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Abstract: Monitoring the wind-induced lateral displacement (WLD) of the bridge deck is crucial for 11 

structural health monitoring (SHM) of suspension bridges. An accurate WLD prediction model can aid the 12 

bridge SHM systems in abnormal data detection and reconstruction, structural response estimation under 13 

specific wind events, and structural condition assessment. However, WLD prediction faces challenges due 14 

to stochastic wind action and complex aerodynamic effects acting on the bridge deck. To address this, a deep 15 

learning-based framework was proposed for predicting the WLD response of the suspension bridge deck. 16 

This framework decomposed the WLD response into two components, namely the quasi-static and the 17 

dynamic one. Two separate deep-learning tasks were employed to predict these components using the lateral 18 

wind speed as input. In Task 1, a recurrent neural network (RNN) based on the gated recurrent unit (GRU) 19 

was built, whereas a fully convolutional neural network (CNN) based on U-Net was built in Task 2. Novel 20 

loss functions tailored to each task were established to facilitate accurate predictions. Measured data from 21 

the SHM system of the Jiangyin Yangtze River Bridge, China, was used as a case study to verify the proposed 22 

predictive framework’s feasibility and high accuracy. The extreme value-weighted loss function in Task 1 23 

enhanced the prediction accuracy for the extreme quasi-static WLD, while the time-frequency cross-domain 24 

loss functions in Task 2 effectively integrated the prediction accuracies in both time and frequency domains 25 

for the dynamic component of WLD. However, trade-offs were identified between the prediction errors of 26 

extreme and non-extreme values, as well as between the time- and frequency-domain prediction accuracies. 27 

Keywords: Suspension bridge deck; Wind-induced lateral displacement; Structural health monitoring; Deep 28 

learning; Extreme values; U-Net.  29 
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Nomenclature 30 

Abbreviations 

CDF Cumulative distribution function 

CNN Convolutional neural network 

GRU Gated recurrent unit network 

HPO Hyperparameter optimization 

LSD Log-spectral distance 

LSDNorm Min-max normalized LSD with range [0, 1] 

MAE Mean absolute error 

MSE Mean squared error 

PDF Probability density function 

PSD Power spectral density 

RMSE Root mean square error 

RMSENorm Min-max normalized RMSE with range [0, 1] 

RNN Recurrent neural network 

SF Sampling frequency 

SHM Structural health monitoring 

STFT Short-time Fourier transform 

WLD Wind-induced lateral displacement 

Symbols 

a Maximum weight factor in 
W-MSE

 

( ( ) )F ny  CDF of the absolute value of measured quasi-static WLD 

MSE  MSE loss function in Task 1 

W-MSE  Extreme value-weighted MSE loss function in Task 1 

T

MAE  Time-domain MAE loss function in Task 2 

F

Mag
 Frequency-domain spectral magnitude MAE loss function in Task 2 

TF

MAE-Mag
 Time-frequency cross-domain loss function in Task 2 (combination of T

MAE  and F

Mag
) 

Re  MAE loss function of Re( , )u vY  in Task 2 

Im  MAE loss function of Im( , )u vY  in Task 2 

TF

RI-Mag
 Time-frequency cross-domain loss function in Task 2 (combination of F

Mag
, Re , and Im ) 

w(n) Extreme value weight factor in W-MSE  

y(n) Measured time-domain quasi-static or dynamic component of WLD 

( , )u vY  STFT result of WLD’s dynamic component y(n) 

Re( , )u vY  Real part of ( , )u vY  

Im( , )u vY  Imaginary part of ( , )u vY  

Mag ( , )u vY  Time-dependent magnitude spectrum of WLD’s dynamic component y(n) obtained via STFT 

α Time-frequency combination factor in TF

MAE-Mag
 

β Time-frequency combination factor in TF

RI-Mag
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1. Introduction 31 

The suspension bridge’s deck in service undergoes frequent lateral reciprocating motions under external 32 

excitation (Fenerci and Øiseth, 2018; Fenerci et al., 2023). Several studies have shown that the lateral 33 

displacement response of the bridge deck is mainly determined by wind action (Wang et al., 2021a, 2021b; 34 

Zhang et al., 2024). Due to its significant flexibility, the suspension bridge has a greater wind-induced lateral 35 

displacement (WLD) response. For instance, numerical analyses indicated that the maximum WLD response 36 

of the deck of the Golden Gate Bridge (suspension bridge) could reach up to 1.7 m (Vincent, 1958), while 37 

that of the Sutong Bridge (cable-stayed bridge) was 1.2 m under extreme wind conditions (Xu et al., 2013). 38 

Clearly, the excessive WLD of the deck impairs driving comfort and safety or may even threaten structural 39 

safety (Yang et al., 2022; Zhu et al., 2021). Moreover, the prolonged lateral swing of the bridge hangers 40 

driven by the deck’s dynamic WLD can further cause fatigue damage to the hanger anchors (Liu et al., 2017). 41 

The short hangers of the Egongyan Rail-transit Suspension Bridge were broken after two years of operation 42 

due to the lateral fatigue failure of the rigid hanger anchor. Therefore, the WLD response monitoring of the 43 

deck is a non-negligible part of the suspension bridge’s SHM. Besides detecting and reconstructing abnormal 44 

or missing WLD monitoring data and estimating the WLD response highly efficiently under specific wind 45 

conditions without using finite element analysis (Castellon et al., 2021), an accurate data-driven WLD 46 

response prediction model can assist the bridge SHM system in many aspects. Indicatively, it can be used to 47 

predict the fatigue life of bridge hangers through rapid fatigue simulation analysis, to assess the change in 48 

structural stiffness by tracking the extent to which the measured WLD response deviates from the model 49 

predictions, as well as to provide guidance for bridge operation and maintenance. 50 

There are three primary methods for the WLD response prediction of the bridge decks. The first one is 51 

the analytical approach, which features clear physical interpretability. Based on the deflection theory of 52 

suspension bridges, Cheng and Xiao (2006) used the equivalently simplified beam method to estimate the 53 

deck’s WLD response induced by static wind action. Further, Zhang et al. (2022) proposed an analytical 54 

method to derive the deck’s static WLD response by solving the suspension bridge’s analytical governing 55 

equations established based on geometric compatibility, unstrained length conservation, and force balance. 56 

However, the current analytical approaches can only solve the static WLD response under a static wind load. 57 

Moreover, the results usually diverge from the real values since the analytical methods involve making many 58 

necessary modeling assumptions. The second method for WLD response prediction is the finite element 59 

theory-based numerical simulation method. This approach converts the wind speed time history into 60 
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buffeting force time history, with the latter being the bridge finite element model input for time-domain 61 

buffeting analysis (Minh et al., 1999; Tang et al., 2023; Yuan et al., 2023). In this context, the dynamic WLD 62 

response of the bridge deck can be solved. However, the numerical approach often relies on precise finite 63 

element modeling and accurate structural aerodynamic parameters, and wind tunnel tests are usually required 64 

to obtain the latter. For large-scale suspension bridges, it is rather challenging to update accurately on a real-65 

time scale the time-varying material properties and boundary constraints, in addition to the inevitable 66 

modeling errors; let alone that finite element calculation is also a time-consuming process. Finally, the third 67 

method for WLD response prediction is the data-driven method, which builds the predictive model for the 68 

WLD response of the bridge deck from a large amount of measured data. The data-driven method is expected 69 

to overcome the above limitations of analytical and numerical methods. 70 

With the popularity of bridge SHM systems, some conventional data-driven methods have found 71 

increasing applications in WLD response modeling. For example, Wang et al. (2021b) established two 72 

Bayesian predictive models for the deck’s WLD response of the Tsing Ma Bridge (suspension bridge) using 73 

Global Positioning System (GPS) data and wind data from the SHM system. Unfortunately, the proposed 74 

models mainly focused on the quasi-static component of the WLD, while the dynamic component was 75 

simplified through a statistical peak factor. Besides this, the literature on conventional data-driven methods 76 

was mostly concerned with WLD prediction for cable-stayed bridges. For example, Wang et al. (2021a) 77 

established a regression model between the lateral wind speed and the corrected WLD response of the bridge 78 

deck for the Anqing Yangtze River Bridge (cable-stayed bridge). However, this predictive model was only a 79 

linear model with limited accuracy. Considering the Sutong Bridge (cable-stayed bridge) as an example, 80 

Wang and Ding (2014) established the correlation model between the WLD’s quasi-static component and 81 

static wind action by combining the Fourier series and ARMA models. Meanwhile, the WLD’s dynamic 82 

component was simulated based on the fitted power spectrum under the assumption that a stable power 83 

spectrum exists in the time series of the dynamic WLD. However, the fitted power spectra are inadequate 84 

for the accurate prediction of the dynamic WLD of the bridge deck under different wind conditions in the 85 

future. 86 

Deep learning-based data-driven methods have been proven to have the ability to mine and learn the 87 

complex nonlinear correlation between related variables (Wang et al., 2023). Recurrent neural networks 88 

(RNNs) and convolutional neural networks (CNNs) are two classical deep learning models. Typical RNNs 89 

excel in capturing the long-term temporal dependencies in time series data and have been widely applied to 90 
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time series regression and prediction for SHM (Xu et al., 2023a; Deng et al., 2022; Wang et al., 2022a). 91 

Further, CNNs are more suitable for extracting deep, hidden features from data and have been widely used 92 

in structural response prediction (Lei et al., 2022), SHM signal reconstruction (Oh and Kim, 2021; Tang et 93 

al., 2021; Wang et al., 2022b), and computer vision-based damage detection (Jiang et al., 2022; Rahman et 94 

al., 2021). Besides, there has been a recent exploration into physics-informed neural networks aimed at 95 

improving generalization and interpretability, wherein physical knowledge is integrated either by combining 96 

physics losses with data losses during training or by directly encoding physical principles into the network 97 

architecture (Cuomo et al., 2022; Faroughi et al., 2024). Related studies involve structural seismic response 98 

prediction with a physics-informed RNN (Zhang et al., 2020), bridge’s traffic-induced response prediction 99 

using a physics-informed CNN (Ni et al., 2022), and wind turbine vibration modeling utilizing physics-100 

informed residual RNN or wavelet CNN (Li and Zhang, 2022; Xu et al., 2023b). 101 

Nevertheless, existing deep learning-based studies are mostly focused on modeling the vertical 102 

displacement of the bridge deck, and few of them are concerned with lateral displacement modeling. 103 

Indicatively, an RNN-based correlation model between the vertical displacement of the bridge deck, vehicle 104 

load, and temperature of the Nanxi Bridge (suspension bridge) was proposed in the work of Deng et al. (2022) 105 

by leveraging the concept of the influence line; the vertical displacement-temperature mapping model for 106 

the bridge deck of the Egongyan Rail-transit Bridge (suspension bridge) was built in the work of Wang et al. 107 

(2022a) using an RNN; and the acceleration and strain data were used as inputs in the work of Ni et al. (2022) 108 

and a physics-informed CNN was applied to build the prediction model for vehicle-induced vertical 109 

displacement of the bridge. However, considering that there are significant differences between the vertical 110 

displacement and WLD of the bridge deck in data features, excitation source, and load-response correlation 111 

mechanism, the above deep learning models for estimating the vertical displacement response are no longer 112 

suitable for modeling the WLD response. To the best of the authors’ knowledge, only Lei et al. (2022) studied 113 

the application of CNN for predicting the WLD of the bridge deck of the Anqing Yangtze River Bridge 114 

(cable-stayed bridge). However, their model was only concerned with predicting the quasi-static component 115 

of the WLD response, while neglecting the dynamic component. 116 

The purpose of the present study is to build a predictive model for the WLD response of the suspension 117 

bridge deck using SHM data. The methods described in the literature are rather inadequate in this case for 118 

the following reasons. First, both the analytical and numerical approaches have their intrinsic limitations, as 119 

demonstrated above. Then, it is noted that the conventional data-driven methods have limited accuracy in 120 
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predicting the dynamic component of the WLD response of the bridge deck and focus mostly on cable-stayed 121 

bridges. Finally, there is currently a lack of studies on WLD response prediction of the suspension bridge 122 

deck based on deep learning. The existing deep-learning models for predicting the bridge deck’s vertical 123 

displacement are inadequate for lateral displacement. 124 

To overcome the above limitations, we proposed a predictive framework for the WLD response of the 125 

suspension bridge deck based on deep learning. This model decomposed the WLD response into a quasi-126 

static component and a corresponding dynamic component. Using lateral wind speeds as inputs, the herein 127 

proposed RNN model and the CNN model efficiently predicted the two components. The contributions of 128 

the present study can be summarized as follows: 129 

(1) To the best of the authors’ knowledge, this is the first application of a deep learning-based 130 

framework to predict the WLD response of the suspension bridge deck for SHM. 131 

(2) An extreme value-weighted loss function was proposed when building the RNN-based predictive 132 

model for the quasi-static component of the WLD. Its main feature pertains to that increasing the 133 

weights of extreme events could potentially increase the prediction accuracy for extreme values of 134 

the quasi-static WLD. Four probability distribution-based extreme value weighting schemes were 135 

proposed and compared. 136 

(3) Two time-frequency cross-domain loss functions were constructed when building the CNN-based 137 

predictive model for the WLD’s dynamic component. The prediction accuracy was increased by 138 

considering both the time- and frequency-domain prediction errors of the dynamic component. An 139 

integrated normalized error metric was proposed to compare the comprehensive predictive 140 

performance in both time and frequency domains between different loss functions. 141 

(4) A model accuracy evaluation method was proposed from the perspective of fatigue analysis for 142 

bridge hangers undergoing lateral swing, i.e., comparing the ‘swing amplitude-cycle count’ 143 

histograms of the bridge deck (obtained using the rain flow counting method) corresponding to the 144 

predicted and measured WLD time histories. 145 

2. Methodology 146 

2.1 General framework 147 

The proposed framework for the WLD response prediction of the deck of the suspension bridge based 148 

on deep learning is shown in Fig. 1. According to the bridge wind-induced vibration (buffeting) analysis 149 
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theory (Tao et al., 2020), the quasi-static component of the WLD response of the bridge deck is correlated 150 

to the time-varying mean wind speed (i.e., aerostatic wind action) in the lateral direction of the bridge. 151 

Further, the dynamic component of the WLD response is correlated to both the time-varying mean wind 152 

speed and the fluctuating wind speed in the lateral direction. In this study, the WLD response of the bridge 153 

deck was decomposed into quasi-static and dynamic components, which were predicted by two deep-154 

learning tasks. The deep learning model was chosen depending on the task attributes and model features. 155 

...

GRU model

U-Net model

Encoder Decoder

+

Wind speed

Quasi-static 
component of WLD

Time-varying 
mean wind speed

Dynamic 
component of WLD

Wind-induced lateral 
displacement (WLD)

 156 
Fig. 1. The proposed deep learning-based framework. 157 

Task 1: The lateral time-varying 10-min mean wind speed was used as the model input, and then the 158 

quasi-static component of the WLD response of the bridge deck was predicted. Considering the long-term 159 

dependencies between the timesteps and the relatively simple correlation structure between the input and 160 

output, an RNN model based on the gated recurrent unit (GRU) network was built, which has the advantages 161 

of temporal memory capacity and faster learning. 162 

Task 2: The actual lateral wind speed (consisting of the time-varying mean wind speed and the 163 

fluctuating wind speed) was used as the model input, and then the dynamic component of the WLD response 164 

of the bridge deck was predicted. This task had a much more complex correlation structure between the input 165 

and output data. Therefore, a CNN model based on the U-Net was built for mining deep-level data features 166 

and establishing complex, nonlinear mapping. 167 

2.2 Task 1: Predicting WLD’s quasi-static component using a GRU model 168 

2.2.1 Introduction to the GRU network 169 

GRU is a type of RNN and a simplified version of the long short-term memory (LSTM) network 170 

(another typical type of RNN), which performs similarly to LSTM but has a faster computational speed 171 

(Chung et al., 2014). As shown in Fig. 2(a), the conventional RNN is designed to store information from 172 

previous time steps through a unique design called the ‘hidden state’. This temporal memory capability 173 

makes it adept at handling time series prediction problems. On this basis, as shown in Fig. 2(b), the GRU 174 
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network uses two learnable ‘gates’, namely, the reset gate and the update gate, to implement the gating of 175 

the hidden state. The concept of the gated hidden state introduces a learnable mechanism into the GRU 176 

network to autonomously decide if the hidden state is to be updated or reset. Such a design mitigates the 177 

vanishing or exploding gradient problem that may occur during error backpropagation in the conventional 178 

RNN model. In addition, the gating mechanism increases the model’s capacity to capture the dependencies 179 

between sequence elements at larger time distances (Jiang et al., 2021). 180 

+ Gating of the hidden state

Ht-1 HtHt-2 Ht+1

Input

Hidden 

state:
σ

Xt+1Xt

σ

Next layer

σ

Xt-1

Ht-1

...

Ht Ht+1

...

+

1 –

Ht-1 Ht

Xt

tanhσσ

Reset

gate：Rt

Update 

gate：Ut

Candidate 

hidden state： tH

Conventional 

RNN

GRU network

σ

Legend:

Fully connected layer with 

Sigmoid activation function

Hadamard product operator

tanh
Fully connected layer with 

tanh activation function

(a)

(b)

1 –

+ Addition operator

An operator that subtracts 

the input with 1

 181 

Fig. 2. Comparison of the internal structures of (a) the conventional RNN and (b) the GRU network. 182 

Specifically, consider a mini-batch of the input 
B d l X  of the GRU model, where B is the mini-183 

batch size, d is the number of input features, and l is the sequence length. Let the input at time step t (1 t l  ) 184 

be B d

t

X , and the hidden state transmitted from the previous time step be 
1

B h

t



− H , with h denoting 185 

the number of hidden neurons. Then, the reset gate B h

t

R  and the update gate B h

t

U  execute the 186 

following calculations: 187 

 
xr 1 hr r( )t t t−= + +R X W H W b  (1) 188 

 
xu 1 hu u( )t t t−= + +U X W H W b  (2) 189 

where 
xr

d hW  and 
hr

h hW  are the weight parameters of Xt and Ht-1 in the reset gate, respectively; 190 

xu

d hW  and 
hu

h hW  are the weight parameters of Xt and Ht-1 in the update gate, respectively; 191 

r

B hb  and 
u

B hb  are the offset parameters in the reset gate and the update gate, respectively; and 192 

 is the sigmoid activation function that maps Rt and Ut to the interval (0, 1). 193 
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The reset gate Rt decides to what extent the hidden state Ht-1 transmitted from the previous to the current 194 

time step will be retained. A value of Rt closer to 1 indicates that the previous hidden state tends to be retained, 195 

while a value closer to 0 indicates that the previous hidden state tends to be reset. The candidate hidden state 196 

B h

t

H  at time step t is obtained using Rt and is calculated as follows: 197 

 
xh 1 hh htanh( ( ) )t t t t−= + +H X W R H W b  (3) 198 

where  is the Hadamard product (i.e., element-wise multiplication); 
xh

d hW  and 
hh

h hW  are 199 

weight parameters of the candidate hidden state; 
h

B hb  is the offset parameter; and the tanh activation 200 

function is used to map the data to the interval (–1, 1). Notably, the above weight and offset parameters are 201 

shared across different time steps. 202 

The update gate Ut determines the amount of the past information (from previous time steps) that is 203 

passed from the previous hidden state Ht-1 and the candidate hidden state 
tH  to the new hidden state Ht. 204 

The final hidden state Ht output at time step t is given by: 205 

 
1 (1 )t t t t t−= + −H U H U H  (4) 206 

A value of Ut closer to 1 indicates that the hidden state is not updated, and the previous one, Ht-1, is retained, 207 

whereas a value close to 0 indicates that the hidden state is completely updated to 
tH . 208 

2.2.2 Architecture of the GRU-based prediction model 209 

The nonlinear mapping relationship between the time-varying mean wind speed and the quasi-static 210 

component of the WLD is established in Task 1, where the number of input features and the number of output 211 

responses are both equal to one. Fig. 3 shows the model architecture constructed in Task 1. 212 

Input
GRU

layer

Dropout

layer

Fully

connected

 layer

Output

× m
 213 

Fig. 3. Architecture of the GRU model in Task 1. 214 

A number of m GRU layers with the same number (h) of hidden neurons are located at the model’s core. 215 

m and h are model hyperparameters, and hyperparameter optimization (HPO) is required to obtain the 216 

optimal model. The final layer corresponds to the fully connected layer, which reduces the number of feature 217 

channels of the GRU layer’s output from h to 1. A dropout layer follows each GRU layer, where the 218 
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proportion of dropout is p. Dropout is a regularization method for mitigating overfitting in the neural network. 219 

During the model training process, the dropout operation randomly zeros some of the outputs from the 220 

previous layer with probability p. This operation reduces complex coadaptations between the neurons, 221 

enhancing the model’s generalization ability. However, the dropout operation is not applied during the model 222 

inference to ensure the stability of the model outputs. 223 

2.3 Task 2: Predicting WLD’s dynamic component using a U-Net model 224 

2.3.1 Architecture of the U-Net model 225 

U-Net is a type of CNN, whose basic architecture was first proposed by Ronneberger et al. (2015). It is 226 

a fully convolutional network based on an autoencoder, which features a U-shaped architecture consisting 227 

of a contracting path (encoder) and an expanding path (decoder). The input feature and the output response 228 

in Task 2 are one-dimensional (1D) time sequences. The architecture of the U-Net model built in this study 229 

is shown in Fig. 4. 230 

... ...

Encoder (Contracting path) Decoder (Expanding path)
Input 
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Output

sequence
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8

6
4

3
2

Skip connection

 231 
Fig. 4. Architecture of the U-Net model in Task 2; an illustrative example where the input length is 4096. The cuboids represent 232 

the feature maps. The numbers at the upper left corner of the cuboid represent the feature length, and the numbers at the bottom 233 

denote the number of feature channels. The dimension of the mini-batch size is not shown. 234 

Specifically, the input length of the U-Net model is 2n (n ≥ 9) and the configuration of each layer is 235 

shown in Table 1. The contracting path in the encoder consists of nine 1D convolution layers, which are used 236 

to extract deeply hidden features known as feature maps. The length of the feature map output by each layer 237 

gradually decreases down the contracting path (i.e., downsampling), while the number of feature channels 238 

increases until reaching the bottleneck. The expanding path in the decoder consists of eight 1D subpixel 239 
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convolution layers and one output layer, which are used for upsampling the feature maps and reducing the 240 

feature channels. In this way, the output will have the same size as the input. In the decoder, the output of 241 

each subpixel convolution layer is additionally cascaded on the channel dimension to feature maps of the 242 

same size at the mirror position in the encoder, before being input to the next layer. This operation is called 243 

skip connection, which can recover some important information lost during the encoding process. Through 244 

skip connections, the model training error can skip some middle network layers and be directly 245 

backpropagated to layers in the encoder. This mechanism can help mitigate the vanishing gradient problem, 246 

which is common with deep networks. In addition, the dropout operation is implemented once every three 247 

layers in the U-Net. The parametric rectified linear unit (PReLU) is used as the activation function. 248 

Table 1. Parameter configuration of the U-Net model (taking the input length 4096 and kernel size 11 as an example). 249 

No. Layer Input shape 

Lin × Cin 

Output shape 

Lout × Cout 

Kernel size 

Lk (× Cin) 

Kernel 

number 

Activation 

1 Conv 4096 × 1 4096 × 64 11 (× 1) 64 PReLU 

2 Conv 4096 × 64 2048 × 64 11 (× 64) 64 PReLU 

3 Conv 2048 × 64 1024 × 64 11 (× 64) 64 PReLU 

4 Conv 1024 × 64 512 × 128 11 (× 64) 128 PReLU 

5 Conv 512 × 128 256 × 128 11 (× 128) 128 PReLU 

6 Conv 256 × 128 128 × 128 11 (× 128) 128 PReLU 

7 Conv 128 × 128 64 × 256 11 (× 128) 256 PReLU 

8 Conv 64 × 256 32 × 256 11 (× 256) 256 PReLU 

9 Conv 32 × 256 16 × 256 11 (× 256) 256 PReLU 

10 Subp Conv 16 × 256 32 × (256 + 256) 11 (× 256) 256 × 2 PReLU 

11 Subp Conv 32 × 512 64 × (256 + 256) 11 (× 512) 256 × 2 PReLU 

12 Subp Conv 64 × 512 128 × (128 + 128) 11 (× 512) 128 × 2 PReLU 

13 Subp Conv 128 × 256 256 × (128 + 128) 11 (× 256) 128 × 2 PReLU 

14 Subp Conv 256 × 256 512 × (128 + 128) 11 (× 256) 128 × 2 PReLU 

15 Subp Conv 512 × 256 1024 × (64 + 64) 11 (× 256) 64 × 2 PReLU 

16 Subp Conv 1024 × 128 2048 × (64 + 64) 11 (× 128) 64 × 2 PReLU 

17 Subp Conv 2048 × 128 4096 × (64 + 64) 11 (× 128) 64 × 2 PReLU 

18 Conv (output) 4096 × 128 4096 × 1 11 (× 128) 1 — 

Note: ‘Conv’ denotes the 1D convolution layer, whereas ‘Subp Conv’ denotes the 1D subpixel convolution layer; Lin and Lout 250 
are the lengths of the input and output features, respectively; Cin and Cout correspond to the channel numbers of the input and 251 
output features, respectively; and Lk is the length of the kernel. The mini-batch dimensions are omitted for brevity. 252 

2.3.2 1D convolution and 1D subpixel convolution 253 

An intuitive illustration of 1D convolution and 1D subpixel convolution is shown in Fig. 5. In the 254 

context of CNN, convolution denotes the operation where the convolution kernel k slides over the input 255 

sequence x (with length Lin and channel number Cin) for the dot product operation. The sliding size of the 256 
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kernel at each stride is represented by s. The length of the kernel Lk determines its receptive field size, while 257 

the number of channels of the kernel is automatically aligned with those of x. The convolution output per 258 

stride is the sum of convolution results in all channels. To obtain an output sequence of target length, zero-259 

padding at the two ends of the input is needed, with padding length Lp = (Lk − 1)/2, where Lk is an odd 260 

number. The feature sequence y extracted by each convolution kernel is given by: 261 

 
in k1 1

out

0 0

( ) ( ) ( ) , 0,1, 2, ..., 1
C L

c c

c i

n s n i i b n L
− −

= =

=  + + = − y x k  (5) 262 

where b is the offset term; xc and kc are the c-th channels of x and k, respectively; and Lout is the length of 263 

the convolution output y. 264 
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 265 

Fig. 5. Schematic diagram of (a) 1D convolution and (b) 1D subpixel convolution. The dimension of the mini-batch size is not 266 

shown herein. 267 

In the encoder, the stride size of the convolution kernel is s = 2 for each convolution layer, so that Lout 268 

= Lin/2. This ensures a layer-by-layer halving of the feature-length. The number of kernels for each 269 

convolution layer is consistent with the target channel number Cout of the output feature map. The 270 

convolution result between each kernel k and the input x (i.e., Eq. (5)) constitutes one channel of the output 271 

feature map. In the decoder, the stride size is s = 1, and thus Lout = Lin. For each subpixel convolution layer, 272 

2Cout kernels are used to output 2Cout feature sequences. These feature sequences are first divided into two 273 
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groups and then subjected to cross-stacking using subpixel shuffling to generate a feature map with length 274 

2Lin and channel number equal to Cout. In this way, the feature-length is doubled in a layer-wise manner. 275 

2.4 Loss functions for model training 276 

2.4.1 Loss functions for Task 1 277 

In general, the loss function is the optimal objective function for model training. In Task 1, attention 278 

should be directed to the prediction accuracy for extreme quasi-static WLD under extreme/rare wind 279 

conditions, since this relates to whether the displacement of the bridge deck lies within the permissible range 280 

or not. However, there is a scarcity of observations of extreme wind events, as opposed to those of normal 281 

wind events. In other words, the training samples have an unbalanced probability distribution. In this context, 282 

Task 1 becomes an imbalanced regression task (Ribeiro and Moniz, 2020). Suppose that the conventional 283 

regression strategy is still employed for Task 1, that is, assume that different types of wind event samples 284 

are of equal importance. In that case, obtaining a high prediction accuracy for extreme quasi-static WLD 285 

will be challenging. Therefore, an extreme value-weighted loss function was proposed for Task 1. 286 

Specifically, the weights of the prediction errors of extreme events were increased. Based on the mean 287 

squared error (MSE) loss 
MSE

 derived by: 288 

 ( )
2

MSE

1

1
ˆ ˆ( , ) ( ) ( )

N

n

n n
N =

= −y y y y  (6) 289 

the extreme value-weighted loss 
W-MSE

 was defined as: 290 

 ( )
2

W-MSE

1

1
ˆ ˆ( , ) ( ) ( ) ( )

N

n

n n n
N =

= −y y w y y  (7) 291 

where y and ŷ  are the true and predicted values of the quasi-static WLD response, respectively; w is the 292 

weight factor; and N is the sequence length. 293 

The weight factor w(n) of 
W-MSE

  in Eq. (7) increases as the extent to which y(n) belongs to an 294 

extreme event increases. Such an extent can be measured by ( ( ))F ny , namely, the value of the cumulative 295 

distribution function (CDF) corresponding to y(n). It represents the probability that the data in the samples 296 

are smaller than y(n). In engineering practice, y(n) approximately follows a normal distribution with zero 297 

mean. The sign of its value is only used to differentiate between different displacement directions. Therefore, 298 

the CDF of the absolute value of y(n), i.e., ( ( ) )F ny , was adopted to determine the weight. ( ( ) )F ny  can 299 

be modeled using a parametric probability distribution model (e.g., half-normal distribution (Cooray and 300 
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Ananda, 2008)) or a nonparametric probability distribution model (e.g., kernel density estimation (Jones, 301 

1993)). As shown in Fig. 6, when ( ( ) ) 0.5F n y , ( )ny  is considered a normal event, and the weight is 302 

equal to 1; when ( ( ) ) [0.5,1]F n y  , four different extreme value weighting schemes were proposed as 303 

follows: 304 

Weighting scheme I: Uniform weighting function 305 

 
1 if ( ( ) ) 0.5

( )
otherwise

F n
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= 


y
w
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，
 (8) 306 

Weighting scheme II: Linear weighting function 307 
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Weighting scheme III: Cubic weighting function 309 
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Weighting scheme IV: Inverse proportional weighting function (Scheepens et al., 2023) 311 
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 (11) 312 

In Eqs. (8)-(11), a is the maximum weight factor, which is a hyperparameter that needs to be optimized. 313 

In Eq. (11), ε is an infinitesimal value used to ensure the stability of the numerical calculation. 314 

2.4.2 Loss functions for Task 2 315 

In Task 2, predicting the dynamic components of the WLD response requires attention to accuracy in 316 

both the time and frequency domains. Two baseline loss functions T

MAE
  and F

Mag
  were built for 317 

comparison, considering only the errors in the time and frequency domains, respectively. T

MAE
 was defined 318 

as the mean absolute error (MAE) between the true and predicted values in the time domain, as: 319 

 T

MAE

1

1
ˆ ˆ( , ) ( ) ( )

N

n

n n
N =

= −y y y y  (12) 320 

where y and ŷ  are the true and predicted values of the dynamic component of the WLD in the time domain, 321 

respectively, and N is the sequence length. F

Mag   was defined as the MAE between the time-dependent 322 

magnitude spectrum 
MagŶ  of the time-domain predicted result ŷ  and the true time-dependent magnitude 323 
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spectrum MagY , as: 324 

 F

Mag Mag Mag

1 1

1ˆ ˆ( , ) ( , ) ( , )
U V

u v

u v u v
UV = =

= −Y Y Y Y  (13) 325 

 
2 2

Mag Re Im( , ) ( , ) ( , )u v u v u v= +Y Y Y  (14) 326 

where 
Re Imi= +Y Y Y   is the time-frequency representation of y, as obtained by the short-time Fourier 327 

transform (STFT) with 
ReY   and 

ImY   denoting its real and imaginary parts; ( , )u vY   is a 2D U V  328 

matrix defined in the complex domain, and u and v are indices in the time and frequency dimensions, 329 

respectively; i represents the imaginary unit. 330 

( ( ) )F ny

a
I

II

III

IV

 331 

Fig. 6. Weighting curves of different extreme value weighting schemes. ( ( ) )F ny  denotes the CDF values of the absolute 332 

values of the measured WLD quasi-static component. 333 

Furthermore, two novel time-frequency cross-domain loss functions TF

MAE-Mag
  and TF

RI-Mag
  were 334 

proposed to take into account both time- and frequency-domain information in the loss function design. 335 

TF

MAE-Mag
 was defined as the combination of the above time- and frequency-domain loss functions, as: 336 

 TF F T

MAE-Mag Mag MAE
ˆ ˆˆ ˆ( , , , ) ( , ) ( , )= +y y Y Y Y Y y y  (15) 337 

where α is the time-frequency combination factor. TF

RI-Mag
 was defined so that it comprises a real part loss 338 

component 
Re

 and an imaginary part loss component 
Im

 of Ŷ , in addition to the frequency-domain 339 

loss function F

Mag
, as follows: 340 

 
TF F

RI-Mag Mag Re Im
ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , ) = + +

 
Y Y Y Y Y Y Y Y  (16) 341 

 
Re Re Re

1 1

1ˆ ˆ( , ) ( , ) ( , )
U V

u v

u v u v
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= −Y Y Y Y  (17) 342 

 
Im Im Im

1 1

1ˆ ˆ( , ) ( , ) ( , )
U V

u v

u v u v
UV = =

= −Y Y Y Y  (18) 343 

where β is the time-frequency combination factor, a hyperparameter like α that needs to be optimized. It is 344 
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noted that the signal phase accuracy of the predicted result ŷ   significantly impacts the model’s time-345 

domain accuracy. As shown in Fig. 7, by controlling errors in the real and imaginary parts of Ŷ , the phase 346 

constraint can be imposed on the time-domain predicted result ŷ , and further, the time-domain loss can be 347 

complemented. 348 

Im

Re

Y

Ŷ

F

Mag
ˆ( , )Y Y

Re
ˆ( , )Y Y

Im
ˆ( , )Y Y

Complex 

plane

Phase

 349 

Fig. 7. Schematic diagram of the phase constraint on the complex vector in the complex plane. 350 

Notably, the L2 regularization (a.k.a., weight decay) operation was employed in both tasks. This 351 

operation penalizes excessive model parameters by adding a penalty term to the loss function, i.e., the L2-352 

norm of the model weight vector, aiming to reduce model complexity and thus alleviate overfitting. 353 

2.5 Model performance evaluation metrics 354 

A critical aspect of the proposed model relates to its predictive performance on a new dataset. This, in 355 

turn, necessitates the selection of appropriate evaluation metrics. In this regard, the root mean square error 356 

(RMSE) was chosen as the evaluation metric in the time domain for Tasks 1 and 2. RMSE is a measure of 357 

the mean deviation between the predicted values and the true values in units consistent with the evaluated 358 

object. The smaller the RMSE, the better the model’s predictive performance. It is defined as: 359 

 ( )
2

1

1
ˆ ˆRMSE( , ) ( ) ( )

N

n

n n
N =

= −y y y y  (19) 360 

In Task 2, one should pay equal attention to frequency domain prediction accuracy. For this purpose, 361 

the log spectral distance (LSD) is chosen as the evaluation metric in the frequency domain. The LSD is the 362 

logarithmic distance between the predicted and the measured STFT magnitude spectra (i.e., 
MagŶ  and MagY ) 363 

and has the unit of dB. The smaller the value of the LSD is, the closer the predicted and measured STFT 364 

magnitude spectra and the smaller the frequency-domain error. It is given by: 365 
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3. Case study 367 

3.1 Sample collection 368 

The case study was based on the Jiangyin Yangtze River Bridge, a suspension bridge with a span of 369 

1385 m, located in Jiangsu Province, China. The included angle measured clockwise between the 370 

longitudinal axis of the bridge and the north direction is 24°. Fig. 8 shows the arrangement of GPS sensors 371 

and ultrasonic anemometers in the SHM system of the bridge. The GPS sensors were deployed on the top of 372 

the south and north pylons and at 1/4, 1/2, and 3/4 of the length of the bridge deck in the main span. The 373 

ultrasonic anemometers were installed upstream of the north pylon and at the mid-span of the bridge deck. 374 

The GPS sensors record the three-way displacements of the bridge components. The anemometers have two 375 

output channels, one for wind speed and the other for wind direction. The sampling frequencies of the GPS 376 

sensors and anemometers are 1 Hz. 377 
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 378 

Fig. 8. Sensor arrangement of the SHM system of the Jiangyin Yangtze River Bridge, China. 379 

The wind speed in the lateral direction and the WLD of the bridge deck at the mid-span were used as 380 

data samples. Wind samples were collected from the anemometer ANE-2, and wind speed in the lateral 381 

direction was obtained by performing wind vector decomposition. The average lateral displacements 382 

recorded by the GPS-4 and GPS-5 sensors were used as WLD samples. The positive direction of the lateral 383 

wind vector and the WLD vector was defined as pointing from upstream to downstream. Among the SHM 384 

data recorded from 2013 to 2014, 7848 hours of data were manually selected as raw samples. These selected 385 
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samples exhibited minimal instances of missing or abnormal data, ensuring their reliability for further 386 

analysis. 387 

3.2 Sample preprocessing 388 

3.2.1 Downsampling and decomposition 389 

The sample preprocessing was initiated by performing a necessary data-cleaning process. Specifically, 390 

a few discrete missing points within the samples were filled by resorting to a shape-preserving piecewise 391 

cubic spline interpolation. The outliers within the samples were detected by the generalized extreme 392 

Studentized deviate test for outliers and replaced by the abovementioned interpolation method. 393 

Fig. 9 shows the power spectral density (PSD) estimate of the dynamic component of the raw WLD 394 

signals based on one-day samples. The signal energy was mostly distributed in the 0-0.1 Hz frequency range. 395 

The sampling frequency of the raw dynamic WLD signals was too high, resulting in an increased amount of 396 

redundant information. Therefore, the sampling frequency of the WLD and wind signals was appropriately 397 

reduced from 1 to 0.5 Hz by resampling, so that the training burden in Task 2 is lessened. Namely, the signals’ 398 

Nyquist frequency was reduced from 0.5 to 0.25 Hz. In addition, Fig. 9 shows that the frequency of the first-399 

order lateral vibration of the bridge is 0.055 Hz, while the modes of higher-order lateral vibration are less 400 

significant, which agrees with the results of Brownjohn et al. (2018). 401 

 402 

Fig. 9. PSD estimate of the dynamic component of measured WLD signals. 403 

Fig. 10 shows the input-output relationships for the models and the sampling frequencies used for the 404 

training samples in Tasks 1 and 2. The moving average method with a 10-min-span time window was used 405 

to extract the time-varying 10-min mean wind speed from the preprocessed wind signals and to decompose 406 

the WLD signals into quasi-static and dynamic components, as shown in Fig. 11. In addition, for Task 1, the 407 
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sampling frequency of 1/600 Hz could well characterize the quasi-static trend features of the wind speed and 408 

WLD signals. In contrast, the sampling frequency of 0.5 Hz still results in redundancy. To further improve 409 

the training efficiency of the GRU model, the sampling frequency of the samples was reduced from 0.5 to 410 

1/600 Hz through resampling. 411 
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 412 

Fig. 10. Input-output relationships for the deep learning models and the sampling frequencies used for the training samples in 413 

Tasks 1 and 2. SF denotes the sampling frequency. 414 

3.2.2 Dataset subdivision 415 

All samples were subdivided into a training set, a validation set, and a test set, which were used for 416 

model training, applying the HPO, and conducting a generalization ability test, respectively. Dataset division 417 

was performed by interleaved sampling to obtain the representative subsets of sample points. Specifically, 418 

all samples were divided into hourly time series based on the time at which the samples were collected. 419 

These short time series were subjected to interleaved sampling (or equal-interval sampling) to obtain the 420 

validation and test sets, each accounting for 10% of the total samples. The remaining 80% constituted the 421 

training set. Table 2 summarizes the number of sample points in each dataset. 422 
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(a)

(b)  423 

Fig. 11. Decomposition of (a) the wind signals and (b) the WLD signals using the moving average method. The results are 424 

shown with all samples. 425 

Table 2. Dataset division and size of each dataset. 426 

Sample dataset Training set Validation set Test set 

Proportion 80% 10% 10% 

Time length 6278 h 785 h 785 h 

Original sample size (SF = 1 Hz) 22,600,800 2,826,000 2,826,000 

Sample size 

after downsampling 

Task 1: GRU model 

(SF = 1/600 Hz) 
37,668 4710 4710 

Task 2: U-net model 

(SF = 0.5 Hz) 
11,300,400 1,413,000 1,413,000 

Note: SF is the sampling frequency. 427 

3.2.3 Normalization and mini-batch processing 428 

The input and output samples of the models were subjected to Z-score normalization. Namely, data of 429 

different scales were normalized to have zero mean and unit variance in order to enhance model training 430 

stability and accelerate convergence. Z-score normalization has the following form: 431 

 

−
 =

Z
Z

 (21) 432 

where Z and Z  are samples before and after normalization, respectively; μ is the mean of Z and σ denotes 433 
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the corresponding standard deviation. 434 

During the model training process, a mini-batch of samples was fed into the model in each iteration. As 435 

shown in Fig. 12, the initial samples were segmented into equal-length shorter sequences using the sliding 436 

window with an equal size as the model input length. The window moves forward 1/S of its length each time. 437 

The segmented sequences were divided into several mini-batches, and the number of sequences in each mini-438 

batch was defined as mini-batch size B. In addition, the model outputs for each mini-batch were assembled 439 

by the overlap-and-add (OLA) method to restore the initial length and order. Therefore, the model inference 440 

was performed S times at each overlap position and the average of the S predictions was regarded as the final 441 

output. Adopting the above operation not only led to reducing the variance of the prediction but also to 442 

increasing its stability. 443 
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 444 

Fig. 12. Schematic diagram of sample segmentation and the overlap-and-add method (the shift ratio of the sliding window is 445 

set equal to 1/3 for illustration purposes). 446 

3.3 Task 1: GRU model training and optimization 447 

3.3.1 Training setup 448 

To determine the extreme value weight factor w(n) in the loss function 
W-MSE

, the CDF of the absolute 449 

values of the quasi-static component of the WLD, ( ( ) )F ny  , was established first. Fig. 13 shows the 450 

nonparametric probability distribution model built by kernel density estimation using the samples of the 451 

training set. The 50-th, 80-th, 95-th, and 99-th percentiles of the absolute quasi-static WLD were 21.8, 46.5, 452 

84.9, and 126.7, respectively. 453 

Table 3 provides the main hyperparameters of the GRU model in Task 1. Some hyperparameters were 454 

preset based on the pretests and related experiences to avoid combination explosion caused by a large number 455 

of hyperparameters to be optimized. Since the choice of the loss function determines the direction of model 456 
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optimization, a two-stage HPO strategy was adopted herein. Specifically, in stage I of the model HPO, the 457 

hyperparameters in the loss function 
W-MSE

 (i.e., weighting scheme and maximum weight factor a) were 458 

optimized. The search ranges are shown in Table 3. During this period, other hyperparameters to be 459 

optimized were set to a group of moderate values: the number of GRU layers was m = 2; the number of 460 

hidden neurons was h = 200; and the initial learning rate was lr = 1×10-4. In stage II of the model HPO, the 461 

above three hyperparameters were optimized based on the optimal loss function. The grid search method 462 

determined the optimal hyperparameter combination in the multi-dimensional hyperparameter space. This 463 

optimal hyperparameter combination would result in minimum prediction error on the validation set. The 464 

model was trained for 300 epochs for each candidate combination, and the one with the minimum validation 465 

error after 250 epochs was saved. 466 

 467 

Fig. 13. Probability distribution model of the absolute values of the quasi-static component of the WLD. PDF means the 468 

probability density function, and CDF means the cumulative distribution function. 469 

Table 3. Hyperparameters of the GRU model in Task 1. 470 

Hyperparameters Preset values/Candidate values 

Preset ones Learning rate schedule Decay by 2% every five epochs 

Shift ratio of the sliding window, 1/S 1/4 

Mini-batch size, B 8 

Model input length 512 

Dropout ratio, p 0.2 

L2 regularization factor 1e-7 

To be optimized in stage I Weighting scheme in W-MSE  I, II, III, and IV 

Maximum weight in W-MSE , a 5, 10, 20, 50, and 100 

To be optimized in stage II Number of GRU layers, m 1, 2, and 3 

Number of hidden units, h 50, 100, 200, and 300 

Initial learning rate, lr 1×10-3, 5×10-4, 1×10-4, and 5×10-5 
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3.3.2 Model HPO and optimal results 471 

Table 4 shows the GRU model’s prediction errors (RMSE) on the validation set using different 472 

weighting schemes and maximum weight factors 
W-MSE

 at stage I of the model HPO. The model prediction 473 

errors using the conventional loss function 
MSE

 are also provided for comparison. Meanwhile, for each 474 

loss function scheme, the prediction errors at four different intervals of ( ( ) )F ny , namely, [0, 0.50], (0.50, 475 

0.80], (0.80, 0.95], and (0.95, 1], were calculated to assess the model prediction accuracy at different 476 

intervals of the absolute quasi-static WLD. In general, compared with the model validation error using 
MSE

, 477 

the use of 
W-MSE

  reduced the prediction error for the displacement interval corresponding to 478 

0.80 ( ( ) ) 1F n y   (regarded as extreme displacement). In contrast, the prediction error for the 479 

displacement interval corresponding to 0 ( ( ) ) 0.80F n y   increased (regarded as non-extreme 480 

displacement). Thus, there is a trade-off between the prediction accuracy for extreme and non-extreme 481 

displacements. To assess the performance of each weighting scheme, Table 4 provides the average prediction 482 

error (average RMSE) at the four CDF intervals for each scheme. The GRU model had the smallest average 483 

RMSE using weighting scheme IV with the maximum weight factor a = 10. 484 

To further evaluate the prediction results of quasi-static WLD from a statistical perspective, Fig. 14 485 

shows the frequency histograms of the absolute values of the optimal prediction results using the four 486 

weighting schemes. The use of 
W-MSE

 resulted in a probability distribution of predicted values that came 487 

closer to the true results. Specifically, compared with the predicted values obtained using 
MSE

 , the 488 

probability density of non-extreme displacements decreased, while that of extreme displacements increased. 489 

The tail of the probability distribution (i.e., extreme displacements) of the optimal results of weighting 490 

scheme IV had the highest degree of agreement with the actual results. 491 

The model HPO in stage II was conducted based on the optimal loss function (weighting scheme IV, a 492 

= 10). The average RMSE of the prediction results of the above four CDF intervals was still chosen as the 493 

performance evaluation metric. Under different hyperparameter combinations constituted by the candidate 494 

values of the number of GRU layers m, the number of hidden neurons h, and the initial learning rate lr, the 495 

average RMSE of the GRU model on the validation set is shown in Table 5. The model had the smallest 496 

average RMSE with m = 2, h = 200, and lr = 1×10-4. Under the above optimal hyperparameter combination, 497 

the training and validation loss curves during model training are shown in Fig. 15. The comparison between 498 
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the predicted and true values of the quasi-static component of the WLD response on the validation set is 499 

shown in Fig. 16. For the sake of comparison, the figure also displays the predicted values using the 500 

conventional loss function 
MSE

. It is readily seen that the GRU model using 
W-MSE

 for training had a 501 

higher prediction accuracy for extreme quasi-static WLD. 502 

Table 4. Validation errors of the GRU model using different weighting schemes and maximum weight factors in W-MSE  in 503 

stage I of model HPO in Task 1. 504 

Weighting 

scheme 

Max. weight 

factor, a 

RMSE values for different intervals of ( ( ) )F ny  Average 

RMSE 
[0, 0.50] (0.5, 0.80] (0.80, 0.95] (0.95, 1] 

None N/A 13.578 22.077 32.222 49.092 29.242 

I 5 16.791 22.578 28.531 46.600 28.625 

10 17.321 22.843 28.270 46.015 28.612 

20 17.758 23.020 27.772 45.713 28.566 

50 17.908 23.153 27.762 45.471 28.574 

100 17.954 23.213 27.850 45.378 28.599 

II 5 17.869 23.229 27.767 44.160 28.256 

10 19.227 23.944 26.975 42.705 28.212 

20 20.105 24.513 26.626 41.818 28.265 

50 20.666 24.946 26.534 41.304 28.362 

100 20.911 25.108 26.466 41.092 28.394 

III 5 17.727 23.470 28.030 42.656 27.971 

10 19.968 24.698 27.099 40.142 27.977 

20 21.846 26.025 26.803 38.370 28.261 

50 26.323 28.846 26.985 36.922 29.769 

100 30.541 31.264 26.632 36.539 31.244 

IV 5 15.887 23.254 30.045 43.110 28.074 

10 17.594 24.223 29.321 39.919 27.764 

20 19.642 25.598 29.106 36.985 27.833 

50 23.296 27.981 29.021 34.418 28.679 

100 25.602 29.861 29.615 33.205 29.571 

Note: The weighting scheme ‘None’ uses the conventional loss function MSE . ( ( ) )F ny  denotes the CDF values of the 505 

absolute values of the measured quasi-static WLD. The number in boldface represents the smallest average RMSE value for 506 

each weighting scheme. 507 

3.4 Task 2: U-Net model training and optimization 508 

3.4.1 Training setup 509 

Table 6 provides the main hyperparameters of the U-Net model in Task 2. Similar to Task 1, a set of 510 

hyperparameters was preset based on the pretests to avoid combination explosion. The model 511 
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hyperparameters were also optimized using the two-stage HPO strategy. In stage I, the optimal loss function 512 

was chosen between two time-frequency cross-domain loss functions, namely TF

MAE-Mag
 and TF

RI-Mag
, and 513 

the optimal time-frequency combination factor was determined. Meanwhile, the remaining hyperparameters 514 

to be trained were set equal to a group of moderate values, that is, the convolution kernel size was Lk = 11, 515 

and the initial learning rate was lr = 1×10-4. In stage II, Lk and lr were optimized using the grid search method 516 

based on the optimal loss function. The model was trained for 300 epochs for each hyperparameter 517 

combination, and the one with the minimum validation error after 200 epochs was saved. 518 

Zoom in Zoom in

Zoom in Zoom in

(a) (b)

(c) (d)
 519 

Fig. 14. Frequency histograms of the absolute values of the optimal prediction results using the four weighting schemes: (a) 520 

scheme I (a = 20); (b) scheme II (a = 10); (c) scheme III (a = 5); and (d) scheme IV (a = 10). 521 

Table 5. Validation errors (average RMSE) of the GRU model using different hyperparameter combinations in stage II of the 522 

model HPO in Task 1. 523 

Initial 

learning 

rate, lr 

h = 50 h = 100 h = 200 h = 300 

m = 1 m = 2 m = 3 m = 1 m = 2 m = 3 m = 1 m = 2 m = 3 m = 1 m = 2 m = 3 

1×10-3 28.983 31.986 33.137 32.538 32.693 33.419 33.179 32.595 32.339 32.950 31.429 31.304 

5×10-4 28.103 29.659 31.846 29.316 30.997 34.924 29.474 32.785 33.436 30.065 33.138 32.509 

1×10-4 28.955 28.281 28.203 28.599 27.841 27.947 28.573 27.764 28.838 28.245 27.923 30.376 

5×10-5 30.553 29.058 28.780 30.643 28.268 28.088 29.450 27.800 27.812 29.204 27.774 27.766 



 

26 

 

(a) (b)
 524 

Fig. 15. Loss curves of the GRU model during training under the optimal hyperparameter combination: (a) training loss; (b) 525 

validation loss. 526 

 527 

Fig. 16. Comparison between the predicted and true values of the quasi-static WLD using the GRU model under the optimal 528 

hyperparameter combination (validation set). 529 

Table 6. Hyperparameters of the U-Net model in Task 2. 530 

Hyperparameters Preset values/Candidate values 

Preset ones Learning rate schedule Decay by 2% every five epochs 

Shift ratio of the sliding window, 1/S 1/2 

Mini-batch size, B 32 

Model input length 32768 

Dropout ratio, p 0.2 

L2 regularization factor 1e-7 

STFT analysis window Hamming window 

STFT window length 4096 

STFT window overlap length 2048 

To be optimized in stage I Time-frequency combination factor in 

TF

MAE-Mag
 and TF

RI-Mag
, α and β 

0.01, 0.1, 0.2, 1, 5, 10, 100 

To be optimized in stage II Initial learning rate, lr 1×10-3, 5×10-4, 1×10-4, and 5×10-5 

Kernel size, Lk 7, 9, 11, and 13 

3.4.2 Model HPO and optimal results 531 

Table 7 shows the prediction errors (i.e., RMSE and LSD) of the U-Net model on the validation set 532 

using different loss functions in stage I of the model HPO. The prediction errors using the two baseline loss 533 

functions T

MAE
 and F

Mag
 are also provided for comparison. It is noted that only focusing on time-domain 534 

loss, i.e., using T

MAE
 , misled the predictions of the high-frequency dynamic component of the WLD 535 
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response. More precisely, although the time-domain error, RMSE, was the smallest at this moment, the error 536 

in the frequency domain, LSD, was the largest. This phenomenon was manifested as the low amplitude of 537 

the dynamic component of the WLD signal in the time domain. In addition, focusing on frequency-domain 538 

loss alone, i.e., using F

Mag
, resulted in higher prediction accuracy in the frequency domain but also brought 539 

the problem of insufficient accuracy in the time domain. 540 

For the two new loss functions TF

MAE-Mag
 and TF

RI-Mag
, Table 7 indicates that the time-frequency cross-541 

domain loss considered errors in both time and frequency domains. Overall, as the time-frequency 542 

combination factors α and β increased, the RMSE and the LSD decreased and increased, respectively. 543 

Therefore, there is also a trade-off between prediction errors in the time and frequency domains. To 544 

comprehensively evaluate the performance of different loss functions, Table 7 also provides the sum of the 545 

results of the min-max normalization of the RMSE and the LSD for each loss function, i.e., RMSENorm + 546 

LSDNorm, named integrated normalized error here, considering the different dimensions of the two error 547 

metrics. It is noted that the model had the smallest integrated normalized error when the phase-constrained 548 

cross-domain loss function TF

RI-Mag
 was used, with β = 0.2. 549 

Table 7. Validation errors of the U-Net model using different loss functions at stage I of the model HPO in Task 2. 550 

Loss function 
Time-frequency 

combination factor 
RMSE (RMSENorm) LSD (LSDNorm) RMSENorm + LSDNorm 

T

MAE  N/A 14.3818 (0.000) 3.1139 (1.000) 1.000 

F

Mag  N/A 20.3680(1.000) 0.8611 (0.016) 1.016 

TF

MAE-Mag  α = 0.01 15.9264 (0.258) 0.8502 (0.011) 0.269 

α = 0.1 16.2131 (0.306) 0.8248 (0.000) 0.306 

α = 0.2 15.7041 (0.221) 0.8690 (0.019) 0.240 

α = 1 15.7642 (0.231) 0.8341 (0.004) 0.235 

α = 5 15.0183 (0.106) 1.3399 (0.225) 0.331 

α = 10 15.5196 (0.190) 1.1803 (0.155) 0.345 

α = 100 15.7330 (0.226) 1.0792 (0.111) 0.337 

TF

RI-Mag  β = 0.01 15.7714 (0.232) 0.8520 (0.012) 0.244 

β = 0.1 15.2865 (0.151) 0.9081 (0.036) 0.187 

β = 0.2 15.3573 (0.163) 0.8640 (0.017) 0.180 

β = 1 15.7270 (0.225) 0.9809 (0.068) 0.293 

β = 5 14.8561 (0.079) 1.4509 (0.274) 0.353 

β = 10 14.8301 (0.075) 1.7683 (0.412) 0.487 

β = 100 14.7965 (0.069) 2.6041 (0.777) 0.846 

Note: The RMSENorm and LSDNorm in parentheses denote the min-max normalization results of the data in the RMSE and LSD 551 
columns, respectively, with the range [0, 1]. 552 
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The model HPO in stage II was conducted based on the optimal loss function TF

RI-Mag
 (β = 0.2). Under 553 

different hyperparameter combinations constituted by the candidate values of Lk and lr, the prediction errors 554 

of the U-Net model on the validation set are shown in Table 8, where apart from the RMSE and the LSD, 555 

the integrated normalized error is also provided. The model had the smallest integrated normalized error at 556 

Lk = 11 and lr = 1×10-4. Under the above optimal hyperparameter combination, the training and validation 557 

loss curves during the model training are shown in Fig. 17. 558 

Table 8. Validation errors (RMSE/LSD/RMSENorm + LSDNorm) of the U-Net model using different hyperparameter 559 

combinations at stage II of the model HPO in Task 2. 560 

Initial 

learning rate 
Lk = 7 Lk = 9 Lk = 11 Lk = 13 

1×10-3 15.1099/1.4637/1.000 15.1818/1.0848/0.413 16.0240/0.8549/0.264 16.1420/0.9865/0.505 

5×10-4 16.4139/0.8570/0.369 18.9032/0.8530/1.008 16.1590/0.8492/0.290 16.2433/0.8379/0.294 

1×10-4 16.3000/0.8488/0.326 16.2287/0.8769/0.353 15.3573/0.8640/0.106 16.7481/0.8570/0.456 

5×10-5 15.5623/1.0471/0.452 15.8167/0.9339/0.337 18.9637/0.8853/1.076 16.2406/0.9445/0.464 

(a) (b)
 561 

Fig. 17. Loss curves of the U-Net model during training under the optimal hyperparameter combination: (a) training loss; (b) 562 

validation loss. 563 

During the first 250 epochs of the model training, the changes in the time- and frequency-domain 564 

information of the predicted results with the training epochs are shown in Fig. 18. Note that as the number 565 

of epochs increased, the time- and frequency-domain information of the predicted dynamic component 566 

became increasingly abundant, and the predicted signal features gradually came closer to their true values. 567 

Finally, the model had the smallest validation loss in the 261st training epoch, and thus, the model trained in 568 

this epoch was adopted. The comparison between the predicted and measured dynamic components of the 569 

WLD in the time domain is shown in Fig. 19, whereas the comparison in the frequency domain is shown in 570 

Fig. 20. The optimized U-net model had excellent predictive performance in both time and frequency 571 

domains. 572 
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Epoch = 1 Epoch = 2 Epoch = 5 Epoch = 20

Epoch = 50 Epoch = 100 Epoch = 150 Epoch = 250
 573 

Fig. 18. Changes in the time- and frequency-domain information of the predicted results with the training epochs during the 574 

first 250 epochs of training of the U-Net model under the optimal hyperparameter combination (validation set). 575 

(a) (b) (c)

Zoom in on area (b) Zoom in on area (c)Zoom in on area (a)  576 

Fig. 19. Time-domain comparison between the predicted and measured dynamic components of the WLD under the optimal 577 

hyperparameter combination (validation set). 578 

3.5 Testing the optimized models in Tasks 1 and 2 579 

The GRU model in Task 1 and the U-Net model in Task 2 were trained and optimized independently. 580 

Here, the generalization ability and the collaborative performance of the optimized GRU and U-Net models 581 
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were assessed using the test set. The outputs of the two models were superimposed to obtain the final 582 

prediction of the WLD response. Before the superimposition operation, the output of the GRU model, i.e., 583 

the quasi-static WLD, was subjected to cubic spline interpolation so that it has the same time resolution as 584 

the dynamic WLD. 585 

(a) (b)  586 

Fig. 20. Frequency-domain comparison between (a) the predicted and (b) measured dynamic components of the WLD under 587 

the optimal hyperparameter combination (validation set). It is noted that the time-varying power spectra were used to display 588 

the frequency-domain characteristics varying with time. 589 

The comparison between the final predicted values and the measured values of the WLD response on 590 

the test set is shown in Fig. 21. The test RMSE between the final predicted values and the true values of the 591 

WLD response was 27.3098. More specifically, Fig. 22(a) gives the comparison between the predicted and 592 

the true values of the quasi-static component of the WLD response on the test set; Figs. 22(b and c) depict 593 

the time- and frequency-domain comparisons between the predicted and the measured values of the dynamic 594 

component, respectively. The average RMSE metric of the predicted quasi-static component at the 595 

aforementioned four CDF intervals was 27.4667, while the RMSE and LSD metrics of the predicted dynamic 596 

component were 15.4525 and 0.8632, respectively. The above results indicated satisfactory collaborative 597 

performance between the GRU and U-Net models and demonstrated the generalization ability of the 598 

proposed predictive framework for the WLD response. 599 

 600 

Fig. 21. Comparison between the measured WLD response and the final collaborative predicted results using GRU and U-Net 601 

models (test set). 602 
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3.6 Discussion 603 

The deck’s WLD response at the mid-span of the suspension bridge determines the lateral swing 604 

amplitude at the hanger end. The short hanger has a larger hanger-end rotation angle than the long hanger 605 

under the same end swing amplitude, and frequent lateral swing of the short hanger will cause fatigue damage 606 

to the rigid hanger anchor. Therefore, this section aimed to evaluate the accuracy of the predicted WLD 607 

response of the suspension bridge deck from the perspective of fatigue analysis for bridge hangers 608 

undergoing lateral swing. 609 

(a)

(b)

Predicted

(c)

Measured

 610 

Fig. 22. Comparison between the predicted and true values of the WLD response on the test set: (a) quasi-static component; 611 

(b) dynamic component in the time domain; and (c) dynamic component in the frequency domain. 612 

Specifically, the stress level in the short hangers’ rigid anchors is positively correlated to the swing 613 

amplitude of the bridge deck. Based on this, the concept of the ‘swing amplitude-cycle count’ histogram of 614 

the bridge deck was designed to evaluate the model accuracy by referring to the ‘stress range-cycle count’ 615 

histogram obtained based on the rain flow counting algorithm in fatigue analysis. Fig. 23 compares the 616 

‘swing amplitude-cycle count’ histograms corresponding to the predicted and measured time histories of the 617 
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WLD response using the test set (total duration: 785 h). The swing amplitude histogram of the bridge deck 618 

obtained from the predicted WLD response agreed well with the experimental one. Hence, the effectiveness 619 

and accuracy of the predictive framework proposed in this study were verified. At the same time, the 620 

feasibility of using the predicted WLD response for fatigue analysis of bridge hangers was proven. 621 

 622 
Fig. 23. Comparison of the ‘swing amplitude-cycle count’ histograms corresponding to the predicted and measured time 623 

histories of the WLD response (test set). The predicted and measured values of the cycle counts for the minor swings with 624 

amplitudes below 5 mm are 100,070 and 111,939, respectively; these are not shown in the figure since they are significantly 625 

greater than other values. 626 

4. Summary and conclusions 627 

In this study, a deep learning-based framework was proposed for predicting the wind-induced lateral 628 

displacement (WLD) response of the suspension bridge deck for structural health monitoring (SHM). The 629 

proposed framework consisted of two deep-learning tasks. In Task 1, a GRU model was built and used for 630 

predicting the quasi-static component of the WLD response of the bridge deck based on the lateral time-631 

varying 10-min mean wind speed. In Task 2, a U-Net model was built and used for predicting the dynamic 632 

component of the WLD response based on the actual lateral wind speed. Finally, the proposed method was 633 

verified by a case study of the Jiangyin Yangtze River Bridge in China. The following conclusions were 634 

drawn: 635 

(1) The WLD response of the suspension bridge deck can be decomposed into quasi-static and dynamic 636 

components, for which the corresponding prediction models can be established using the GRU 637 

model and U-Net model, respectively. 638 

(2) Based on the spectral analysis of the raw WLD records, applying appropriate downsampling to the 639 

sample data can help remove redundancy and reduce the burden of model training. 640 
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(3) In Task 1, increasing the weight of the extreme displacement prediction error in the loss function 641 

can improve the prediction accuracy for the extreme quasi-static WLD response. The weight factor 642 

for the extreme value error can be determined based on the CDF of the absolute value of the WLD. 643 

The model performed optimally when using the inverse proportional weighting scheme (i.e., 644 

scheme IV) in the extreme value-weighted loss function. However, there was a trade-off between 645 

the prediction accuracy for extreme and non-extreme displacements. 646 

(4) In Task 2, using the time-frequency cross-domain loss function can ensure both the time- and 647 

frequency-domain prediction accuracy for the dynamic component of the WLD. Compared with 648 

the two baseline loss functions T

MAE
 and F

Mag
 related only to time- or frequency-domain errors, 649 

using the phase-constrained cross-domain loss function TF

RI-Mag
 provided a better comprehensive 650 

predictive performance in both time and frequency domains. A trade-off was also identified 651 

between the prediction errors of the dynamic component of the WLD in the time and frequency 652 

domains. 653 

(5) Leveraging the proposed ‘swing amplitude-cycle count’ histogram of the suspension bridge deck 654 

obtained by the rain flow counting method, the WLD response prediction accuracy can be evaluated 655 

from the perspective of fatigue analysis for bridge hangers undergoing lateral swing. 656 

While the proposed framework has demonstrated effectiveness on the selected SHM dataset of the 657 

Jiangyin Yangtze River Bridge, it is crucial to note the limitations involving the model’s generalization and 658 

transferability. For Task 1, challenges may arise for the current model to achieve the same level of prediction 659 

accuracy for rare extreme events wherein the mean wind speeds significantly exceed the maximum values 660 

in the selected training set. Future work will attempt to address this issue by increasing the sample scale to 661 

encompass more extreme events. Additionally, the physics-enhanced method, which integrates physical 662 

principles into neural networks, will be explored, and it is expected to exhibit robust generalization ability 663 

facing rare extreme wind speeds. Furthermore, the direct transferability of the optimized models here to 664 

other bridges may be challenging, as they were specifically trained as surrogates for the case bridge using 665 

bridge-specific data. However, the proposed framework offers a valuable reference for other bridges to build 666 

their WLD response prediction models with their own data. 667 
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