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Abstract

Structural identification is an essential process in structural health monitoring, condition assessment
and structural safety evaluation. This inverse problem becomes more challenging when information on
the dynamic loads is missing or not fully known. Hence, it is important to establish methods to identify
structural parameters and dynamic loads simultaneously from the measured structural responses which
are easy to obtain compared to dynamic loads. This paper proposes a novel method to identify simulta-
neously structural parameters and dynamic loads from structural responses measured on a limited set
of degrees-of-freedom. Firstly, an objective function is defined as the difference between the measured
structural responses and the theoretically computed responses, and then the derivative of the residual
function with respect to structural parameters is calculated numerically using the forward-difference
method. The derivative of the residual function with respect to the external dynamic loads is computed
using the state-space formulation and the system matrix composed of Markov parameters to facilitate
the derivative-based identification. Secondly, the nonlinear optimization problem is solved using the
Levenberg-Marquardt algorithm. Several numerical examples are analysed to demonstrate the effec-
tiveness and robustness of the method. Finally, the effect of initial estimates of the parameters and
dynamic loads and the effect of measurement noise, as well as the effects of number of measurements
are investigated. The proposed method is also shown to achieve a satisfactory solution even when the
initial estimates of parameters and dynamic loads are far from their true values.

Keywords: structural dynamics, parameter identification, dynamic load identification,
Levenberg-Marquardt algorithm

1. Introduction

Civil engineering structures withstand various types of dynamic loads during their service life. As a
result, structural identification and dynamic load quantification become crucial elements in the critical
evaluation of structural health and safety. Conventionally, vibration-based structural identification
is performed in either frequency domain or time domain [1, 3, 9]. Frequency domain approaches
rely on changes in natural frequencies and mode shapes as well as their derivatives to update the
numerical models [24] or to identify damage using these global structural quantities [28]. Time-domain
identification methods on the other hand are more versatile in enabling the identification of transient
loads. Methods based on least-squares have been studied for a relatively long time [4, 17, 34, 35, 15, 13],
in which satisfactory identification results were obtained. However, simultaneous identification methods
based on iterative least-squares will usually have special requirements such as measurements from all
degrees-of-freedom. This will greatly restrict their application since it is not feasible to have sensors
measuring all the degrees-of-freedom of a structure. To circumvent this limitation, popular approaches
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based on extended-Kalman filter were proposed [8, 19, 20, 26, 6, 16, 31]. The extended-Kalman filter
has proved to be a powerful tool for the identification of structural parameters and dynamic loads and
promising results were obtained, however, the procedure of the extended-Kalman filter requires the
linearization of the nonlinear extended state vector, this may cause stability issues in the identification
of structural parameters. Furthermore, low-frequency drift in the identified dynamic loads and updated
states when the extended-Kalman filter is used was also reported [20]. Another famous approach
is sensitivity-based structural identification [24, 32, 37, 21, 5]. This method which is effective and
convenient to implement, enables satisfactory results to be obtained for simultaneous identification of
dynamic loads and structural parameters. Nevertheless, a downside of the sensitivity-based structural
identification approach is that a good initial estimate must be provided for the structural parameters and
dynamic loads. This is restrictive because in most practical cases there might be a lack of information
about the true values of the structural parameters and dynamic loads and a large range of variation must
be allowed in the initial estimates before starting the identification process. Recently, approaches based
on deep neural networks became more popular for the identification of parametric models and dynamic
loads [18, 39, 36]. The deep learning based methods are powerful and can provide accurate results, but
they require large amount of data to train the network and may result in overfitting of the trained data.
Furthermore, the deep learning models may not be capable of simultaneous identification of dynamic
loads and structural parameters in case of complex transient loads that require a large number of input
parameters to be represented accurately. Other general approaches were also reported in the literature
in order to identify structural parameters and dynamic loads, since there is a vast amount of literature on
the identification of structural parameters and dynamic loads, this paper will only cite some prominent
papers that are concerned mainly with the simultaneous identification of dynamic loads and structural
parameters.

Feng et al.[12] used state-space modelling and Gauss-Newton method to identify bridge structural
parameters and vehicle axle loads, in their study, only partial acceleration measurements were used in
the identification process. Bayesian inference regularization was used to solve the ill-posed least-squares
problem when identifying the axle loads. Sun et al.[30] proposed a two-step simultaneous identifica-
tion approach in time domain to identify structural parameters and dynamic loads. Statistical Bayesian
regularization was used to solve the ill-posed least-squares problem associated with dynamic loads identi-
fication. Zhu et al.[40], proposed a sensitivity based structural damage and dynamic loads identification
using the transmissibility concept. The transformation matrix was established using the state-space
matrix composed of Markov parameters, and the relationship between two sets of acceleration response
measurements was established without the need for dynamic load information. Furthermore, the sensi-
tivity of dynamic response with respect to change in stiffness was derived analytically to identify damage
in the structure. Sun and Betti [29] presented a hybrid heuristic optimization algorithm that combined
the artificial bee colony and local search operator to identify structural parameters and the dynamic
loads. More recently, Wang et al.[33] used a perturbation method to identify structural parameters and
dynamic loads using partial measurements. The impulse response matrix was expanded using pertur-
bation theory and the dynamic load was decomposed via orthogonal expansion. Finally, the orthogonal
coefficients and changes in the parameters were identified by least-squares and Tikhonov regularization
methods. Jayalakshmi and Rao [14] used the dynamic adaptive firefly optimization algorithm and the
explicit form of the Newmark-β method for simultaneous identification of dynamic loads and structural
parameters. A modified Tikhonov regularization method was used to reduce the ill-posedness associ-
ated with dynamic load identification. Zhang et al.[38] proposed novel method to identify structural
damage and dynamic loads simultaneously, the virtual distortion method was adopted to reduce the
computational cost and to compute the impulse response of the damaged structure, the approach was
validated numerically as well as experimentally. Feng et al.[11] proposed a novel method for simultane-
ous identification of stiffness parameters and dynamic loads. A non-contact vison based displacement
sensor was used in their study, this type of sensors is economical and provide accurate estimation of the
displacement on specific points defined by the researcher. Finally, the structural stiffness parameters
and dynamic loads are identified using optimisation techniques. Chen et al.[5] used Bayesian based
approach for simultaneous identification of structural damage and input dynamic load. The dynamic
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load was expended via orthogonal polynomials and and the posterior probability density function of the
orthogonal coefficients and damaged parameters were deduced in time domain using Bayesian theory
combined with Laplace approximation. Pan et al.[25] used a novel approach for simultaneous identifica-
tion of dynamic loads and structural damage, The optimisation problem was divided to several sub-tasks
to reduce the computational complexity and storage. Each sub-task is then solved more easily than the
original problem. Finally, the damage coefficients and impact dynamic loads are obtained via sparse
regularization. To reduce the false positives in damage indices, zhang et al.[37] proposed a probabilistic
method for simultaneous identification of dynamic loads and structural damage. Firstly, the determin-
istic approach is firstly established to identify the structural damage parameters and the orthogonal
coefficients of the dynamic load. Secondly, the probability theory is used to obtain the statistical infor-
mation of the damage parameters and dynamic load. Pourzeynali et al.[27] combined the explicit form
of the Newmark-β and the sensitivity-based structural damage identification with Tikhonov regulariza-
tion to identify simultaneously the structural damage and axle loads, the applicability of the proposed
method was also verified experimentally. To sum up, most of the existing simultaneous identification
methods are computationally challenging or complicated to be implemented or the method may need
special requirements to start the identification process.

The present paper proposes a new method to simultaneously identify structural parameters and
dynamic loads using partial response measurements of acceleration and displacement. Firstly, the ob-
jective function defined as the least-squares difference between the measured responses and the theoret-
ically computed responses is derived. Secondly, the non-linear optimization problem is solved with the
Levenberg-Marquardt algorithm in the state-space. The derivative of the residual function with respect
to structural parameters is derived numerically using a forward-difference scheme, and the derivative of
the residual with respect to the external dynamic loads is established using the system matrix derived
from state-space and composed of Markov parameters, which represents the impulse response of the
system. This paper is organised as follows: Section 2 introduces the state-space formulation as well as
the simultaneous identification of structural parameters and dynamic loads as an optimization problem.
Section 3 presents numerical studies to demonstrate the effectiveness and robustness of the proposed
method. Section 4 provides an experimental validation of the proposed approach. Section 5 provide
concluding remarks to summarize the main outcomes of this study.

2. Simultaneous identification of structural parameters and dynamic loads

2.1. State-Space Formulation

We consider the n-Dof system for which the computational model (obtained by the Finite Element
method or using discrete masses) is represented by the following matrix differential equation

[M ] ẍ(t) + [C] ẋ(t) + [K]x(t) = [L] f(t), (1)

in which the (n× n) matrices [M ], [C], [K] respectively represents the mass, damping and stiffness ma-
trices of the structure, the n-dimension vectors ẍ(t),ẋ(t),x(t) are respectively the acceleration, velocity
and displacement of the structure. f(t) is the nr dimension vector of external dynamic loads where nr is
the number of external dynamic loads acting on the structure. [L] is the (n×nr) input influence matrix
which associates the nr external dynamic loads to the corresponding DoF on the structure. Equation
(1) can be represented in state-space form as follows

ż(t) = [A] z(t) + [B] f(t), (2)

where the state vector z(t) is defined as
[x(t), ẋ(t)]T, (3)

in which the matrices [A] and [B] are defined as:

[A] =

[
[0] [I]

[M−1][K] [M−1][C]

]
, [B] =

[
[0]

[M−1][L]

]
, (4)

3



where [I] is the identity matrix. The output vector y(t) of the ns measured DoFs used in the identification
is defined as

y(t) = [Ra]ẍ(t) + [Rv]ẋ(t) + [Rd]x(t), (5)

where [Ra], [Rv], [Rd] are the output influence matrices of the acceleration, velocity and displacement
respectively. They all have a dimension of (ns ×n). In this paper, a data fusion method of acceleration
and displacement measurements is used in the identification procedure to circumvent the effect of low-
frequency drift on the identified dynamic loads, and therefore the term [Rv] ẋ(t) is not considered.
Equation(5) can be rewritten as the following

y(t) = [Q]z(t) + [D]f(t), (6)

where [Q] and [D] are defined as

[Q] =
[
[Rd] − [Ra][M−1][C],−[Ra][M−1][K]

]
, [D] =

[
[Ra][M−1][L]

]
. (7)

Equations (2) and (6) represents a continuous-time state-space model and can be discretised in the time
domain using the following scheme

zk+1(t) = [Ad]zk(t) + [Bd]fk, (8)

in which ∆t is the time step and where [Ad], [Bd] can be computed using the exponential matrix
algorithm as follows

[Ad] = e[A]∆t, [Bd] = [A]([Ad] − [I])−1[B]. (9)

Similarly, the measurement equation is also discretised as given in the following expression

yk = [Q]zk + [D]fk. (10)

Upon substituting Eq.(8) into Eq.(10), taking the unit impulse of the load at k = 0 and taking the load
to be zero at k ≥ 1, the following equation is obtained

ŷ = [H ]̂f , (11)

in which ŷ is the concatenation of vectors y1, . . . ,ynt and where f̂ is the input vector constructed as
the concatenation of the dynamic loads vector f1, . . . , fnt with nt denoting the number of the total time
increments. In Eq.(11), [H] is the (ns nt × nr nt) system matrix, which is composed of the system
Markov parameters. These parameters represent the response of the discrete linear dynamical system
to a unit impulse and therefore this matrix is unique for each given system. The system matrix can be
computed based on the following expressions

[Ho] = [D], [Hi] =

nt−1∑
i=1

[Q][Ai−1
d ][Bd]. (12)

The block representation of Eq.(11) reads
y1

y2

y3

...
ynt

 =


[Ho][L] [0] . . . . . . [0]
[H1][L] [Ho][L] . . . . . . [0]
[H2][L] [H1][L] [Ho][L] . . . . . .

...
...

...
...

...
[Hnt−1][L] [Hnt−2][L] . . . . . . [Ho][L]




f1
f2
f3
...
fnt

 . (13)

Based on Eq.(13), if the structural parameters are all known, and the dynamic response of the structure
from specified sets of sensors are provided, then the unknown dynamic loads time history f̂ can be
determined by solving Eq.(13) using the pseudo-inverse of matrix [H]. However, this is an ill-posed
inverse problem, particularly when the measured responses are contaminated with noise. The ordinary
least-squares solution may yield unbounded or poor results, necessitating the use of regularization to
stabilize the solution process.
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2.2. Simultaneous Identification algorithm

The proposed approach can generally be used to identify some of the structural parameters and
dynamic loads. In other words, some parameters are assumed to be known and only partial parameters
will be simultaneously identified with dynamic loads. Identifiable parameters include all stiffness- and
damping- related parameters, as will be shown in section 4. However, the mass-related parameters can
not be identified by the proposed approach.

Let θ be the vector of the np system parameters to be estimated. Then Eq.(11) can be rewritten as

ŷ(θ, f̂) = [H(θ)]̂f . (14)

The residual vector is defined as
r(θ, f̂) = ŷmes − ŷ(θ, f̂), (15)

where ymes is the vector of the concatenated measured responses. The objective is to minimize the
residual in Eq.(14) by finding the optimal values of the system parameters and dynamic loads that will
bring the estimated responses as close as possible to the measured structural responses. Vectors θ and
f̂ are the estimated parameters and dynamic loads respectively. The objective function η(θ, f̂) to be
minimised is expressed as the least squares of the residual vector as shown in the following expression

η(θ, f̂) = r(θ, f̂)Tr(θ, f̂). (16)

The optimal values θ opt and f opt for the system parameters and the dynamic loads are then the solutions
of the following optimization problem

(θ opt, f opt) = argmin
θ∈Cθ, f̂∈Cf

η(θ, f̂) , (17)

where Cθ and Cf are the admissible search spaces for the system parameters and the dynamic loads
respectively. Eq.(17) corresponds to a nonlinear optimization problem, and the Levenberg-Marquardet
algorithm is proposed to solve it until a sufficiently small error is reached. The Levenberg-Marquardt
method is an interpolation between the gradient descent method and the Gauss-Newton method. It
is proposed to circumvent the problem of rank deficiency and singularity by introducing the damped
version of the Gauss-Newton method. The algorithm is described by the following iteration scheme

θi+1 = θi + ([Jθ]T[Jθ] + α diag([Jθ]T[Jθ]))−1[Jθ]Tr(θi, f̂i), (18)

f̂i+1 = f̂i + ([Jf ]T[Jf ] + γ diag([Jf ]T[Jf ]))−1[Jf ]Tr(θi, f̂i), (19)

where [Jθ] and [Jf ] are the Jacobian matrices of the residual vector with respect to the structural
parameters and dynamic loads respectively. α and γ are the damping parameters, precise determination
of these parameters is an essential step in the proposed method, more details can be found in section
2.4. Equations (18) and (19) represent the iteration process of the identification algorithm. It is noted
that this is not a 2-step method, and the dynamic loads and structural parameters are both evaluated
based on the previous iteration. Therefore, to start the identification process, an initial estimate of
both the structural parameters and dynamic loads is required. It will be shown that the method is
robust to these initial estimates, indicating the versatility of the proposed method and its applicability
for practical application. The most challenging part of the algorithm is the accurate calculation of the
Jacobian matrix as it will determine the searching direction of the optimisation process.

2.3. Calculation of the derivatives

Using Eq.(15), the derivative of the residual vector with respect to the ith structural parameter is
given as:

∂r

∂θi
= −∂ŷ(θ, f̂)

∂θi
. (20)
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It is possible now to evaluate Eq.(20) based on two approaches. The first approach is to directly
differentiate Eq.(1) with respect to the structural parameter that needs to be identified, leading to
following expression [21]

[M ]
∂ẍ

∂θi
+ [C(θ)]

∂ẋ

∂θi
+ [K(θ)]

∂x

∂θi
= −∂[K(θ)]

∂θi
xe −

∂[C(θ)]

∂θi
ẋe, (21)

where matrices [K(θ)] and [C(θ)] are the estimated stiffness and damping matrices at each iteration.
Vectors [ẋe,xe] are respectively the theoretically computed velocity and displacement vectors from the
FE model. The right-hand side of Eq.(21) may be considered an equivalent forcing function, and the dy-
namic response sensitivity may be computed numerically using the Newmark-β method. Alternatively,
Eq.(20) can be evaluated using forward difference method as

∂r

∂θi
≃ r(θi + δθi, f̂) − r(θi, f̂)

δθi
. (22)

Which is more desirable when using a commercial software package or when the structure is complicated
and a direct differentiation may be expensive to compute at each iteration of the solution process.
Therefore, in this paper the forward difference scheme is used as the main derivative computation
method. Particularly, the residual vector is firstly computed without perturbing the ith structural
parameter, and then the ith structural parameter is allowed to have a small perturbation from its
original value. Then the residual is calculated after the perturbation and Eq.(22) is used to compute
the derivative of the residual with respect to the ith structural parameter. The partial derivative for
each parameter can then be assembled into a matrix form depending on np parameters to be identified
as follows:

∂r

∂θ
=

[
∂r(θ1)
∂θ1

∂r(θ2)
∂θ2

. . .
∂r(θnp )

∂θnp

]
. (23)

Equation (23) can then be directly used in Eq.(18) to estimate the new set of structural parameters.
The derivative of the residual function with respect to the estimated dynamic loads must also be
determined to identify new and improved estimate of dynamic loads. From Eq.(14), it can be seen that
the relationship between the estimated response and the estimated dynamic loads can be established
through a state-space model, where the Markov parameter matrix is composed of the estimated set of
parameters. It is now possible to formulate the Jacobian matrix [Jf ] of the residual. Using Eq.(14) the
partial derivative of the residual with respect to the dynamic loads reads

∂r(θ, f̂ )

∂ f̂
= −∂ỹ(θ, f̂)

∂ f̂
, (24)

which is directly obtained as
∂r(θ, f̂)

∂ f̂
= −[H(θ)]. (25)

2.4. Determination of damping parameters

The Levenberg-Marquardt algorithm provides stable and robust performance and improved conver-
gence by introducing a damping parameter, which is modified in each iteration [23, 10, 22, 7]. It is
recommended to use large values for the damping parameter at the beginning of the solution process to
allow the method to achieve the desired gradient descent characteristics and achieve a rapid reduction
in the residual [23]. As the solution improves, the damping parameter is reduced gradually to adopt the
characteristics of Gauss-Newton method which achieves fast and robust convergence when the values
of the optimization variables are in the vicinity of the true values [23]. In this paper, two damping
parameters must be determined as shown in Eq.(18) and (19), a careful selection of these parameters is
of a critical importance for the identification accuracy and convergence. Several approaches have been
reported in the literature for suitable choice for the damping parameter. Levenberg and Marquardt [23]
proposed the adaptive tracking technique to reduce or increase the damping parameter such that faster
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and stable convergence is achieved. More recently, Fan and Pan [10] proposed a more general approach
to choose an appropriate damping parameter, the general form is given as follows

βi = λ(||ri||) + (1 − λ)(||[Ji]ri||), (26)

where λ ∈ [0, 1], and the Jacobian matrix and the residual vector are updated at each iteration. It
is expected that as the results of the identified structural parameters and dynamic load converge, the
parameters α and γ provided in Eq. (18) and (19) will be smaller but Eq.(26) will guarantee bounded
values of these two damping parameters and prevent them from being too small and cause stability issue
during the identification process. This is very important particularly when the measured responses are
contaminated with random noise, therefore, Eq.(26) is chosen in this paper to determine the two damping
parameters. A detailed study on suitable selection of the damping parameter is provided by Ma and
Jiang [22].

2.5. Data fusion of acceleration and displacement

If only the acceleration measurements are used in the identification process, a low-frequency drift
may be observed on the identified dynamic loads which then deviate from the optimal solution, especially
when the measured responses are contaminated with random noise. Acceleration measurements contain
high-frequency characteristics, whereas displacement measurements are more robust to noise. Using a
combination of the acceleration and the displacement measurements (not necessarily on the same dof)
in the identification, the low-frequency drift that can occur in the identified dynamic loads is reduced
or eliminated. It should be noted that using signal post-processing and data filtering may also lead to
an improved results. The overall procedure of the proposed method is summarised as follows:

1. Conduct the dynamic test on the structure and collect measured responses and estimate the initial
values of the parameters and dynamic loads as θo and f̂o.

2. Build the system matrix [H] in Eq.(11).

3. Calculate the derivative of residual with respect to structural parameters and dynamic loads from
Eq.(22) and Eq.(25) and calculate the two damping parameters from Eq.(26).

4. Update the dynamic load and the structural parameters using Eq.(18) and Eq.(19), and update
the structural matrices.

5. Update the estimated responses and calculate new residual vector and update the Jacobain ma-
trices and the two damping parameters.

6. Repeat steps (2)-(5) until convergence criterion is met.

The stopping criterion for the algorithm is set as follows

||θi+1 − θi||
||θi+1||

+
||f − f̂i||
||f ||

≤ ϵ, (27)

where ϵ is a small constant number that needs to be defined by the user and is problem dependent.
A flow chart of the proposed method is provided in Figure 1. before analysing the performance of

the proposed approach, the following remarks are intended to clarify important points in the proposed
study.

It should be noted that there exist no relationship between the number of measurements points and
the number of parameters to be identified. Generally, more measurements will yield better identifica-
tion results. However, a necessary requirement is that the number of measurements must be greater
than the number of dynamic loads to be identified to ensure the condition of overdetermination when
identifying the dynamic loads. Furthermore, the proposed approach is only applicable to parametric
system identification problems, it can not be used for the identification of non-parametric models.
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Figure 1: Flow chart for the proposed method
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Figure 2: A cantilever beam structural model

3. Numerical validation

To demonstrate and validate the performance of the proposed method, several numerical examples
are analysed in detail to simultaneously identify structural parameters and dynamic loads using partially
measured structural responses. The structural mass matrix is assumed given in these examples and
will not be identified. In engineering applications, it is not difficult, in general, to obtain a good
approximation of the mass properties of a structure. For all the examples, the measured experimental
responses are generated numerically. The impact of the experimental noise is analysed.

3.1. A Cantilever beam under tip load

This section is concerned with the analysis of a cantilever beam depicted in Figure 2. The beam is
numerically modeled using 12 Euler beam elements, with each element having a length of 1 m. There
are a total of 13 nodes, resulting in 36 dof (axial, lateral and rotation at each node) for the beam
model. The left-end of the beam is fixed and a dynamic load f(t) is applied on the right-end. The
Young’s modulus is E = 210 GPa , the cross-sectional area is A = 0.1 × 0.1 m2, the mass density is
ρ = 7800 kg

m3 . A Rayleigh damping model is used in this example, the damping matrix can then be
expressed as [C] = a[M ] + b[K] with a = 0.4035 and b = 0.0032, providing approximately 5% damping
ratio for the first two elastic modes. A harmonic dynamic load is used in this example with multiple
harmonic components. This load is defined as follows

f(t) = 600 sin(12t) − 100 sin(8.5t) + 120 sin(13.4t)

−400 cos(15.5t) + 200 cos(11.345t).
(28)

The time history of the dynamic load is shown in Figure 3.
The Newmark-β method is used for the forward analysis (to get the numerical measured responses),

with a time step of 0.002 second, the response is calculated for a duration of 2 seconds. Four mea-
surements are used in total for the identification process, two acceleration measurements and two dis-
placement measurements, to eliminate the low-frequency drift of the identified dynamic load. The first
acceleration measurement corresponds to the vertical linear acceleration measured at a distance 7 m
from the left-end and the second acceleration measurement corresponds to the vertical linear accelera-
tion measured at a distance 12 m from the left-end, only linear acceleration is used because they can be
obtained more easily than angular acceleration. The two displacements are linear vertical displacements
measured at a distance 4 m and 8 m from the left-end respectively.

Table 1: True values and initial estimates of each bending stiffness

Parameter True value(Nm2) Initial estimate(Nm2)
EI1 2.8 × 106 1.8 × 106

EI2 1.75 × 106 1.225 × 106

EI3 5.25 × 106 3.675 × 106
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Figure 3: Dynamic load time history

The chosen structural parameters that will be identified in this example are the bending stiffnesses.
The damping parameters are all assumed to be known and will not be identified in this application.
The beam is divided into three parts each having a different bending stiffness. Table 1 lists their values,
as well as their initial estimates which were used in the identification process. The time history of the
dynamic load will also be identified simultaneously with the structural parameters. The dynamic load
is assigned an arbitrary constant value of 100 N which is completely different from the dynamic load
given in Eq.(28). To quantify the error in the structural parameters and dynamic load, a percentage
estimation error is defined. For the dynamic load, the percentage error at the iith iteration is defined as

||f − f̂i||
||f ||

× 100. (29)

For each parameter θk, the percentage error at the iith iteration is defined as

|θk − θ̂k,i|
|θk|

× 100 (30)

The identified dynamic load and bending stiffnesses are shown in Figures 4 and 5. The dynamic load is
plotted for different iterations to show its evolution throughout the identification process. The estimation
errors for the structural parameters and dynamic load are shown in Figure 6. The percentage error in
the identified dynamic load at the last iteration is found to be 0.0243% which is very small and may be
neglected. It can be deduced that the algorithm has successfully identified the dynamic load.

Table 2 provides the final values of the identified structural parameters and their final percentage
errors. It is also noted that the final error in the identified structural parameters is also very small,
which indicate a good convergence and applicability of the proposed method to simultaneously identify
structural parameters and dynamic loads.

To validate the accuracy of the identification procedure, the identified structural parameters and
dynamic load are used to recompute the dynamic response of the structure for an unmeasured dof,
and compare it to the response calculated using the reference model. The linear acceleration response
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Table 2: Identified structural parameters and their absolute error.

Parameter Identified value (Nm2) Error(%)
EI1 2.7937 × 106 0.025
EI2 1.7531 × 106 0.02
EI2 5.2557 × 106 0.011

located at 2 m from the left-hand side of the beam is computed using the identified structural parameters
and dynamic load. Figure 7 shows the reconstructed acceleration together with reference response
computed from the reference values of the structural parameters and dynamic load. It can be seen
that the reconstructed response is in a good agreement with the reference response, indicating that the
identified dynamic load and structural parameters can be used to predict the dynamic response of the
structure at locations where no sensors are installed, and they are representative of the true values of
the structural parameters and dynamic load.
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Figure 4: Estimated dynamic load time history at different iterations

3.1.1. Effects of measurement noise

This section will analyse the adverse effects of the measurement noise on the identified structural
parameters and dynamic load. For this purpose, a white noise is added to the measured accelerations
and displacements. The ratio between the standard deviation of the marginal distribution of this white
noise and the mean square of the response over the time interval is denoted by l (in percent). The
effects of l = 1% and l = 5% noise in the measurements are considered and shown in Figures 8, 9, 10
and 11.

It can be observed that the percentage error increases as the noise level increases in the measured
responses. In the case of l = 1% noise, the identified dynamic load can be seen in Figure 8, and the
maximum percentage error over the time interval of analysis is 1.85%, this maximum error increases to
3.86% when the noise level is increased to l = 5% and Figure 10 shows the dynamic load time history for
this case. Figures 9 and 11 show the percentage errors for the structural parameters and dynamic load
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Figure 5: Identified bending stiffnesses

for both cases. The proposed method is capable of a robust simultaneous identification of the structural
parameters and dynamic loads even in presence of random noise in the measured responses.

3.1.2. Effects of initial estimates

The effects of initial estimates on the structural parameters and dynamic load are analysed herein.
First, the structural parameters are assigned different initial estimates in order to verify the applica-
bility and robustness of the proposed method, the bending stiffnesses are assigned initial estimates of
2.5, 2, 1.5, 0.7, 0.5 times their true values, and the dynamic load was assigned an initial estimate of 100 N.
Figure 12 shows the identified bending stiffness EI1 for each simulation case. It is clear that in each
case, a stable convergence towards the reference value is obtained regardless of the starting initial values.
This demonstrates the robustness of the proposed method against initial estimates and its capability to
converge to the true values even when the starting estimates are far from the true values. The effects
of the initial estimates on the dynamic load are also studied. The dynamic load was assigned initial es-
timates of 10, 50, 100, 500, 1000 N which are significantly different from the optimal dynamic load given
in Eq.(28), and the structural parameters are given an initial estimate of 60% of their true values in all
simulation cases to investigate the effects of initial estimates on the identified dynamic load. Figure 13
shows the estimation of the percentage error in the identified dynamic load in each simulation case. It
can be observed that in each case, the dynamic load converges to the optimal solution regardless of the
values of the initial estimates.

In addition to the previous analysis, a total of 50 simulation cases were conducted where random
initial estimates were assigned to the structural parameter and the dynamic load. For each simulation
case, the parameters and the load were assigned a random value between 0.5 and 5 times their true
values.The final value of the percentage error of the structural parameters and dynamic load is estimated
in each simulation case. Figure 14 shows the final percentage error values estimated for each simulation
case. It can be observed that in all cases, the percentage error was bounded and less than 1%, indicating
the robustness of the proposed approach to initial estimate.
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3.2. Truss structure

This section will consider the structure depicted in Figure 15, made up with 21 truss elements and
12 nodes. The total number of dofs is 24. For all the elements, the Young’s modulus is E = 200 GPa
and the cross-sectional area is A = 10−4 m2, the mass density is ρ = 8000 Kg

m3 . The total horizontal
length of the structure is 60 m, and each horizontal member have length of 10 m, and the vertical
height is 10 m. A Rayleigh damping model was adopted in this example, such that the damping
ratio of the first two elastic modes is ζ = 7%. The first four natural frequencies of the structure are
7.59 , 16.42 , 27.35 , 30.47 Hz.

In this example, the dynamic load is applied on node 2 (see figure 15) in the downward direction,
the dynamic load is a sinusoidal load lasting 0.3 seconds and is expressed as

f(t) =

{
500 sin(10t) t ≤ 0.3

0 t > 0.3

}
. (31)

The dynamic load time history is shown in Figure 16. The response is computed using the Newmark-β
method, the reference values of the structural parameters and dynamic load are used to compute the
reference (measured) responses, and the response is calculated for one second. The parameters that will
be identified in this study are the Young’s modulus E, and the damping ratio ζ as well as the time history
of the dynamic load. Before starting the identification process, an initial values of structural parameters
and dynamic load must be provided, table 3 lists the reference values of the structural parameters and
dynamic load as well as their initial estimates which are used in the identification process. The data
used for the identification are the vertical displacements of nodes 3 and 6 and the vertical accelerations
of nodes 2 ,3 and 4. The convergence of the identified structural parameters and the time history of the
dynamic load is shown in figures 17 and 18. The identified dynamic load for several iterations is shown
in Figure 17 to demonstrate the estimation of the dynamic load during the identification process. The
structural parameters are identified with high accuracy and stable convergence, and the final values of
the identified structural parameters and their percentage error estimation are reported in Table 4. The
estimation of the percentage errors in the identified structural parameters and dynamic load can also be
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Figure 7: Reconstructed acceleration response.

Table 3: Optimal values and initial estimate of structural parameters and dynamic load

Parameter Optimal value Initial estimate

E 200 × 109 100 × 109

ζ 0.07 0.035
f(t) - 100

seen in Figure 19, clearly all structural parameters and dynamic load converged to the optimal solution,
and the maximum percentage error in the identified dynamic load is 0.075% which is very small. It can
be concluded that the identified dynamic load and structural parameters are indeed representative of
the true values of the dynamic load and structural parameters.

3.2.1. The effects of multiple excitations

In many practical situations, a structure will be excited by more than a single dynamic load, and the
simultaneous identification of structural parameters and these dynamic loads is therefore an important
task. The same truss structure is considered but it is now excited by two dynamic loads as shown in
Figure 20. Both dynamic loads are acting in the downward direction at node 2 and node 6, the load at
node 2 is a multi harmonic dynamic load, which can be expressed mathematically as follows

f1(t) = −2000 sin(20t) + 3000 sin(25t) − 4000 cos(33t) + 500 cos(35t). (32)

Table 4: Identified structural parameters and their percentage error

Parameter Identified value Error(%)

E 1.9990 × 109 0.086
ζ 0.06999 0.179
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Figure 8: Identified dynamic load time history for noisy case of l = 1%.

The second dynamic load is the same as the dynamic load given in Eq.(31). The damping ratio is
assumed to be known and will not be identified, and the Young’s modulus is chosen to be identified
simultaneously with the two dynamic load time histories, the initial estimate of the structural parameter
is set to 60% of their true value, and both dynamic loads are given an arbitrary initial constant value
of 1000 N, which is completely different from the optimal dynamic loads given by Eq. (32) and (31).
Figures 21 and 22 shows the time history of the estimated dynamic loads for several iterations. It
can be observed from the previous figures that the method is capable of identifying simultaneously the
structural parameters and dynamic loads even when the structure is excited by multiple dynamic loads.
The percentage error in the identified Young’s modulus is very small and it is found to be 0.12% which

is almost equal to the true value provided in table 3; the identified dynamic loads are also very close to
the true dynamic loads and the percentage error estimation of the dynamic loads can be seen in Figure
24. It is clear that at the beginning of the identification process, the identified dynamic loads greatly
differ from the true dynamic loads, and as the number of iterations increases, the identified dynamic
loads gradually converge towards the true dynamic loads. The final values of the percentage error in
both dynamic loads are respectively 0.09% and 0.16%. To conclude, the proposed method is shown to
produce a satisfactory simultaneous identification results, and it was also tested for more general cases
where the structural system is excited by multiple dynamic loads, and it was capable to achieve a good
results as demonstrated by the previous analysis.

3.2.2. Effects of the number of measurements

The effects of the number of measurements on the rate of convergence are analysed in this section.
The same structure (depicted in Figure 20) with two dynamic loads is considered. Five different cases
for the numbers and locations of the measurements are considered and listed in Table 5. In this table
the measured dofs are listed sequentially. Therefore odd numbers indicates the horizontal direction and
even numbers indicates the vertical direction. The convergence of the identified Young’s modulus in
each case is shown in Figure 25. It is clear that for the first 3 cases, the identified Young’s modulus
is not close to the true value; however, as the number of measurements increases, the identified value
converges to the true value, and it can also be observed that in the last two cases, the same solution
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Table 5: Measurement points in each simulation case

Case No. Acceleration dof Displacement dof

1 6, 14 1
2 4, 6, 14 1, 6
3 2, 4, 8, 6, 14 1, 8
4 2, 4, 8, 6, 14, 15, 17 1, 8
5 2, 4, 8, 6, 10, 12, 14, 16, 1, 9, 19

is obtained even if more sensors(measurements) are used in the identification process. Therefore, it
is important to select an appropriate number of measurements to guarantee an optimal solution and
reduce the computational cost associated with installing more sensors. In this example, it is found that
using 8 measurements will lead to the optimal solution without reducing the computational accuracy
of the identification process. Furthermore, adding more measurements does not significantly improve
the solution. In general, using more sensors (measurements) in the identification procedure will yield
more satisfactory results. Nevertheless, it not always possible to install more sensors on the structural
system due to practical and financial limitations. The impact of the location (and not the number) of
measurements will be considered in further research in order to provide a guidance on where to place
them.

4. Experimental validation

In this section the proposed approach is validated using 3-storey structure equipped with accelerom-
eters. The structure is depicted in Figure 26. The real structure is made up from 4 aluminium blocks,
all blocks have length of 0.2 m, width of 0.15 m and the the thickness of all blocks is 0.02 m. The
lowest block is clamped to the ground. The remaining blocks are equipped with accelerometers, the
top block is excited with a hammer along x -direction. The test rig and the experimental data used in
this section were presented in [2] in a previous research. The true impact dynamic load time history is
shown in Figure 27. The structure was modelled numerically using 3-dof mass-spring-damper system
depicted in Fig. 28, the axial and torsional deformation of the structure was assumed negligible during
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Figure 10: Identified dynamic load time history for noisy case of l = 5%

the modelling process. The masses of the plates are m1 = 1.47 kg, m2 = 1.52 kg and m3 = 1.54
kg. The masses are assumed known and will not be identified in this experimental investigation. A
viscous damping model was adopted, the damping and stiffness parameters are respectively c1=1.1946
Ns/m, c2=1.14338 Ns/m, c3=0.6189 Ns/m, k1 = k31.41 × 104 N/m and k2=1.3 × 104 N/m. In [2],
in which another model updating was presented, the stiffnesses and modal damping ratios were used
as updating parameters. The acceleration response and the dynamic load time history were recorded
simultaneously using accelerometers and force gauge in the hammer, the displacement and the velocity
were then computed via numerical integration. To mitigate the effect of measurement noise in the
measured acceleration signals, a high pass filter was used with cut-off frequency of 2 Hz. The sampling
frequency is 256 Hz, and the excitation was applied on the third floor along x -direction. The measured
acceleration and the integrated displacements are depicted in the figures 29 and 30.

4.1. Identification results

The proposed approach was used to identify simultaneously the structural parameters and dynamic
load, the acceleration of the 3rd mass and the integrated displacement of the 1st mass were used in the
identification. A different validation strategy will be used compared to the previous numerical examples.
Since there are no reference values for the structural parameters, the most appropriate way to validate
the identified structural parameters and dynamic load is to use them to reconstruct the acceleration
response and compare it with the measured acceleration response. Nevertheless, for the stiffnesses, table
6 provides a comparison between the identified structural parameters and the updated parameters from
[2]. The stiffness parameters agrees quite well with the updated parameters found in [2]. Figures 31
and 32, show the convergence of the identified stiffnesses and damping parameters of the second and
third masses. The identified dynamic load is depicted in the Figure 33. It can be observed that the
identified dynamic load is very close to the measured dynamic load as indicated by the peak value. It
should also be noted that the initial estimate given to the dynamic load was 1 N for all time history to
start the identification process, which is significantly different from the real measured excitation. The
maximum percentage error in the identified dynamic load was found to be 8.33% which is completely
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Table 6: Comparison between the identified parameters and the reference values in [2].

Parameter Value in [2] Identified value error(%)

k1 (N/m) 14100 13933 1.1844
k2 (N/m) 13100 13101 0.8
k3 (N/m) 14100 14021 0.8

acceptable for engineering application. Furthermore, to illustrate the effect of the low frequency drift on
the identified dynamic load and the necessity to use data fusion method, the identification procedure has
been done using only acceleration measurements. Figure 34 shows the corresponding identified loadIt
can be clearly observed that the identified load using acceleration measurements only will lead to a drift
in the identified dynamic load. The data fusion method of acceleration and displacement is therefore
more robust to this drift caused by the high frequency component in the acceleration measurements.
To validate the identification precedure, the acceleration signals were reconstructed using the identified
parameters and loads, and compared with the measured acceleration signals provided in 29. It can be
observed that the reconstructed signals using the identified parameters and loads agree well with the
measured acceleration signals with small discrepancy between the two models which is expected and
acceptable. Therefore, it can be concluded that the identified parameters and dynamic load can indeed
be used to represent the real structure as indicated by the reconstructed acceleration signals. Hence,
the proposed approach can simultaneously identify the dynamic loads and structural parameters. It
should noted that the numerical model used here (discrete model) is not a perfect representation of
the real system, yielding modelling error. An accurate FE model would certainly improve the results.
Furthermore, displacement transducers may also be used along with accelerometers to directly obtain the
displacement measurements, this will avoid the accumulation of errors due to the numerical integration
of the acceleration and velocity signals.
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Figure 15: FE model of truss structure

5. Conclusions

In summary, a novel algorithm is proposed in this paper to simultaneously identify structural pa-
rameters and dynamic loads from a limited set of measured structural responses. The method is based
on the use of the Levenberg-Marquardt method to update, at each iteration, sequentially the structural
parameters and dynamic loads. Data fusion of acceleration and displacement responses is used to reduce
the effect of low-frequency drift on the identified dynamic load. Several numerical examples are used to
demonstrate the effectiveness and robustness of the proposed method. In particular, the effect of the
measurement noise, the initial values and the number of measurements on the accuracy and convergence
of the proposed method is analysed. Good results are obtained even when the structure is excited by
multiple dynamic loads. Finally, the proposed approach was validated experimentally using 3-storey
structure, in which the dynamic load and the structural parameters were identified simultaneously.

Concerning the shortcomings of the proposed approach, the proposed approach as presented in this
paper can only be used for linear structures. The extension to non-linear structures requires a different
formulation that will be investigated in future works. The proposed approach is optimal when using both
measurements of acceleration and displacement which may not always be experimentally feasible, and
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Figure 16: Dynamic load time history

the integration of the acceleration signals to obtain the displacement measurements is not recommended.
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Figure 24: Error evaluation of the dynamic loads
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Figure 26: 3-Storey structure
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Figure 27: Impact load time history

Figure 28: Numerical model
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Figure 29: Acceleration measurement on the third mass
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Figure 30: Displacement measurements of the third mass
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Figure 34: Identified loads using accelerations only
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Figure 35: Comparison between the measured and the reconstructed acceleration
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