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A B S T R A C T   

Lameness represents a major welfare and health problem for the dairy industry across all farming systems. Visual 
mobility scoring, although very useful, is labour-intensive and physically demanding, especially in large dairies, 
often leading to inconsistencies and inadequate uptake of the practice. Technological and computational ad-
vancements of artificial intelligence (AI) have led to the development of numerous automated solutions for 
livestock monitoring. The objective of this study was to review the automated systems using AI algorithms for 
lameness detection developed to-date. These systems rely on gait analysis using accelerometers, weighing 
platforms, acoustic analysis, radar sensors and computer vision technology. The lameness features of interest, the 
AI techniques used to process the data as well as the ground truth of lameness selected in each case are described. 
Measures of accuracy regarding correct classification of cows as lame or non-lame varied with most systems 
being able to classify cows with adequate reliability. Most studies used visual mobility scoring as the ground 
truth for comparison with only a few studies using the presence of specific foot pathologies. Given the capa-
bilities of AI, and the benefits of early treatment of lameness, longitudinal studies to identify gait abnormalities 
using automated scores related to the early developmental stages of different foot pathologies are required. Farm- 
specific optimal thresholds for early intervention should then be identified to ameliorate cow health and welfare 
but also minimise unnecessary inspections.   

Introduction 

Lameness represents a clinical demonstration of an underlying (most 
likely) painful foot, or, occasionally, musculoskeletal pathologies, and is 
a leading cause of reduced cow welfare, reduced milk production, 
impaired fertility, and increased culling risk, negatively affecting farm 
profitability (Collick et al., 1989; Melendez et al., 2003; Walker et al., 
2008; Huxley, 2013; Puerto et al., 2021). According to an extended 
literature review (Thomsen et al., 2023), the average reported herd 
lameness prevalence has changed only slightly over the last 30 years and 
with minimal geographical differences. Average reported lameness 
prevalence, using various scoring methods, in European and North 
American dairy herds was 22.0% and 24.6%, respectively, ranging from 
5.1% to 45% between studies (Thomsen et al., 2023). Furthermore, 
untrained farmers commonly underestimate the lameness problem in 
their herds across all farming systems. Australian producers in grazing 
dairy herds only identified as lame 25% of cows that were identified as 
lame by researchers (Beggs et al., 2019). On average, Canadian dairy 

farmers estimated lameness prevalence in their herds to be 9%; less than 
half of that observed by researchers (22%) (Cutler et al., 2017). 

Impact of regular lameness monitoring 

Frequent monitoring and early intervention have been described as 
key components of any effective lameness management approach. When 
researchers performed weekly or biweekly locomotion scoring without 
giving access to these records to farmers, the time elapsed from a cow 
being identified as lame by the researchers to treatment ranged from a 
median of three weeks (Alawneh et al., 2012) to as long as nine weeks, 
with some cows waiting up to 16 weeks for treatment (Leach et al., 
2012). Leach et al. (2012) investigated a more stringent intervention 
approach to the farmer’s recognition of lame cows, by performing 
fortnightly mobility scoring and treating any cow identified as lame 
within 48 h. This led to an approximately 30% (P < 0.01) difference in 
lameness prevalence within four weeks of enrolment and a reduction of 
recurrence rates, compared to the control farmers’ approach. Although 
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this difference waned during the following weeks of the study, fewer 
cows managed under the strict protocol were identified as severely lame. 
Additionally, Groenevelt et al. (2014) have shown that fortnightly 
mobility scoring by a trained scorer and foot trimming of any cows 
identified as lame within 3–48 h had higher cure rates, decreased the 
odds of lameness by half and resulted in fewer cases of severe foot le-
sions after a period of 18 weeks, compared to cows relying on farmers’ 
“normal procedures” for detection and treatment of lame cows. 

Visual mobility scoring systems 

Early lameness detection should rely on regular mobility/locomotion 
scoring performed by a trained scorer or by farm personnel (Groenevelt 
et al., 2014; Horseman et al., 2014). Visual scoring systems have been 
developed as inexpensive and non-intrusive methods to visually assess 
gait abnormalities in cows standing and/or walking, focusing on 
different gait and posture indicators to define lameness. Most systems 
distinguish between non-lame cows and cows with mild or severe 
lameness. Available visual systems have been summarized (Schlage-
ter-Tello et al., 2014b; Van Nuffel et al., 2015a). Five point (1− 5) 
lameness scoring methods (Sprecher et al., 1997; Flower and Weary, 
2006; Thomsen et al., 2008), or modifications based on these methods, 
and the four scale (0− 3) mobility scoring system (Whay et al., 2003) of 
the U.K. Agricultural and Horticultural Development Board (AHDB) are 
the most referred and frequently used systems in practice. The method of 
Sprecher et al. (1997) relies on assessing animals when standing and 
when moving while the AHDB method and several other methods only 
rely on assessing moving animals. 

Frequency of scoring in dairy farms usually varies from weekly to 
quarterly, and is often driven by milk contracts as a requirement to 
improve animal welfare and meet acceptable industry standards. How-
ever, many farmers are still detecting lameness only during foot trim-
ming or by ad hoc observation while performing other tasks like moving 
cows, or as cows walk through the milking parlour (Leach et al., 2010; 
Horseman et al., 2014; Dolecheck and Bewley, 2018; Sadiq et al., 2019). 
Visual mobility scoring, although a very helpful tool, is time-consuming 
and labour-intensive. Consistency is difficult to maintain especially in 
large herds (Van Nuffel et al., 2015a). Moreover, it is prone to subjec-
tivity leading to significant variation between and within observers. The 
scorer’s background and experience, the ground surface of the walking 
passageway, the cow-flow speed, and whether assessment is performed 
live or from video footage of walking cows are factors contributing to 
this variability (Schlageter-Tello et al., 2014b; Nejati et al., 2023). In 
addition, since impaired mobility is not expressed in the same way for all 
cows, the decision of each human scorer on which traits are more 
important to assign a specific score adds to the subjectivity of visual 
scoring systems (Schlageter-Tello et al., 2014b). 

The simple percentage agreement (PA) and the unweighted or 
weighted Cohen’s kappa coefficient are the most used measures of cat-
egorical agreement. The inter-rater agreement between different human 
scorers assessing mobility of cows on-farm varied remarkably within 
and across studies and reported measures were: weighted kappa =
0.24–0.68 for a five-level scale (Thomsen et al., 2008), while kappa =
0.00–0.57 (Linardopoulou et al., 2022), PA = 88%, kappa = 0.41, and 
Gwet’s coefficient = 0.85 (Anagnostopoulos et al., 2023), have been 
reported for a two-level scale agreement. 

Accordingly, measures of inter-rater agreement reported in studies 
assessing mobility from videos with walking cows were: PA = 23–82% 
and kappa = 0.28–0.84 for a five-level scale (Schlageter-Tello et al., 
2014a), and kappa = 0.42–0.49 (Dahl-Pedersen et al., 2018), and PA =
79% and kappa = 0.57 (Gardenier et al., 2021), for a two-level scoring 
scale. The intra-rater agreement also varied within and across studies 
and reported measures of accuracy were: weighted kappa = 0.38–0.78 
(Thomsen et al., 2008), PA = 60–83% and weighted kappa = 0.63–0.86 
(Schlageter-Tello et al., 2014a), PA = 63–68%, kappa = 0.53–0.59 and 
weighted kappa = 0.72–0.78 (Garcia et al., 2015), for a five-level scale 

and PA = 82% and kappa = 0.63 (Gardenier et al., 2021), for a two-level 
scoring scale. 

According to Landis and Koch (1977) kappa values should be inter-
preted as showing slight (0.00–0.20), fair (0.21–0.40), moderate 
(0.41–0.60), substantial (0.61–0.80) or almost perfect (0.81–1.00) 
agreement. A kappa value of ≥ 0.60 (Gibbons et al., 2012; 
Schlageter-Tello et al., 2014a) and a PA of ≥ 80% (McHugh, 2012) have 
been suggested as benchmarks of acceptable reliability for various 
welfare and health indices. 

Automated lameness detection systems 

A plethora of automated lameness detection systems have been 
developed in the last decades, to overcome the drawbacks of visual 
scoring and to provide an objective and accurate early lameness detec-
tion monitoring tool. These systems have been reviewed thoroughly 
before for their development, the features they relied on for lameness 
detection and their performance (Schlageter-Tello et al., 2014b; Van 
Nuffel et al., 2015b; Alsaaod et al., 2019; O’Leary et al., 2020; Nejati 
et al., 2023). Automated systems can be classified into three categories, 
based on the characteristics they rely on for lameness detection: 

(1) kinematic methods, including vision-based techniques, acceler-
ometers and pressure-sensitive mats; 

(2) kinetic methods, including ground reaction force plates, and 
weight distribution platforms; and 

(3) indirect methods, defined as those that do not rely on gait 
characteristics, including infrared thermography, and systems gathering 
data from milk production, lying time, eating behaviour and activity 
sensors. 

Cost of lameness, willingness to pay for lameness control and cost-benefit 
of automated systems 

The cost of lameness in dairy herds varies across studies and is highly 
dependent on the lesion type and severity. The estimated average cost 
per case of lameness regardless the cause ranged from USD $185 to $333 
for primiparous and multiparous cows, respectively (Liang et al., 2017). 
A study using data from over 108,000 trimming sessions in 804 dairy 
farms in Spain (Charfeddine and Pérez-Cabal, 2017) was used to quan-
tify the economic effects of specific foot lesions. The average annual cost 
per cow per case of digital dermatitis, sole ulcer and white line disease 
was USD $10.8, $50.9 and $43.3, respectively. Of interest is that mild 
cases could cost up to $232, whereas severe cases could cost up to $622 
per affected cow annually, due to milk losses, more days open and 
premature culling expenses. Recently, Robcis et al. (2023) estimated 
that the average cost per lameness case and per active case of digital 
dermatitis is approximately €308 and €392 per year, respectively, based 
on bioeconomic simulation analysis examining different scenarios. Be-
sides milk losses that were the main component of lameness costs, 
impaired fertility, treatment, culling and the dynamics of active and 
inactive states of digital dermatitis cases were also accounted for in this 
stochastic modelling approach. 

The cost of an automated lameness detection system, either due to 
equipment purchase costs or to annual subscription fees, poses a concern 
affecting a farmer’s perception of these systems. A large questionnaire 
survey conducted among UK dairy farms revealed that farmers were 
willing to pay a median cost of £50 per cow per year to achieve a 0% 
lameness prevalence in their herds and were also willing to pay a median 
of £250 per lame cow per year (Bennett et al., 2014). Farmers were also 
willing to pay a median amount of £16 per cow per year to avoid the 
inconvenience related to the employment of conventional lameness 
control measures. 

Kaniyamattam et al. (2020) conducted a cost-benefit analysis of 
investing in automatic lameness detection systems under different sce-
narios of lameness incidence, herd size, efficiency, and cost of the system 
combinations. They concluded that 295 of the 351 tested scenarios 
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produced a positive net return for an automated system over visual 
lameness detection performed by a human scorer, which ranged from 
USD $13 to $99 per cow per year, with the cost of investment ranging 
from $10,000 to $50,000 with a lifespan of 10 years. Comparably, 
Edwardes et al. (2022) assessed the economic value of using an auto-
mated wearable sensor-based system to manage lameness. A bio-
economic simulation model was used to examine 80 different scenarios 
of “sub-optimal” mobility prevalence, foot trimming protocols and 
sensor performance for a typical small-size Dutch dairy farm with cows 
having access to pasture. They accounted for the cost of the sensors, 
trimming costs, milk production losses and culling costs. A positive net 
return was obtained in 39 of the tested scenarios, with the best showing 
a maximum net gain of USD $51 per cow per year. 

Application of artificial intelligence in livestock monitoring 

Artificial intelligence (AI) in general describes the technological 
advances in hardware and software that enable programming a machine 
and especially a computer system to perform various tasks simulating 
the intelligence of a human being (Fatima and Pasha, 2017). Machine 
learning (ML) and deep learning (DL) are subfields of AI and include 
models built to resolve decision-making problems (Hossain et al., 2022). 
The intensity of dairy farming and the already extended utilization of 
sophisticated technological tools offers many opportunities for the 
emerging capabilities of AI in performing tasks previously difficult or 
even impossible for classical computer systems to carry out. 

Aside from lameness detection, ML through video monitoring has 
been used for other livestock monitoring purposes and will likely 
become a core component in the delivery of future precision livestock 
farming technologies. A brief description of the opportunities of AI ap-
plications in modern dairy farms is provided by De Vries et al., (2023). 
Monitoring the health and welfare of livestock is time-consuming and 
often mundane task with results dependent on the human’s experience 
and motivation (Garcia et al., 2020). The automation offered by ma-
chine learning approaches can surmount these problems but many of 
these new technologies, despite commercial availability, remain to be 
scientifically validated. A recent systematic review of sensor technolo-
gies for welfare assessment of dairy cattle reported that just 14% of 
commercially available sensors had been scientifically validated (Stygar 
et al., 2021). 

Machine learning has recently been used to successfully categorise 
the behaviour of calves based on accelerometer and gyroscope data 
obtained from a collar-based sensor (Carslake et al., 2021). It may also 
detect subacute ruminal acidosis from spatio-temporal data, although 
with low specificity (Wagner et al., 2020), as well as determine dairy 
cattle posture and resting behaviour from flank-based accelerometer 
data (Balasso et al., 2021), and lying behaviour in cows on pasture or in 
a barn based on data from a collar-mounted sensor containing an 
accelerometer, a magnetometer and a gyroscope (Schmeling et al., 
2021). The aforementioned studies were all based on wearable devices 
with some using video recordings as the source of ground truth data. 
Some studies, however, have used DL on video surveillance, primarily 
for the purpose of cattle tracking and behavioural evaluation (Zambelis 
et al., 2021; Han et al., 2023). We are likely to see considerable growth 
in the use of artificial intelligence across the precision livestock farming 
sector. 

Peer-reviewed articles of automated lameness detection systems using 
artificial intelligence 

We performed a literature review following the PRISMA guidelines 
(Page et al., 2021). Peer-reviewed articles and conference papers in 
Scopus and PubMed were searched using the following keywords in the 
title, abstract and/or keywords: cow*; cattle; locomot*; mobility; lame*; 
automat*; machine learning; machine vision; deep learning; neural 
network; artificial intelligence, in different combinations. We included 

only relevant original research studies written in English language. The 
list of references in those studies was also used. We did not filter ac-
cording to year of publication. The last search was conducted on June 
30, 2023. Main characteristics of the systems described in each publi-
cation and information regarding ground truth used for validation are 
summarized in Table 1. 

Accelerometers 

Haladjian et al. (2018) developed an electronic device attached in 
the hind leg sensing motion on a 3D orientation. Ten multiparous 
non-lame cows that were allowed to walk freely inside their barn for 
some time wearing the device, were used to extract data that served as 
the features of “normal” strides. Then, “abnormal” stride features were 
obtained by applying a plastic block in the lateral claw of any hind foot 
at the same cows, and data during walking was collected again. A sup-
port vector machine algorithm classified cows into lame or non-lame 
with an accuracy (ACC) of 91%, 74% sensitivity (SE) and 92% speci-
ficity (SP). 

Barker et al. (2018) tested wearable 3D sensors monitoring position, 
activity and behaviour that would potentially detect early signs of 
lameness. After mobility scoring 47 cows using the 0–3 grade AHDB 
method, nine cows with a score 0 (non-lame) and 10 cows with a score 2 
(lame), matched for parity, days-in-milk and milk yield, were selected. 
The following day, motion sensors mounted on neck collars were fitted 
to the cows and collected acceleration and position data for five days. A 
decision tree algorithm was chosen to classify feeding and non-feeding 
behaviour of cows, but not for lameness per se; however, several 
behavioural measures extracted differed between lame and non-lame 
cows, indicating a potential use of these measures to train algorithms 
for lameness detection. 

In another study (Taneja et al., 2020), 146 cows were used wearing a 
commercial long-range accelerometer (ISM band, ENGS Systems, Israel) 
on one of the front legs. These accelerometers gathered data regarding 
the lying time and the count of steps and swaps from lying down to 
standing up. Visual locomotion scoring performed by an agricultural 
science student and by the farmer using a four-scale method, was used as 
the ground truth of lameness. A k-nearest neighbor algorithm produced 
the best classification accuracy, with 87% ACC, 90% SE and 73% SP. 

Gertz et al. (2020) applied ML methodology to data collected by 
wearable activity sensors to accurately detect locomotor 
system-associated diseases in general. Data from a commercial system 
using both leg and neck sensors (CowScout, GEA Farm Technologies, 
Germany) measuring activity, behaviour, leg activity, lying time and 
walking time, was collected from 397 cows. Any locomotor 
system-related disease and disorder was recorded on the farm’s man-
agement software by a trained trimmer and veterinarians. Despite the 
wide range of conditions pooled within this definition, these records 
were used to classify cows as “healthy” or with “impaired locomotion” 
and served as the ground truth. A scalable decision tree boosting system 
(XGBoost) was selected as the classifier algorithm producing an Area 
under the Receiver Operating Characteristic Curve (AUC) of 86%, 81% 
SE, 78% SP and 81% F-measure (the harmonic mean of precision and 
recall). 

Borghart et al. (2021) evaluated predictive models gathering data 
from sensors and animal records to automatically detect lameness. Cows 
(n= 164) equipped with commercial neck-mounted 3D accelerometers 
(MooMonitor+, Dairymaster, Ireland) recording behavioural, rumina-
tion, resting and feeding time data, were used with data gathered over 
an 11-month period. Ground truth of lameness was established with 
weekly locomotion scores performed by a trained veterinarian using the 
1–5-point scoring method (Sprecher et al., 1997). Cows with locomotion 
scores (LS) of 1 and ≥ 2 were considered as “sound” and “unsound”, 
respectively. Among four evaluated models using an XGBoost algorithm, 
the model including metrics collected by the sensors, along with data 
regarding parity, bodyweight and milk production, achieved the best 
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Table 1 
List with peer-reviewed articles and conference papers describing automated cattle lameness detection systems using artificial intelligence. Studies are classified 
according to the type of sensor applied to the system. Sensors, methodology, ground truth used for lameness definition and metrics of performance are presented.  

Reference Sample 
size 

Sensor Features for 
lameness 
detection 

Statistical Model / 
Algorithm 

Ground truth 
used for 
validation 

Visual 
scoring 
system used 

Validation 
with foot 
lesion 
records 

Identification 
of lame foot 

Performance / 
measures of 
correct 
classification 

Accelerometers          

Haladjian et al., 
2018 

10 3D motion 
sensor (leg- 
worn) 

Deviation from 
normal stride 
pattern 

Support Vector 
Machine 
Classification 
algorithm 

Strides of 
blocked non- 
lame cows as 
ground truth 

NA No No ACC: 91.1% 
SE: 74.2% 
SP: 91.6% 

Barker et al., 
2018 

20 Neck-mounted 
3D 
accelerometer 

Position and 
acceleration 
data 

Decision tree 
classification 
algorithm 

Human 
scorers 

Whay et al. 
(2003) 
(0− 3), only 
cows with 
score 0 and 2 
were used 

No No No measures 
of accuracy 
for lameness 
detection. 
Only for 
feeding and 
non-feeding 
behaviour, 
which were 
found to be 
affected by 
lameness 

Taneja et al., 
2020 

146 3D long-range 
Accelerometer 
(leg-worn) 

Behavioural 
and activity 
profile 

K-Nearest 
Neighbor 

Human 
scorers 
(agricultural 
science 
student or 
farmer) 

Four point 
grading 
method 

No No ACC: 87% 
SE: 89.7% 
SP: 72.5% 

Gertz et al., 2020 397 Neck- and leg- 
mounted 
activity sensors 
(CowScout, GEA 
Farm 
Technologies, 
Germany) 

Behavioural 
and activity 
data 

Gradient Boosted 
Decision Tree 
Learning 
algorithm 
(XGBoost) 

Recorded 
data for 
locomotor- 
associated 
diseases by 
trained 
trimmer and 
veterinarian 

NA 
Binary score 
“sick” or 
“healthy” 

Yes No AUC: 0.86 
F-measure: 
0.81 
SE: 81% 
SP: 78% 

Borghart et al., 
2021 

164 3D 
Accelerometers 
(neck-mounted, 
Moomonitor+) 

Behavioural 
metrics, BW 
and milk 
production 
data 

Gradient Boosted 
Decision Tree 
Learning 
algorithm 
(XGBoost) 

Human 
scorer 
(trained 
veterinarian) 

Sprecher 
et al. (1997) 
(1− 5) 

No No Kappa: 0.58 
AUC: 0.85 
ACC: 78% 
SE: 78% 
SP: 78% 

Jarchi et al., 2021 23 Accelerometers 
(leg-worn) 

Instantaneous 
gait 
frequencies for 
each leg 

Long Short-Term 
Memory 
(recurrent Neural 
Network) and 
Synchrosqueezed 
Wavelet 
Transform 

Human 
scorers 

Whay et al. 
(2003) 
(0− 3) 

No Potentially SE: 90.1–99% 
SP: 
98.4–100% 
F-measure: 
0.95–0.99 

Force plates          

Pastell and 
Kujala, 2007 

73 Four balance 
platform in 
robotic milking 
systems 

Changes from 
dynamic leg 
load, steps and 
kicking 
behaviour 
during milking 

Probabilistic 
Neural Network 

Human 
scorers 

Sprecher 
et al. (1997) 
1–5 scores. 
1 and 2: 
non-lame; 
≥3: lame 

No 
Hoof 
pathologies 
recorded 
but not used 
for training 
or 
validation 

No ROC curves 
for binary 
lameness 
classification: 
AUC: 0.86 
CC: 96.2% 
DR: 100% 
SE: 100% 
SP: 57.5% 

Ghotoorlar et al., 
2012 

105 Four force plate 
balance system 

Ground 
reaction force 
data 

Artificial Neural 
Network 

Human 
scorer 

Sprecher 
et al. (1997) 
(1− 5) 

No No SE: 50–100% 
across scores 
SP: 91–100% 
across scores 
PPV: 
81–100% 
across scores 
NPV: 
92–100% 
across scores 

Radar sensing          

Shrestha et al., 
2018 

5 Radar sensor Radar Micro- 
Doppler 
signature 

K-Nearest 
Neighbor 

Human 
scorer 
(qualified 
veterinarian) 

Whay et al. 
(2003) 
(0− 3) 

No No ACC: 80% 
SE: 70% 
SP: 91.4% 

(continued on next page) 
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Table 1 (continued ) 

Reference Sample 
size 

Sensor Features for 
lameness 
detection 

Statistical Model / 
Algorithm 

Ground truth 
used for 
validation 

Visual 
scoring 
system used 

Validation 
with foot 
lesion 
records 

Identification 
of lame foot 

Performance / 
measures of 
correct 
classification 

Busin et al., 2019 54 Radar sensor Radar Micro- 
Doppler 
signature 

Naïve Bayesian 
and K-Nearest 
Neighbor 

Human 
scorer 
(qualified 
veterinarian) 

Whay et al. 
(2003) 
(0− 3) 

No No ACC: 83% 
SE: 81% 
SP: 83% 

Acoustic analysis          

Volkmann et al., 
2021 

64 Walk-over panel 
equipped with a 
recording 
piezoelectric 
sensor 

Acoustic 
analysis of cow 
impact sound 
records 
walking on a 
panel 

Random Forest 
Algorithm 

Detection of 
foot lesions 
during 
professional 
trimming 

Binary score 
as bearing 
any foot 
lesion 

Yes No Kappa: 0.80 
SE: 81% 
SP: 97% 
Precision: 
0.90 
NPV: 0.93 

Computer vision          

Zhao et al., 2018 98 Commercial 
web Camera – 
side view 

Leg swing 
analysis 
(motion curve 
of moving leg, 
swinging 
speed and step 
time) 

Decision tree 
classification 
algorithm 

Human 
scorer 
-assessment 
of videos 

NA 
1–3 scores 
based on 
presence of 
various 
lameness 
indicators 

No No ACC: 90.2% 
SE: 90.3% 
SP: 94.7% 

Kang et al., 2020 100 Commercial 2D 
digital camera – 
side view 

Deviations in 
movement 
speed during 
supporting 
phase of a 
cow’s hoof 

Receptive Field 
block Net single 
Shot Detector 

Human 
scorers 
(average 
score of on- 
farm and on- 
video 
evaluation) 

Three grade 
scoring 
method 
1: no 
lameness; 
2: mild 
lameness; 
3: severe 
lameness) 

No Yes Spearman’s ρ: 
0.864 
Kappa: 0.93 
ACC: 96% 
Precision: 
87% 

Jiang et al., 2020 90 Commercial 
digital 2D 
camera – side 
view 

Behavioural 
pattern 
recognition 

Convolutional 
Neural Network 

NA Four classes: 
normal, 
slight, 
moderate or 
severe 
lameness 

No No NA 

Wu et al., 2020 50 Commercial 
digital 2D 
camera – side 
view 

Step size of 
front and rear 
legs 

YOLOv3 (Deep 
Learning 
algorithm) and 
Long Short-Term 
Memory 
classification 
model 

NA NA No No ACC: 98.6% 
SE: 97% 
SP: 97% 
Precision: 
99.2% 
Recall: 97.5% 

Kang et al., 2022 456 Commercial 2D 
digital camera – 
side view 

Position of 
cow’s hooves 

YOLOv4 (object 
detection 
algorithm) and 
DenseNet 
classification 
algorithm 

Two human 
scorers - 
assessment of 
videos 

1–3 scale 
Engel et al. 
(2003) 
O’Callaghan 
(2003) 

No No ACC: 98.5% 
SE: 98.5% 
SP: 99.3% 

Russello et al., 
2022 

30 Camera – side 
view 

Pose 
estimation 
based on 
annotated 
landmarks 

Deep Learning 
based Pose 
Estimation model 
(convolutional 
neural network) 

NA (Ground- 
truth 
confidence 
maps of 
anatomical 
landmarks) 

NA No No NA 

Jiang et al., 2022 90 Camera, video – 
side view 

Fitting 
curvature of 
cow’s back 

Filter Layer 
YOLOv3 (Deep 
Learning 
algorithm) and 
Long Short-Term 
Memory 
classification 
model 

Three human 
scorers - 
assessment of 
videos 

Three grade 
scoring 
method (not 
lame; early- 
lame; 
moderate or 
severely 
lame) 

No No ACC: 96.6% 
Precision: 
98.3% 
Recall: 97.5% 

Anagnostopoulos 
et al., 2023 

6040 2D Camera – 
overhead view 

Changes in 
coordinates of 
reference 
anatomic 
points 

Convolutional 
Neural Network 

Human 
scorer 

Whay et al. 
(2003) 
(0− 3) 

Yes No Binary 
classification: 
PA: 87% 
Kappa: 0.40 
Gwet’s: 0.83 
Predicton of 
potentially 
painful 
lesions: 
ACC: 73.8% 

(continued on next page) 
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classification performance with kappa = 0.58, AUC = 0.85, 78% SE and 
78% SP. 

Jarchi et al. (2021) used 23 cows wearing four 3D motion sensors, 
one on each leg, producing low frequency acceleration signals. Ground 
truth of lameness was based on visual mobility scoring using the 
0–3-point AHDB method, with cows receiving a mobility score (MS) ≥ 2 
being considered as lame. A deep neural network was developed that 
classified cows into lame and non-lame using instantaneous gait fre-
quencies for each leg, with 90–99% SE and 98–99% SP using a 60-sec-
ond window. 

Weighing platforms and ground reaction force plates 

A system consisting of four balance platforms placed on the floor of a 
robotic milking unit was developed by Pastell and Kujalaf (2007). Leg 
weights during 10,000 milkings from 73 cows over a 5-month period 
were obtained. Data were split into two parts for training and validation. 
Data included features for the weight of each leg, steps and kicking 
behaviour during milking. Weekly visual lameness scoring by experi-
enced scorers using the 1–5-point method (Sprecher et al., 1997) was 
used as the ground truth of lameness. Cows with a lameness score (LS) ≤
2 were considered sound and those with LS ≥ 3 were considered lame. 

Foot lesions were also systematically recorded during this study but 
were not used for training or validation. A probabilistic neural network 
was selected to classify cows into sound or lame. The system’s perfor-
mance for the binary classification produced an AUC = 0.86 and was 
highly sensitive (100%) but less specific (58%). 

Ghotoorlar et al. (2012) developed a lameness detection system 
based on four separate ground reaction force plates for each foot 
installed on a foot-trimming box. From 105 cows were used, 60% were 
randomly selected for development of an artificial neural network, and 
the remaining 40% for validation. As the ground truth of lameness, vi-
sual lameness scoring was performed by an experienced scorer while 
cows were walking before and after standing on the plates, using the 
1–5-point method (Sprecher et al., 1997). The repeatability of the sys-
tem’s continuous scores from 25 cows obtained twice on the same day 
was high (Pearson’s r = 0.95). The system was highly sensitive for cows 
with LS = 1 and LS = 4 (94 and 100%, respectively), but less sensitive for 
LS = 5 (50%), while it was highly specific across all LS (from 91% to 
100%). This system required cows standing still for about six minutes to 
obtain accurate data, making it more suitable to be installed on the floor 
of the milking parlour or the robotic unit, rather than on a passageway. 

Table 1 (continued ) 

Reference Sample 
size 

Sensor Features for 
lameness 
detection 

Statistical Model / 
Algorithm 

Ground truth 
used for 
validation 

Visual 
scoring 
system used 

Validation 
with foot 
lesion 
records 

Identification 
of lame foot 

Performance / 
measures of 
correct 
classification 

SE: 52% 
SP: 81% 

Barney et al., 
2023 

250 Camera (GoPro) 
– side view 

Pose 
estimation 
based on 
specific 
anatomical 
points 

Mask regions with 
Convolutional 
Neural Network 
features and 
CatBoost 
classification 
algorithm 

Three human 
scorers 

Whay et al. 
(2003) 
(0− 3) 

No No Kappa: 0.88 
ACC: 92% 
Precision: 
0.87 
Recall: 0.92 

Zheng et al., 2023 60 Commercial 
digital camera – 
side view 

Step length of 
front and rear 
legs to detect 
limping 

Convolutional 
Siamese Neural 
Network with 
attention 
mechanism 

NA 
(step length 
of “average 
lame” cow to 
observe 
changes) 

NA No No ACC: 94.7% 
SE: 95.1% 
SP: 93.7% 
Precision: 
96.2% 

Li et al., 2023 222 Commercial 
digital camera – 
side view 

Motion 
changes 

Temporal 
Aggregation 
network using 
micromotion 
features 

Two human 
scorers - 
assessment of 
videos 

Scoring for 
specific 
lameness 
indicators 

No No ACC: 98.9% 
SE: 98.9% 
SP: 99.4% 
Precision: 
98.9 % 
F-measure: 
98.9 

Zhao et al., 2023 52 Commercial 
digital camera – 
side view 

Head-hoof and 
back-hoof 
linkage 
features 

DeepLabCut 
(v2.2b8) 
algorithm with 
ResNet50 as 
backbone 
network. 

Three human 
scorers - 
assessment of 
videos 

Flower and 
Weary 
(2006) 
1–5 point 
scoring 
system 

No No ACC: 87.3% 
Recall: 88.8% 
Precision: 
86.4% 
NPV: 88.2% 
SP: 85.7% 

Siachos et al., 
2023 

27,082 2D Camera – 
overhead view 

Changes in 
coordinates of 
reference 
anatomic 
points 

Convolutional 
Neural Network 

Four human 
scorers 

Whay et al. 
(2003) 
(0− 3) 

Yes No Binary 
classification: 
PA: 81.5 – 
86.3% 
Kappa: 0.23 – 
0.40 
Gwet’s: 0.0.76 
– 0.83 
Prediction of 
potentially 
painful 
lesions: 
ACC: 83% 
SE: 40% 
SP: 88% 

NA, not available; ACC, accuracy; SE, sensitivity; SP, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the (receiver 
operating characteristic) curve; CC, correct classification; DR, detection rate; PA, percentage agreement. 
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Acoustic analysis 

The hypothesis that alterations in normal gait due to lameness would 
affect the impact sound produced by a cow’s steps was tested by Volk-
mann et al. (2021). They constructed a panel installed on the slatted 
floor of a passageway exiting the milking parlour, that cows would walk 
over. The panel was equipped with a piezoelectric sensor that recorded 
the impact sound for each cow identified through an RFID sensor. Based 
on 640 audio files from 64 cows, a random forest algorithm was chosen 
for binary classification of cows as non-lame or lame. The presence of 
foot lesions recorded during a professional trimming session of 43 cows 
were used as the ground truth of lameness and preferred over visual 
lameness scoring. Binary transformation of a three-grade scoring 
method (Volkmann et al., 2019), produced a kappa = 0.64 for the 
agreement with the lesion findings. The model’s predicted classification 
yielded a substantial agreement with lesion findings (kappa = 0.80), 
with 81% SE and 97% SP. It must be noted, though, that grade or 
severity of foot lesions were not considered. It has been demonstrated 
that several lesions such as inactive cases of digital dermatitis and mild 
cases of sole hemorrhage and white line separation may go undetected 
by human scorers assessing a cow’s gait (Chapinal et al., 2009). 

Radar sensing 

Shrestha et al. (2018) tested the use of radar signal transmission that 
generated micro-doppler signatures in five dairy cows, among other 
species as well, while approaching and walking away from the radar to 
identify lameness. Cows were scored for lameness by two human scorers 
using the 0–3-grade AHDB method. A supportive vector machine and 
k-nearest neighbor were the models considered as classifiers, showing 
similar measures of accuracy. The posterior view was the best, meaning 
when cows were walking away from the radar, producing an ACC of 
80%, with 70% SE and 91% SP. 

The previous original small-scale proof-of-concept study was repli-
cated by Busin et al. (2019) using 44 cows and 80 sheep. The 
micro-doppler signatures were obtained as cows were walking away 
from a radar sensor on an exit-race. A human scorer assessed the 
mobility of each cow using again the 0–3-grade AHDB method, at the 
same time. A naïve Bayesian algorithm at a three seconds segment 
duration produced better accuracies, over the k-nearest neighbor clas-
sifier, with ACC of 83%, 81% SE and 83% SP. 

Computer vision 

Most publications describing the development and the evaluation of 
automated systems for lameness detection using AI, rely on the use of 
computer vision technology. These systems can be grouped into those 
focusing on changes in the position or the movement of the feet or limbs 
of the cows, and those assessing changes in position and movement of 
multiple anatomical body regions. 

Systems focusing exclusively on position or movement of feet/limbs 
Zhao et al. (2018) used a commercial web camera to capture a 

side-view video from 98 cows walking through an alley to automatically 
detect lame cows using leg swing analysis. Six features extracted from 
the motion curves of the legs during a step were used to evaluate loco-
motion from a total of 621 acquired videos. Ground truth of lameness 
was established according to single trained farm personnel who assessed 
videos of the cows and classified them using a 3-grade method; non-lame 
cows were scored as 1, cows with one indicator of lameness received a 
score 2 and cows with two or more indicators received a score 3. The 
repeatability of the human scores was assessed and produced a kappa =
0.91. A decision tree learning algorithm was chosen for classification 
with an average ACC of 90%, 90% SE and 95% SP. 

Kang et al. (2020) developed a system focusing on the movement of 
the hooves and thus being unaffected by individual cow gait charac-
teristics. A commercial 2D digital camera was placed near the entrance 

of the milking parlour. Authors suggested that the added discomfort due 
to the weight of milk before milking would make the signs of lameness 
more obvious. Side-view footage of the whole body of 100 walking 
multiparous Holstein cows of a single farm was captured. Degree of 
lameness was established by measuring deviations in the movement 
speed of the hooves during the supporting phase. A receptive field block 
network (Receptive Field Block Net Single Shot Detector), which is a 
high-performing object detector algorithm based on deep convolutional 
neural networks, was used to track and detect the position of the hooves. 
Two trained scorers assessed the locomotion of these cows on-site, after 
milking though, and on the acquired videos, using a 3-point scoring 
method (score 1: no lameness; score 2: mild lameness; score 3: severe 
lameness). The average scores for each cow were used as the ground 
truth. Agreement between human and predicted scores was almost 
perfect (kappa = 0.93). The classification ACC was 96% and the positive 
predictive value (PPV) was 87% across all scores. The identification of 
the lame foot with an ACC of 93% was an additional important novelty 
of this study. 

Kang et al. (2022), similarly to the work of Kang et al. (2020), 
developed a system to detect the position of the hooves. A commercial 
2D digital camera was placed near the exit race of the milking parlour. 
Side-view footage from 456 multiparous Holstein cows from a single 
farm were obtained. Visual locomotion scoring was performed using the 
same 3-point scoring method as in Kang et al. (2020). Selected cows 
were equally distributed among three locomotion scores. Data was 
divided into training (60%), validation (20%) and test (20%) datasets. A 
YOLOv4 algorithm, a machine learning model able of real-time object 
detection, was used to track the hooves of the cows. A convolutional 
neural network architecture (DenseNet) was then used to classify the 
spatiotemporal gaitmaps of each hoof into lame or non-lame. The system 
produced a remarkably high classification ACC of 99%, with 99% SE and 
99% SP. 

Zheng et al. (2023) collected side-view footage from 60 Holstein 
cows. Videos were captured using a commercial digital 2D camera. 
Twenty-five video clips were recorded from lame cows and 35 from 
non-lame cows. However, the authors did not describe the scoring 
method they used to define lameness. Following leg location, the cow’s 
relative step size was the selected feature to train a convolutional Sia-
mese neural network architecture with an attention mechanism for 
lameness detection. A support vector machine algorithm produced the 
best classification accuracy with 95% ACC, 95% SE, 94% SP and 96% 
precision (the PPV). 

Systems focusing on position or movement of multiple body parts 
Jiang et al. (2020) developed a convolutional neural network ar-

chitecture for lameness recognition using spatiotemporal features of 
cows’ behaviour while they were walking, which were enriched with 
optical flow algorithms. From 90 cows on a single farm, 1080 side-view 
videos were captured using a digital 2D camera. A part of the available 
videos was used as the test dataset. Although lameness definition used 
for validation was not clearly described, video clips were classified into 
four classes that showed cows as “normal”, slightly lame, moderately 
lame or severely lame. The system’s performance was evaluated by 
calculating the correct classification ACC per clip (95%) and the “mean 
average precision” (98%), a metric used to evaluate object-detection 
models. 

Wu et al. (2020) developed an algorithm for lameness detection by 
processing the relative step size of cows. From an initial pool of 750 
side-view videos of 50 Holstein cows on a single farm, 30 videos of 
non-lame cows and 20 of lame cows were selected and used for this 
study. However, they did not provide information on the method used 
for definition of lameness. After manually labelling the head, back and 
leg regions in the captured frame images, an object detection algorithm 
(YOLOv3) was developed that tracked the position of the legs in each 
frame. This allowed for the calculation of the relative step size of front 
and hind legs. A long short-term memory model outperformed the other 
evaluated classifiers, producing an ACC of 99%, 97% SE and 97% SP. 
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Jiang et al. (2022) used 810 side-view videos from 90 
Holstein-Friesian cows on a single farm walking in a passageway. They 
focused on extracting the curvature of the cow’s back, using a real-time 
object detection algorithm (FLYOLOv3), considering this feature 
changes considerably in lame cows. Three human observers assessed the 
videos and classified cows into three categories as being “normal”, 
“early” lame or moderately and severely lame, and served as the ground 
truth. Selected videos were equally distributed across the three classes. 
The predictive model they developed, a bi-directional long short-term 
memory neural network with noise layer (NOISE+BiLSTM), yielded an 
average classification ACC of 97%. 

Russello et al. (2022) proposed a new deep learning framework for 
estimation of body parts position using 3D convolutions on automatic 
lameness detection using pose estimation of cows in videos. Side-view 
videos from 30 cows (20 black and white, 10 red and white) on a sin-
gle farm from an original population of 70 filmed Holstein-Friesian 
cows, were captured using a stereo camera with sensors at the visible 
wavelength. Cows were filmed outdoors while walking in a passageway 
from the barn to pasture. Data was divided into training and test data-
sets, but the authors did not include validation of the system’s perfor-
mance against a ground truth method of lameness detection. The 
percentage of head-normalized key-points metric (PCKh) obtained from 
known and unknown cows showed promising results for generalization 
on different farms. 

The work of Li et al. (2023) was based on that of Kang et al. (2020) 
and Kang et al. (2022), in terms of the camera setup and the ground truth 
scoring system applied. Holstein cows (n=222) on a single farm were 
randomly selected and four side-view videos per cow were captured 
using a commercial digital 2D camera. The ground truth reference for 
lameness was set by two human experts assessing videos using a 
three-grade scoring method and classified cows as non-lame (score 1), or 
those one indicator of lameness (score 2) or cows with two or more 
indicators (score 3). Videos were selected to be equally distributed 
within each score. A temporal aggregation network architecture was 
employed with the extraction of micromotion features of the cow’s body 
parts to detect lameness. This method produced highly accurate classi-
fications with 99% ACC, 99% SE, 99% SP, 99% precision and 99% 
F-measure. 

Zhao et al. (2023) used a deep convolutional network software 
package (DeepLabCut) to estimate the pose of cows by tracking defined 
anatomical key point coordinates. Side-view videos from 52 walking 
cows were captured using a commercial 2D digital camera. The head, 
back and the four feet were the user-defined key points that allowed the 
extraction of locomotion features regarding the motion curve of the 
hooves linked to the swing curve of the head and the posture of the back. 
Ground truth of lameness was established by three experienced human 
scorers assessing a total of 216 videos using a 1–5-point scoring method 
(Flower and Weary, 2006) and classified cows into 3 classes as non-lame 
(scores 1 and 2), early lame (scores 3 and 4) or severely lame (score 5). 
Among several classifiers evaluated, a logistic regression model pro-
duced the best ACC (87%) with 86% precision, 88% negative predictive 
value (NPV), 89% recall and 86% SP. 

Barney et al. (2023) developed a fully automated system for lame-
ness detection of multiple cows at the same time. In Holstein-Friesian 
cows (n=250) from a 300-cow dairy herd at Newcastle University, 25 
side-view videos containing 10 cows each were captured using a com-
mercial 2D digital camera. Three experienced human scorers assessed 
the mobility of the cows appearing in these videos using the AHDB 
scoring method and the average score was set as the ground truth for 
lameness. A pose estimation machine learning algorithm (Mask R-CNN, 
masked regions with convolutional neural network features) was trained 
for object detection using 15 anatomical key-points on the back, the 
head, the neck, the legs, and the feet. These key-points were then used to 
estimate deviation from best fit for the posture of the back, the position 
of the head and the angle of the neck. The CatBoost algorithm, a gradient 
boosting decision tree algorithm working with categorical data, was 

used for classification. The algorithm classified cows within each 
mobility score with an ACC of 95 ± 0.5%, 92% recall and 87% precision. 
Accordingly, the inter-rater agreement between predicted and visual 
mobility scores for the four classes was substantial with a kappa = 0.88. 
Moreover, the binary classification (scores 0 and 1: non-lame; scores 2 
and 3: lame) produced an ACC of 100%, 92% recall and 90% precision 
and kappa = 0.82 for the inter-rater agreement. 

A commercially-available fully automated system for real-time 
lameness detection was recently evaluated by Anagnostopoulos et al. 
(2023). The system used a 2D surveillance camera mounted over an exit 
race capturing footage of walking cows from an overhead angle. An 
object-tracking algorithm identified coat patterns and the shape of the 
cow’s body. Certain reference points on the body of the cow were 
marked and their coordinates across frames recorded. The stored in-
formation was then processed by a convolutional neural network ar-
chitecture which produced a mobility score for each cow on a scale from 
0 to 100, with higher values representing increased likelihood of 
lameness. Each increment of 25 points corresponded to one grade of the 
0–3 four-grade AHDB scoring method. 

This system was validated using the visual mobility scores of two 
experienced human scorers as the ground truth, who scored approxi-
mately 7,000 dairy cows during 19 whole-herd scoring sessions in three 
dairy farms equipped with a camera. Binary transformed visual scores (0 
and 1: non-lame; 2 and 3: lame) produced an overall PA > 86%, kappa =
0.32–0.40 and Gwet’s coefficient = 0.80–0.83. It is noteworthy that the 
inter-rater agreement between the two human scorers scoring the same 
903 cows was similar to that between the system and the humans, 
producing 88% percentage agreement, kappa = 0.41 and Gwet’s coef-
ficient = 0.85. The accuracy of the system in detecting cows bearing 
potentially painful lesions considered to impair mobility was also 
assessed. The systematic recording of foot lesions graded for severity in 
all four feet of 84 cows during trimming sessions was used as the ground 
truth. The system was more sensitive than the human assessor in iden-
tifying cows with potentially painful lesions, with 52% SE and 81% SP 
compared to the assessor’s 29% and 89% respectively. 

A larger scale validation study for the same system was conducted 
with 29 visits for whole milking herd mobility scoring in seven dairy 
farms performed by four experienced veterinarians (Siachos et al., 
2023). Approximately 27000 visual mobility scores were matched to the 
automatically generated scores. Additionally, data regarding the pres-
ence and the severity of any foot lesion from all four feet were collected 
from 991 cows during 17 trimming sessions in three farms. All cows 
were mobility scored by the system, while 340 were also scored by the 
same human scorer 1–3 days before trimming. Percentage agreement, 
kappa and Gwet’s agreement coefficient for the binary (lame vs. 
non-lame) categorical agreement ranged from 82% to 86%, from 0.23 to 
0.41 and from 0.76 to 0.83, respectively. Additionally, ACC, SE and SP of 
the system and the human scores in detecting cows bearing potentially 
painful lesions were 83%, 40% and 88%, and 80%, 53% and 83%, 
respectively. 

Limitations of current studies and future prospects 

Strengths and limitations of currently available automated systems 
have been thoroughly described (Schlageter-Tello et al., 2014b; Alsaaod 
et al., 2019; O’Leary et al., 2020; Nejati et al., 2023). The same could 
apply to automated systems using AI instead of conventional methods 
regarding the sensors, farm applicability and performance. A systematic 
literature review described thoroughly the characteristics, advantages 
and limitations of the different ML techniques that can apply as classi-
fication models to livestock health and welfare monitoring (Garcia et al., 
2020). 

The systems described in this review rely on a wide range of kine-
matic, kinetic and indirect methods for cattle lameness detection. 
Measures of accuracy reported for most of them are promising. How-
ever, with some exceptions, more independent validation studies are 
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needed to investigate the application on-farm and justify the commer-
cialization of the available AI capabilities. Furthermore, while most 
studies use visual mobility scoring as the ground truth for lameness 
detection, only a few studies use the inspection of the feet and recording 
of specific foot pathologies. 

It has been suggested that automated systems for lameness detection 
should produce a SE > 90% and SP > 99% to justify their use by farmers 
(O’Leary et al., 2020). The rationale is that lower SP would result in 
many cows classified as false positive, unnecessarily increasing trim-
ming labour and costs, especially in large herds. Although this is a fair 
argument, visual mobility scoring on-farm used as the ground truth to 
assess measures of accuracy of automated systems has been shown to 
produce notable disagreement within- and between-observers. More-
over, Logan et al. (2023) have recently shown that visual mobility 
scoring is highly specific (SP = 94%) but has poor sensitivity to correctly 
identify cows bearing moderate and severe lesions (SE = 35% and 43%, 
respectively), by scoring and recording foot lesions of approximately 
600 cows with an overall lameness prevalence (mobility score 2 and 3) 
of 12%. Besides, there is lack of consensus on which lesions and at what 
grade of severity impair mobility of cows to a detectable degree. It is 
possible that a cow bearing mild lesions affecting mobility and identified 
by an automated system as moderately lame could be treated in the early 
stages and would not deteriorate if presented to the trimmer. Early 
intervention has been shown to effectively reduce lameness prevalence 
(Leach et al., 2012; Groenevelt et al., 2014). Whether a human observer 
could correctly classify this cow as lame is uncertain. This gap in our 
knowledge does not allow us to properly validate an automated system 
carrying out a reasoning task otherwise performed by a trained human 
observer. 

Moreover, we believe that the cross-sectional observation of cows’ 
mobility and of the presence of foot pathologies during a trimming 
session is imperfect when used as the ground truth of lameness. Foot 
lesions represent mostly chronic pathologies, and it is unclear at which 
stages of their development they become clinically apparent by impaired 
mobility. Therefore, given that AI can handle large and complex data, 
effort should be put into identifying cows at the early developmental 
stages of lesions with mild signs of lameness considering the cow’s in-
dividuality and the farm’s characteristics. We could obtain useful in-
formation and gain a better understanding of how each lesion type 
affects mobility by training an algorithm using longitudinal data from 
individual cows with known foot lesions history from a common starting 
time-point (i.e. at drying-off or early lactation routine foot trim) and 
repeatedly examining for development of new lesions. To effectively 
control lameness and at the same time, to minimise trimming costs and 
labour, an optimal farm-specific threshold must then be determined, 
which could be used as the decisive point for early intervention 
dependent to the farm’s needs and goals. 
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