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Fluid-filled fracture propagation is a complex problem that is ubiquitous in Geosciences,

from controlling magma propagation beneath volcanoes to water transport in glaciers. Us-

ing scaled analogue experiments, we characterized the internal flow inside a propagating

flux-driven fracture and determined the relationship between flow and fracture evolution.

Different flow conditions were created by varying the viscosity and flux (Q) of a Newto-

nian fluid injected into an elastic solid. Using particle image velocimetry we measured the

fluid velocity inside the propagating fracture and mapped the flow across the crack plane.

We characterized the internal flow behavior with the Reynolds number (Re) and explored

Re values spanning five orders of magnitude, representing very different internal force

balances. The overall fracture tip propagation velocity is a simple linear function of Q,

whereas the internal velocity, and Re, may be vastly different for a given Q. We identified

four flow regimes – viscous, inertial, transitional, and turbulent – and produced viscous and

inertial regimes experimentally. Both flow regimes exhibit a characteristic flow pattern of a

high-velocity central jet that develops into two circulating vortices on either side. However,

they exhibit the opposite behavior in response to changing Q: the jet length increases with

Q in the inertial regime, yet decreases in the viscous regime. Spatially variable, circulating

flow is vastly different from the common assumption of unidirectional fracture flow, and

has strong implications for the mixing efficiency and heat transfer processes in volcanic

and glacial applications.
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I. INTRODUCTION1

Fluid-filled fracture propagation is a fundamental process in many geoscience applications, in-2

cluding magma transport1–3, glacier dynamics and stability4–6, and geothermal energy systems7–9.3

Magma-filled fractures (dykes and fissures) feed volcanic eruptions, whilst glacial fractures4

(crevasses) control the drainage of glacial lakes and the transport of melt water. The fluid dy-5

namics within propagating fractures has a significant effect on the overall fracture behavior.6

Propagation is driven by internal fluid pressure (due to fluid injection, buoyancy, or a combination7

of the two), which is distributed and dissipated by the internal flow10. In dykes and fissures, the8

flow of magma influences the style of eruption at the surface11,12. Flow in glacial crevasses can9

have a significant impact on glacier stability and melting rates13–15. Understanding and predicting10

fracture behaviour, including the expected pathway, propagation rate, and internal fluid dynamics,11

is essential for managing the risks associated with volcanic and climate change processes. Despite12

its importance, the fluid flow within propagating fractures is not well understood, and is typically13

assumed to be unidirectional — a key assumption of many theoretical and numerical models of14

fracture propagation2,16–18.15

A major challenge in modelling fracture propagation and internal fluid flow is having a unified16

understanding of the full range of potential behaviour. Some theoretical and numerical models17

models neglect fluid flow and assume that buoyancy dominates, and have been able to recreate18

fracture pathways in experiments and in nature19,20. However, buoyancy-driven fractures only19

represent a subset of natural cases, and fluid flow must be included to obtain accurate predic-20

tions of propagation velocities16,17. Flux-driven fractures are driven by the pressure created by21

fluid injection, where buoyancy may not play any role2,21,22. In theoretical and numerical mod-22

els of flux-driven fractures, flow, as characterised by the dimensionless Reynolds number Re, is23

typically assumed to be in one of two limiting regimes: viscosity-dominated2,23–25 (Re ≪ 1) or24

turbulent26–28 (Re > 1000). In reality, fracture flow spans a wide range of regimes due to the25

vast natural parameter space, notably the fluid viscosity. Fluid in glacial fractures and geothermal26

systems has a viscosity of the order 10−3 Pa s, yet for magma this varies between 10−2 Pa s (for ul-27

tramafic low-silica magmas) and 109 Pa s (for evolved, silica-rich rhyolite)29. In nature, Reynolds28

numbers range from the order of 10−10 for viscous, creeping dykes30, to 106 and beyond for turbu-29

lent crevasses during rapid drainage events5. There is therefore a strong motivation to understand30

fracture propagation for the full range of potential flow regimes and Re values, particularly in the31
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transition from viscosity-dominated flows to full turbulence28,31.32

Scaled, analogue experiments of fluid-filled fracture propagation give crucial insight into the33

fundamental processes of fracture dynamics (see Rivalta et al. (2015)17 and Kavanagh et al.34

(2018)32 for a review). Laboratory experiments involving the injection of fluid into solid, elas-35

tic, gelatine allow for direct observations of fracture and fluid dynamics during propagation33,34.36

Buoyancy-driven fracturing occurs if the injected fluid is sufficiently less dense than the solid37

host35–38. Otherwise, flux-driven fractures are created by the constant injection of fluid22,32,39.38

Recent studies have used Particle Image Velocity (PIV) to measure internal flow velocity pro-39

files in flux-driven fractures32,40,41. Whilst flow in buoyancy-dominated fractures is confirmed to40

have a simple unidirectional profile41, Newtonian flux-driven fractures exhibit a more complex41

flow pattern, consisting of a central, localized jet, with circulating downflow along the fracture42

margins32,40,41, which is not captured with any existing numerical model. Only a small number43

of published experiments (all consisting of water injections with Reynolds numbers in the nar-44

row range 1 ≤ Re ≤ 30) have captured this interesting flow pattern. Experimental data across a45

wider Re range is required to fully understand flux-driven fracture propagation and the influence46

of internal fluid flow.47

In this study, we provide the first experimental investigation of the dependence of fracture48

dynamics on the Reynolds number. We restrict our attention to flux-driven fractures (that are not49

buoyant) and conduct a series of experiments where a Newtonian fluid is injected into gelatine at50

a constant rate. We systematically vary Re by changing the viscosity of the injected fluid and its51

injection rate, achieving flows in the range O(10−3) ≤ Re ≤ O(102). Propagation velocities and52

internal fluid flow profiles are measured across a two-dimensional plane of the growing fracture53

for the full duration of the experiment. Our results showcase the complex fluid dynamics inside54

flux-driven fractures and the relationship with propagation velocities. A jet and recirculation is a55

universal feature of Newtonian flux-driven flows, yet there are key differences between viscous and56

inertial flow regimes. We discuss the physics behind this observed behavior and the implications57

for natural flux-driven fractures in glacial and magmatic settings.58

II. THEORETICAL FRAMEWORK59

In this section we present the relevant theoretical framework behind the experimental flux-60

driven fractures, particularly related to the internal fluid flow (the main focus of this study). We61
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consider the following simplifications: a single, vertical fracture is driven by a constant continuous62

flux; the host is an isotropic, non-porous, elastic solid; the injected fluid is Newtonian and non-63

buoyant; fractures are tensile, opening in the direction of the least compressive stress σ3. We adopt64

Linear Elastic Fracture Mechanics (LEFM)3,42, and assume that the solid resistance to fracture is65

characterized by the fracture toughness KC (Pa/m1/2). Fracture propagation occurs if the stress66

intensity K at the tip (a function of fluid pressure gradients) equals a critical value KC. We assume67

that KC is constant, although experiments suggest that KC may change with fracture length37.68

These simplifications are common assumptions in mathematical and numerical models of flux-69

driven fractures2,18,43,44.70

A. Equations of fluid motion71

Flux-driven fracture propagation requires the continuous injection of fluid as this provides a72

driving pressure gradient at the source, which is distributed to the fracture tips via fluid flow. The73

evolution of pressure and fluid flow are governed by the Navier-Stokes equations, consisting of the74

conservation of mass and momentum:75

∇ ·u= 0, (1)
76

ρ f
∂u

∂ t
+ρ fu ·∇u=−∇p+µ∇

2u. (2)

Here u = (ux,uz) is the fluid velocity, ρ f is the fluid density, p is the dynamic fluid pressure77

(i.e. excess of hydrostatic), t is time, and µ is dynamic viscosity. Along with suitable boundary78

conditions, Equations (1) and (2) describe incompressible, Newtonian flow inside a flux-driven79

fracture.80

1. Boundary conditions81

Injection of fluid can be expressed as a flux boundary condition:82

u ·n=
Q
A
, at the inlet, (3)

where n is the unit normal direction to the inlet flow, Q is the volumetric flux (m3/s) and A (m2)83

is the area of the inlet surface (I ). Q
A is the fluid injection velocity, also written as uin. Note that84

Equation 3 is equivalent to imposing a pressure gradient at the inlet.85

Fluid flow satisfies the no-slip condition:86
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u= utip, at the solid − f luid inter f ace, (4)

where utip is the velocity of the fracture tip.87

2. Fluid forces88

In the momentum equation (2), dynamic pressure gradients (units of force per unit volume,89

N/m3) are balanced with two forces, viscous (FV = (FV x,FV z) ) and inertial (FI = (FIx,FIz)):90

∇p = FI −FV (5)

FI = ρ f
∂u

∂ t
+ρ fu ·∇u, (6)

FV = µ∇
2u. (7)

In addition to driving fracture growth, the imposed pressure gradient due to fluid injection is also91

dissipated by viscous and inertial forces.92

B. Opposing pressure scales93

The forces that oppose fracture propagation can be represented by simple pressure scales2,37,41,43,44.94

Solid resistance to fracture is represented by the fracture pressure scale Pf :95

Pf ∼
KC

min(L,W )1/2 , (8)

where min(L,W ) is the minimum of the fracture length L and width W .96

The viscous pressure scale ∆PV represents the drop in pressure along the fracture due to viscous97

resistance:98

∆PV ∼ 3µuL
H2 , (9)

where µ is viscosity, H is the fracture thickness and u is the average internal velocity. This scal-99

ing (9) follows from the Navier-Stokes equations (1) (2) under lubrication theory assumptions:100

laminar, unidirectional flow with negligible inertia1,2,18,25.101

In high Re flows inertial effects are important and pressure is dissipated via fluid kinetic102

energy45. The inertial pressure scale ∆PI is derived through neglecting viscosity from the full103

equations of fluid motion. ∆PI represents the loss of fluid pressure to inertial forces:104

∆PI ∼
fDρ f u2L

2
, (10)
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where fD is a complex empirical function of the friction factor and fracture geometry5,46. Closures105

for (10) have been proposed for turbulent fracture flow5,26, yet there is very little focus on the106

transition from viscosity-dominated laminar flow and full turbulence46.107

C. Dimensionless numbers108

Flux-driven fractures propagate in different regimes according to the dominant resistive pro-109

cesses. Fractures in gelatine are expected to propagate in the toughness regime32,37, where the110

dominant opposing pressure scale is the fracture pressure PF . In the toughness regime, the solid111

fracture process uses more energy than fluid forces, yet the relative balance of internal inertial and112

viscous forces still influences the overall fracture dynamics17,47. Denoting the characteristic flow113

velocity with U and the characteristic length scale with L , the magnitude of the fluid force terms114

can be estimated as48:115

|FI|= |ρ fu ·∇u| ∼
ρ f U

2

L
(11)

|FV |= |µ∇
2u| ∼ µU

L 2 , (12)

The Reynolds number Re represents the ratio of inertial to viscous forces:116

Re =
|ρ fu ·∇u|
|µ∇2u|

=
ρ f U L

µ
. (13)

For fracture flows, L is the fracture thickness H, and U can be approximated as U ≈117

Q/WH41,49. This reduces Re to:118

Re0 =
ρ f Q
µW

. (14)

In the toughness regime, two dimensionless numbers describe the relative effects of viscous119

and inertial forces to the fracture resistance. These are known as the dimensionless viscosity µk120

and dimensionless inertia Rk:121

µk =
12µQ′

E ′

(
E ′

K′

)4

(15)

Rk =
ρ f E ′5/3Q′5/3

K′8/3t1/3 , (16)

where Q‘ = Q/W is the volumetric flux per unit width (m2/s) and122

E‘ =
E

1−ν2 , K‘ = 4
√

2/πKC, (17)
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where E is the Young’s modulus and ν is Poisson’s ratio. Note that Rk is a decreasing function123

of time, whilst µk is constant. Rk and µk were derived from an idealized, plane-strain, flux-driven124

fracture model that quantifies the coupled effects of fracture resistance, viscosity and inertia27. We125

expect µk and Rk to be small (< 1) in the toughness regime as fracture resistance dominates.126

III. METHODOLOGY127

Here we describe the experimental process in detail. We first provide an overview of the ex-128

perimental set-up and the materials used, followed by a description of the PIV method for mea-129

suring internal fracture velocities during propagation. We then provide details on post-processing130

the experimental data, including the calculation of representative fracture velocities, forces, and131

Reynolds numbers.132

A. Overview133

A series of experiments were conducted to establish the effect of Re on both the internal fluid134

dynamics and the overall propagation of flux-driven fractures. Each experiment consists of a New-135

tonian fluid being injected into a 40× 40× 25 cm3 volume of transparent, solid, elastic gelatine136

held in a clear Perspex tank. An initial, vertical, pre-cut of 3 cm length and 1 cm width is137

created in the centre of the base of the gelatine using a thin blade. The fluid is injected into the138

pre-cut using a needle with its tapered edge orientated parallel to the widest part of the pre-cut.139

The needle has an inlet diameter d of either 1 or 2 mm and an elliptical opening surface area A of140

either π ×1×3.5 mm2 or π ×2×4 mm2. The needle is connected to a fluid reservoir via 5 mm141

diameter tubing. A valve on the pipe and a small amount of petroleum jelly added to the end of142

the needle ensures all air is removed from the injection system prior to starting an experiment. A143

peristaltic pump then pushes fluid through the tube and into the gelatine at a known, constant rate,144

creating a flux-driven penny-shaped fracture that propagates vertically and erupts at the surface145

through a thin fissure. The pre-cut controls the fracture orientation, ensuring it grows vertically in146

the z direction and radially in the x− z plane, whilst pushing open the solid as a tensile fracture147

in the y− z plane (see Fig.1). Two-dimensional (2D) internal velocity profiles are measured in the148

x−z plane using a laser-based particle image velocimetry (PIV) system (see Sec. III C), controlled149

via LaVision’s DaVis 10 specialized laser imaging software50,51. The laser-imaging system and150
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experimental tank are all supported by a robust, connected metal frame that ensures experiment151

repeatability.152

B. Materials153

Different flow regimes were achieved by injecting Newtonian fluids with different viscosity154

but similar density: a high viscosity fluid (silicone oil, µ = 0.45 Pa s, ρ f = 998 kg/m3), and a155

low viscosity fluid (water, µ = 0.001 Pa s, ρ f = 998 kg/m3). The viscosity of silicone oil was156

determined with a series of rheometer tests at different temperatures, and the density was obtained157

using a 100 ml pycnometer.158

The solid, elastic gelatine had a concentration of 2.5 wt % and was prepared following the159

guidelines of Kavanagh et al.32,52, resulting in 1001.5 kg/m3 solid density32. Gelatine preparation160

involves mixing 1 kg of gelatine powder (260 Bloom, 10 mesh, pig-skin gelatine supplied by161

Gelita UK) with 39 kg of deionised water, resulting in a total liquid mass of 40 kg. Approximately162

half of the total amount of water was added hot (≈ 80 ◦C) to initially dissolve the gelatine, and163

the rest was added cold (≈ 7− 10 ◦C) directly in the tank. The liquid mixture was then covered164

in a thin layer of vegetable oil and covered with plastic wrapping. It was left to cool and solidify165

in a refrigerator for approximately 41-50 hours to obtain a Young’s modulus E in the range 3000-166

5000 Pa (note that the addition of cold water allowed for shorter solidification times than if using167

hot water only). E was measured immediately before running an experiment using the method of168

Kavanagh et al.52, which involves removing the surface oil and then applying different loads to the169

centre of the gel surface and measuring their deflections. Gelatine’s fracture toughness KC can be170

approximated as KC = 1.4
√

E52.171

C. The PIV system172

Planar PIV is used to measure horizontal and vertical fluid velocities inside the fracture in173

the x− z plane. The injected fluid is pre-seeded with Rhodamine B-coated tracer particles with174

diameters of dp = 20−50 µm and a particle density of dp = 1190 kg/m3. Calculations of Stokes175

settling velocity Ug, relaxation time τr, and Stokes number St suggest that these particles suitably176

trace the fluid streamlines (see Sec. I in the Supplementary Material). Successive images of these177

passive tracer particles are used to track fluid motion and compute velocities (see the videos in the178
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FIG. 1. Schematic of the experimental set-up depicting a growing flux-driven penny-shaped fracture being

illuminated with a laser sheet.

Supplementary Material). The PIV method53 divides each image into subdomains of a defined size179

(here either 32× 32 or 24× 24 pixels), and applies a statistical correlation technique to produce180

a single velocity vector per subdomain (with a calculation overlap of 75% between subdomains).181

The time interval between recorded images is chosen so that there is optimal particle displacement182

between successive images (of approximately 5 pixels51). PIV has been used to measure velocities183

in laboratory flows with a wide variety of geophysical applications32,54–58.184

The tracer particles are fluoresced with a sheet of light emitted from a Class 4 532nm Dou-185

blePulse Nd:YAG Litron laser (maximum energy 2x325 mJ), which illuminates the expected plane186

of fracture growth. Laser output is synchronized to an Imager SX 6M CCD camera facing the x−z187

plane, positioned perpendicular to the light sheet. The camera has a resolution of 2752×2200 pix-188

els and is used with a Zeiss 50mm f/1.4 lens with an aperture of f/5.6. The lens is fitted with a UV189

filter that blocks out short wavelengths and prevents reflections from the gelatine. Note that when190

measuring 2D flow, the light sheet should be as thin as possible to reduce out-of-plane motion191

effects. However, the fracture needs to remain within the sheet to ensure that the tracer particles192

are recorded (it is not guaranteed to be perfectly vertical). We used a 5mm-thick light sheet as a193

compromise between reducing potential three-dimensional (3D) effects and ensuring flow visual-194

ization. The laser is output through a -25mm convex cylindrical lens (from Edmund Optics Ltd).195
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Magnetic blockers (with an adjustable gap in the middle) positioned between the laser output and196

tank wall transform the laser light into a thin sheet, orientated along the centre of the tank (see197

Fig.1).198

Images are captured in either single-frame or double-frame mode53, depending on the expected199

magnitude of particle displacements (Tab. I). In single-frame mode, each image consists of a200

single frame that records the emission of two laser pulses with an exposure time of 42 µs. The201

shortest time interval that can be achieved between subsequent frames in single-frame mode is202

restricted by the maximum camera frame rate of 15 frames per second. However, double-frame203

recordings allow for shorter time intervals. In double-frame mode, each image is composed of204

two frames separated by an interval ∆t, which is achieved via control of the camera shutter. This205

also defines the separation between the two laser pulses, so that the first frame captures the first206

emission, and the second frame captures the second pulse. The exposure of the first frame is207

defined by ∆t, whereas the exposure of the second frame cannot be controlled and may capture208

more ambient light. For this reason, double-frame recordings are performed with the overhead209

room lights turned off. The recording settings for each experiment are provided in Tab. I in the210

Supplementary Material.211

Prior to running an experiment, the camera is first focused on fluoresced particles in a tank212

full of seeded water, with the laser and camera in position. A calibration procedure is then per-213

formed (within the Davis software) where images are taken of a calibration board positioned in214

the imaging plane. Pixels are automatically converted to material coordinates in subsequent DaVis215

operations. The calibration procedure is conducted prior to running an experiment, and requires216

that the camera and laser positions are kept at a fixed position relative to the tank and imaging217

plane – this is ensured via the supportive frame.218

D. Data processing219

1. Post-processing PIV data220

Erroneous PIV velocity vectors were removed in ‘Vector Post-Processing’ in DaVis50 accord-221

ing to a threshold set by the correlation value rc (the degree of confidence in the statistical corre-222

lation procedure). A threshold of rc = 0.2 eliminated vectors lying outside of the seeded fracture223

flow.224
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Velocity data were exported from DaVis as a series of csv files (one for each time step), con-225

taining the velocity components ux,uz and the corresponding spatial coordinates x,z. All further226

analysis was performed in Matlab59. Data were imported using the readtable function, and each227

variable was converted to a 2D grid and processed with median filtering and Gaussian smoothing228

functions (medfilt2 and smoothdata). Velocity data collected in single-frame mode were time229

averaged over an interval representing 5% of the experimental duration, resulting in an averaged230

velocity profile and standard deviation. Double-frame velocity data were not time averaged due to231

the time separation between two successive images being greater than 5%. All processing scripts232

are available in an accompanying data publication60.233

2. Tracking fracture geometry234

The fracture outline was extracted from the raw images by cropping around the illuminated235

particles. Images were first converted to binary using im2bw (from the Image Processing236

Toolbox61), and an appropriate pixel intensity threshold is selected to distinguish black from237

white. The binary image was reduced in size and outliers removed, before applying the rangesearch238

function (in the Statistics and Machine Learning Toolbox62) to remove individual pixels239

with fewer than a specified number of neighbours. The boundary function is applied to detect240

the bounding shape of the reduced set of pixels, which is then converted to material coordinates.241

An ellipse was fitted to the boundary points (with function fitellipse63). Fracture length L and242

width W were calculated from the length and width of the fitted ellipse at its centre point.243

3. Representative velocities244

Different representative velocities are used to characterize the fracture at a given time, includ-245

ing tip velocities and internal flow velocities. Tip velocities consist of the fracture propagation rate246

in the vertical and horizontal directions – utip and uW respectively. Representative flow velocities247

include the spatially-averaged mean velocity umean, a representative jet velocity u jet , a representa-248

tive downwards velocity udown, and a circulation velocity41 ucirc. The latter represents the degree249

of internal flow circulation: ucirc = (u jet − udown)/u jet . A value of ucirc = 1 means that there is250

zero downwards flow and no circulation, whilst ucirc = 2 corresponds to the downwards velocity251

being of equal magnitude to the upwards velocity, indicating strong circulation.252
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To obtain values for u jet , vectors within the jet region were systematically cropped in each253

experiment and averaged in this area (within the 65-90 percentile range); a comparison with full254

velocity contours confirms that this method gives a velocity value that is representative of the255

jet. A similar method was applied to get udown, where the data were instead cropped near the256

lateral fracture margins, and filtered according to uz < 0. Tip velocities utip = dL/dt and uW =257

dW/dt were calculated by first fitting third-order polynomials to the temporal evolution of L and258

W , before integration over t. Error terms for u jet , umean and udown were calculated using the259

corresponding velocity standard deviation terms (note that these errors could be obtained for the260

non-time-averaged double-frame experiments W2-W4). Errors for utip and uW were approximated261

by considering the difference between the temporal geometry data (L,W ) and their fitted curves.262

4. Calculating fluid forces and pressure scales263

For each experiment, the viscous and inertial forces (7) can be calculated using the measured264

velocity data ui, j. Here, ui, j denotes a single PIV grid measurement where indices i and j represent265

the spatial location in the x and z directions respectively. Adjacent grid points are separated by a266

constant distance ∆x in both directions. Two adjacent points are denoted by ui, j and ui+1, j in the267

x axis, and ui, j and ui, j+1 in the z axis. First and second order velocity derivatives are calculated268

using a finite difference method64, and substituted into (7) to obtain approximations of inertial and269

viscous forces at a given time. These forces have a horizontal and vertical component (in 2D),270

such that Fv = (FV x,FV z) and FI = (FIx,FIz). The numerical (finite difference) approximations of271

the force terms (denoted with a ˆ notation) are defined as:272

F̂V xi, j ≈
µ

∆x2

(
uxi−1, j +uxi+1, j +uxi, j−1 +uxi, j+1 −4uxi, j

)
, (18)

F̂V zi, j ≈
µ

∆x2

(
uzi−1, j +uzi+1, j +uzi, j−1 +uzi, j+1 −4uzi, j

)
, (19)

F̂Ixi, j ≈ ρ f
∂uxi, j

∂ t
+

ρ f

∆x

(
uxi, j

(
uxi+1, j −uxi, j

)
+uzi, j

(
uxi, j+1 −uxi, j

))
, (20)

F̂Izi, j ≈ ρ f
∂uzi, j

∂ t
+

ρ f

∆x

(
uxi, j

(
uzi+1, j −uzi, j

)
+uzi, j

(
uzi, j+1 −uzi, j

))
. (21)

These terms are spatially-averaged across the full fracture profile to approximate the average273
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(absolute) forces (viscous F̄V and inertial F̄I) at a given time:274

|F̄V |=
1

N −1

N−1

∑
i=2

|F̂Vi, j| (22)

|F̄I|=
1

N −1

N−1

∑
i=2

|F̂Ii, j|, (23)

where N is the total number of grid points and |F̂Vi, j| and |F̂Ii, j| denote the modulus of the numer-275

ical viscous and inertial force terms at a single point.276

Estimates of the viscous and inertial pressure scales are then obtained by multiplying the aver-277

age force by the fracture length:278

ˆ∆PV ≈ |F̄V |L (24)

ˆ∆PI ≈ |F̄I|L. (25)

E. Reynolds number calculations279

The Reynolds number summarizes the bulk flow behavior as a single parameter, yet in reality280

flow can be spatially and temporally variable, with a range of characteristic velocity and length281

scales. In addition to Re0 =
ρ f Q
µW (14), we explore several alternative Reynolds numbers using282

different characteristic velocities and length scales, that may potentially better represent the force283

balance during fracture flow. We define four alternative Reynolds numbers: 1) the inlet Reynolds284

number, Rein, 2) the tip Reynolds number, Retip, 3) the jet Reynolds number, and 4) Re jet , and the285

mean Reynolds number Remean. The flow at the source of fluid injection is characterized by Rein,286

and is known prior to running an experiment. Flow Reynolds numbers Retip, Re jet and Remean287

represent the internal flow during fracture propagation, and require measured velocity values (see288

Sec. III D 3).289

1. Inlet Reynolds number, Rein290

Rein represents the fluid force balance at the inlet, and does not require any information about291

the fracture flow or geometry. This is defined as:292

Rein =
ρ f uind

µ
. (26)
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2. Tip Reynolds number, Retip293

Retip uses the vertical fracture tip velocity utip as the characteristic velocity scale, and H as the294

length scale:295

Retip =
ρ f utipb

µ
. (27)

3. Jet Reynolds number, Re jet296

Re jet represents the internal flow behavior, with the characteristic velocity defined as the jet297

velocity u jet :298

Re jet =
ρ f u jetb

µ
. (28)

4. Mean Reynolds number, Remean299

Remean also represents the internal flow, but instead uses the mean internal velocity umean as the300

characteristic value:301

Remean =
ρ f umeanb

µ
. (29)

5. Fracture thickness measurements H302

The fracture thickness H is required to calculate the representative flow Reynolds numbers,303

Re0, Remean, Re jet , Retip. We conducted experiments to approximate H for low-viscosity, water304

fractures and high-viscosity silicone oil fractures respectively. The fracture evolution was instead305

recorded in the y− z plane, either using a seeded fluid or a seeded gelatine (with no fluid seeding,306

see Sec. III in the Supplementary Material). The representative thickness was approximated via307

manual image inspection within the DaVis software.308

IV. RESULTS309

In total, eleven experiments were completed with Rein ranging from 0.009 to 633 (Tab. I). All310

experiments produced a broadly penny-shaped fluid-filled crack that grew and eventually erupted311

at the surface. Nine experiments measured fluid velocities in the x− z plane (five silicon oil (S)312

and four water (W) injections) and two experiments measured a representative H for the different313
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fluid injections (one for silicone oil (SH), and one for water (WH)) (see Tab. II). All silicone oil314

injections have Rein < 1, whilst the water injections all have Rein > 1. The fracture thickness H315

varies with height, and measurements of H may be affected by optical distortions related to out-of-316

plane fracture growth and mismatching refractive indices between the fluid and gelatine (see Sec. II317

in the Supplementary Material). We therefore report a conservative range of H values: H ≈ 3−5318

mm for water, and H ≈ 7− 15 mm for silicone oil (S experiments have a high refractive index319

mismatch and a larger error margin, as a closer refractive index matching leads to more accurate320

measurements). These variations in H have a minor effect on the overall change in Reynolds321

number, and the average H value was used in Re calculations.322

In the following sections we present the fluid flow profiles, temporal fracture evolution, and323

governing force balance results. Note that in these descriptions our main focus is the developed324

flow pattern (the initial flow development is presented in Fig. 3 in the Supplementary Material).325

To allow for a direct comparison between different experiments, time is normalized as t∗ = (t −326

t0)/terupt , where t0 is the time when L = 10 cm and terupt is the time interval between t0 (t∗ = 0)327

and fluid eruption (t∗ = 1).328

A. Flow profiles — central jet and recirculation329

Every experiment produced a high-velocity central jet that increased in width with height, be-330

fore transitioning to a recirculating flow on either side of the jet, around two stagnant points (Fig. 2,331

t∗ = 0.5). There is a strong spatial velocity variation, with u jet being the most dominant character-332

istic flow velocity and ranging from 0.379 to 236 mm/s across all experiments (Tab. II, t∗ = 0.5).333

u jet is at least one order of magnitude greater than the tip velocities in every experiment (which334

range from 0.021 to 3.676 mm/s at t∗ = 0.5).335

Whilst all experiments have the same overall pattern of a jet and recirculating flow, there are336

some clear differences between the Rein < 1 and Rein > 1 experiments (Figs. 2 and 3). In the337

Rein < 1 experiments (S1-S5), flow is mostly localized in the central jet region, and the downward338

flow velocities are significantly lower than in the jet. In these experiments, the jet terminates339

prior to reaching the vertical fracture tip, and an increase in Rein correlates with a decrease in the340

jet height. Conversely, in all Rein > 1 experiments (W1-W4) the jet reaches the vertical fracture341

tip and recirculates along the upper boundary, distributing high velocities throughout the fracture342

profile. An increase in Rein leads to a stronger degree of downwards flow and recirculation.343
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TABLE I. Solid and fluid material parameters for experiments S1-5 and SH (injecting silicone oil), ex-

periments W1-W4 and WH (injecting water). Young’s modulus E (Pa), gelatine concentration cg (wt%),

volumetric flux Q (m3/s), fluid viscosity (µ), fluid density ρ f (kg/m3), inlet diameter d (mm), thickness H

(mm) (including range and associated experiment), inlet Reynolds number Rein.

E Q µ ρ f d H Rein

S1 4337 4.37×10−8 0.450 998 1 11.5 (7-15, SH) 0.009

S2 4098 7.20×10−8 0.450 998 1 11.5 (7-15, SH) 0.015

S3 4170 1.34×10−7 0.450 998 1 11.5 (7-15, SH) 0.027

S4 4506 2.60×10−7 0.450 998 2 11.5 (7-15, SH) 0.046

S5 4214 4.07×10−7 0.450 998 1 11.5 (7-15, SH) 0.092

W1 4309 4.68×10−7 0.001 998 1 4 (3-5, WH) 36.650

W2 2593 3.15×10−6 0.001 998 2 4 (3-5, WH) 250.088

W3 3591 6.97×10−6 0.001 998 1 4 (3-5, WH) 633.005

W4 2278 6.97×10−6 0.001 998 1 4 (3-5, WH) 633.005

SH 3946 4.07×10−7 0.450 998 1 11.5 (7-15) 0.092

WH 3591 6.97×10−6 0.001 998 1 4 (3-5) 633.005

Along the central jet region, all experiments show an increase in velocity with height up to344

the normalized location of the velocity maximum, ẑmax. Above ẑmax, the velocity decreases with345

height as it approaches utip (Fig. 3A, t∗ = 0.5). All Rein < 1 experiments have a particularly steep346

velocity increase up to ẑmax, which decreases from approximately 0.4 to 0.1 for experiments S1 to347

S5 respectively, thus indicating the decrease in the jet height with increasing Rein for Rein < 1. As348

the Rein > 1 experiments have a longer jet than the Rein < 1 experiments, their velocity maximum349

is higher at ẑmax ≈ 0.5 and the profiles are more or less symmetric about ẑmax. (for all Rein > 1350

experiments).351

The normalized horizontal velocity line profiles highlight the focused flow around the jet region352

— which has the same relative thickness for all experiments — and the local velocity minima on353

either side. They collapse onto one another in the central jet region at t∗ = 0.5 (Fig. 3B). The354

secondary velocity peaks represent the downwards circulating flow, which is significantly stronger355

for Rein > 1. Whilst the central jet velocity dominates the flow in all experiments, W3 and W4356
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TABLE II. Flux-driven fracture thickness and characteristic velocity results for each experiment, at a di-

mensionless time of t∗ = 0.5: inlet velocity uin (mm/s), thickness H (mm) (including range and associ-

ated experiment), vertical tip velocity utip (mm/s), horizontal tip velocity uW (mm/s), mean velocity umean

(mm/s), jet velocity u jet (mm/s), downflow velocity udown (mm/s), ∂umean
∂ t (mm/s2), ∂u jet

∂ t (mm/s2).

uin utip uW umean u jet udown
∂umean

∂ t
∂u jet

∂ t

S1 3.975 0.023 0.021 0.050 0.379 -0.053 6.6×10−7 4.4×10−5

S2 6.551 0.040 0.023 0.084 0.686 -0.088 5.7×10−7 5.3×10−5

S3 12.209 0.076 0.054 0.124 1.229 -0.119 5.8×10−6 3.3×10−4

S4 10.347 0.258 0.308 0.247 1.925 -0.183 3.3×10−4 0.0032

S5 41.430 0.147 0.182 0.233 1.591 -0.106 1.1×10−4 6.6×10−4

W1 36.724 0.236 0.171 2.432 6.907 -2.573 5.5×10−4 -0.0042

W2 125.295 1.418 1.480 30.601 135.641 -58.565 0.052 -0.19

W3 634.273 2.539 2.929 108.404 211.867 -153.974 -0.60 1.36

W4 634.273 3.676 3.517 82.717 235.844 -124.827 -1.49 -0.80

reach particularly high downwards velocities of around 60% of the maximum value.357

B. Characteristic velocities358

Characteristic flow velocities (u jet ,udown,umean) are nonlinear functions of Q, exhibiting a359

unique relationship for the two sets of experiments Rein < 1 and Rein > 1. In both cases, internal360

velocities initially increase with Q, before appearing to reach a limiting value. This is in contrast361

to the vertical tip velocity utip, which is a linear function of Q (Fig. 4, t∗ = 0.5). The approximate362

inlet velocity uin does not increase linearly with Q for all experiments due to differences in the size363

of the injection needle. However, when comparing uin and utip, it’s clear that utip is less than 1%364

of uin at any given time (see Tab. II, and Fig. 2 in the Supplementary Material). Although utip is a365

linear function of Q overall, S4 has greater tip velocities than S5 at all times (Fig. 5A,B), despite366

having a lower Q. S4 contained a trapped air bubble at the fracture tip, which we interpret to have367

enhanced its overall propagation rate.368

When Rein < 1, umean and |udown| have similar values to utip, which all lie in the range 0.02−369

0.25 mm/s (Fig. 4 and Tab. II). The simple velocity approximation Q/WH is also very similar370
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S1 S2 S3 

W1 W2 W3 

Rein = 0.008 Rein = 0.015 Rein = 0.027 Rein = 0.092 

S5 

Rein = 36.650 Rein = 633.005 

W4 

Rein = 250.088 Rein = 633.005 

FIG. 2. Filled contours of velocity magnitude (mm/s) and vectors of flow direction (black arrows) for flux-

driven fracture experiments, at a normalized time of t∗ = 0.5. Four of the high-viscosity Rein < 1 silicone

oil experiments (S1-S3,S5) are shown on the top row, and the low-viscosity Rein > 1 experiments (W1-W4)

are on the bottom row. For each row, the experiments are ordered in terms of increasing Q and Rein. The

vectors show the flow direction, and their size represents the velocity magnitude, scaled up by a factor of

two. Only every third vector is plotted (horizontally and vertically), whilst the filled contours show the full

resolution of the flow velocity magnitude.

to utip, umean and udown. When Rein > 1, umean and udown are significantly closer in value to u jet371

than utip. The simple velocity approximation Q/WH is larger than utip when Rein > 1, but still372

significantly under-predicts the mean internal flow.373

C. Temporal evolution of characteristic velocities374

Overall, all experiments exhibit a similar pattern in terms of the temporal behavior of different375

characteristic velocities (Fig. 5). The nine experiments have a widely dispersed range of fracture376

tip velocities in the vertical (utip) and horizontal (uW ) directions (Fig. 5A and 5B), however, when377

normalized they show consistent behavior. In all cases, utip initially decreases, then reaches a378

short-lived state of steady propagation around t∗ = 0.5 (Fig. 5C) and finally increases to eruption.379

In contrast, uW decreases rapidly until near-eruption when it approaches a steady value (Fig. 5D).380

In the initial stage of propagation, utip/uW < 1 for all experiments except S4 (Fig. 5E). The two381

velocities then approach one another (at a different t∗ value for each experiment), after which utip382
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A 

B Rein < 1 Rein > 1 

Rein < 1 Rein > 1 

FIG. 3. Normalized velocity magnitude profiles at t∗ = 0.5: (A) along the central vertical line above the

injector and (B) along a horizontal line 60 mm above the injector, for silicon oil (S1-S5, Rein < 1) and water

(W1-W4, Rein > 1) experiments. Height has been normalized so that ẑ = 0 is just above the injector, and

ẑ= 1 is the tip location. In the vertical profiles, the pentagon denotes the fracture tip velocity. The horizontal

distance has been normalized so that the x̂ = 0 corresponds to the location of the maximum velocity and the

horizontal extent is between x̂ =±1.

FIG. 4. Characteristic fracture velocities (tip velocity utip, jet velocity u jet , absolute downwards velocity

|udown|, mean velocity umean, mm/s) relative to the volumetric flux Q (mm3/s) at a dimensionless time of

t∗ = 0.5. Experiments with Rein < 1 are shown in purple, and Rein > 1 experiments are shown in green.

The line of best fit between utip and Q is shown for all experiments (utip = 6.4×10−4 Q).
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A B C D 

E F G H 

Rein < 1 

t* t* t* t* 

t* t* t* t* 

Rein > 1 

FIG. 5. Evolution of characteristic fracture velocities (purple = silicon oil, green = water) with normal-

ized time t∗. A) Fracture tip velocity in the vertical direction , utip, B) Velocity of crack breadth increase

(horizontal tip velocity, uW ) , C) Normalized utip (according to utip50, the mean velocity at t∗ = 0.5), D)

Normalized uW (according to uW50, the mean horizontal tip velocity at t∗ = 0.5, E) Ratio of vertical to hori-

zontal tip propagation velocities (utip/uW ), F) Internal jet flow velocities (from PIV) u jet , G) Mean absolute

velocities (from PIV) umean, and H) Flow circulation velocities (from PIV) ucirc = (u jet −udown)/u jet , where

ucirc = 2 indicates strong circulation.

significantly exceeds uW up until eruption.383

Compared to temporal variations in tip velocities, temporal variations in internal velocities384

are generally insignificant (Fig. 5F,G, Tab. II). Depending on the experiment, umean and u jet are385

either approximately constant in time (e.g. S1 and S2 where ∂u jet/∂ t O(10−7) and S2 ), or vary386

slowly in time (e.g. S4 where ∂u jet/∂ t ≈ 0.0032 mm2/s). Accelerations were approximated as387

the gradient of the linear curve fitted to the temporal velocity data plotted in Fig. 5F,G (reported in388

Tab. II).389
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TABLE III. Characteristic Reynolds numbers for each experiment: Rein, Re0, Retip, Remean, Re jet

Rein Re0 Retip Remean Re jet

S1 0.009 6.05×10−4 5.91×10−4 0.001 0.010

S2 0.015 9.70×10−4 9.93×10−4 0.002 0.017

S3 0.027 0.002 0.002 0.004 0.030

S4 0.046 0.004 0.007 0.007 0.048

S5 0.092 0.006 0.004 0.006 0.039

W1 36.65 2.401 0.973 9.964 28.680

W2 250.088 19.991 6.541 131.081 549.470

W3 633.005 38.205 10.284 439.670 845.773

W4 633.005 46.563 17.713 339.39 941.492

Experiments with Rein > 1 (W experiments) exhibit a strong initial degree of circulation (ucirc ≈390

2, and ucirc > 2) that decreases in intensity over time (Fig. 5H). In the early stages of experiment391

W3, ucirc > 2 and the downwards flow is faster than the jet flow. When Rein < 1 (S experiments),392

ucirc is small for the entire duration of the experiment (with a maximum value of 1.1 to 1.2 in the393

early stages that very gradually decreases over time)394

D. Force balance during fracture propagation395

Re jet is consistently higher than the alternative Re definitions (Tab. III), as u jet is the largest396

characteristic velocity (Tab. II). Re jet is most similar to Rein, despite uin being significantly greater397

than u jet (Tab. II). In all experiments, Retip is one order of magnitude smaller than Re jet and Rein,398

reflecting the small utip values compared to u jet (Fig. 4). When Rein < 1, Remean is very similar to399

Retip. Conversely, when Rein > 1, Remean is the same order of magnitude as Re jet and Rein. When400

Rein < 1, Retip, Re jet and Remean reach limiting values (all < 0.05) with increasing Rein. When401

Rein > 1, Retip, Re jet and Remean do not (yet) reach a limiting value with increasing Rein.402

Variations of the mean viscous and inertial forces (|F̄V | and |F̄I|, see Equation (7)) with respect403

to Rein are shown in Fig. 7. As expected, viscous forces dominate over inertial when Rein < 1404

(|F̄V |> |F̄I|), and conversely, inertial forces dominate over viscous when Rein > 1 (|F̄I|> |F̄V |).405

When Rein ≪ 1, |F̄V | scales linearly with increasing Rein, whilst |F̄I| scales with Re2
in. At the406
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FIG. 6. The relationship between alternative flow Reynolds number (Retip (blue squares), Re jet (pink trian-

gles) and Remean (yellow stars)) and the inlet Reynolds number, Rein. The dashed line depicts Rein, and the

solid lines show Re = 1. All calculations are made using velocity measurements at t∗ = 0.5. Error bars are

shown, which incorporate the error from velocity and H measurements.

highest Rein value less than one (experiment S5), |F̄V | and |F̄I| deviate from this pattern. Naturally,407

for Rein ≈ 1, the two forces are expected to be of similar magnitude. Therefore, in the transitional408

region between Rein < 1 and Rein > 1, curves of |F̄V | and |F̄I| will cross over — |F̄V | decreases,409

whilst |F̄I| continues to increase. However, there are not enough data points in this region to410

determine how the forces behave during the transition. When Rein ≫ 1, |F̄V | and |F̄I| scale linearly411

with Rein. At the lowest Rein value greater than one (experiment W1), |F̄I| and |F̄V | deviate from412

the linear scaling law.413

The fracture pressure Pf is the largest resistive pressure in all experiments, which decreases with414

time (Fig. 8, showing S3 and W4 as representative low and high Rein experiments respectively).415

The viscous pressure drop ˆ∆PV (approximated numerically, Equation (24)) has a similar magnitude416

for S3 and W4, despite these experiments having very different Rein values. For S3 (Rein = 0.027),417

the lubrication theory approximation of the viscous pressure drop (∆PV , Equation (9)) is similar418

to the numerical profile, and both increase with t∗ (and L). For W4 (Rein = 633.005), ∆PV is con-419

siderably larger than ˆ∆PV , which remains approximately constant over time. The inertial pressure420

drop ˆ∆PI (Equation (25)) is negligible for experiment S3, yet it is of the same order of magnitude421

as Pf in W4. Before t∗ = 0.5, ˆ∆PI increases slightly in W4 before decreasing after this (at a faster422

rate then Pf ).423
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FIG. 7. Mean fluid forces (inertial |F̄I| (filled circles) and viscous |F̄V | (empty circles)) as a function of

Rein, at a dimensionless time of t∗ = 0.5. The error bars represent one standard deviation from the mean

(across the full 2D fracture profile). Lines indicate the power law scaling (linear or quadratic) of the forces

with respect to Rein.

FIG. 8. Resistive pressure scales against dimensionless time t∗, for representative experiments S3 (Rein =

0.027) and W4 (Rein = 633.005). Numerical approximations of viscous ˆ∆PV and inertial ˆ∆PI pressure drops

are depicted by blue circles and pink stars respectively. The fracture Pf is shown by yellow squares, and the

blue dashed line represents the viscous pressure scale derived from lubrication theory (∆PV ).
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V. DISCUSSION424

A. Self-similar flow in flux-driven fractures: central jet and recirculating zones425

Our experiments show that a central, localized jet and recirculating flow are consistent features426

of Newtonian, flux-driven fractures for a wide range of inlet Reynolds numbers (0.009 ≤ Rein ≤427

633) and internal flow velocities (0.3 ≤ u jet ≤ 235 mm/s). Similar flux-driven fracture experi-428

ments to ours (injecting a Newtonian fluid into gelatine) have been shown to exhibit the same flow429

structure, with a narrow range of internal flow velocities (u jet ≈ 5− 10 mm/s)32,40,41. This char-430

acteristic flow pattern also occurs in different jet flow problems, as first shown in the pioneering431

experiments of Zauner (1985)65 where fluid was injected into a tank filled with the same fluid. The432

resultant jets increased in thickness with height due to entrainment from the outer flow (which we433

also observe). For low Re (Re ≈ 10), the jet terminated at a finite distance from the injector and434

transitioned into regions of re-circulatory flow (also known as viscous toroidal eddies65). Using435

asymptotic analyis on jets with Re > 1, Schneider (1985)66 showed that momentum flux decays436

with increasing distance from the injector, primarily due to convection at the interface between the437

jet and the outer flow (i.e. momentum within the jet is transferred the outer flow). This analysis438

suggested that viscous stresses do not contribute to the momentum flux decay, and showed that439

jet termination and re-circulatory flow is induced when the momentum flux becomes very small.440

Further examples of where this flow pattern occurs are inside a balloon being inflated with air67,68,441

and in the ‘stable, recirculatory flow’ stage of cavity formation in a porous soil due to an increasing442

flow rate69,70. Here, we explain why our experiments exhibit this characteristic flow pattern.443

In flux-driven fractures, fluid is injected at a higher rate than the fracture can propagate444

(Tab. IV). The resultant flow is a complex coupling of a jet flow and a solid-fluid boundary445

problem, where viscous effects are fundamental. Viscous forces are proportional to velocity gra-446

dients ((7)), so that viscous effects are always important in shear layers, even when viscosity is447

negligible in the main flow71. Shear layers comprise localized regions of rotating fluid elements,448

aka vorticity ω = ∇×u. For a 2D flow, ω = (0,0,ω) has one non-zero component:449

ω =
∂uz

∂x
− ∂ux

∂ z
. (30)

Inertial forces convect vorticity towards shearing boundary layers, whereas viscous forces act to450

diffuse vorticity away from these boundaries. Diffusive viscous flow at boundary layers controls451

the dynamics in the main flow71.452
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S1 

W1 

S5 

W4 

Rein = 633.005 Rein = 36.650 

Rein = 0.008 Rein = 0.092 

Rein > 1 

Rein < 1 A 

B 

FIG. 9. Filled contours of vorticity (1/s) at a normalized time of t∗ = 0.5 for A) low Rein experiments S1

and S5 and B) high Rein experiments W1 and W4. Velocity gradients were calculated according to the finite

difference method64.

In our experiments, measured velocity profiles show that there are two regions of high shear453

where the fluid velocity rapidly changes value: at the interface between the jet and the main454

flow, and the no-slip boundary (Figs. 2,3). Localized vorticity is created at the jet margins and455

convected with the flow, where the degree of convection depends on Rein (Fig. 9). Combined with456

the integral no-slip condition at the solid fracture boundary66, viscous diffusion of vorticity from457

the main jet leads to a recirculating vortex on either side of it. The relative strengths of convection458

and diffusion of vorticity vary with Rein, and lead to variations of the characteristic flow pattern459

(see Sec. V C). In summary, the characteristic jet and recirculating flow pattern is controlled460

by viscous shear layers, and we propose that this is a consistent feature of Newtonian flux-driven461

fractures. We expect that this flow pattern is unique to flux-driven Newtonian fractures: buoyancy-462

driven fractures can achieve greater tip velocities and exhibit unidirectional flow profiles41, and463

non-Newtonian fluids have a shear rate-dependent viscosity that would likely result in markedly464

different flow patterns.465
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FIG. 10. Filled contours of local flow Reynolds numbers for experiments S3 (Rein = 0.027) and W3 (Rein =

633.005), at a normalized time of t∗ = 0.5. Local Re values were obtained at each measurement point

throughout the 2D fracture profile, using the local velocity magnitude |u| and constant values of ρ f , µ and

H.

B. Characteristic Reynolds numbers of fracture flow466

Fluid velocity in a flux-driven fracture is strongly spatially variable, which challenges the mean-467

ing of assigning a single Reynolds number to characterize fracture flow. The Reynolds number468

varies locally — this is highlighted by the range in alternative Re values for a single experiment469

(Fig. 6), and also by profiles of local Reynolds numbers. Fig. 10 exhibits filled contours of local470

Re for experiments S3 (Rein < 1) and W3 (Rein > 1), showing the range of different flow regimes471

that can arize within a single fracture at a snapshot in time. In experiment S3, local Re reaches472

0.04 in the jet, yet is of the order 10−3 throughout the majority of the profile (outside the jet). This473

is reflected in the alternative characteristic Re definitions (for S3), where Re jet = 0.03 is signifi-474

cantly higher than Remean = 0.004 (Tab. III). Conversely, W4 has high local Re values throughout475

the fracture profile, and Re jet(≈ 845) is much closer in value to Remean(≈ 440). Although the Re476

distribution is relatively uniform in W4, local Re contours also show spatial variation. Regions of477

both Re > 1000 (in the jet) and Re < 1000 potentially indicate simultaneous turbulent and laminar478

regimes.479

Although Re varies locally (Fig. 10), it remains useful to characterize internal fracture flow480

with a single Reynolds number estimate. Remean =
ρ f wumean

µ
characterizes the overall flow well481

for both Rein < 1 and Rein > 1. When Rein < 1, the high-velocity (and high Re) jet region is482

concentrated to a relatively small area. Momentum flux near the fluid inlet is rapidly dissipated,483

and Remean is significantly smaller than Rein and Re jet . Remean is in fact approximately equal to484

Retip and Re0 (Fig. 6 and Tab. III). When Rein > 1, momentum flux is distributed throughout485

the fracture, and Remean is of a similar value to Rein and Re jet . In practical applications, utip486
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 10-3 < Re <10-1 

viscous  inertial  transitional  

101 < Re <103 
Re ≥103 

? 

turbulent  

? 

 10-1 < Re <101 

increasing Re 

FIG. 11. Flow streamlines showing the different patterns that occur for different flow regimes (at dimen-

sionless time t∗ = 0.5), based on the inlet Reynolds number. From left to right, these streamlines represent

experiments S1, S5, W3 and W5. Each fracture shape has been normalized by its the maximum length and

breadth. Streamlines were generated using the Matlab59 streamlines function.

and uin can be measured15,72,73 whereas internal fluid velocities umean and u jet cannot. Therefore,487

we propose that Retip or Re0 provides an appropriate characteristic Reynolds number for slow,488

viscosity-dominated fractures whilst Rein is more appropriate for fractures with important inertial489

effects. Note that calculating Rein also requires knowledge of the area of the injection source –490

this is straightforward in analogue experiments, but not necessarily in nature.491

C. Flow regimes in flux-driven fractures492

We propose that flux-driven fracture flow can be split into four regimes (Fig. 11) according493

to the inlet Reynolds number: viscous (Rein < 10−1), transitional (10−1 ≤ Rein ≤ 101), inertial494

(101 < Rein < 103) and turbulent (Rein ≥ 1000)). These regimes have been identified based on495

internal flow patterns and the behaviour of average fluid forces across the Rein range. Whilst496

fracture flow is characterized by a localized jet and recirculation, our experiments show that this497

pattern can vary significantly within the range 0.009 ≤ Rein ≤ 633. However, our experiments do498

not cover the range 0.1 ≤ Rein ≤ 37 — which is where we suggest a transitional regime between499

viscous and inertia dominated flow exists. The dynamics of flux-driven fracture flow in transitional500

and turbulent regimes have proved challenging to explore experimentally and therefore should be501

the subject of future research.502
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1. Viscous regime503

In the viscous regime (Rein < 0.1), the jet always terminates before reaching the vertical fracture504

tip. Increasing Rein leads to shorter jets with higher velocities near the inlet (Figs. 2,3A), and505

a higher magnitude of vorticity over a smaller region (Fig. 9). Viscous diffusion of vorticity506

also reduces, and the recirculatory zones become smaller yet more intense (i.e. contain higher507

velocities and vorticity) with increasing Rein (Fig. 11). A decrease in jet height with increasing508

Re is the opposite of what occurs for unconfined jets in a fluid tank with no upper boundary65, for509

Re > 1. Those jets decrease in height with decreasing Re, as more momentum is dissipated by510

viscous forces.511

Viscous forces are greater than inertial forces and scale linearly with Rein initially, whilst in-512

ertial forces increase at a faster rate and scale with Re2
in (Fig. 7). This is expected from simple513

order of magnitude estimates of the fluid force terms (see Equations (11) and (12)), where |F̄V |514

scale with characteristic velocity U and |F̄I| scales with U 2 (note that the Reynolds number rep-515

resents a velocity scale). Higher inertial forces lead to higher velocities and vorticity in the jet,516

yet the simultaneous increase in viscous forces inhibits the jet from increasing in length. As Rein517

approaches unity, the increase in both |F̄I| and |F̄V | slows down, indicating that the flow is near518

the onset of the transitional regime.519

2. Inertial regime520

For 101 < Rein < 103, the jets do not terminate prior to reaching the upper solid boundary521

(Fig. 3A). Vorticity is convected with the jet flow and along the fracture margins (Fig. 9). For the522

highest Rein = 633 (experiments W3 and W4), convection of vorticity towards the solid boundary523

dominates over viscous diffusion away from it, and a layer of high vorticity is confined to the entire524

fracture boundary. This leads to flow circulation throughout the entire fracture. With decreasing525

Rein, vorticity is convected some distance along the upper fracture boundary before the flow loses526

momentum and vorticity is diffused from the boundary into the main flow. This results in vortices527

that are located closer to the upper fracture tip (as opposed to Rein < 1 where the vortices are528

located near the injector Fig. 11). Based on numerical simulations of an air-inflated balloon, it is529

expected that at higher Re, each vortex will split into multiple smaller scale vortices68. However,530

this pattern would be altered significantly by turbulent flow.531
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Scaling arguments (see Equations (11) and (12)) suggest that |F̄I| should increase with the532

square of the velocity (and therefore the Reynolds number). Whilst this is observed within the533

viscous regime, when Rein > 1 inertial forces increase linearly with Rein (Fig 7). Unlike in the534

viscous regime where velocities vary smoothly over larger length scales (Fig. 3), in the inertial535

regime, flow is strongly spatially variable with finer-scale flow structures. Therefore, an average536

approximation of the inertial force may not be fully representative. Our results suggest that as537

Rein decrease and approaches one, |F̄I| and |F̄V | deviate from their scaling laws. This potentially538

indicates that the flow is near the transitional regime, at the higher end of the Rein range.539

3. Transitional regime540

Our experiments do not span the transitional range 0.1 ≤ Rein ≤ 36, which is challenging to541

achieve experimentally. When injecting silicone oil (Rein < 0.1), we reached the maximum pos-542

sible Rein (= 0.092) that could be achieved experimentally. For the water experiments, it was not543

possible to inject fluid at a lower rate than presented here, without potential settling of the tracer544

particles. Therefore it is currently unclear how internal fracture flow behaves in the transition545

from viscous to inertial flow. However, the flow behaviour in the viscous and inertial regimes546

gives some insight into what occurs during the transition.547

Fracture tip velocities are very similar for experiments that lie at the transitional margins, which548

suggests that the transitional regime has a narrow range in tip velocities (Fig. 12). This region of549

approximately constant tip velocity coincides with a shift in the behaviour of the fluid forces550

(Fig.7). Unlike in the viscous and inertial regimes |F̄V | and |F̄I| do not appear to be a simple551

function of Rein. During the transition from viscous to inertial flow, |F̄V | must decrease from the552

high values in the Rein < 1 experiments to the lowest values in the Rein > 1 experiments. Similarly,553

|F̄I| must increase across the transition, although Fig.7 indicates that this increase is non-linear554

and |F̄I| potentially plateaus before increasing again. However, there are not enough data points555

to determine how the fluid forces evolve across the transitional regime. When Re ≈ 1, inertial556

and viscous forces become similar in magnitude and are of equal importance. More experiments557

are needed to understand how fluid forces evolve across the transitional regime, and determine the558

exact Re values at which the transition occurs. Future experiments could use tracer particles with a559

lower density, or a Newtonian fluid with a higher density and viscosity than water (yet less viscous560

than silicone oil).561
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FIG. 12. Vertical fracture tip velocity utip (mm/s) against Rein at a dimensionless time of t∗ = 0.5. The line

connects all experiments except S4, which is an outlier due to a trapped bubble and additional buoyancy

effects.

4. Turbulent regime562

The onset of turbulence in fractures is commonly assumed to occur at Re ≈ 10001,3,74. Ex-563

periments W3 and W4 have regions of flow with both local Re > 1000 and Re < 1000 (Fig.10),564

potentially indicating simultaneous laminar and turbulent regimes. However, the uniform struc-565

ture of the jet (Fig. 4 in the Supplementary Material) and consistent, non-chaotic flow behavior566

suggest that fracture flow is not turbulent in our experiments75. We injected fluid at the fastest rate567

achievable with our injection equipment, yet could not achieve turbulence when injecting water.568

Note that, it could be possible to achieve turbulence by injecting liquids with a lower viscosity than569

water, yet these liquids also needs to satisfy the condition of having a similar density to gelatine570

and being able to hold tracer particles in suspension. An appropriate liquid may be challenging to571

identify, and this could be explored in future work. Thus, the dynamics of turbulent fracture flow572

remain an open question. Local Re contours (Fig.10) suggest that the central jet would be the first573

region of flow to become turbulent, but it is currently unclear whether the characteristic circulating574

flow structure would persist at higher Reynolds numbers. Note that 2D flow profiles do not reveal575

how the fluid is behaving in the third out-of-plane dimension — 3D imaging is required to know576

if the flow is chaotic across the fracture thickness.577
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D. Controls on fracture propagation578

Pressure scale estimates (Fig 8) suggest that the initial deceleration in utip is due to an increase579

in either the viscous or inertial resistive pressure as the fracture grows, depending on Rein. The580

resistance to fracture (characterized by Pf ) decreases with fracture length, causing the fracture to581

accelerate towards the free surface76. The horizontal fracture growth, uW consistently decelerates,582

which doesn’t coincide with any pressure scale. However, this does coincide with a decrease in583

the circulation velocity over time (Fig. 5H), suggesting that a reduction in the downwards flow584

velocity leads to a reduction in uW .585

The tip velocity utip is a linear function of the flux Q (Fig. 4), yet for a given tip velocity, there586

is a wide range of potential fluid behavior within. Across the transitional regime, injection rates587

and tip velocities are very similar, yet Rein ranges from approximately 0.1 to 30 (Fig. 12). This588

suggests that a constant proportion of the driving pressure (due to fluid injection) contributes to-589

wards fracture propagation, regardless of the internal fluid behavior. The remainder of this applied590

pressure is distributed via different combinations of the inertial and fluid forces (Fig. 8), producing591

different internal flow patterns (Figs.2 and 11). Although the fluid injection rate controls fracture592

propagation, we expect that the internal fluid dynamics have a subtle but potentially significant593

effect on the coupled solid host deformation. Further experiments focusing on solid displacement594

measurements are needed to investigate this.595

Through a theoretical analysis of a 2D flux-driven fracture propagating in an infinite, elastic596

medium, Emerman et al. (1986)10 found the tip velocity to be a linear function of the inlet velocity,597

with utip ≈ 0.45uin. This is a markedly different relationship to our experiments, where utip is598

consistently less than 1% of uin (Fig. 2 in the Supplementary Material). This difference is likely599

due to the 2D plane-strain model assumption with an infinite fracture width, as opposed to the point600

source injection method in our experiments. In propagating, non-buoyant fractures, the fracture601

width is always expected to exceed the length scale of the fluid inlet due to radial fracture growth.602

However, the size of the injection area affects the inlet Reynolds number and will have a strong603

effect on flow dynamics. This was investigated in numerical simulations of the flow within an604

inflating balloon68: smaller inlets led to longer and more focused jets, yet jet formation and flow605

circulation always occurred. Future experimental work could investigate the effect of the fluid606

inlet area on flux-driven fracture dynamics.607
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^ 

E = 109 Pa 

Kc= 3.8 x 106 Pa m1/2 

ν = 0.25 

ρf = 2700 kg/m3 

Q = 10-4 - 102 m2/s 
µ = 0.1, 10, 100 Pa s 

^ 

E = 109 Pa 
Kc= 105 Pa m1/2 

ν = 0.33 

ρf = 998 kg/m3 

Q = 10-9 - 103 m2/s 
µ = 0.001 Pa s 

magma ice 

Natural parameters: 

Lower Kc, higher E 

FIG. 13. Dimensionless parameter space for experiments and natural geophysical examples, defined by the

dimensionless viscosity µk and the Reynolds number Re0 =
Q̂ρ f

µ
. The water and silicone oil experiments

are depicted by green diamonds and purple circles respectively. Each line represents the potential range of

µk and Re0 for a range of Q̂ = Q/W values, with all other parameters constant. The light blue line depicts

ice fractures, whilst the pink and purple lines represent dykes with for three different magma viscosities.

E. Application to magmatic and glacial systems608

Experimental, flux-driven fractures in gelatine are an idealized analogue of natural, geophysical609

flux-driven fractures. The dimensionless viscosity µk and inertia Rk are ≪ 1 (Tab. IV), confirming610

that the analogue fractures propagate in the toughness regime. Although fracture toughness dom-611

inates overall, the ratio of viscous and inertial forces varies significantly across the experiments.612

We now consider the dynamic similarity between the analogue experiments and natural glacial613

and magmatic systems by comparing the dimensionless parameter space defined by µk and the614

Reynolds number. For the latter, we use the definition Re0 =
ρ f Q̂

µ
, where Q̂ = Q

W is the flux per unit615

width, in order to directly compare with nature. This requires appropriate estimates of magmatic616

and glacial parameters.617

The applicability of the experiments to natural systems is limited by the model assumptions618

(e.g. elastic solid, Newtonian fluid). Glacial ice is not strictly linear elastic, but it is accepted to619

behave in an elastic way under fracture77. In magmatic systems the assumption of elasticity is620

only applicable to the lithosphere78. Appropriate E values range from 108−1010 Pa for glaciers79
621

and 109 − 1010 Pa for the elastic crust80. Water in glacial crevasses is Newtonian (µ ≈ 10−3
622

Pa s), whereas the rheology of magma depends on the relative proportions of crystals, melt and623

xxxii



Up, down, and round again: the circulating flow dynamics of flux-driven fractures

bubbles81. Newtonian magmas are relatively crystal-poor with no bubbles, representing a primitive624

mafic (low-silica) magma: µ ranges from 101−102 Pa s for basaltic magma82,83, yet can be as low625

as 10−2 for ultramafic magmas such as komatiite or carbonatite29. Numerical models of basaltic626

dykes with a constant flux suggest that Q can range from 1−1000 m3/s84, whereas glacial fractures627

exhibit a wider range of Q values — from O(10−5) m3/s in thin fracture networks73, to O(103)628

m3/s in rapid drainage events15. Fracture lengths, widths and thicknesses have a wide variety of629

potential values, and we consider a range of fracture sizes. The natural parameter estimates are630

summarized in Tab. IV.631

According to the dimensionless parameter space defined by µk and Re0 (Fig. 13), our experi-632

ments represent the lowest end of the µk spectrum for natural magmatic and glacial fractures. The633

natural parameter space is depicted as a series of linear lines, each representing a different fluid634

viscosity, and a wide range of Q̂ values. All other parameters are assumed to be constant: whilst ρ f635

and ν have little effect on the overall parameter space, E and KC do act to shift the dimensionless636

viscosity range significantly. Here we have selected values that best represent the experiments in637

this parameter space, whilst being in the valid range specified above (the upper and lower ends638

of the E and KC ranges respectively, see Fig. 13 inset box). Both sets of experiments represent639

natural injections with a low flux (per unit width). Recall that the rate of injection is limited by640

the fluid viscosity (silicone oil could not be injected at a higher rate than achieved here). The641

silicone oil experiments (Rein < 1) are fairly well representative of glacial fractures and basaltic642

dykes, whereas the water experiments (Rein > 1) are more representative of a very low viscosity643

magma, such as a primitive komatiite. Future work could explore fractures with higher µk, and fill644

in the gaps in our understanding of flux-driven fluid dynamics across the natural parameter space.645

A higher µk could be achieved by using other fluids with different viscosities, and injecting them646

at a range of rates.647

VI. CONCLUSIONS648

Analague experiments of flux-driven fractures have shown that internal fracture flow has a649

self-similar pattern of a high-velocity central jet with a zone of fluid recirculation on either side,650

consistent across a range of regimes. We have utilized PIV velocity data to identify four po-651

tential regimes: viscous, inertial, transitional, and turbulent. Viscous and inertial regimes were652

produced experimentally (with some experiments perhaps bordering the transitional regime) for653
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Experiments Magma (basalt) Ice

E 2278 - 4337 1×109 −1010a 108 −1010i

KC 66-93 1.4×106 −3.8×106b 105 −205jk

ν 0.5 0.1-0.5a 0.3i

Q 4.4×10−8 - 7.0×10−6 1-103c 10−5 −103 lm

µ 0.001 - 0.45 101-103de 10−3g

ρ f 998,1040 2700p 998g

H 0.003 - 0.015 0.1 - 10df 10−3 −1 n

W 0.14−0.18o 101 −104h 1−104h

Re0 6×10−4 −5×101 10−4 −104 10−4 −108

µk 5×10−7 −3×10−4 10−5 −1010 10−8 −1010

Rk 4×10−10 −9×10−6 - -

TABLE IV. Characteristic parameters of flux-driven fractures in the current experiments and magmatic and

glacial settings: Young’s modulus E (Pa), fracture toughness KC (Pa m
1
2 ), Poisson’s ratio ν (dimensionless),

volumetric flux Q (m3/s), viscosity µ (Pa s), fluid density ρ f (kg/m3), fracture thickness H (m), fracture

width W (m), Reynolds number Re0 =
Qρ f
Bµ

, dimensionless viscosity µk =
12µQ‘

E‘

(E‘
K‘

)4, dimensionless inertia

Rk =
ρ f E‘5/3Q‘5/3

K‘8/3t1/3 . Rk was calculated at t∗ = 0.5 for the experiments, and not estimated in nature. References

for natural values: a) Heap et al. (2020)80, b) Balme et al. (2004)85, c) Traversa et al. (2010)84, d) Wada et

al. (1994)82, e) Roman et al. (2021)83, f) Rubin (1995)3, g) values for water, h) assuming a range of sizes,

i) Vaughan (1995)79, j) Fischer et al. (1995)86, k) Rist et al. (1999)87, l) Das et al. (2008)15, m) Fountain

et al. (2005)73, n) Holdsworth et al. (1969)88, o) range in experimental values at t∗ = 0.5, p) typical basalt

value89.

inlet Reynolds numbers spanning O(10−3) ≤ Rein ≤ O(103). In the viscous regime, the jet and654

adjacent vortices shrink with increasing Re yet become more intensely localized near the jet. To655

our knowledge, this is the first experimental insight into the behavior of jets at Re < 1. In the656

inertial regime, the jet length always exceeds the fracture length, and an increase in Rein leads to a657

greater degree of flow circulation. Although data are lacking for the transitional regime (Re ≈ 1)658

due to experimental limitations, we propose that the average fluid forces have a complex relation-659

ship with Rein, yet fractures propagate at similar tip velocities within this regime. Despite the660
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complexity of the internal flow, the propagation velocity is a linear function of the flux Q. These661

results have important implications for interpreting natural data on propagating fractures, and de-662

veloping better numerical models to predict them. A key advantage of our experimental model is663

that the solid transparency allows for measurements of fracture and flow dynamics in real-time.664

Furthermore, the model scales appropriately with natural flux-driven fractures, as shown by the665

dimensionless parameter space defined by Re and the dimensionless viscosity µk. However, there666

remains a knowledge gap regarding transitional and turbulent flow in fractures. Model simplifi-667

cations also restrict our analysis to fractures in elastic solids injected by Newtonian fluids with a668

constant viscosity and density. These assumptions are most restrictive in the application to vol-669

canology, where hot rocks can deform inelastically, and crystal and bubble content can lead to670

variations in magma viscosity and density. Future experiments (using different fluid and solid671

properties) are required to understand the complete range of flow regimes in flux-driven fractures,672

across the full natural parameter space. Experimental measurements in 3D would bring further673

advancement to our understanding of fracture dynamics.674

VII. SUPPLEMENTARY MATERIAL675

Supplementary Material to this article is provided online, containing further details on the ex-676

perimental methodology and additional results visualizations.677
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Experimental parameters

A fluid inlet area

cg gelatine concentration

d fluid inlet diameter

E Young’s modulus

KC fracture toughness

µ dynamic viscosity

ν Poisson’s ratio

ρ f fluid density

Q volumetric flux

Q̂ flux per unit width

t0 time when L = 10 cm

terupt time between t0 and eruption

uin inlet velocity

Geometry

H fracture thickness

L fracture length

W fracture width

x horizontal axis

y out of plane axis

z vertical axis

x̂ normalized horizontal coordinate

ẑ normalized vertical coordinate

ẑmax normalized height of velocity maximum
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Mathematical formulation

∂/∂ t partial time derivative

∇2 Laplace operator

FI inertial force, FI = (FIx,FIz)

FV viscous force, FV = (FV x,FV z)

n unit normal

p dynamic pressure

PF fracture pressure scale

∆PV viscous pressure scale

∆PI inertial pressure scale

t time, t0 ≤ t ≤ tmax

u velocity vector, u= (ux,uz)

ω vorticity, ω = ∇×u

ω vorticity magnitude

Characteristic velocities

uin inlet velocity

utip vertical tip velocity

utip50 vertical tip velocity when t∗ = 0.5

uW horizontal tip velocity

uW50 horizontal tip velocity when t∗ = 0.5

umean mean absolute velocity

udown representative downwards (downflow) velocity

ucirc circulation velocity

u jet jet velocity

PIV analysis

rc correlation value

∆t time increment

τr particle relaxation time

Ug Stokes particle velocity

∆x grid spacing
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Dimensionless numbers

µk dimensionless viscosity

Re0 flux Reynolds number

Rein inlet Reynolds number

Remean mean Reynolds number

Re jet jet Reynolds number

Retip tip Reynolds number

Rk dimensionless inertia

St Stokes number

t∗ dimensionless time, t∗ = (t − t0)/terupt

Numerical (finite difference) approximations

F̂I inertial force

F̂V viscous force

F̄I average inertial force

F̄V average viscous force

ˆ∆PV viscous pressure scale

ˆ∆PI inertial pressure scale
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