor. All such lattices
have a single projected invariant PI(Λp6mm) = (1, 0). Similarly, square lattices all have root
invariants RI(Λp4mm) = (0, a, a) and thus have a single projected invariant PI(Λp4mm) =
(0, 0).

Any primitive rectangular lattice with RI(Λpmm) = (0, a, b) has PI(Λpmm) = ((b−a)/(a+
b), 0). For centered rectangluar lattices the root invariant is either RI(Λcmm) = (a, a, b) and
PI(Λcmm) = ((b − a)/(2a + b), 3a/(2a + b)) = (x, 1 − x) for x = (b − a)/(2a + b), or it is
RI(Λcmm) = (a, b, b) and PI(Λcmm) = (0, 3a/(a+ 2b)).

3.3.3 Continuity of the Root Invariant

In this section we demonstrate that continuity of the root invariant arises from continuity of
the obtuse superbase. To do this, we need to prove that the set of both obtuse superbases
and the root invariants that arise from them can be defined as metric spaces and then prove
that the continuity property of Definition 1.2.10.

A visually intuitive demonstration of why the obtuse superbase (and thus any invariant
derived from its parameters) changes continuously with continuous deformations of a lattice
is illustrated in Figure 3.4. We consider the deformation of the square lattice discussed
in Example 1.3.12 of Chapter 2 and shown in Figure 1.7 - but now we keep track of the
obtuse superbase vectors rather than the Niggli reduced basis (which in fact we see always
forms one pair of the obtuse superbase). Where the latter changed discontinuously as the
lattice was deformed through the higher symmetry centered rectangular configuration where
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v2 = (1/2, 0), the change is simply a permutation of the vector length ordering. The isometry-
invariant parameters of the superbase, including the root products, thus remain the same
up to a permutation of vector indices. By forcing an order of vector indices through the
ordering of root products (see Proposition 3.3.4) the root invariant changes continuously.

Figure 3.4: Illustration of the continuity property of an obtuse superbase, cf. Figure 1.7.
Superbase vectors are shown ordered according by length. Two superbases related by a
reflection appear in the square lattice. Continuous deformation through the higher symmetry
point results in a permutation of vectors, but all parameters remain continuous
.

To prove this property formally, we need to define a continuous space of obtuse superbases.

Definition 3.3.18 ( [84][Definitions 7.1, 7.2). ] Let B = {u0, u1, u2}, B′ = {v0, v1, v2} be two
obtuse superbases. The Superbase Similarity Metric SIM(B,B′) is defined as

min
f inSO2(R)

max
i=0,1,2

||f(ui)− vi||

that is, the minimal distance between all vectors over all possible relative isometries of one
lattice with relation to the other. We extend this to the orientation-aware SIMo by replacing
O2(R) with SO2(R), so that distances are minimised only over rotations. We may also extend
this to an (oriented) Superbase Similarity Metric SSM, SSMo by adding a continuous scaling
of lattice by some factor λ ∈ R+. In this case the relevant groups replacing O2(R) in the
definition of SIM are the direct products O2(R)× R+, SO2(R)× R+.
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The (orientation-aware) Obtuse Superbase Isometry Space OSI (resp. OSIo) is the space
of isometry (resp.rigid motion) classes of obtuse superbases equipped with the metric SIM
(resp. SIMo). The (orientation aware) Obtuse Superbase Similarity Space is the space of
similarity classes of obtuse superbases up to rigid motion, equipped with the metric SSM
(resp. SSMo).

Lemma 3.3.19 ( [84], Lemma 7.2). The metrics in Definition 3.3.18 satisfy all metric
axioms.

Proof. We give an explicit proof for SIM(B,B′):

Identity : Suppose SIM(B,B′) = 0. Then there exists some isometry f ∈ O2(R) such
that max

i∈{0,1,2}
|f(ui)− vi| = 0. Thus B,B′ are isometric.

Symmetry : Let f be the isometry in O2(R) which achieves SIM(B,B′) - that is,
max
i=0,1,2

|f(ui) − vi| is minimised by the action of f Any isometry is invertible (since it has

nonzero determinant) and so f−1 exists, and furthermore max
i=0,1,2

|f(ui) − vi| = max
i=0,1,2

|ui −

f−1(vi)| also minimises all vector differences
Triangle Inequality Let B,B′, B′′ = (w0, w1, w2) be three obtuse superbases, and let f

be the isometry achieving SIM(B,B′) and g the one achieving SIM(B′, B′′) Now by the
definition of SIM and the properties of the Euclidean norm,

SIM(B,B′′) ≤ max
i=0,1,2

|g(f(ui))− wi|

≤ max
i=0,1,2

|g(f(ui))− g(vi)|+ max
i=0,1,2

|g(vi))− wi|

= SIM(B,B′) + SIM(B′, B′′).

This proof is applicable across all of the groups involved in the other metrics of Defini-
tion 3.3.18

This leads us to a demonstration of the continuity of Root Invariants:

Lemma 3.3.20 ( [84], Theorem 7.5). Let B,B′ be obtuse superbases of vectors Λ,Λ′, and
let l be vector of maximum length among the six vectors of these superbases, and suppose
SIM(B,B′) = δ. Then the maximum absolute difference between any pair of root products
in RIS is

√
2lδ.

Proof. The proof is by a computation involving Cauchy’s inequality:

|u1 · u2 − v1 · v2| = |(u1 − v1) · v2 + (u2 − v2) · (v1)|
≤ |(u1 − v1) · u2|+ |(u2 − v2) · u1|
≤ |u1 − v1||v2|+ |u2 − v2||u1|
≤ δ(|u1|+ |v2|) ≤ 2lδ
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From this the following general statement of continuity can be made for the lattice isom-
etry space.

Theorem 3.3.21 ( [84], Theorem 7.7). Let Λ,Λ′ be two lattices of with obtuse superbases
B,B′, differing by a slight perturbation such that SIM(B,B′) = δ. Then as δ → 0, RI(Λ′)→
RI(Λ) and PI(Λ)→ PI(Λ′)

Proof. For the root invariant, the statement follows immediately from Lemma 3.3.20, the
upper bound on the absolute difference between any two root products is

√
2lδ, which clearly

vanishes as δ → 0.

For the projected invariant, let RI(Λ) = (r12, r01, r02) and RI(Λ′) = (s12, s01, s02) with
sizes σ, τ respectively and suppose without loss of generality that σ ≤ τ . From Lemma 3.3.13
σ ≥ l, and so the difference between values in the projected invariants can be computed as

|3(r̄12 − s̄12)| ≤
3

σ

√
2δl ≤ 3

l

√
2l = 3

√
2δ

l

and similarly

|(r̄02 − r̄01)− (s̄02 − s̄01)| = |(r̄02 − s̄02 − (s̄01 − r̄01)| ≤
4

σ

√
δl = 4

√
2δ

l

We are therefore justified, via Theorem 3.3.10, in mapping the Lattice Isometry Space LIS
defined in Chapter 1 to a continuous space of both root invariants and projected invariants.

Definition 3.3.22 (Root Invariant Space). The Root Invariant Space RIS. is the set of all
triples (r12, r01, r02) of non-negative real numbers realisable as root invariants of two dime-
sional lattices (that is, r12 ≤ r01 ≤ r02 and r01 > 0). The Orientation-Aware Root Invariant
Space RISo is the set of orientation-aware root invariants (r12, r01, r02)ε with ε ∈ {+,−} if
r12 > 0 and no pair of root products are equal, and ε = 0 otherwise.

In Chapter 3 we will impose explicit metrics on RIS and thus demonstrate formal con-
tinuity between LIS and RIS as invariant spaces. In the next section we discuss explicit
visualisations of RIS and RISo.
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3.4 Mapping Isometry and Similarity Classes of 2D

Lattices

3.4.1 The Doubled Cone and Quotient Triangle

The most straightforward way of visualising RIS is as an embedding of all root invariants as
points in R3. Since the root products are ordered, the resulting subset of R3 will be a cone,
although with a one dimensional subspace removed as described below.

Definition 3.4.1 (Triangular Cone, adapted from [84] Definition 4.4). Let f : RIS → R3

be such that f : (r12, r01, r02) = (r01, r02, r12). The resulting subset of R3 is the Triangular
Cone TC, in which each point represents an isometry class of a two dimensional lattice. It
is defined by the following set of inequalities:

TC := {x, y, z ∈ R3|0 ≤ z ≤ x ≤ y}

The boundaries of TC are given by the following intersections:

∂0TC = TC ∩ {(x, y, z ∈ R3|z = 0}
∂1TC = TC ∩ {(x, y, z ∈ R3|x = y}
∂2TC = TC ∩ {(x, y, z ∈ R3|x = z}

By Lemma 3.3.6, any Root Invariant mapped to a point in these boundaries is that of a
mirror-symmetric two dimensional lattice. From Lemma 3.3.6 we see that a root invariant
maps to a point in the interior of the boundary ∂0TC if and only if it represents a primitive
rectangular lattices, and to a point in the disjoint interiors of ∂1TC and ∂2TC if it represents
an rectangular centered lattice.

In the interior of ∂2TC are all lattices where r12 = r01, implying that v21 < v22 = v20, while
in the interior of ∂1TC are all lattices where r01 = r02 =⇒ v21 = v22 < v20. By Theorem 3.2.8
v1, v2 are the first two successive minima of the lattice (Definition 2.1.5) . These two disjoint
boundaries thus represent the two distinct lattice characters of centered rectangular lattices
discussed in Chapter 2.

At the intersection ∂0TC ∩ ∂2TC are rectangular lattices with two equal nonzero root
products. We can use the computation of vonorms from conorms in this case to show
v21 = p01 + p12 = p01 = p02 = v22. At the intersection ∂1TC ∩ ∂2TC all root products are equal
and the lattice is hexagonal since all vonorms are of equal length.

Any lattice whose root invariant maps to the interior of the cone is oblique, having no
mirror symmetries. No root invariant of a lattice maps to the intersection ∂0TC ∩ ∂1TC , since
if p12 = p01 = 0 then v21 = 0, and the resulting structure is not a lattice.

To visualise RISo we create two copies of this cone and glue them together along the
boundary ∂1:
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Definition 3.4.2 (Doubled Cone). Let f : RISo → R3 be such that:

f(r12, r01, r02)ϵ =

{
(r01, r02, r12) ϵ ∈ {0,+}
(r02, r01, r12) ϵ = −

The resulting subset of R3 is the doubled cone DC, described by the set of inequalities

DC :=

{
{x, y, z ∈ R3|0 ≤ z ≤ y} x ≤ y

{x, y, z ∈ R3|0 ≤ z, y < z} x > y

in which each point represents the equivalence class of a lattice up to rigid motion.

DC is a partially closed set with boundaries given by the intersections

∂0DC = DC ∩ {(x, y, z ∈ R3|z = 0}
∂1DC = DC ∩ {(x, y, z ∈ R3|y = z}

Again by Lemma 3.3.6 the boundary ∂1DC contains only centered rectangular lattices
where r01 = r02. The intersection of the plane x = y with the DC is not a boundary as it is
for the TC, but still represents all centered rectangular lattices where v21 = v22.

If we wish to represent lattices up to similarity, we may simply select all lattices of the
same size. Figure 3.5 illustrates this by showing the intersection of a triangular and doubled
cone with a hyperplane given by r12 + r01 + r02 = c. Any line through the origin passing
through a particular point in this intersection represents a similarity class of lattices.

The specific form of the projected invariant allows for a highly intuitive visualisation of
similarity classes of lattices within a two dimensional simplex as follows:

Definition 3.4.3 (see Definition 4.5 in [84]). The projected invariant PI(Λ) of a lattice with
root invariant RI(Λ) = (r12, r01, r02) is given by

PI(Λ) :=
1

σ
(3r12, r02 − r01)

where σ is the size of the lattice as given in definition 3.3.12.

Proposition 3.4.4. The projected invariants of all lattices lie within, or on the boundary of,
the triangle R2 bounded by the vertices (0, 0), (0, 1), (1, 0). No isometry class of any lattice
has a projected invariant at the vertex (1, 0).

Proof. Since r̄12 + r̄01 + r̄02 = 1 and r12 is the minimum root product, r̄12 ≤ 1/3 =⇒ 3r̄12 ∈
[0, 1]. From the root product ordering, 0 ≤ r̄02 − r̄01, and since 0 < r01, r̄02 − r̄01 < 1),
r̄02 − r̄01 ∈ [0, 1).
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Figure 3.5: The triangular cone (TC) and the doubled cone (DC) are embeddings of RIS and
RISo respectively in R3 with subspaces which represent represent root invariants of lattices
with sign(Λ) = 0. The intersection of TC and DC with a hyperplane r12 + r01 + r02 = c
where c ∈ R+ is a right (resp. isosceles) triangle is shown.
. The yellow triangles show the intersection of each space a plane x + y + z = σ, σ ∈ R,
where all lattices have the same size.

We define this space as the quotient triangle:

QT := {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, x+ y ≤ 1}

It is illustrated on the left of figure 3.6. As with the TC of Definition 3.4.1, the boundaries
of this space are intersections with various linear subspaces:

∂0QT = QT ∩ {(x, y) ∈ R2|y = 0}
∂1QT = QT ∩ {(x, y) ∈ R3|x = 0}
∂2QT = QT ∩ {(x, y) ∈ R3|x+ y = 1}

In this case, ∂0QT represents all similarity classes of lattices where r12 = 0 (that is, primitive
rectangular lattices) while for any similarity class of lattice represented by a point in ∂1QT ,
r̄01 = r̄02 =⇒ r01 = r02v

2
1 = v22. Recalling that r̄12 + r̄01 + r̄02 = 1, for any point in ∂2QT :

3r̄12 − r̄01 + r̄02 = r̄12 + r̄01 + r̄02

=⇒ 2r̄12 = 2r̄01

=⇒ r12 = r01

and thus v22 = v20, so that the disjoint interiors of ∂1QT and ∂2QT again represent the two
separate characters of a centered rectangular lattice.

58



The intersection of ∂1QT and ∂0QT , r12 = 0 and v21 = v22, and so the vertex (0, 0) represents
the one similarity class of square lattices, at the intersection of ∂1QT and ∂2QT all root products
are equal and thus the vertex at (0, 1) represents the one similarity class of hexagonal lattices
(see Example 3.3.17). The intersection of ∂2QT and ∂0QT at the vertex (1, 0) is empty, since at
that point all root product values are equal to zero and this triple is not realisable by any
lattice and is thus not in the root invariant space (see Definition 3.3.22).

For the orientation-aware projected invariant, we may glue another copy of the QT along
any boundary as we did with the triangular cone. We chose the following mapping:

Definition 3.4.5 (see [84], Fig 12). Let Λ be a lattice with orientation-aware root invariant
RIo(Λ) = (r12, r01, r02)ϵ, ϵ ∈ {−, 0,+}. The orientation-aware projected invariant is given by

PIo(Λ) =

{
1
σ
(3r12, r02 − r01) ϵ ∈ {0,+}

(1− (r02 − r01), 1− 3r12) ϵ = −
.

All invariance classes of lattices up to similarity under rigid motion map to quotient
square QS, defined as

QS = {(x, y) ∈ R2|x ∈ [0, 1), y ∈ [0, 1)]}

and illustrated on the right of figure 3.6.This is a partially closed square, with sides of length
1 and vertices at (0, 0), (0, 1), (1, 1). Its boundaries are

∂0QS = QS ∩ {(x, y) ∈ R2|y = 0}
∂1QS = QS ∩ {(x, y) ∈ R3|x = 0}

Any lattice with sign 0 will map to the intersection QS∩{(x, y)|x+y = 1} in the interior
of the quotient square if r12 = r01 or to the boundaries ∂0QS or ∂1QS, whose interiors represent
the same subset of similarity classes of lattices as ∂0QT or ∂1QS.

If a lattice Λ+ has PIo(Λ+) = (x, y)+ then the lattice Λ− with PIo(Λ+) = (x, y)− maps
to the reflection of the point (x, y) in the line x + y = 1. Both the QT and the QS are
illustrated in Figure 3.6.

One could glue along any of the quotient triangle boundaries with a different maps.
The map discussed in the next section tackles this ambiguity and uniquely identifies a two
dimensional lattice up to rigid motion with a single point in a compact surface.
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Figure 3.6: The quotient triangle (QT) and the quotient square (QS) are embeddings of
(oriented) projected invariants of lattices in R3. Their boundaries represent projected in-
variants of lattices with sign(Λ) = 0. The geometry of lattices on the boundaries are shown,
as well as a pair of lattices with the same projected invariant and opposite signs.

3.4.2 The Quotient Sphere

In the quotient square, each lattice mapping to a point of the of the oriented piecewise linear
curve running from the vertex (0, 1) → (0, 0) → (1, 0) can be identified with the oriented
piecewise linear curve running from the vertex (0, 1) → (1, 1) → (1, 0). Thus, the quotient
square has the topology of a punctured sphere (punctured because the point (1, 0) itself is
missing).

Our aim is to create a continuous homeomorphism from the QS to a punctured sphere.
The most ‘geographically natural’ way to do this is to place the boundaries representing
lattices with mirror symmetry on a distinguished line, with some distinguished point on that
line representing the missing point. Since crystallographers are more used to stating angles in
degrees, we calculate using these units in what follows rather than the more mathematically
usual radians.

Definition 3.4.6 ( [32], Definition 5.1). Let P be the incentre of the quotient triangle, that
is, the centre of the unique inscribed circle tangent to all three of its sides. Let ℓG be the line
originating at P and the vertex (1, 0). Denote the latitude µ of the vertex (1, 0) to be 0◦ and
its longitude φ to be 180◦.

Let PIo(Λ) = (x, y)ϵ be a general oriented projected invariant. Let ℓ be the line through
P and (x, y), which goes on to meet the boundary of the QT at some point (χ, ν).

The longitude µ(Λ) ∈ (−180o, 180o] is the anticlockwise angle θ ∈ (−180, 180] between
ℓG and ℓ. The latitude ψ(Λ) is given by ϵ

90
φ where φ is the ratio |P − (x, y)/|P − (χ, ν)|
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of the distance between the incentre and (x, y) and the distance between the incentre and the
point after passing through (x, y) where it meets the boundary of the QT.

The spherical projected invariant SPI(Λ) of a lattice is the pair (µ(Λ), ψ(Λ)).

We illustrate the mapping of Definition 3.4.6 in Figure 3.7.

Figure 3.7: Mapping from the quotient triangle to the quotient sphere. Left: P is the centre
of the incircle of the QT. The lattice whose projected invariant is at the green point maps
to longitude µ(Λ) = 0. Right The Spherical Projected Invariant of Definition 3.4.6 maps all
lattices with sign 0 to the intersection of the sphere given by {(x, y, z) ∈ R3|x2 + y2 + z2 =
1}and the the plane z = 0 in R3. Lattices with negative sign map to the hemisphere below
this plane, with positives sign to the hemisphere above it.

For lattices with PI(Λ) in the straight-line segment between the excluded vertex (1, 0) and
the incentre P+, we choose the longitude µ = +180◦ rather than −180◦. Proposition 3.4.7
computes the longitude and latitude coordinates µ(Λ), φ(Λ) in terms of the projected invari-
ant.
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Proposition 3.4.7 (formulae for SPI, [32], Proposition 5.2). For any lattice Λ ⊂ R2 with

PI(Λ) = (x, y) ∈ QT, if x ̸= t = 1 − 1√
2
, then set ψ = arctan

y − t
x− t

, otherwise ψ =

sign(y − t)90◦.

(3.4.7a) The longitude of the lattice Λ is µ(Λ) =


ψ + 22.5◦ if x < t,

ψ − 157.5◦ if x ≥ t, ψ ≥ −22.5◦,

ψ + 202.5◦ if x ≥ t, ψ ≤ −22.5◦.

(3.4.7b) The latitude is φ(Λ) = sign(Λ) ·


x
√
2√

2−1
90◦ if µ(Λ) ∈ [−45◦,+67.5◦],

y
√
2√

2−1
90◦ if µ(Λ) ∈ [+67.5◦,+180◦],

1−x−y√
2−1

90◦ if µ(Λ) ∈ [−180◦,−45◦].
The incentres P± ∈ QT± have ψ = 0 and µ = ±90◦, respectively, φ is undefined. ■

Proof. Let (PI(Λ) = (x, y)ϵ). Assume initially that (x, y) ̸= (t, t). The translation (x, y) 7→
(x − t, y − t) where t = 1 − 1√

2
moves the incentre P to the origin. Denote by ψ =

arctan (y − t)/(x− t) the anticlockwise angle in the range [−90◦, 90◦] between the line ℓ
from the origin to (x− t, y − t) and the x axis, and by p the point at which this line meets
the translated boundaries of the QT.

Longitude computations are then a matter of converting the relevant range of ψ to that
of µ. If x < t then ψ ∈ [−90◦, 90◦] and µ(Λ) ∈ [−67.5, 112.5◦] = ψ + 22.5◦. If x ≥ t then:

ψ ∈ [−90◦,−22.5◦] =⇒ µ(Λ) ∈ [112.5◦, 180◦]

ψ ∈ [−22.5◦, 90◦] =⇒ µ(Λ) ∈ [−180◦,−67.5◦]

To compute latitude φ(Λ), we parameterise the line ℓs = s(x, y) + (t, t), s ∈ R such that
ℓ0 = (t, t) = P, ℓ1 = (x+t, y+t) = PIo(Λ) and determine the value of s for which ℓs intersects
the QT boundary. Then ψ(Λ) = sign(Λ)90

◦

s
. The appropriate boundary line ℓb is determined

by the longitude:

µ(Λ) ∈ [−45◦, 67.5◦] =⇒ ℓb = {(x, y)|x = 0}, s = x/t

µ(Λ) ∈ [−67.5◦, 180◦] =⇒ ℓb = {(x, y)|y = 0}, s = y/t

µ(Λ) ∈ [−180◦,= 45◦] =⇒ ℓb = {(x, y)|1− (x+ y) = 0}, s = (1− x− y)/2t

and one computes the explicit formulae of Proposition 3.4.7 from the above.

If (x, y) = (t, t) then s = 0 and φ(Λ) is undefined, as is µ. We wish to map the point
to the north or south poles, depending on the sign of the lattice, and since P is not on a
boundary sign(Λ) ̸= 0 and φ = sign(Λ)90◦.
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Example 3.4.8. All mirror-symmetric lattices Λ ⊂ R2 have sign(Λ) = 0 and SPI(Λ) =
(µ(Λ), 0) by (3.4.7b). All square lattices Λ4 with PI(Λp4mm) = (0, 0) have SPI(Λp4mm) =
(67.5◦, 0) by (3.4.7a). All hexagonal lattices Λp6mm with PI(Λp6mm) = (0, 1) have µ(Λp6mm) =
arctan 1

1−
√
2
+ 22.5◦ = −45◦. Any rectangular lattice Λ with PI(Λ) = (1− 1√

2
, 0) has µ(Λ) =

−90◦ + 202.5◦ = 112.5◦. A centered rectangular lattice Λ with PI(Λ) = (1
2
, 1
2
) at the mid-

point of the diagonal of QT has µ(Λ) = arctan 1 − 157.5◦ = −112.5◦. Any lattice ΛG with
PI(ΛG) = G = (0,

√
2− 1) has µ(ΛG) = arctan

(
1−
√
2
)
+22.5◦ = 0, lying at the ‘Greenwich

point’ (0◦, 0◦). ■

This computation illustrates the following, implied but not directly stated in [80]:

Theorem 3.4.9. The spherical projected invariant SPI(Λ) is a complete invariant of two
dimensional lattices up to similarity.

Proof. The explicit computation in the proof of Proposition 3.4.7 is both a one-to-one map
between any projected invariant and a point in the punctured sphere, and by Theorem 3.3.16
this is a complete similarity invariant of a two dimensional lattice.

Furthermore, inverse computation of a lattice from its spherical projected invariant is
possible, as illustrated in Figure 3.8:

Example 3.4.10. Let a lattice have SPI(Λ) = (15◦, 65◦). Since it is in the upper hemi-
sphere, it has positive sign. From µ(Λ) = 15◦ ∈ [−45◦, 67.5◦] we may compute

φ(Λ) = 65◦ = 90
x
√
2√

2− 1
=⇒ x =

65(
√
2− 1)

90
√
2

≈ 0.212

Since x ≥ t and µ(Λ) ∈ [−67.5◦, 112.5◦], set ψ = 67.5◦−22.5◦ = 42.5◦, and for t = 1−1/
√
2:

tan(ψ) =
y − t
x− t

=⇒ y = (x− t) tanψ + t

and thus y ≈ 0.218

From PIo(Λ) = (0.212, 0.218)+ we may use the explicit computation of Theorem 3.3.15
to directly compute that for a lattice of size σ

1

σ
RIo(Λ) ≈ (0.073, 0.285, 0.503)+

If we let σ = 1, then the application of Theorem 3.3.11 uniquely reconstructs the resulting
lattice basis as

v1 ≈ (0, 0.294), v2 = (−0.297− 0.444)

Thus, RI(Λ),PI(Λ) and SPI(Λ) are complete and computationally invertible by The-
orem 3.3.10, Corollary 3.3.16 and Theorem 3.3.11. Furthermore, the (oriented) root and
projected invariants are continuous by Theorem 3.3.21, and thus are complete solutions to
Problem 1.4.1.
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Figure 3.8: The inverse mapping from SPI(Λ) to a similarity class of lattices demonstrated
in Example 3.4.10
.

3.5 Mapping 2D Lattices in the CSD

In this section we apply our map to a large database of two dimensional lattices generated
from real world crystal structures, enabling us to examine how such structures occupy the
space of all possible lattices.

For any periodic crystal from the Cambridge Structural Database (CSD), which has full
geometric data of its lattice Λ ⊂ R3, we extract pairs of basis vector and angle parameters
(a, b, γ), (b, c, α)and (a, c, β) (see the note on lattice parameter notation in Chapter 1) and
apply our invariants to the 2-dimensional lattices generated by these parameters.

Figure 3.9 shows all resulting 2.6 million lattices in the quotient square QS. To empha-
sise the symmetric nature of the gluing operation, we have shown primitive and centered
rectangular lattices on the boundaries of both ‘copies’ of the QT glued together in the QS.
Only about 55% of all lattices have Bravais classes with mirror symmetries. The remaining
45% of lattices are oblique, and occupy all areas of QS except those close to the vertex (1, 0)
where lattices become very flat and elongated. There appear to be no preferred geometric
configurations overall.

After removing all non-oblique lattices represented by root invariants along the sides and
the diagonal of QS, the map in Figure 3.10 shows a preference for positive lattices. This
can be explained by the fact that in the CSD lattice parameters are ordered by length. Thus
the vectors v1, v2 of the derived two dimensional lattice will already be ordered in size - if
the basis is already part of an obtuse superbase then the sign of the lattice will be positive.
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Figure 3.9: Density maps in QS of triplets of 2D lattices extracted from CSD crystals in the
manner described in the text. Each pixel is of size 0.01× 0.01 , and its colour indicates (on
the logarithmic scale) the number of lattices whose projected invariant PI(Λ) = (x, y) =
(r̄02 − r̄01, 3r̄12) belongs to this pixel. The darkest pixels represent rectangular lattices on
the bottom and right edges of QS.

Another clearly visible feature is the dark spot near to the diagonal representing centered
rectangular lattices at PI(Λ) ≈ (0.4, 0.6). This arises from 386 near-identical primitive
monoclinic crystals of α-oxalic acid dihydrate. This molecule has been used as a benchmark
for the calculation of electron densities since its crystallographic properties were thoroughly
documented in [95]. As a result, hundreds of publications have since generated and deposited
refinements of its structural determination.
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Figure 3.10: Normal density map of all 2D oblique lattices from CSD crystals in QS. After
removing mirror-symmetric lattices on the boundary and diagonal of QS, we can better see
the tendency towards hexagonal lattices at the top left corner (0, 1) ∈ QS.

Some detail is lost in the QS map since we cannot see all parameters of higher symmetry
lattices. Since there are only two distinct values of root product in the root invariant of we
can, however, investigate a continuous map of just these two quantities. In the density map
of primitive rectangular lattices in Figure 3.11 (right), the most prominent feature is the
high-density area in the region where the shortest side length is between 2.5 and 5Å.

In Figure 3.11 (right) representing centered rectangular lattices, we see a visible line
b =
√
2a of high-density pixels. This line represents 2D lattices derived from body-centered

cubic lattices, where the ratio of any pair of side lengths is
√
2.
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Figure 3.11: Density maps of parameters (a, b) in Å. Left: rectangular lattices with primitive
unit cells a × b in N = 1094109 crystals in the CSD. Right: centred-rectangular lattices
with conventional cells 2a× 2b in N = 147451 crystals in the CSD.

A high density spot is visible representing 130 structures of a standard test molecule
(hexamethylenetetramine), which has frequently been in the investigation of lattice vibra-
tions [96]. The CSD thus also contains multiple depositions of the crystal structure of this
molecule.

The single points at the vertices (0, 0) and (0, 1) representing square and hexagonal
lattices respectively can be expanded into a continuous map simply by plotting a histogram
of the single parameter which governs them (that is, their side length) as in Figure 3.12.

For square lattices we see what appears to be a continuous distribution of side lengths,
skewed towards smaller structures although with a few very large lattices. It is notable that
there are very few precisely hexagonal lattices in the dataset - not enough to draw a similar
conclusion in that case. We conjecture that this is due to computation algorithms such as
those discussed in the final section of Chapter 2 which assign lattices to particular Bravais
types if their parameters are close to those of that type within a given tolerance. If a three
dimensional lattice is shown to be close to primitive cubic, then all of its angle parameters
will be automatically set to 90◦.

Figures 3.13,3.14,3.15,3.16 show the density maps of 2D lattices from Figure 3.9 on the
northern, southern, western, eastern hemispheres for the spherical map SM : QS→ S2.

The north pole represents the incentre P+ whose pixel contains 230 lattices in Figure 3.10
but appears sparsely populated in Figure 3.13 because this incentre pixel is split into many
more 1× 1 degree curved ‘pixels’ of a much lower density. The high density near the point
representing hexagonal lattices is visible in Figures 3.13 and 3.14 as a concentration near the
longitude µ = −45◦.
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Figure 3.12: The histograms of minimum inter-point distances a in Angstroms. Left: all
hexagonal 2D lattices in CSD crystals. Right: all square 2D lattices in CSD crystals.

Where non-oblique lattices are included, the concentrations of density along the borders
of the QT can be seen, with primitive rectangular lattices appearing as a dense arc on
the equator for µ ∈ [67.5◦, 180◦). The density maps show a hexagonal ‘ridge’ along the
meridional arc at µ = −45◦ in Figures 3.13 and 3.14, which appears as a round arc in
Figures 3.15 and 3.16. The density of exact square and rectangular lattices is even higher
(dark pixels for the Bravais classes p4mm, p2mm, c2mm).

3.6 Conclusion and Discussion

In this chapter we have given a rigorous demonstration that the root invariant - the ordered
pairwise inner products of the Selling-reduced (obtuse) superbase - is an isometry invariant
for lattices in 2 dimensions which uniquely represents any such lattice as a point in a cone
in the positive orthant of R3, and that the projected invariant derived from it is a similarity
invariant. We have extended each invariant with the sign of the lattice to give its orientation-
aware version, which is an isometry up to rigid motion. We have shown that these invariants
satisfy key conditions of Problem 1.4.1 - they are complete up to the relevant equivalence
relation, easily computable and fully invertible.

We have implemented the computation of each invariant, and used this to display what
is to our knowledge the first complete, continuous map of two dimensional lattices arising
from the Cambridge Structural Database - one of the largest databases of deposited crystal
structures available. This map shows a strong preference for higher symmetry lattices with
positive sign, although this is in part driven by the way that the lattices have been isolated
from their parent lattice. The map shows that naturally occurring two dimensional lattices
fill a large proportion of the space - justifying the need for a continuous classification of
lattices in particular, and periodic structures in general.
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In the next chapter we will impose metrics on the space of orientation-aware and unaware
root and projected invariants, and demonstrate that they have the properties required of
them by our research problem.

Figure 3.13: The density map of 2D lattices from CSD crystals on the northern hemisphere
of the spherical map. The circumference (equator) is parameterised by the longitude µ ∈
(−180◦, 180◦]. The radial distance is the latitude φ ∈ [0◦, 90◦]. Left: all N = 2191887
lattices with sign(Λ) ≥ 0, φ ≥ 0. Right: all N = 741105 oblique lattices with sign(Λ) > 0,
φ > 0.
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Figure 3.14: The density map of 2D lattices from CSD crystals on the southern hemisphere
of the spherical map. The circumference (equator) is parameterised by the longitude µ ∈
(−180◦, 180◦]. The radial distance is the latitude φ ∈ [0◦, 90◦]. Left: all N = 1854209
lattices with sign(Λ) ≤ 0, φ ≤ 0. Right: all N = 406930 oblique lattices with sign(Λ) < 0,
φ < 0.

Figure 3.15: The density map of 2D lattices from CSD crystals on the western hemisphere
of the spherical map (φ ∈ [−90◦, 90◦], µ ∈ (−180, 0]). Angles on the circumference show the
latitude φ ∈ [−90◦, 90◦]. Left: N = 1100580 lattices with µ ∈ (−180◦, 0◦]. The hexagonal
lattice at µ = −45◦ and the centered rectangular lattice at µ = −112.5◦ are marked on
the horizontal arc (western half-equator). Right: all N = 932626 oblique lattices with
µ ∈ (−180◦, 0◦] and φ ̸= 0.
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Figure 3.16: The density map of 2D lattices from CSD crystals on the eastern hemisphere.
Angles on the circumference show the latitude φ ∈ [−90◦, 90◦]. Left: all N = 1511307
lattices with µ ∈ [0◦, 180◦), the square lattice point at µ = 67.5◦ and the rectangular lattice
at µ = 112.5◦ are marked on the the horizontal arc (eastern half-equator). Right: all
N = 215409 oblique lattices with µ ∈ [0◦, 180◦), φ ̸= 0.

71



Chapter 4

Continuous Chiral Distances on 2D
Lattices

4.1 Chapter Outline and Contribution

In the previous chapters, we demonstrated that both the root invariant (Definition 3.3.3)of
a two dimensional lattice - the ordered triple consisting of the negative of the inner products
of its unique (up to isometry or rigid motion) obtuse superbase - and the projected invariant
(Definition 3.3.14) in their orientation-aware and orientation-unaware versions are not only
complete invariants, but also vary continuously under small perturbations of the lattice. This
led us to the notion of the Root Invariant Space (RIS - Definition 3.3.22 and, to show that
the Doubled Cone (Definition 3.4.5), the Quotient Square (Definition 3.4.5) and the spherical
projected invariant (Definition 3.4.6) are all representations of the space of isometry (or rigid
motion) and similarity classes of lattices respectively.

To go further and actually compare lattices, we need to define an explicit metric on these
spaces, and we will do so in this chapter. After a discussion of previous attempts to define
the notion of chirality both discretely and continuously, the main theoretical work will be the
definition of the general comparison metric and the proof that it follows all metric axioms of
Definition 1.2.4, with an overview of definitions, proofs and computations from [86] and [80].
We will use this to derive a family of chiral distances, essentially minimising the distance
between a point in RIS (or the QT) and some boundary subspace representing a particular
(or any) lattice with mirror symmetry. As with isometry classification, the requirement
for continuous distances between periodic crystals is motivated by the growing number of
simulated and experimental structures being published.

The remainder of the chapter will be devoted to the application of chiral distances to
real crystal structures. To demonstrate the efficiency of computation of chiral distances, we
will compute distributions of these distances on the large dataset of 2.7 million 2D lattices
mapped in the previous chapter. We will also demonstrate a more practical application of
chiral distances by using them to investigate to large public databases of two dimensional
materials.
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4.2 Previous Work on Continuous Chirality

4.2.1 Discrete Chirality

The term chirality has for most of its history been used as a binary property of molecular
structures. Almost all previous work on the chirality of periodic crystals [97] has studied
discrete versions of chirality based on symmetry groups, which are discontinuous under
perturbations.

Chiral molecules can have very different properties - the most well known case being
that of the drug Thalidomide, which has distinct R- and S-chiral enantiomers. While the
highly purified R-enantiomer proved to be an effective therapy for leprosy and other diseases,
the presence of even small mounts of the S-chiral version can cause fetal malformation in
pregnant women [98, 99].

In the crystallographic context the idea was initially defined informally by Lord Kelvin
for a ‘geometrical figure’ or ‘group of points’ , which he said to be chiral if ‘...its mirror
image, ideally realised, cannot be brought to coincide with itself.’ [100]. In the same passage
he defined the term enantiomer to describe the two mirror images of a chiral structure.

Definitions of this nature are generally applied to an embedding of a point set or other
object in Rn, but can be generalised to classes of object in any metric space [101]. We state
the following formal definition for lattices:

Definition 4.2.1. (Lattice Chirality) Two lattices have opposite chiralities if they are iso-
metric but not related by rigid motion (see Definition 1.3.2).

Thus, by Lemma 3.3.8, two lattices are enantiomers if their root invariants differ only in
their sign (Definition 3.3.7). In three dimensions, chiral structures can arise in lattices of all
Bravais types (see [102] for an overview of chiral symmetries in three dimensional lattices),
and as with individual molecules, crystals built from distinct enantiomers have measurably
different physical properties [103].

4.2.2 Continuous Chirality

Attempts to formally define a quantity which reflected ’how asymmetric’ a molecule or other
structure might be were being made in the 19th century [104], but the connection between
the physical, chemical, and biological properties of materials and the extent to which their
structures deviate from mirror symmetry [105] has seen a growing interest in the development
of materials where this deviation can be practically measured and controlled [106], rather
than characterised discretely.

A quantification of chirality for a very simple finite structure - the triangle - was developed
by Buda [107] . A more general quanitification of chirality for finite molecules based on
continuous atomic positions was proposed by Osipov et al [108]. The Osipov-Dunmur Pickup
(OPD) index relies on an integral over some function of the positions of points of a molecule
in space.
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Its applicability is limited by computability issues - direct analytical expressions for the
integral are only available for simple arrangements of small numbers of points. It has also
been shown [109] that it was possible for any measure of this type to exhibit ’chiral zeroes’
- that is, the OPD index may take a value of zero for a chiral molecule.

In a series of papers published in the late 90s [110, 111, 112, 113, 114], Zabrodsky, Avinr
and Pinsky discuss an alternative approach to continuous symmetry measurement.

The general idea is to define a minimum deformation required to move a a given config-
uration of atoms to a configuration that is symmetric. As with the OPD index, it is more
easily computable for small, finite configurations of molecules [115]. A key idea in this work
which we explore in the lattice context is the notion that ’asymmetry’ is not a single quan-
tity - one might compute the deformation required to move to a configuration with specific
symmetries. The quantification of ’chirality’ could be considered as a minimisation of such
deformations over all possible achiral configurations [112].

4.3 Root, Projected and Spherical Metrics

Instead of beginning with the idea of deviation from symmetry, the approach in this work
is to define a more general metric between different lattices from distances in the various
isometry spaces discussed in the previous chapter. As discussed in Chapter 3, previous
quantified comparisons between lattices have not successfully been shown to satisfy the
properties of a continuous metric.

Since we have mapped isometry classes of lattices to a subspace of R3, a metric between
any two such classes can be defined by restricting any valid R3 metric to that subspace - for
example, for the root invariant space we apply the metric to the triangular cone of Defini-
tion 3.4.1 since all root invariants will be within that space, while for projected invariants
we apply it within the Quotient Triangle:

Definition 4.3.1 ( [84], Definition 5.1). If Lq is the Minkowski metric of example 1.2.7, then
the root metric between any two lattices Λ,Λ′ is given by RMq(Λ,Λ

′) := Lq(RI(Λ),RI(Λ
′)).

Similarly, the projected metric is given by PMq(Λ,Λ
′) := Lq(PI(Λ),PI(Λ

′).

Thus RM2(Λ,Λ
′) and PM2(Λ,Λ

′) is simply the straight line Euclidean distance between
the two points in the TC and QT respectively, representing the lattices Λ and Λ′.

Example 4.3.2 (Computation of Root and Projected Metrics). Let Λ1 be the square lattice
u1 = (1, 0), u2 = (0, 1) and Λ2 a centered rectangular lattice v1 = (−1, 0.5), v2 = (1, 0.5)

We compute RI(Λ1) = (0, 1, 1) and RI(Λ2) = (0.5, 0.5, 0.75), and thus RM2(Λ1,Λ2) =√
0.52 + 0.52 + 0.252 ≈ 0.53

Similarly, PI(Λ1) = (0, 0) and RI(Λ2) = (0.25, 0.75) - as we would expect on the line
y = 1− x, and thus PM2(Λ1,Λ2) =

√
10/16 ≈ 0.79.
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It is more complex to define distances between classes of lattices up to rigid motion in the
triangular cone or quotient square. Any continuous deformation between lattices of opposite
sign will pass through some symmetric configuration represented by a point on the boundary
of the space, and since our choice of representation of root and projected invariants up to
rigid motion depended on gluing a second copy of the space along an arbitrary selection of
one of those boundaries (see Defintions 3.4.2 and 3.4.5) we cannot simply restrict the straight
line metric to the space they describe - potentially the distance between the two would be
shorter had we made some other choice, as illustrated in Figure 4.1). This is captured by
the definitions below.

Definition 4.3.3 ( [84], Definition 5.5). Recalling the definition of the boundaries ∂0TC , ∂
1
TC , ∂

2
TC

of TC, the orientation-aware root metric is given by

RMo
q(Λ,Λ

′) =

RMq(Λ,Λ
′) sign(Λ) = sign(Λ′)

min
RI(Λo)∈∂0

TC∪∂1
TC∪∂2

TC

RMq(Λ,Λo) + RMq(Λo,Λ
′) sign(Λ) ̸= sign(Λ′)

Similarly, defining the boundaries of the QT as

∂0QT = {(x, y) ∈ R2|x = 0}
∂1QT = {((x, y) ∈ R2|y = 0}
∂2QT = {((x, y) ∈ R2|x+ y = 1}

we define the orientation-aware projected metric as

PMo
q(Λ,Λ

′) =

PMq(Λ,Λ
′) sign(Λ) = sign(Λ′)

min
PI(Λo)∈∂0

QT∪∂1
QT∪∂2

QT

PMq(Λ,Λo) + PMq(Λo,Λ
′) sign(Λ) ̸= sign(Λ′)

We now present proofs that all the metrics defined above have the properties we seek to
solve Problem 1.4.1

Theorem 4.3.4 ( [84] Lemma 5.2). The root and projected metrics in their orientation-aware
and orientation-unaware forms satisfy all metric axioms.

Proof. For the orientation-unaware metrics, or orientation-aware metrics sharing the same
sign, symmetry and the triangle inequality are inherited from the Lq metric. Identity arises
from the completeness of the root and projected invariants up to isometry and similarity
respectively, proven in Theorem 3.3.10 and Corollary 3.3.16.

For the orientation-aware metrics with lattices of the opposite sign, symmetry is also
inherited from the original metric. It remains only to demonstrate that the triangle inequality
holds.

Let Λ1,Λ2,Λ3 be three lattices such that sign(Λ1) ̸= sign(Λ3) and sign(Λi) ̸= 0 for all
i ∈ {1, 2, 3}.
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Now either sign(Λ2) = sign(Λ1) or sign(Λ2) = sign(Λ3).

In the first case, let us suppose that Λ′ is the lattice with sign(Λ′) = 0 such that
RMo

q(Λ2,Λ3) = RMq(Λ2,Λ
′) + RMq(Λ

′,Λ3), and Λ′′ the lattice with sign(Λ′′) = 0 such that
RMo

q(Λ1,Λ3 = RMq(Λ1,Λ
′′) + RMq(Λ

′′,Λ3). Then

RMo
q(Λ1,Λ2) + RMo

q(Λ2,Λ3) = RMq(Λ1,Λ2) +RMq(Λ2,Λ
′) + RMq(Λ

′,Λ3)

≤ RMq(Λ1,Λ2) +RMq(Λ2,Λ
′′) + RMq(Λ

′′,Λ3)

≤ RMq(Λ1,Λ
′′) + RMq(Λ

′′,Λ3) = RMo
q(Λ1,Λ3)

For the second case, suppose Λ′ is the lattice with sign(Λ′) = 0 such that RMo
q(Λ1,Λ2) =

RMq(Λ1,Λ
′) + RMq(Λ

′,Λ2). Then

RMo
q(Λ1,Λ2) + RMo

q(Λ2,Λ3) = RMq(Λ1,Λ
′) +RMq(Λ

′,Λ2) + RMq(Λ2,Λ3)

≤ RMq(Λ1,Λ
′′) +RMq(Λ

′′,Λ2) + RMq(Λ2,Λ3)

≤ RMq(Λ1,Λ
′′) + RMq(Λ

′′,Λ3) = RMo
q(Λ1,Λ3)

We are now in a position to substitute the generalised continuity of Theorem 3.3.21 with
a proper metric continuity for orientation-unaware root and projected metrics.

Theorem 4.3.5. [ [84], Theorem 7.7] Let Λ,Λ′ have obtuse superbases B,B′ such that
SIM(B,B′) = δ and l is the length of the longest vector among both superbases. Then for
q ∈ [1,∞):

RMq(Λ,Λ
′) ≤ 3

1
q

√
2lδ

PMq(Λ,Λ
′) ≤ 2

1
q

√
2δ/l

Furthermore, both RMo
q(Λ,Λ

′) and PMo
q(Λ,Λ

′) go to 0 as δ → 0.

Proof. For the inequality of RMq(Λ,Λ
′), let RI(Λ) = (r12, r01, r02). From Lemma 3.3.20, the

absolute difference between any pair of root products in the root invariant is less than
√
2lδ,

and thus ( ∑
i<j,i,j∈0,1,2

|rij − sij|q
) 1

q

≤ (3(2lδ)
q
2 )

1
q = 3

1
q

√
2lδ

Similarly, let PI(Λ) = (x1, y1) and PI(Λ′) = (x2, y2). Then again by Lemma 3.3.21, noting
that the absolute difference between any pair of values in the projected invariant is less than√

2δ/l,

(|x1 − y1|q + |x2 − y2|q)
1
q ≤ (2(2δ/l)

1
q = 2

1
q

√
2δ/l

For the final statement, note that the spaces TC/{∂0TC∪∂1TC∪∂2TC} and QT/{∂0QT∪∂1QT∪∂2QT}
(see Definition 4.3.3) are open subsets of R3 and R2 respectively. Thus as the perturbation
δ → 0 there will be some value for which the two lattices Λ,Λ′ have the same sign and, the
oriention-aware and unaware root and projected metrics are equal.
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Remark 4.3.6. Note that we have specifically shown that RMq and PMq satisfy Hölder
continuity in the sense of Definition 1.2.10, with ε = 1/q.

We have included practical computability among our requirements in Problem 1.4.1, and
this can be expedited by deriving analytic expressions for metrics between lattices. For RMq

metrics this is non-trivial for q ≥ 3, and since in the results shown below we use exclusively
q = 2, we demonstrate specific analytic expressions for this value - more complex expressions
for q =∞ can be found in [86].

Proposition 4.3.7 ( [84], Proposition 5.9). Let Λ+Λ− be two lattice with root forms RIo(Λ) =
(r12, r01, r02)+ and RIo(Λ′) = (s12, s01, s02)− of opposite signs, and PIo(Λ+) = (x1, y1)+ and
PI(oΛ−) = (x2, y2)− Then

RMo
2(Λ+,Λ−) = min {L2(RI(Λ+), (−s12, s01, s02)), L2(RI(Λ+)(s01, s12, s02)), L2(RIΛ+), (s12, s02, s01)}

PMo
2(Λ+,Λ−) = min {L2(PI(Λ+), (x2,−y2)), L2(PI(Λ+), (x2,−y2)), L2(PI(Λ+), (1− y2, 1− x2))}

Proof. Let Λo be the lattice with sign 0 such that

RMo(Λ+,Λ−) = RM(Λ+,Λ0) + RM(Λ0,Λ−)

By the Definition 3.4.1 of TC, this lattice lies in one of the boundary subspaces given by
∂0TC , ∂

1
TC , ∂

2
TC . Denote by fi(RI(Λ−)) the function that gives the reflection of the point

representing Λi in the TC in the boundary subspace ∂iTC containing the point representing
Λ0. Now

RM(Λ +, Λ0) + RM(Λ0,Λ−) = RM(Λ+,Λ0) + L2(Λ0, fi(Λ−))

and using the triangle inequality, this is minimised for the Euclidean straight line distance
L2 exactly when Λ0 lies in the line between Λ− and f(Λ−) as illustrated in Figure 4.1. Thus

RMo(Λ+,Λ−) = min
i∈{0,1,2}

L2(Λ +, fi(RI(Λ−)))

and we can directly compute all fi(RI(Λ−)) as:

f0(s12, s01, s02) = (−s12, s01, s02)
f1(s12, s01, s02) = (s01, s12, s02)

f2(s12, s01, s02) = (s12, s02, s01).

The proof for PMo
2 proceeds similarly. In this case the relevant boundaries are

∂0QT = {((x, y)|x = 0}, ∂1QT = {y = 0} and ∂2QT = {(x, y)|x + y = 1}. The reflections
gi(PI(Λ−)) in each ∂′i boundary are given by

g0(x2, y2) = (−x2, y2)
g0(x2, y2) = (x2,−y2)
g0(x2, y2) = (1− y2, 1− x2),
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Figure 4.1: Illustration of the proof of Proposition 4.3.7: for lattices Λ+,Λ−, of opposite sign,
the root and projected metrics with the L2 distance are equivalent to the minimal straight
line distance between the point representing Λ+ in TC,QT respectively and the reflection of
Λ− in any boundary of the space.

and by the same argument as above

PM o
2 (Λ+,Λ−) = min

i∈{0,1,2}
L2(Λ +, gi(PI(Λ−)))

Example 4.3.8. We consider the lattice Λ1 of example 1.3.7 with Niggli-reduced basis v1 =
(−1, 0) and v2 = (0.3, 0.7), and its mirror image Λ2 given by v′1 = (1, 0), v′2 = (−0.3, 0.7).
As we would expect,

RI(Λ1) = RI(Λ2) = (0.28, 0.3, 0.7)

PI(Λ1) = PI(Λ2) = (0.4, 0.84)

and their distance in the orientation unaware metrics defined in 4.3.1 is 0.

However, since they have opposite sign we may compute

RMo
2(Λ1,Λ2) = min(

√
0.562,

√
0.22 + 0.022,

√
0.42 + 0.42)

≈ min(0.56, 0.09, 0.57) = 0.09

and similarly

PIo2(Λ1,Λ2) = min(0.8, 1.68,
√
0.22 + 0.682)

≈ min(0.8, 1.68, 0.71) = 0.71
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4.3.1 Spherical Metrics

We may also use the spherical projected invariant of Definition 3.4.6 to define an orientation-
aware distance between similarity classes of lattices. This does not require the minimisation
of Proposition 4.3.7 since points in the sphere already uniquely represent lattice classes up
to rigid motion rather than isometry. Thus any quantity known to be a metric for points
on the surface of S2 will suffice. Thanks to the importance of this information for seafarers,
this we may employ the well-known haversine distance.

Definition 4.3.9. (Haversine distance) Denote by hav(θ) := sin2 θ
2
the haversine function.

The haversine distance between two points of latitude and longitude (µ1, φ1), (µ2, φ2) is then
the minimum distance around a great circle [116] on S2, given by

h((µ1, φ1), (µ2, φ2)) = 2 arcsin
√

hav(φ1 − φ2) + hav(µ1 − µ2) cosφ1 cosφ2 ∈ [0◦, 180◦]

.

Tables of haversine distances have been used since the 19th century to approximate the
distance between two points on the surface of the earth(see, for example, [116, 117]). Since
the sphere of Definition 3.4.6 is defined to have radius 1, the haversine distance is in degrees.

Definition 4.3.10 ( [80], Definition 2.7). Let Λ1,Λ2 be lattices with spherical invariant
SPI(Λ1) = (µ1, ψ1) and SPI(Λ2) = (µ2, ψ2).

The spherical projected metric is given by the haversine distance between the two points
on the sphere

SPM(Λ1,Λ2) := h(SPI(Λ)1, SPI(Λ2))

In fact, we may introduce invariants modulo rigid motion rather than similarity on the
sphere by taking into account the size σ(Λ) = r12 + r01 + r02 of Definition 3.3.12. The
resulting chiral distances will be measured in the units of the original basis coordinates
(such as Ångstroms) instead of degrees.

Definition 4.3.11 ( [80], Definition 2.7). Let Λ be a lattice with root invariant RI(Λ) =
(r12, r01, r02).

The spherical root invariant is SRI(Λ) = (µ, φ, σ), where SPI(Λ) = (µ, φ) was introduced
in Definition 3.4.6 and σ is the size of the lattice. Map the spherical coordinates (µ, φ, σ) to
the standard Euclidean coordinates (x, y, z) = (σ cosφ cosµ, σ cosφ sinµ, σ sinφ). For any
two lattices Λ1,Λ2 ⊂ R2, the spherical root metric SRM(Λ1,Λ2) is the Euclidean distance
between the points (x, y, z) ∈ R3 obtained from SRI(Λ1), SRI(Λ2) as above. For a group G ∈
{D2, D4, D6} and any lattice Λ ⊂ R2, the spherical root G-chiral distance SRC[G](Λ) is the
minimum distance SRM(Λ,Λ′) for a lattice Λ′ that has σ(Λ′) = σ(Λ) and the crystallographic
group G.

Since the spherical projected metric and the spherical root metric are related to the
projected metric by a continuous homeomorphism (the gluing of the sides of the quotient
square), they are also continuous.
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4.4 Chiral Distances

Quantifications of chirality can be built on Definitions in 4.3.3, 4.3.10 and 4.3.11 by min-
imising the distance to the subspace of the Root or Projected Invariance Space (or the
punctured sphere in the case of the spherical projected invariant) which contains all lattices
with a particular symmetry.

Definition 4.4.1 ( [80], Definition 2.7). Denote by LISG the subspace of LIS consisting of
lattices with a symmetry group G ∈ {D2, D4, D6}. Then the root chiral distance of a lattice
Λ is given by:

RCq[G](Λ) = min
Λ′∈LISG

RMq(Λ,Λ
′)

and similarly we define the projected chiral distance as

PCq[G](Λ) = min
Λ′∈LISG

PMq(Λ,Λ
′)

We can derive explicit computations for q = 2 as follows:

Proposition 4.4.2 ( [84], Propositions 6.5, 6.6). Let Λ be a lattice such that
RI(Λ) = (r12, r01, r02) and PI(Λ) = (x, y). Then

RC2[D6] =

√
2

3
(r212 + r201 + r202 − ((r12r01 + r01r02 + r12r02))

RC2[D4] =

√
r212 +

1

4
(r02 − r01)2

RC2[D2] = min

{
r12,

r01 − r12√
2

,
r02 − r01√

2

}
PC2[D6] =

√
(1− x)2 + (1− y)2

PC2[D4] =
√
x2 + y2

PC2[D2] = min

{
x, y,

1− x− y√
2

}

Proof. RC2[D6]: the root invariant of any hexagonal lattice is given by (s, s, s) for some
s ∈ R+. We are therefore aiming to minimise the quantity

l =
√

((r12 − s)2 + (r01 − s)2 + (r02 − s)2

which we compute from

dl

ds
=

6s− 2(r12 + r01 + r02)√
((r12 − s)2 + (r01 − s)2 + (r02 − s)2

= 0 =⇒ s =
1

3
(r12 + r01 + r02)
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and thus by substituting this value into l we compute

lmin =

√
1

3
((2r12 − r01 − r02)2 + (2r01 − r02 − r02)2 + (2r02 − r12 − r01)2)

=

√
2

3
(r212 + r201 + r202 − ((r12r01 + r01r02 + r12r02))

RC2[D4]: the root invariant of any square lattice is given by (0, s, s) for some s ∈ R+.
We are therefore aiming to minimise the quantity

l =
√
r212 + (r01 − s)2 + (r02 − s)2

which we compute from

dl

ds
=

4s− 2(r01 + r02)√
(r212 + (r01 − s)2 + (r02 − s)2

= 0 =⇒ s =
1

2
(r01 + r02)

and thus by substituting this value into l we compute

lmin =

√
r212 +

1

2
(r01 − r02)2

RC2[D2]: We wish to minimise the distance to the three boundaries of the TC - for r12 = 0
this is simply r12 while for each of the the two boundaries rij − r0j, j ∈ {1, 2}, i ̸= j the
relevant distance is given by

√
(rij + r0j)2/2 as required

PC2[D6],PC2[D4]: the projected invariant of every hexagonal lattice is equal to (0, 1),
and the projected invariant of every square lattice is equal to (0, 0) so we simply compute
the L2 Euclidean distance to these points

PC2[D2]: We wish to find the minimal distance to any boundary of the QT. For the
vertical and horizontal boundaries. This is simply x and y respectively, and for x + y = 1
we compute the s which minimises the squared distance l2 = (x− s)2 + (y − 1 + s)2

d(l2)

ds
= 4s− 2x+ 2y − 2 = 0 =⇒ s =

(1 + x− y)
2

which on substitution gives l = (1− x− y)/
√
2 as required.

We may similarly define minimised distances to such subspaces in the spherical case:

Definition 4.4.3 ( [80], Definition 2.7). For any lattice Λ ⊂ R2 and a group G ∈ {D2, D4, D6},
the spherical projected G-chiral distance is given by

SPC[G](Λ) := min
Λ′∈LISG

SPM(Λ,Λ′)

and similarly the spherical root G-chiral distance

SRC[G](Λ) := min
Λ′∈LISG

SRM(Λ,Λ′)
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As with general distances between lattices, the definition and computation of chiral dis-
tances for spherical root invariants is more straightforward since it does not require minimi-
sation over multiple reflections:

Proposition 4.4.4 ( [80], Proposition 2.8). For a lattice Λ with SRI(Λ) = (µ, φ, σ), the
distances from Definition 4.4.3 can be computed as follows:

SPC[D2](Λ) = |φ|,
SPC[D4](Λ) = 2 arcsin

√
hav(φ− 67.5◦) + hav(µ) cosφ cos 67.5◦

SPC[D6](Λ) = 2 arcsin
√
hav(φ+ 45◦) + hav(µ) cosφ cos 45◦,

where hav(θ) = sin2 θ
2
, and

SRC[D2](Λ) = 2σ| sin φ
2
|

SRC[D4](Λ) = σ
√

(cosφ cosµ− cos 67.5◦)2 + (cosφ sinµ− sin 67.5◦)2 + sin2 φ

SRC[D6](Λ) = σ
√
(cosφ cosµ− cos 67.5◦)2 + (cosφ sinµ+ sin 45◦)2 + sin2 φ.

Proof. For a plane crystallographic group G ∈ {D2, D4, D6}, Proposition 4.4.4 expresses the
root spherical chiral G-distance SRC[G](Λ) and the projected spherical chiral G-distance
SPC[G](Λ) of any 2D lattice Λ ⊂ R2 in terms of its spherical root invariant SRI(Λ) =
(µ, φ, σ).

Case of SPC[D2]. Any lattice that has the crystallographic group D2 is mirror-symmetric
(primitive or centred rectangular). Hence its spherical projected invariant SPI = (µ, 0) lies
on the equator of S2 for some longitude µ ∈ (−180◦, 180]. By Definition 4.3.10, for any other
lattice Λ with SPI = (µ, φ), the spherical projected D2-chiral distance SPC[D2](Λ) is equal
to the haversine distance from (µ, φ) to the equator (minimal along the meridional arc where

µ is constant): SPC[D2](Λ) = h((µ, φ), (µ, 0)) = 2 arcsin
√
hav(φ) = 2 arcsin

√
sin2 φ

2
= |φ|.

Cases of SPC[D4] and SPC[D6]. By Definition 3.4.6 all square and hexagonal lattices are
represented by the spherical projected invariants (µ, φ) = (67.5◦, 0) and (µ, φ) = (−45◦, 0),
respectively, see Figure 3.7. By Definition 4.4.3 the spherical projected chiral distances
are SPC[D4] = h((µ, φ), (67.5◦, 0◦)) and SPC[D6] = h((µ, φ), (−45◦, 0◦)), and the resulting
formulae can be directly computed from the haversine distance formula of Definition 4.3.9

For any 2D lattice Λ with a spherical root invariant SRI(Λ) = (µ, φ, σ), Definition 4.3.11
gives the Euclidean coordinates (x, y, z) = σ(cosφ cosµ, cosφ sinµ, sinφ) ∈ R3 used below.

Case of SRC[D2]. In the spherical coordinates (µ, φ, σ), the subspace of all mirror-symmetric
lattices, which have the crystallographic group D2, is the equatorial plane φ = 0 or the hor-
izontal plane z = 0 in the Euclidean coordinates (x, y, z) = σ(cosφ cosµ, cosφ sinµ, sinφ).
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By Definition 4.3.11 for any 2D lattice Λ, the root spherical distance SRC[D2](Λ) to a
closest mirror symmetric lattice of the same size has the minimum Euclidean distance from
the fixed point (x, y, z) to the equatorial circle σ(cosµ′, sinµ′, 0) whose radius is fixed, but
the longitude µ′ is variable.

Ignoring the size factor σ2 and noting that sinφ is fixed, we minimise the squared distance
s(µ′) = (cosφ cosµ− cosµ′)2 + (cosφ sinµ− sinµ′)2 by differentiation:

ds

dµ′ = 2 sinµ′(cosφ cosµ− cosµ′)− 2 cosµ′(cosφ sinµ− sinµ′),

= 2 cosφ(cosµ sinµ′ − sinµ cosµ′) = 2 cosφ sin(µ′ − µ)
d2s

dµ′2 = 2 cosφ cos(µ′ − µ).

If
ds

dµ′ = 0 for µ ∈ [−180◦, 180◦] then either cosφ = 0 or sin(µ′ − µ) = 0, which implies that

µ′ − µ = 180◦n for n ∈ {−1, 0, 1}. If cosφ = 0, then φ = ±90◦ and s = cos2 µ′ + sin2 µ′ = 1
independent of µ, while sinφ = 1 giving SRC2[D2](Λ) =

√
2σ.

If µ′ − µ = 180n◦ and n = ±1 then d2s
dµ′2 = cos(±180◦) = −1 and s has a maximum. In

the remaining case d2s
dµ′2 = cos(±0) = 1 and, substituting µ′ for µ we find that s achieves a

minimum at s = cos2 µ(cosφ− 1)2 + sin2 µ(cosφ− 1)2 = (1− cosφ)2, so

SRC[D2](Λ) = σ
√
(1− cosφ)2 + sin2 φ

= σ
√

2− 2 cosφ

= σ

√
4 sin2 φ

2

= 2σ| sin φ
2
|

Case of SRC[D4]. In the spherical coordinates (µ, φ, σ), the subspace of square lattices is de-
fined by φ = 0, µ = 67.5◦, see Figure 3.7. The spherical root D4-chiral distance SRC[D4](Λ)
equals the Euclidean distance from (x, y, z) = σ(cosφ cosµ, cosφ sinµ, sinφ) to the point
SRI(Λ4) = σ(cos 67.5◦, sin 67.5◦, 0), which represents the only square lattice Λ4 of the same

size σ, so SRC[D4](Λ) = σ
√

(cosφ cosµ− cos 67.5◦)2 + (cosφ sinµ− sin 67.5◦)2 + sin2 φ.

Case of SRC[D6]. In the spherical coordinates, the subspace of hexagonal lattices is defined
by φ = 0, µ = −45◦, see Figure 3.7. The spherical root D6-chiral distance SRC[D6](Λ)
equals the Euclidean distance from (x, y, z) = σ(cosφ cosµ, cosφ sinµ, sinφ) to the point
SRI(Λ6) = σ(cos 45◦,− sin 45◦, 0), which represents the only hexagonal lattice Λ6 of the

same size σ, so SRC[D6](Λ) = σ
√

(cosφ cosµ− cos 45◦)2 + (cosφ sinµ+ sin 45◦)2 + sin2 φ.

The upper bound of any chiral distance in the sphere will be 90◦ (the distance to the
equator), and any root chiral distance will not have any theoretical upper bound.
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Proposition 4.4.5 (Kurlin [84]). The value of PC2[D2] has an upper bound of 1
2+

√
2
≈ 0.29.

Proof. By proposition 4.4.2, PC2[D2] = min
{
x, y, 1−x−y√

2

}
, which must be maximal when

x = y = 1−x−y√
2

=⇒ 1−2(x+y)√
2

= 0 =⇒ x = y = 1
2+

√
2
.

4.5 Maps of G-Chiral Distances in the CSD

This section illustrates the ease with which the chiral distances can be computed for very
large datasets by visualising histograms of G-chiral distances from the millions of 2D lattices
extracted from all 870+ thousand crystals in the Cambridge Structural Database in the
manner described in Chapter 3. All plots were produced on a standard laptop in a few
minutes by the code at https://github.com/MattB-242/Lattice_Invariance.

Figure 4.2: Signed D2-chiral distances of all oblique 2D lattices found in the CSD, see Defi-
nition 4.4.1 Left: sign(Λ)RC2[D2](Λ) in Ångstroms. Right: sign(Λ)PC2[D2](Λ) is unitless.

Since any non-oblique (mirror-symmetric) 2D lattice has all D2-chiral distances equal to
zero, we first focus on oblique (non-mirror symmetric)lattices. The total number of these is
1177678, which is about 45% of all 2D lattices found in the CSD. Figure 4.2-4.4 show the
histograms of the signed distances sign(Λ)RC2[G](Λ) and sign(Λ)PC2[G](Λ) for the point
groups G ∈ {D2, D4, D6}.

Figure 4.2 quantifies the continuous tendency towards non-oblique lattices, which have
RC2[D2] = 0 = PC2[D2]. The preponderance of lattices of positive sign is explained by
the ordering of lattice vectors, as discussed in the exploration of Figure 3.9 in Chapter 3.
The fact that values of PC2[D2] occupy almost the full range between the values ± 1

2+
√
2

of Proposition 4.4.5 indicates again that lattices in real crystals can adopt a wide range
of geometric configurations. Since there is no theoretical upper bound on RC2[D2], it is
notable that the vast majority of lattices (99.9%) occupy a fairly narrow range of signed
chiral distances between ±8.
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In Figures 4.2-4.6, the histograms of all root G-chiral distances have the bin size 0.1Å,
while the histograms of all projected G-chiral distances have the bin size of 0.01 (unitless).
In all charts we omit any lattices with G-chiral distances equal to zero for the relevant
symmetry group G. There are a number of structural elements to note in Figures 4.3 and 4.4
- in particular the differing size of the gaps around zero chirality and the well-defined peaks.

Figure 4.7 explains some of the features visible in these plots. The central density plot
recalls the structure of the continuous map from the lattice invariance space, but confined to
the quotient triangle QT of Definition 3.3.14. If we plot the number of 2D lattices extracted
from the CSD in the QT, we observe a strong preference for higher symmetry structures
(on the boundary) and a concentration of lattices towards the point (0, 1) representing the
hexagonal lattice, while the number decreases towards the point (1, 0) representing infinitely
long, thin cells, as seen in Chapter 3. Figure 4.7 (left) illustrates a geometric reason for this by
showing how chiral distances change for the centred rectangular lattice Λθ with basis vectors
of length 1 as its angle θ varies in [90◦, 120◦]. Close to 90◦, PC2[D4](Λθ) increases rapidly
with a small change in angle - the rate of increase slows as we move closer to θ = 120◦. The
plot thus concentrates lattices closer to the point (0, 1) representing the hexagonal lattice,
explaining the apparent rarity of lattices with low D4-chiral distances compared to the plot
for PC2[D6].

Figure 4.3: Signed D4-chiral distances of 1,177,678 oblique 2D lattices in the CSD, see Defi-
nition 4.4.1 Left: sign(Λ)RC2[D4](Λ) in Ångstroms. Right: sign(Λ)PC2[D4](Λ) is unitless.

To explain the peaks of PC2[D4](Λ) ≈ 1√
2
and PC2[D6] ≈ 1

2
, we observe the intersection

of circles at the origin and the points (0, 0) with the QT - see Figure 4.7 (right). We would
expect the frequency of a particular chiral distance value to be a function of both the length
of the intersection of the circle whose radius corresponds to that value and the density,
in terms of CSD-derived 2D lattices, of the region through which the circle passes. The
intersection of the circle at the origin of radius 1√

2
with the QT gives a curve of maximal
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Figure 4.4: Signed D6-chiral distances of 1,177,678 oblique 2D lattices in the CSD, see
Definition 4.4.1. Left: sign(Λ)RC2[D6](Λ) in Ångstroms. Right: sign(Λ)PC2[D6](Λ) is
unitless.

length. Thus a larger number of lattices in the plot in the centre will intersect with this
curve.

The maximal length circle of radius 1 centred at the point (1, 0) would pass mostly
through a low-density area - as its radius decreases the density of lattices increases but the
length of the intersection decreases - an optimum is evidently reached at radius 1

2
.

In Chapter 3 we discussed the single high density point representing multiple deposited
structures of oxalic acid in the CSD. The two dimensional lattice ΛOX derived from the single
pair of non-orthogonal vectors in the primitive monoclinic parent lattice has parameters
a = 6.1143Å, b = 12.0109Å, γ = 106.1◦. Computation of chiral distances does indeed give
the expected values PC2[D4](ΛOX) ≈ 1√

2
and PC2[D6](ΛOX) ≈ 1

2
- thus we do not see this

structure as a separate peak since it occupies the most probable 2 dimensional configuration.
Figure 4.5 shows the spherical D2-chiral distance on the complete dataset, exhibiting sim-

ilar behaviour to the planar version. Any non-oblique lattice is either rectangular (primitive
or centred) or has even higher symmetry (square or hexagonal).

Figure 4.6 shows the histograms of root distances from rectangular 2D lattices in the
CSD to their closest square and hexagonal lattices. The high bar to about 6000 lattices
in Figure 4.6 (right) indicates that the CSD has many centred rectangular lattices close to
hexagonal ones and many fewer rectangular lattices close to square ones.

We can investigate the relationship between continuous chiral distances and chemical
characteristics such as molecular weight by isolating the root and projected invariants of
2D lattices derived from the 50, 000 crystals whose constituent molecules had the highest
molecular weight, and the 50, 000 of lowest molecular weight.
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Figure 4.5: Histogram of signed spherical D2-chiral distances of 2D lattices from all crystals
in the CSD. Left: SRC[D2](Λ) is in Ångstroms (Å). Right: SPC[D2](Λ) is in degrees.

Figure 4.6: Distances (in Ångstroms) of rectangular (primitive and centred) 2D lattices.
Left: RC2[D4](Λ) to a closest square lattice. Right: RC2[D6](Λ) to a closest hexagonal
lattice.

A preliminary analysis shows that a slightly proportion (57%) of the lowest molecular
weight molecules have PC2[D2] = 0. By this discrete analysis, we might say that crystals of
lower-weight molecules tend to form a more symmetric lattice. Continuous analysis, reveals a
more nuanced picture. Figure 4.8 compares the histograms of chiral distances for oblique 2D
lattices extracted from crystals in the CSD whose main molecules have extreme (low or high)
weight. The overall distribution of chiral distances for higher molecular weight molecules is
slightly wider, indicating that higher molecular weight crystals tend to form lattices with
more extreme chiral distances. There is a stronger preference towards negative sign for
high-weight molecules which is more clearly visible when comparing values of RC2[D2].
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Figure 4.7: Left: values of PC2[D4] and PC2[D6] for a lattice with parameters a = 1, b = 1
and angle θ ∈ [90◦, 120◦] Centre: heat map of all 2D lattices in the quotient triangle,
extracted from crystals in the CSD. Right: intersection of QT with red and green circles
centred at the origin (0, 0) and the vertex (0, 1), respectively, of the radii ri =

1
2
and ri ± ϵ

for i = 1, 2.

Organometallic crystals have unit cells containing an organic molecule non-covalently
bonded to one or more metal ions. Their importance as new materials is illustrated by the
fact that nearly half (∼ 52%) of the deposited structures in the CSD which form oblique
lattices are organometallic. They are often a target for materials design by crystal structure
prediction experiments, and so there is a drive for methods that can help to categorise the
outputs of such experiments [12].

In Figure 4.9, it appears that organometallic lattices have a stronger tendency to form
crystals whose derived 2D lattices have negative signs, and from the histogram of RC2[D2]
values we observe a wider distribution of distances overall.

The differences discussed above relatively small, but they illustrate the sort of analysis
that can be done quickly to investigate possible differences between very large crystal datasets

4.6 G-Chiral Distances in 2D Materials

Amore directly practical application of chiral distances is in the investigation of the geometry
of 2D monolayers. This has been an area of great interest in chemistry since such materials
are predicted to have many useful physical properties [118]. While the lattice parameters for
2D monolayers are very often close to those of high symmetry lattices (square or hexagonal),
there is a growing interest in stable 2D structures with more generic lattice geometries [119].
Our chiral distances allow a more formal definition of this problem - we wish to find materials
whose lattices have a high chiral distance, and whose projected invariants will thus occupy
the interior of the QT.
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Figure 4.8: Histograms of RC2[D2] (left) and PC2[D2] (right) for oblique lattices in crystals
whose molecular weight is among the the 50, 000 highest and lowest in the CSD.

Figure 4.9: Histograms of spherical D2-chiral distances of 2D lattices in the CSD, separated
into organometallic and non-organometallic structures. Left: SRC[D2]. Right: SPC[D2].

2DMatPedia [3] is one of the largest open-source databases of such materials available -
currently containing 6, 351 crystal structures that have the potential to form monolayers. Of
these, two were retrieved from existing literature, 2, 940 were found through a layer detec-
tion approach (referred to in the publication describing this data as a ’top-down’ process),
in which separable 2-dimensional features were detected from geometric data [120]. The
remaining structures were then generated from this list by the substitution of atoms in the
same group - the ’bottom-up’ discovery process. Potential physical properties of the 2D
structures are then simulated.
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A natural first question is whether the database can tell us anything about the feasibility
of synthesising 2D structures with oblique lattices. The database includes two quantities
which determine this potential - the decomposition energy, which is the energy required to
split a structure into its most stable components, and the exfoliation energy, which is the
average energy per atom required to separate the modelled layer from its parent material.
The former should be high, and the latter low, to guarantee stability - typically 0.2eV is
considered an acceptable upper bound for exfoliation energy in 2D structures [121].

Figure 4.10: Invariants PIo(Λ) in the square QS for 2D lattices of 6,351 monolayer struc-
tures [3] isolated from 3D crystals by layer detection or generated by atomic substitution.

Figure 4.10 shows the positions of the oriented projected invariants PIo(Λ) (Defini-
tion 3.3.14), for 2D lattices of all structures in 2DMatPedia. It is clear that strongly oblique
2D lattices are relatively rare in this dataset. The majority of 2D lattices are non-oblique,
with very few occupying the interior of the square: 66% of lattices in the database have sign
0, and 75% have extremely small D2-chiral distances RC2[D2] less than 3× 10−8Å.
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Figure 4.11: Scatter plot of physical properties of materials discovered by layer detection in
2DMatPedia vs sign(Λ)RC[D2](Λ). Left: Decomposition energy in meV.Right: Exfoliation
energy in meV per atom.

Figure 4.12: Scatter plot of physical properties of materials discovered by atomic substi-
tution in 2DMatPedia vs sign(Λ)RC[D2](Λ). Left: Decomposition energy in meV. Right:
Exfoliation energy in meV per atom.

In Figures 4.11 and 4.12, we see the relationship between overall G-chiral distance (using
the RC2[D2] metric) and both indicators of the feasibility of potential 2D materials. The
most obvious thing to note is that the highest decomposition energies and lowest exfoliation
energies occur with materials whose layers are non-oblique. It is also notable that the range
of chiral distances overall is within [−3, 3] - this less than half of the range of root chiral
distances in lattices from the CSD shown in Figure 4.2. This suggests that oblique lattices
are not structurally preferred or strongly stable in candidate 2D materials.
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It is also interesting to note that on the whole atomic substitution gives rise to structures
with lower chiral distances - lying in the range [−2.1, 2.0] while structures found by identifying
layers geometrically lie in the wider range of [−2.5, 2.8].

Figure 4.13: 2D scatter plot of exfoliation vs.decomposition energy, with G-chiral dis-
tance indicated by colour Left: All structures in 2DMatPedia. Right: Structures where
RC2[D2] ≥ 1

In Figure 4.13 we try to isolate high G-chiral distance 2D structures that may feasibly
be synthesised by plotting both exfoliation and decomposition energy on the same 2D plot.
The right hand plot shows only those molecules with a D2-chiral distance of an absolute
value above 1, with three structures labelled that have low exfoliation and relatively high
decomposition energy.

Of these three monolayer structures, only one, antimony telluride (Sb2Te3) has been
reported in the literature. In its monolayer form, the structure of Sb2Te3 has been found
to exhibit reversible state changes which switch its electrical resistance from low to high
values [122]. The asymmetric geometry of its two dimensional structure means that it is one
of a growing class of Janus materials [123, 124] with properties that are potentially useful
in the field of quantum computing.

Of the other two structures, one - octachlorotrisilane(Si3Cl8) - has been reported in
the chemical literature, where it has been used as a substrate for creating monolayers of
Silicon Nitride [125], but not investigated as a potential 2D layer material in itself. The
structure with formula Bi6B10O21 exists only in simulated form, but as well as appearing
in the database under investigation, it has an entry in the Materials Project [15], and in a
database investigating materials with specific electronic transport properties [126].
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We thus illustrate that our chiral distance measure successfully isolates existing asymmet-
ric monolayer structures, and suggests potentially new targets for creating such structures.

The 2D materials database [4] is smaller than 2DMatPedia, containing only 1728 struc-
tures. It is of interest since of these structures, 183 were additionally ‘relaxed’: further DFT
computations simulate the likely final 2D structures once isolated from the parent crys-
tal. Our main analysis here investigates the effect of such relaxation on resulting G-chiral
distances.

Figures 4.14 and 4.15 show the invariants PI(Λ) of 1726 original 2D lattices and 183
‘relaxed’ structures in the square QS with coordinates (x, y) ∈ [0, 1], see Definition 3.4.5.
The elemental structures (monolayers of a single element) are highlighted in red, the MX2
structures [127], where M is a metal and X is a halogen, are in green, and the transition metal
dichalcogenide monolayers [128] (TMDC) are in blue. For illustration some of these have
been labelled, although since several structures occupy higher symmetry lattice points at the
vertics we have not labelled all of them. In Figure 4.15, the green dot at the top left vertex
(0, 1) of the square QS indicates the hexagonal crystal of Nb3Br8, whose monolayer form
was recently discovered to have the long-sought-after property of acting as a superconducting
diode [129].

The key observation in this analysis is that while candidate 2D structures in their parent
crystal can be both oblique and non-oblique, nearly all such structures simulated in isolation
become non-oblique. This suggests that candidate materials with even larger D2-chiral
distances such as those selected above from 2DMatpedia may, when isolated, revert to a
mirror-symmetric state. We have labelled the three chiral molecules that retain non-zero
D2-chiral distances with the formula of their parent structure. AgNO2 has in fact been
shown to form chiral monolayers [129], but we are not aware of any publications specifically
concerning the other two structures.

4.7 Conclusion and Discussion

In this chapter, we have added metrics on the isometry, rigid motion and similarity invariants
discussed in Chapter 3, and provided proofs that they obey all metric axioms. We have
derived from this a continuous quantifications of the chirality of a lattice as its continuous
distance from the subspace of lattices with a particular Bravais type within the metric space.
By providing explicit closed formulae for these distances, we have demonstrated that as with
the invariants themselves, the computability requirement of Problem 1.4.1 is satisfied.

Having implemented the computation of these chiral distances, we have applied them first
to the large dataset of artificially generated lattices from the CSD in the previous chapter,
demonstrating directly the strong preference even among oblique lattices for being as close
as possible to a symmetric configuration.

More practically, we have shown that the metric can be used to investigate databases
of actual two dimensional structures, helping to isolate those with lattice geometries which
indicate they may have useful chemical properties.
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Figure 4.14: 2D lattices of 1726 monolayer structures [4] isolated from 3D crystals and shown
by the invariants PI(Λ) in the quotient square (see Definition 3.4.5) and labels of structures
in Figure 4.15.

In doing so, we have shown that it is possible to isolate materials from which layer
structures with asymmetric lattices geometry may be derived, but also that there is liable
to be a strong tendency for such layers to settle into a higher symmetry configuration when
isolated.
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Figure 4.15: Projected invariants of 183 2D lattices simulated separately from their par-
ent material in the QS- compare to the 1726 monolayer structures in Figure 4.14. Left:
structures with oblique lattices and molecules of type MX2 are labelled in green. Right:
elemental crystals and molecules of type TMDC are labelled in red and blue.

In the next chapter we will summarise the content of this thesis, and briefly discuss future
work to extend the approach we have described to the three dimensional case.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this section we briefly summarise the motivations behind this thesis and its key theoretical
and applied contributions. We conclude by briefly discussing the extension of our work to
three- and higher dimensional lattices.

5.1.1 Thesis Summary

The growth in crystal structure data can be illustrated by the fact that since the maps
of Chapters 3 and 4 were generated in 2022, a recent download pursuant to future work
on three dimensional lattices has indicated that over 10, 000 new crystal structures have
been deposited in the Cambridge Crystallographic Structural database. Crystal Structure
Prediction has become a standard tool of materials design, regularly producing datsets of
many thousands of hypothetical structures explorable mainly through maps of their energy
and density.

Since the geometry of a solid state material gives rise to many of its key properties, the
ability to search through these large databases, or CSP landscapes, either to find materials
with diverse geometries or to locate structures that have geometries similar to materials with
known properties, is clearly beneficial. Current geometric descriptions, even at the most
granular possible level, are certainly not complete invariants of the geometry of a crystal,
since many structures with very different geometries as point sets can have the same space
group. While the discrete classifications of classical crystallography discussed in Chapter 2
are an essential tool for broadly classifying these huge datasets, a continuous classification of
the structures in them allow for a more fine-grained exploration of the relationship between
their geometric structure and other properties of interest.

When considering any problem which requires a rigorous mathematical description, it is
often beneficial to begin with the simplest non-trivial examples, in the hope that approaches
which apply to them can be extended to more complex contexts. Since lattices are the
fundamental building blocks of the description of any periodic material, this is where we
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have begun in this thesis. In most cases, the mathematics of one dimensional lattices (sets
of the form {ka : k ∈ Z, a ∈ R} are too trivial to give rise to meaningful results, but lattices
in two dimensions, as this thesis has shown, give rise to a rich mathematical structure.

In Chapter 1 we outlined in more detail the motivation behind this work and then de-
veloped the formal terminological machinery necessary to turn the broad aim of continuous
classification defined about into an exact mathematical description of the problem for two
dimensional lattices - ultimately leading to the full statement of Problem 1.4.1 which is
addressed in the rest of the thesis.

In Chapter 2 we have discussed those elements of the long history of lattice geometry
that are crucial to our approach to this problem. The proper selection of a lattice basis from
among the infinite possible choices available to is a necessary first step, and we have discussed
some of the approaches to these lattice reductions. Since we are aiming for a continuous
classification of lattices, we have provided some historical detail on lattice classification, and
the discrete approaches to the problem based on lattice symmetries. Finally in that section,
we have discussed different approaches to continuous lattice comparison and how these fall
short of the problem stated in Chapter 1

In Chapter 3 we develop part of the answer to this problem - the creation of a computable
and easily invertible complete isometry invariant for two dimensional lattices. Ultimately,
the correct lattice basis to approach this problem in two dimensions is given by the use of the
obtuse superbase, of Definition 3.2.9. The crucial theoretical contribution, is summarised in
Theorem 3.3.10, which states that the ordered inner products of the obtuse superbase of a two
dimensional lattice are an isometry invariant which varies continuously with continuous de-
formation of the lattice itself. In addition, by defining the size of a lattice (Definition 3.3.12),
we develop an additional invariant up to similarity - that is, isometry (or rigid motion) and
scale. It follows from the proofs of completeness of the root invariant that this projected in-
variant (Definition 3.3.14) has the properties required by Problem 1.4.1 for similarity classes
of lattice (see Corollary 3.3.16). By adding the sign of the lattice (Definition 1.3.4), we gen-
erate orientation-aware versions of both invariants which can be used to distinguish lattices
up to rigid motion.

Our practical contribution is then the development of maps to visualise these invariants.
The root invariant itself, and its orientation-aware version, map to the subsets of R3 given in
definitions 3.4.1 and 3.4.2 respectively, while the projected invariant maps to subsets of R2

were given in Definition 3.3.14 and Definition 3.4.5 respectively. We also develop alternative
maps of similarity classes of lattices to a punctured sphere in Definition 3.4.6, with an explicit
mapping from the projected invariant to this space in Proposition 3.4.7.

Since the invariants discussed in Chapter 3 give rise to the Root Invariant Space of
Definition 3.3.22, and the Projected Invariant Space of Definition 3.3.14, the natural next step
to completing the problem is to construct an explicit metric on these spaces. In Chapter 4
we define such a metric for classes of lattices up to rigid motion or similarity mapped to the
TC and QT respectively in Definition 4.3.3. We prove it is a metric in Theorem 4.3.4, and
prove that this metric is continuous in Theorem 4.3.5.
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For any given lattice, the minimal distance, in terms of these metrics, between that lattice
and any of the lattices in a subspace representing all lattices with a particular point symmetry
group G is defined as the G-chiral distance. Definitions 4.4.1 state this explicitly for root
and projected invariants. Definition 4.4.3 applies the general definition to the spherical
projected invariants, 3.4.6 and extends this to root projected invariants by adding the size
of Definition 3.3.12 as a vertical height above the sphere in Definition 4.3.11.

As with the invariants themselves, our contribution in terms of application is the nec-
essary code to compute all metrics and G-chiral distances, using the explicit closed forms
of Propositions 4.3.7 4.4.2 and 4.4.4. We use this not only to look at symmetries within
the same dataset of two dimensional lattices generated from the CSD as in the previous
chapter, but at the geometries of real two dimensional monolayer materials. While these
databases are somewhat smaller, we show that we are able to use chiral distances to isolate
potential monolayer materials with highly asymmetric lattice geometries, and to quantify
the modelled behaviour of such lattices when isolated as layers from their parent material,
illustrating some of their potential use cases.

5.1.2 Extension to Higher Dimensons

The most obvious next step on the theoretical side is to extend our work to three dimensional
lattices. A number of the theorems stated in chapters 3 and 4 are applicable to lattices in
three or indeed any dimension. Theorems 3.2.8 and 3.2.12 allow us to characterise Voronoi
vectors in any dimension, and theorem 3.2.10 of Delone gurantees that we can also find
obtuse superbases for a three dimensional lattice.

The additional complication in three dimensions is based in the completeness proof of
Theorem 3.3.10, which depends on the uniqueness of the obtuse superbase up to isometry
proven in lemma 3.2.13, which in turn depends on the fact that that any obtuse superbase
must consist of Voronoi vectors (Definition 3.2.6) proven in Theorem 3.2.12. Since for a
lattice in general position (that is, without higher symmetry) there are only three pairs of
Voronoi vectors (each pair related by a change of sign) there is only one possible choice of
obtuse superbase up to inversion (that is, changing the sign of all superbase vectors).

A primitive rectangular 2D lattice has among its Voronoi vectors an orthogonal basis
v1, v2, and another one given by −v1, v2 where v1 is reflected in the line v2. Thus the (non-
strict) Voronoi vectors ±v0 = ±(v1+v2) and ±v′0 = ±(v1−v2) complete the obtuse superbase
- overall there are four rather than three pairs of Voronoi vectors, allowing for more than
one superbase selection.

In the three-dimensional case, there are a maximum of seven pairs of Voronoi vectors
for a lattice in general position (that is, with triclinic point group). However, as with the
two dimensional case the presence of an orthogonal pair among these vectors gives rise to an
additional pair of non-strict Voronoi vectors, but in this case we now have eight such pairs.
This additional ’headroom’ allows for the selection of obtuse superbases that are related
by neither isometry nor rigid motion. We give an example of this below for the unit value
primitive cubic lattice:
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Example 5.1.1. Let a cubic lattice be generated by the vectors v1 = (1, 0, 0), v2 = (0, 1, 0), v3 =
(0, 0, 1). These vectors, along with v0 = (−1,−1,−1), form an obtuse superbase since for
i, j ̸= 0, the conorms (see Definition 3.3.1 are pij = 0, p0j = 1. The vector lengths (vonorms)
are v21 = v22 = v23 = 1 and v20 = 3, and thus an ordered list of lengths of the superbase vectors
is given by (1, 1, 1,

√
3).

We now consider the vectors

u2 = v2 = (0, 1, 0)

u3 = −v3 = (0, 0,−1)
u1 = v1 + v3 = (1, 0, 1)

u0 = −(u1 + u2 + u3) = −(v1 + v2) = (−1,−1, 0)

All vectors are in the quotient lattice Λ/2Λ and so by theorem 3.2.8 are Voronoi vectors.
The coforms p23 = p12 = p03 = 0 and p13 = p01 = p02 = 1 indicate that the superbase is
still obtuse, but in this case the vonorms are u22 = u23 = 1, u21 = 2, u20 = 2 - an ordered
list of superbase vector lengths is given by (1, 1,

√
2,
√
2). We have constructed a second

non-isometric obtuse superbase.

In three dimensions, there are few enough Voronoi vectors that an exhaustive analysis of
all possible obtuse superbases in each case can still bear fruit as a theoretical approach, since
there will still be some sort of geometric relationship between all possible obtuse superbases
in any given case. Note, for example, that in Example 5.1.1, an ordered list of conorm values
is (0, 0, 0, 1, 1, 1) in both cases, with the only difference being that these values are assigned
to conorms of different index.

Since Theorem 3.2.10 does not extend beyond Dimension 3, the approach to Problem 1.4.1
for 4 and higher dimensional lattices is likely to involve an entirely different theoretical
approach. We are not aware of any such work in the current literature on lattice geometry.
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[118] Pere Miró, Martha Audiffred, and Thomas Heine. An atlas of two-dimensional mate-
rials. Chem. Soc. Rev., 43:6537–6554, 2014.

[119] H. Tian, J. Rice, R. Fei, V. Tran, X. Yan, L. Yang, and H. Wang. Low-symmetry
two-dimensional materials for electronic and photonic applications. Nano Today, 11
(6):763–777, 2016.

[120] Michael Ashton, Joshua Paul, Susan B. Sinnott, and Richard G. Hennig. Topology-
scaling identification of layered solids and stable exfoliated 2d materials. Phys. Rev.
Lett., 118:106101, Mar 2017. doi: 10.1103/PhysRevLett.118.106101.

[121] Tom Barnowsky, Arkady V. Krasheninnikov, and Rico Friedrich. A new group of 2d
non-van der Waals materials with ultra low exfoliation energies. Advanced Electronic
Materials, 2022.

[122] Robin B Jacobs-Gedrim, Michael T Murphy, Fan Yang, Nikhil Jain, Mariyappan
Shanmugam, Eui Sang Song, Yudhister Kandel, Parham Hesamaddin, Hong Yu Yu,
MP Anantram, et al. Reversible phase-change behavior in two-dimensional antimony
telluride (Sb2Te3) nanosheets. Applied Physics Letters, 112(13):133101, 2018.

[123] Wen-Jin Yin, Hua-Jian Tan, Pei-Jia Ding, Bo Wen, Xi-Bo Li, Gilberto Teobaldi, and
Li-Min Liu. Recent advances in low-dimensional janus materials: theoretical and sim-
ulation perspectives. Materials Advances, 2(23):7543–7558, 2021.

[124] Lei Zhang, Yuantong Gu, and Aijun Du. Two-dimensional janus antimony selenium
telluride with large rashba spin splitting and high electron mobility. ACS omega, 6
(47):31919–31925, 2021.

[125] Stefan Riedel, Jonas Sundqvist, and Thomas Gumprecht. Low temperature deposition
of silicon nitride using Si3Cl8. Thin Solid Films, 577:114–118, 2015.

[126] Francesco Ricci, Wei Chen, Umut Aydemir, G Jeffrey Snyder, Gian-Marco Rignanese,
Anubhav Jain, and Geoffroy Hautier. An ab initio electronic transport database for
inorganic materials. Scientific Data, 4(1):1–13, 2017.

[127] V. Kulish and Y. Huang. Single-layer metal halides (MX2, X = Cl, Br, I): stability
and tunable magnetism from first principles and monte carlo simulations. J. Mater.
Chem A, 5:8734–8741, 2017.

[128] A. Eftekhari. Tungsten dichalcogenides (WS2, WSe2, and WTe2): materials chemistry
and applications. J. Mater. Chem A, 5:18299–18325, 2017.

109



[129] H. Wu, Y. Wang, Y. Xu, P.K. Sivakumar, C. Pasco, U. Filippozzi, S.S.P. Parkin, Y-J.
Zeng, McQueen T., and Ali M.N. The field-free Josephson diode in a van der waals
heterostructure. Nature, 604:653–656, 2022.

110


	Dedication
	Acknowledgements
	Abstract
	List of Publications
	Notation
	Introduction
	Motivation: Exploring Structural Space
	Invariance, Metric Spaces and Isometry
	Lattices
	Problem Statement

	Previous Work on Lattices
	Lattice Bases and Reduction Algorithms
	Reduction Algorithms

	Discrete Lattice Classification
	Invariants and Similarity Measures on Lattices
	Conclusion

	Continuous Classification of 2D Lattices
	Contributions and Chapter Outline
	Theoretical Background
	Voronoi Domains, Voforms and Coforms
	The Obtuse Superbase
	Finding the Obtuse Superbase

	Defining Lattice Invariants
	The Root Invariant
	Similarity Invariants
	Continuity of the Root Invariant

	Mapping Isometry and Similarity Classes of 2D Lattices
	The Doubled Cone and Quotient Triangle
	The Quotient Sphere

	Mapping 2D Lattices in the CSD
	Conclusion and Discussion

	Continuous Chiral Distances on 2D Lattices
	Chapter Outline and Contribution
	Previous Work on Continuous Chirality
	Discrete Chirality
	Continuous Chirality

	Root, Projected and Spherical Metrics
	Spherical Metrics

	Chiral Distances
	Maps of G-Chiral Distances in the CSD
	G-Chiral Distances in 2D Materials
	Conclusion and Discussion

	Conclusions and Future Work
	Conclusions
	Thesis Summary
	Extension to Higher Dimensons



